2019-2020第二学期4月份北京市海淀区期中数学试卷(含答案)
2019-2020学年北京市海淀区高一(下)期中数学试卷(含解析)
2019-2020学年北京市海淀区高一(下)期中数学试卷一、单选题(本大题共8小题,共32.0分)1.在△ABC中,角A,B,C的对边分别是a,b,c.若a=5bsinC,且cosA=5cosBcosC,则tan A的值为()A. 5B. 6C. −4D. −62.在△ABC中,角A,B,C所对的边分别为a,b,c,已知a=2√2,b=4,B=45°,则A=()A. 30°B. 60°C. 30°或150°D. 60°或120°3.方程√3sin2x+cos2x=2k−1,x∈[0,π]有两个不等根,则实数k的取值范围为()A. (−12,32) B. (−12,1)∪(1,32) C. [−12,32] D. [−12,1)∪(1,32]4.如图,网格纸上小正方形的边长为1,粗实线和虚线画出的是某空间几何体的三视图,则该几何体的体积为()A. 2B. 23C. 4D. 435.如图,为了解某海域海底构造,在海平面内一条直线上的A,B,C三点进行测量,已知AB=50m,BC=120m,于A处测得水深AD=80m,于B处测得水深BE=200m,于C处测得水深CF=110m,则∠DEF的余弦值为()A. 1665B. 1965C. 1657D. 17576.已知α,β是不同的平面,m,n是不同的直线,给出下列命题:①m⊥n,m//α,α//β⇒n⊥β;②m⊥n,m⊥α,α//β⇒n⊥β;③m ⊥α,n//β,α//β⇒m ⊥n ;④m ⊥α,m//n ,α//β⇒n ⊥β.其中正确的是( )A. ①②B. ②③C. ①④D. ③④ 7. 若0<x ,y <π2,且sinx =xcosy ,则( ) A. y <x 4B. x 4<y <x 2C. x 2<y <xD. x <y8. 已知△ABC 的面积为,则角C 的度数为( ) A. B. C. D.二、单空题(本大题共5小题,共20.0分)9. 已知3sin 2θ=5cosθ+1,则cos(π+2θ)=______.10. α是第二象限角,,则tanα=________.11. 在平行四边形ABCD 中,AB⃗⃗⃗⃗⃗ ⋅BD ⃗⃗⃗⃗⃗⃗ =0,沿BD 将四边形折起成直二面角A −BD −C ,且|√2AB ⃗⃗⃗⃗⃗ +BD⃗⃗⃗⃗⃗⃗ |=2,则三棱锥A −BCD 的外接球的表面积为______. 12. 已知a ,b ,c 分别是△ABC 的三个内角A ,B ,C 所对的边,若a =1,c =√3,A +B =2C ,则sinB =______.13. 已知函数f(x)=asinx +cosx 的一条对称轴为x =π3,则a =______.三、多空题(本大题共1小题,共4.0分)14. 如图,在△ABC 中,AB =BC =2,∠ABC =120°,若平面ABC 外的点P 和线段AC 上的点D ,线段BC 上的点Q ,满足PD =DA ,PB =BA ,则四面体P −BCD 的体积的最大值是 (1) ;当P −BCD 体积取最大值时,|PQ|min = (2) .四、解答题(本大题共4小题,共44.0分)15. 已知函数f(x)=Asin(ωx +φ)(A >0,ω>0,|φ|<π2)的部分图象如图所示.(1)求函数f(x)的解析式;(2)求函数f(x)在区间[−π2,0]上的最大值和最小值.16.已知a、b、c分别为△ABC的三个内角A、B、C的对边,2sinAcos2C2+2sinC⋅cos2A2=3sinB(1)证明a、b、c成等差数列;(2)若∠B为锐角,且a=btanA,求a:b:c的值.17.如图所示,直三棱柱ABC−A′B′C中,∠ABC=90°,AB=BC=BB′=2,D为底棱AC的中点.(1)求证:A′B⊥平面AB′C′;(2)过B′C′以及点D的平面与AB交于点E,求证:E为AB中点;(3)求三棱锥D−AB′C′的体积.18.已知函数.(1)求函f(x)的最小正周期和单调递增区间;(2)将函数f(x)的图象向右平移π个单位后得到函数y=g(x)的图象,求函数y=g(x)在区间4[0,π]上的值域.2【答案与解析】1.答案:B解析:本题主要考查解三角形中的正弦定理及应用,同时考查两角和差的余弦公式,诱导公式,以及同角三角函数的关系式,这些都是三角中的基本公式,务必要掌握,注意公式的逆用.运用正弦定理,把边化成角得到sinA=5sinBsinC,再与条件cosA=5cosBcosC相减,运用两角和的余弦公式,再用诱导公式转化为cos A,由同角公式,即可求出tan A.解:∵a=5bsinC,由正弦定理得:sinA=5sinBsinC①,又cosA=5cosBcosC②,②−①得,cosA−sinA=5(cosBcosC−sinBsinC),=5cos(B+C)=−5cosA,∴sinA=6cosA,∴tanA=sinAcosA=6.故选B.2.答案:A解析:解:∵a=2√2,b=4,B=45°,∴由正弦定理asinA =bsinB,可得:2√2sinA=4sin45∘,∴解得sinA=12,∵a<b,∴A<B,∴A=30°.故选:A.由已知及正弦定理解得sinA=12,结合大边对大角可求A为锐角,进而由特殊角的三角函数值可求A 的值.本题主要考查了正弦定理,大边对大角,特殊角的三角函数值等知识在解三角形中的应用,考查了转化思想,属于基础题.3.答案:B解析:解:cos2x+√3sin2x=2k−1,得2(12cos2x+√32sin2x)=2k−1,即2sin(2x+π6)=2k−1,可得:sin(2x+π6)=2k−12=k−12,由0≤x≤π,得π6≤2x+π6≤13π6,∵y=sin(2x+π6)在x∈[0,π]上的图象形状如图,∴当12<k−12<1和−1<k−12<12时,方程有两个不同的根,解得:1<k<32,−12<k<1.故选:B.利用辅助角公式化简,由x的范围求出这个角的范围,画出此时正弦函数的图象,根据函数值y对应的x有两个不同的值,由图象得出满足题意的正弦函数的值域,列出关于k的不等式,求出不等式的解集即可得到k的取值范围.本题考查了辅助角公式,正弦函数的图象与性质,以及正弦函数的定义域与值域,利用了数形结合的思想,属于中档题.4.答案:D解析:本题考查由三视图还原几何体,锥体体积的有关计算,还原几何体是解决问题的关键,属于基础题.由已知三视图还原几何体,代入四棱锥的体积公式计算可得.解:构造棱长为2的正方体如图所示,由三视图知该几何体是图中的四棱锥P−ABCD,其中B,D分别为棱的中点,则其体积V=13×[2×2−2×(12×2×1)]×2=43.故选D.5.答案:A解析:解:如图所示,作DM//AC交BE于N,交CF于M.DF=√MF2+DM2=√302+1702=10√298(m),DE=√DN2+EN2=√502+1202=130(m),EF=√(BE−FC)2+BC2=√902+1202=150(m).在△DEF中,由余弦定理,得cos∠DEF=DE2+EF2−DF22DF×EF =1302+1502−102×2982×130×150=1665.故选A分别在Rt△DMF中和Rt△DNE中利用勾股定理,求得DF,DE再算出EF=150m,在△DEF中利用余弦定理,可算出cos∠DEF的值.本题给出实际应用问题,求∠DEF的余弦值.主要考查了运用解三角形知识解决实际应用问题,考查了三角形问题中勾股定理、余弦定理的灵活运用,属于中档题.6.答案:D解析:解:①应该是n⊥β或n//β或n⊂β,即①错误;②应该是n//β或n⊂β,即②错误;③由线面垂直、线面平行和面面平行的性质定理可知③正确;④∵m⊥α,m//n,∴n⊥α,∵α//β,∴n⊥β,即④正确;故选:D.根据空间中线面的位置关系、平行与垂直的判定定理和性质定理,即可得解.本题考查了空间中线线、线面和面面的位置关系,需要熟记其判定定理和性质定理,考查了学生的空间立体感,属于基础题.7.答案:C解析:解:∵0<x,y<π2,∴0<sinx<x<tanx,又∵sinx=xcosy,∴cosy=sinxx >sinxtanx=cosx,故y<x,又∵sinx=xcosy,即12sinx=12xcosy,∴sin x2⋅cos x2=12xcosy,即cosy=sin x2⋅cos x212x<cos x2,故y>x2,综上所述,x2<y<x,故选:C.根据已知中0<x,y<π2,可得0<sinx<x<tanx,进而可将已知sinx=xcosy变形为cosy=sinxx>sinx tanx =cosx和12sinx=12xcosy,即cosy=sinx2⋅cos x212x<cos x2,进而结合余弦函数的单调性,得到答案.本题考查的知识点是三角函数线,余弦函数的单调性,本题的变形思路比较难,特别是对已知两个式子的变形.8.答案:D解析:试题分析:解:∵ab sin C,∴absinC=即.又根据余弦定理得,∴−2absinC=−2abcosC,即sinC=cosC.∴C=.故选D.考点:解三角形点评:关键是对于已知中的面积关系式的表示,再结合余弦定理来求解得到角的值,属于基础题。
20192020学年海淀区九年级期中统考数学试题与
2019-2020 学年海淀区九年级期中统考数学试题与答案数学试卷(分数: 120 分时间: 120 分钟).11学校姓名准考据号一、选择题(此题共30 分,每题 3 分)下边各题均有四个选项,此中只有一个..是切合题意的.请将正确选项前的字母填在表格中相应的地点 .题号12345678910答案1.一元二次方程2 x2x30 的二次项系数、一次项系数、常数项分别是A .2,1,3 B.2,1,3C.2, 1,3 D.2, 1, 32.以下图形是中心对称图形的是A .B .C.D.3.二次函数y( x+1)22的最大值是A .2B.1C. 1 D .24.已知⊙ O 的半径是4, OP 的长为 3,则点 P 与⊙ O 的地点关系是A .点 P 在圆内B.点 P 在圆上C.点 P 在圆外D.不可以确立52沿y轴向下平移2个单位,获得的抛物线的分析式为.将抛物线 y xA .y x22B .y x2 2 C.y2D .y2 x 2x 26.已知扇形的半径为 6 ,圆心角为60 ,则这个扇形的面积为A .9B .6C.3D.7.用配方法解方程x24x 3,以下配方正确的选项是A .x 221B.x 22227 C. x 27 D .x 218.已知二次函数y ax 2bx c 的图象如下图,则以下选项中不正确的是...A .a 0B .c 0b1D.a b c 0C.0 <2a9.如图,△ ABC 内接于⊙ O,BD 是⊙ O 的直径.若DBC 33 ,则A 等于A .33B.57C.67D .6610.小明乘坐摩天轮转一圈,他离地面的高度y(米)与旋转时间x(分)之间的关系能够近似地用二次函数来刻画.经测试得出部分数据如下表:x/ 分⋯⋯y/ 米⋯⋯以下选项中,最靠近摩天轮转一圈的时间的是A . 7 分B. 6.5 分C. 6 分D. 5.5 分二、填空题(此题共18 分,每题 3 分)11.方程x240的解为 _______________ .12.请写出一个张口向上且经过 (0, 1)的抛物线的分析式 _________ .13.若二次函数y 2x2 5 的图象上有两个点A(2, a ) 、 B (3, b ) ,则 a____ b(填“ <”或“ =”或“ >”).14 .如图, A 、 B 、 C三点在⊙ O 上,∠ AOC =100 °,则∠ABC=______ °.15.用一块直径为 4 米的圆桌布平铺在对角线长为 4 米的正方形桌面上(如表示图),若周围下垂的最大长度相等,则这个最大长度x 为_______米(2取).16.如图, O 是边长为 1 的等边△ ABC 的中心,将AB 、 BC、CA 分别绕点 A、点 B、点 C顺时针旋转( 0180 ),获得AB '、BC '、CA ',连结A' B '、B ' C '、A ' C '、OA '、OB '.(1) A ' OB ' _______? ;(2)当? 时,△A'B ' C '的周长最大.三、解答题(此题共 72分,第 17~26 题,每题 5 分,第27 题 7 分,第28 题 7 分,第29 题 8 分)172x 3 x 2 ..解方程:18.若抛物线y x23x a 与 x 轴只有一个交点,务实数 a 的值.19.已知点 (3, 0) 在抛物线y3x 2( k 3) x k 上,求此抛物线的对称轴.20.如图, AC 是⊙ O 的直径, PA, PB 是⊙ O 的切线, A, B 为切点,BAC 25.求∠ P 的度数.21.已知 x=1 是方程x25ax a 20 的一个根,求代数式3a215a7 的值.22.一圆柱形排水管的截面如下图,已知排水管的半径为1m,水面宽AB 为.因为天气干燥,水管水面降落,此时排水管水面宽变成 1.2m ,求水面降落的高度.23.已知对于 x 的方程3x2(a 3)x a 0(a 0) .( 1)求证:方程总有两个不相等的实数根;( 2)若方程有一个根大于2,求 a 的取值范围.24.在设计人体塑像时,若使塑像的上部(腰以上)与下部(腰以下)的高度的比等于下部与所有(浑身)的高度比,则能够增添视觉美感.按此比率,假如塑像的高为2m,那么它的下部应设计为多高( 5 取).25.已知 AB 是⊙ O 的直径, AC、AD 是⊙ O 的弦, AB=2, AC= 2,AD=1,求∠ CAD 的度数.26.抛物线y1x2bx c 与直线y22x m 订交于A ( 2,n) 、B (2,3) 两点.(1)求这条抛物线的分析式;(2)若4 x 1,则y2y1的最小值为 ________.27.如图, AB 为⊙ O 的直径, C 为⊙ O 上一点, CD⊥AB 于点D. P 为 AB 延伸线上一点,PCD 2 BAC .(1)求证: CP 为⊙ O 的切线;(2) BP=1,CP5 .①求⊙ O 的半径;②若 M 为 AC 上一动点,则OM+DM 的最小值为.28.研究活动:利用函数 y ( x 1)( x 2) 的图象(如图1)和性质,研究函数y( x 1)(x 2) 的图象与性质 .下边是小东的研究过程,请增补完好:(1)函数y(x 1)(x 2) 的自变量x的取值范围是___________;(2)如图 2,他列表描点画出了函数y( x 1)(x 2) 图象的一部分,请补全函数图象;图 1图 2解决问题:设方程(x 1)(x 2)1x b 0 的两根为 x1、 x2,且 x1x2,方程4x23x 21x b 的两根为 x3、 x4,且 x3 x4.若1 b 2 ,则x1、x2、x3、x4的4大小关系为(用“ <”连结).29.在平面直角坐标系xOy 中,半径为1 的⊙ O 与 x 轴负半轴交于点A,点 M 在⊙ O 上,将点 M 绕点 A 顺时针旋转60 获得点 Q. 点 N 为 x 轴上一动点( N 不与 A 重合),将点M 绕点 N 顺时针旋转60 获得点 P. PQ 与 x 轴所夹锐角为.(1)如图 1,若点 M 的横坐标为1,点 N 与点 O 重合,则=________ ;2(2)若点 M、点 Q 的地点如图 2 所示,请在 x 轴上任取一点N,画出直线 PQ,并求的度数;(3)当直线 PQ 与⊙ O 相切时,点M的坐标为 _________.图 1图2备用图九年级第一学期期中测评数学试卷参照答案一、 (本 共 30 分,每小3 分) 8 9号12 3 4 5 6 7 10 答 案DAAA BBC DBC二、填空 (本 共18 分,每小3 分)14 15号 111213 16答 案x 1 2, x 22yx 2 1<130120, 150(答案不独一)三、 解答 (本 共 72 分,第 17~26 ,每小5 分,第 27 7 分,第 287 分,第29 8 分)17.解: x 23x 2 0.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯1 分 ( x 1)( x2) 0 . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分∴ x 1 0或 x 2 0 .∴ x 11, x 2 2 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5 分18.解:∵抛物y x 2 3x a 与 x 只有一个交点,∴ 0 , ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2 分即 9 4a 0 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分∴ a9 分. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5419.解:∵点 (3, 0) 在抛物 y3x 2 ( k 3) x k 上, ∴ 03 32 3( k 3)k . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2 分∴ k 9. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3 分∴抛物 的分析式 y 3 x212 x 9 .∴ 称 x2 . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5 分20.解:∵ PA,PB 是⊙ O 的切 ,∴ PA=PB .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯1分∴PABPBA .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2分∵ AC ⊙ O 的直径, ∴ CA ⊥ PA .∴ PAC 90 o .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3 分∵BAC 25 o ,∴PAB65 o . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分∴ P 180 2 PAB 50 o .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5 分21.解:∵x1 是方程 x2 5ax a 20 的一个根,∴ 1 5aa 20 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2 分 ∴ a 2 5a2 1 . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分∴原式3(a a⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4 分5 ) 710 . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5 分 22.解:如 ,降落后的水面, 接 OA, OC ,点 O 作 ON ⊥ CD 于 N ,交 AB 于 M . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯1 分∴ ONC 90 o .∵ AB ∥ CD , ∴ OMA ONC 90 o .∵ , CD 1.2 ,∴AM1,1CD2CN0.6 . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2 分2在 Rt △OAM 中,∵ OA 1 ,∴OMOA 2 AM 2 . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3 分同理可得 ON . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4 分∴ MN ON OM 0.2.答:水面降落了0.2 米. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5 分23.( 1) 明:(a 3)24 3 ( a) (a3) 2 . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 1 分∵ a0 ,∴ (a3)2 0 .即0 .∴方程 有两个不相等的 数根.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2分( 2)解方程,得 x 11, x 2a . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分3∵方程有一个根大于 2,∴a2 .3∴ a 6 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5 分24.解:如 ,塑像上部高度 AC 与下部高度BC 有 AC : BCBC : 2 ,即 BC 2 2AC .BC x m. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯1 分依意,得x22(2x) ..⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分解得 x115, x2 1 5 (不切合意,舍去).⋯⋯4分5 1 1.2 .1.2m .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5分答:塑像的下部25.解:如1,当点 D、 C 在 AB 的异,接 OD 、 BC. ⋯⋯⋯1分∵AB 是⊙ O 的直径,∴ ACB 90 o.在Rt△ACB 中,∵ AB2, AC 2 ,∴ BC 2 .∴BAC 45 o.⋯⋯⋯⋯⋯⋯2分∵OA OD AD 1,∴BAD 60 o.⋯⋯⋯⋯⋯⋯3分∴CADBAD BAC 105o.⋯⋯⋯⋯⋯⋯4分当点 D 、 C 在 AB的同,如 2 ,同理可得BAC45 ,BAD 60 .∴CAD BAD BAC 15o.∴CAD 为15o或 105 o.⋯⋯⋯⋯⋯⋯⋯5分26.解:( 1)∵直y22x m 点B(2,-3),∴ 3 2 2 m .∴m 1.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯1分∵直 y22x m 点A(-2,n),∴ n 5.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 2 分∵抛物 y1x2bx c 点A和点B,542b c,∴342b c.b2,∴c3.∴ y1x22x3.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4 分(2)12 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5分27.( 1)明:接 OC. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 1 分∵∠ PCD=2∠ BAC,∠ POC=2∠BAC,∴∠ POC=∠PCD.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2分∵CD⊥ AB 于点 D,∴∠ ODC=90.11 / 12∴∠ POC+∠ OCD =90o . ∴∠ PCD+∠OCD =90o . ∴∠ OCP=90o . ∴半径 OC ⊥CP .∴ CP ⊙ O 的切 . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分( 2)解:① ⊙ O 的半径 r .在 Rt △OCP 中, OC 2CP 2 OP 2 .∵ BP 1, CP 5,∴ r 2( 5) 2(r 1)2 . ⋯⋯⋯⋯⋯⋯⋯⋯⋯4分解得 r2 .∴⊙ O 的半径 2. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5分②2 14. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7分328.解:( 1) x1或 x 2 ;⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2分(2)如 所示:⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5 分x 1 x 3 x 4 x 2 . .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7分29. 解:( 1) 60 . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2 分( 2).⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3 分接 MQ , MP . MQ , PQ 分 交 x 于 E, F .∵将点 M 点 A 旋60 获得点 Q ,将点 M 点 N旋 60 获得点 P ,yP∴△ MAQ 和△ MNP 均 等 三角形 . ⋯⋯⋯⋯⋯⋯4 分 M∴ MA MQ , MN MP ,AMQNMP 60.∴ AMNQMP .AO E FN xQ11 / 12∴△ MAN ≌△ MQP . .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 5 分∴MAN MQP .∵AEM QEF ,∴QFE AMQ 60 .∴60 . .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.6分( 3)(3,1)或(3,1). ⋯⋯⋯⋯⋯⋯⋯⋯⋯8分222212 / 1212 / 12。
2019-2020第二学期北京海淀高三期中数学数学答案
(18)解:(Ⅰ)设事件 A 为“从 2010 年至 2019 年中随机选取一年,研发投入占当年总
营收的百分比超过 10%”,从 2010 年至 2019 年一共 10 年,其中研发投入
占当年总营收的百分比超过 10%有 9 年,
所以 P( A) 9 . 10
(Ⅱ)由图表信息,从 2010 年至 2019 年 10 年中有 5 年研发投入超过 500 亿元,
1) ,直线 2
A1B
方程为
第 4 页(共 8 页)
y 1 x 1 2
由
y y
k(x 1x 2
2), 1.
解得点
P( 4k 2k
2 1
,
4k 2k
) 1
.
y k(x 2),
由
x
2
4
y2
1.
得 (4k 1)x2
16k 2 x 16k 2
40,
则
2
xM
=
16k 2 4k 2
所以 g(x) 有唯一的一个零点. 即函数 y f (x) 与 y 1 ln x 有且只有一个交点.
(20)解:(Ⅰ)由题
aacb
3, 2 2,
a2 b2 c2.
解得
a b
2, 1.
所以椭圆方程为 x2 y2 1 . 4
(II)解法 1
证明:设直线
A2 M
方程为
y k(x 2)(k
0且k
(Ⅲ)本题为开放问题,答案不唯一. 要求用数据说话,数据可以支持自己的结 论即可,阅卷时按照上述标准酌情给分.
(19)解:(Ⅰ)①当 a 1 时, f (x) ex x ,则 f (x) ex 1 . 所以 f '(0) 0. 又 f (0) 1, 所以曲线 y f (x) 在点 (0, f (0)) 处的切线方程为 y 1
北京市海淀区2019-2020学年中考四诊数学试题含解析
北京市海淀区2019-2020学年中考四诊数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.甲、乙两超市在1月至8月间的盈利情况统计图如图所示,下面结论不正确的是( )A .甲超市的利润逐月减少B .乙超市的利润在1月至4月间逐月增加C .8月份两家超市利润相同D .乙超市在9月份的利润必超过甲超市 2.下列计算正确的是( )A .a 2•a 3=a 5B .2a+a 2=3a 3C .(﹣a 3)3=a 6D .a 2÷a=2 3.如图是二次函数y =ax 2+bx + c(a≠0)图象如图所示,则下列结论,①c<0,②2a + b=0;③a+b+c=0,④b 2–4ac<0,其中正确的有()A .1个B .2个C .3个D .44.如果关于x 的分式方程1311a x x x --=++有负分数解,且关于x 的不等式组2()4,3412a x x x x -≥--⎧⎪⎨+<+⎪⎩的解集为x<-2,那么符合条件的所有整数a 的积是 ( ) A .-3B .0C .3D .95.如图是几何体的俯视图,所表示数字为该位置小正方体的个数,则该几何体的正视图是( )A .B .C .D .6.如图,以∠AOB的顶点O为圆心,适当长为半径画弧,交OA于点C,交OB于点D.再分别以点C、D为圆心,大于12CD的长为半径画弧,两弧在∠AOB内部交于点E,过点E作射线OE,连接CD.则下列说法错误的是A.射线OE是∠AOB的平分线B.△COD是等腰三角形C.C、D两点关于OE所在直线对称D.O、E两点关于CD所在直线对称7.如图,在正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,连接AF交CG于M点,则FM=()A.52B.32C.352D.728.如图,四边形ABCD是菱形,∠A=60°,AB=2,扇形BEF的半径为2,圆心角为60°,则图中阴影部分的面积是()A.233π-B.233π-C.3π-D.3π-9.如图,在Rt△ABC中,∠C=90°,∠CAB的平分线交BC于D,DE是AB的垂直平分线,垂足为E,若BC=3,则DE的长为()A.1 B.2 C.3 D.410.如图,在Rt△ABC中,∠B=90º,AB=6,BC=8,点D在BC上,以AC为对角线的所有□ADCE 中,DE的最小值是()A.4 B.6 C.8 D.1011.按一定规律排列的一列数依次为:﹣23,1,﹣107,179、﹣2611、3713…,按此规律,这列数中的第100个数是()A.﹣9997199B.10001199C.10001201D.999720112.如图已知⊙O的内接五边形ABCDE,连接BE、CE,若AB=BC=CE,∠EDC=130°,则∠ABE 的度数为()A.25°B.30°C.35°D.40°二、填空题:(本大题共6个小题,每小题4分,共24分.)13.圆锥的底面半径为4cm,高为5cm,则它的表面积为______ cm1.14.如图,在边长为4的菱形ABCD中,∠A=60°,M是AD边的中点,点N是AB边上一动点,将△AMN 沿MN所在的直线翻折得到△A′MN,连接A′C,则线段A′C长度的最小值是______.15.已知一块等腰三角形钢板的底边长为60cm,腰长为50 cm,能从这块钢板上截得得最大圆得半径为________cm16.如图, ⊙O是△ABC的外接圆,∠AOB=70°,AB=AC,则∠ABC=__.17.如图,四边形ABCD 是菱形,∠BAD =60°,AB =6,对角线AC 与BD 相交于点O ,点E 在AC 上,若OE =23,则CE 的长为_______18.如图,已知直线1y k x b =+与x 轴、y 轴相交于P 、Q 两点,与2k y x=的图象相交于(2,)A m -、(1,)B n 两点,连接OA 、OB .给出下列结论: ①120k k <;②102m n +=;③AOP BOQ S S ∆∆=;④不等式21k k x b x+>的解集是2x <-或01x <<. 其中正确结论的序号是__________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图1,在圆O 中,OC 垂直于AB 弦,C 为垂足,作BAD BOC ∠=∠,AD 与OB 的延长线交于D .(1)求证:AD 是圆O 的切线;(2)如图2,延长BO ,交圆O 于点E ,点P 是劣弧AE 的中点,5AB =,132OB =,求PB 的长 .20.(6分)(10分)如图,AB 是⊙O 的直径,OD ⊥弦BC 于点F ,交⊙O 于点E ,连结CE 、AE 、CD ,若∠AEC=∠ODC .(1)求证:直线CD为⊙O的切线;(2)若AB=5,BC=4,求线段CD的长.21.(6分)由我国完全自主设计、自主建造的首艘国产航母于2018年5月成功完成第一次海上试验任务.如图,航母由西向东航行,到达A处时,测得小岛C位于它的北偏东70︒方向,且与航母相距80海里,再航行一段时间后到达B处,测得小岛C位于它的北偏东37︒方向.如果航母继续航行至小岛C的正南方向的D处,求还需航行的距离BD的长.22.(8分)先化简,22211121x x xx xx x--+⋅-++,其中x=12.23.(8分)定安县定安中学初中部三名学生竞选校学生会主席,他们的笔试成绩和演讲成绩(单位:分)分别用两种方式进行统计,如表和图.A B C笔试85 95 90口试80 85(1)请将表和图中的空缺部分补充完整;图中B同学对应的扇形圆心角为度;竞选的最后一个程序是由初中部的300名学生进行投票,三名候选人的得票情况如图(没有弃权票,每名学生只能推荐一人),则A同学得票数为,B同学得票数为,C同学得票数为;若每票计1分,学校将笔试、演讲、得票三项得分按4:3:3的比例确定个人成绩,请计算三名候选人的最终成绩,并根据成绩判断当选.(从A、B、C、选择一个填空)24.(10分)如图,⊙O是△ABC的外接圆,AD是⊙O的直径,BC的延长线于过点A的直线相交于点E,且∠B=∠EAC.(1)求证:AE是⊙O的切线;(2)过点C作CG⊥AD,垂足为F,与AB交于点G,若AG•AB=36,tanB=22,求DF的值25.(10分)抛物线y=﹣x2+(m﹣1)x+m与y轴交于(0,3)点.(1)求出m的值并画出这条抛物线;(2)求它与x轴的交点和抛物线顶点的坐标;(3)x取什么值时,抛物线在x轴上方?(4)x取什么值时,y的值随x值的增大而减小?26.(12分)解分式方程:2322xx x+--=127.(12分)如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.(1)求证:四边形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】根据折线图中各月的具体数据对四个选项逐一分析可得.【详解】A、甲超市的利润逐月减少,此选项正确,不符合题意;B、乙超市的利润在1月至4月间逐月增加,此选项正确,不符合题意;C、8月份两家超市利润相同,此选项正确,不符合题意;D、乙超市在9月份的利润不一定超过甲超市,此选项错误,符合题意,故选D.【点睛】本题主要考查折线统计图,折线图是用一个单位表示一定的数量,根据数量的多少描出各点,然后把各点用线段依次连接起来.以折线的上升或下降来表示统计数量增减变化.2.A【解析】【分析】直接利用合并同类项法则以及积的乘方运算法则、整式的除法运算法则分别计算得出答案.【详解】A、a2•a3=a5,故此选项正确;B、2a+a2,无法计算,故此选项错误;C、(-a3)3=-a9,故此选项错误;D、a2÷a=a,故此选项错误;故选A.【点睛】此题主要考查了合并同类项以及积的乘方运算、整式的除法运算,正确掌握相关运算法则是解题关键. 3.B 【解析】 【分析】由抛物线的开口方向判断a 与1的关系,由抛物线与y 轴的交点判断c 与1的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断. 【详解】①抛物线与y 轴交于负半轴,则c <1,故①正确; ②对称轴x 2ba=-=1,则2a+b=1.故②正确; ③由图可知:当x=1时,y=a+b+c <1.故③错误;④由图可知:抛物线与x 轴有两个不同的交点,则b 2﹣4ac >1.故④错误. 综上所述:正确的结论有2个. 故选B . 【点睛】本题考查了图象与二次函数系数之间的关系,会利用对称轴的值求2a 与b 的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用. 4.D 【解析】解:2()43412a x x x x ①②-≥--⎧⎪⎨+<+⎪⎩,由①得:x≤2a+4,由②得:x <﹣2,由不等式组的解集为x <﹣2,得到2a+4≥﹣2,即a≥﹣3,分式方程去分母得:a ﹣3x ﹣3=1﹣x ,把a=﹣3代入整式方程得:﹣3x ﹣6=1﹣x ,即72x =-,符合题意;把a=﹣2代入整式方程得:﹣3x ﹣5=1﹣x ,即x=﹣3,不合题意; 把a=﹣1代入整式方程得:﹣3x ﹣4=1﹣x ,即52x =-,符合题意; 把a=0代入整式方程得:﹣3x ﹣3=1﹣x ,即x=﹣2,不合题意; 把a=1代入整式方程得:﹣3x ﹣2=1﹣x ,即32x =-,符合题意; 把a=2代入整式方程得:﹣3x ﹣1=1﹣x ,即x=1,不合题意; 把a=3代入整式方程得:﹣3x=1﹣x ,即12x =-,符合题意;把a=4代入整式方程得:﹣3x+1=1﹣x ,即x=0,不合题意,∴符合条件的整数a 取值为﹣3;﹣1;1;3,之积为1.故选D .5.B【解析】【分析】根据俯视图中每列正方形的个数,再画出从正面看得到的图形即可.【详解】解:主视图,如图所示:.故选B.【点睛】本题考查由三视图判断几何体;简单组合体的三视图.用到的知识点为:主视图是从物体的正面看得到的图形;看到的正方体的个数为该方向最多的正方体的个数.6.D【解析】试题分析:A、连接CE、DE,根据作图得到OC=OD,CE=DE.∵在△EOC与△EOD中,OC=OD,CE=DE,OE=OE,∴△EOC≌△EOD(SSS).∴∠AOE=∠BOE,即射线OE是∠AOB的平分线,正确,不符合题意.B、根据作图得到OC=OD,∴△COD是等腰三角形,正确,不符合题意.C、根据作图得到OC=OD,又∵射线OE平分∠AOB,∴OE是CD的垂直平分线.∴C、D两点关于OE所在直线对称,正确,不符合题意.D、根据作图不能得出CD平分OE,∴CD不是OE的平分线,∴O、E两点关于CD所在直线不对称,错误,符合题意.故选D.7.C【解析】【分析】由正方形的性质知DG=CG-CD=2、AD∥GF,据此证△ADM∽△FGM得AD DMFG GM=, 求出GM的长,再利用勾股定理求解可得答案.【详解】解:∵四边形ABCD和四边形CEFG是正方形,∴AD=CD=BC=1、CE=CG=GF=3,∠ADM=∠G=90°,∴DG=CG-CD=2,AD∥GF,则△ADM∽△FGM,∴AD DMFG GM=,即123GMGM-=,解得:GM=32,∴FM=22FG GM+=22332⎛⎫+ ⎪⎝⎭=35,故选:C.【点睛】本题主要考查相似三角形的判定与性质,解题的关键是熟练掌握正方形的性质、相似三角形的判定与性质及勾股定理等知识点.8.B【解析】【分析】根据菱形的性质得出△DAB是等边三角形,进而利用全等三角形的判定得出△ABG≌△DBH,得出四边形GBHD的面积等于△ABD的面积,进而求出即可.【详解】连接BD,∵四边形ABCD是菱形,∠A=60°,∴∠ADC=120°,∴∠1=∠2=60°,∴△DAB是等边三角形,∵AB=2,∴△ABD 的高为3, ∵扇形BEF 的半径为2,圆心角为60°,∴∠4+∠5=60°,∠3+∠5=60°,∴∠3=∠4,设AD 、BE 相交于点G ,设BF 、DC 相交于点H ,在△ABG 和△DBH 中,2{34A AB BD ∠=∠=∠=∠,∴△ABG ≌△DBH (ASA ),∴四边形GBHD 的面积等于△ABD 的面积,∴图中阴影部分的面积是:S 扇形EBF -S △ABD =26021233602π⨯-⨯⨯ =233π-. 故选B .9.A【解析】试题分析:由角平分线和线段垂直平分线的性质可求得∠B=∠CAD=∠DAB=30°,∵DE 垂直平分AB , ∴DA=DB ,∴∠B=∠DAB ,∵AD 平分∠CAB ,∴∠CAD=∠DAB , ∵∠C=90°,∴3∠CAD=90°, ∴∠CAD=30°, ∵AD 平分∠CAB ,DE ⊥AB ,CD ⊥AC , ∴CD=DE=BD , ∵BC=3, ∴CD=DE=1 考点:线段垂直平分线的性质10.B【解析】【分析】平行四边形ADCE 的对角线的交点是AC 的中点O ,当OD ⊥BC 时,OD 最小,即DE 最小,根据三角形中位线定理即可求解.【详解】平行四边形ADCE 的对角线的交点是AC 的中点O ,当OD ⊥BC 时,OD 最小,即DE 最小。
北京市海淀区教师进修附属实验学校2019-2020学年高一数学下学期期中试题(含解析)
sin
2 cos
1 2
2
5
sin cos 1 1
所以
2
tan
(Ⅱ)由
1 2
,得 cos
2 sin
,
又 sin2
cos2
sin2 1 ,所以
1 5
,
注意到
sin
为第三象限角,可得
5 cos 2 5
5,
5.
所以
cos
4
cos
cos
4
sin
sin
4
2 5 2 5 2 3 10
【点睛】本题主要考查扇形的弧长和面积的计算,意在考查学生对这些知识的理解掌握水平,
属于基础题.
13.若向量 a, b 满足
a
1
,
b
2
,
ab
2
,则
a
b
______.
1
【答案】 2
【解析】
【分析】
ab 2
把
两边平方化简即得解.
ab 2
【详解】因为
,
2 a
2 +b
2ab
4,1
4
2ab
4, ab
所以 0 tan 38 tan 56 .
tan 56 tan 38 tan 40
故得
.
故选: B
【点睛】本题主要考查诱导公式和正切函数的单调性,意在考查学生对这些知识的理解掌握
水平.
7.如果先将函数 y sin 2x 的图象向左平移 4 个单位长度,再将所得图象向上平移1个单位
长度,那么最后所得图象对应的函数解析式为( )
1
所以
2.
1 故答案为: 2
北京市海淀区2019-2020学年度第二学期初一期中数学试题及答案解析
北京市海淀区2019-2020学年度第二学期初一期中数学试题及答案解析北京市海淀区2019-2020学年度第二学期初一期中数学试题班级:______ 姓名:______ 学号:______ 得分:______一、选择题:(每小题3分,共30分)1.下列各数中,无理数是().A.4 B.2 C. D.16/272.1/9的平方根是()A.1/3 B.-1/3 C.1/9 D.-1/93.下列命题中正确的是().A.相等的角是对顶角;B.同位角相等;C.互补的角是邻补角;D.若a∥b,b∥c,则a∥c.4.观察下图,在A、B、C、D四幅图中,能通过图(1)的平移得到的是().1) A。
B。
C。
D5.已知a b,则下列不等式一定成立的是().A.a5b 5 B.2a2b C.a b D.7a7b 26.若点A(a,b)在第二象限,则点B(a-b,b-a)一定在()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.利用数轴确定不等式组{x+1≥0,x<2}的解集,正确的是().A.-2≤x≤-1 B.x≥-1 C.x≤-2或x≥-1 D.x≤-18.如图,直线AB、CD相交于点O,OE⊥AB于O,若∠COE=55°,则∠BOD的度数为()A。
40° B。
45° C。
30° D。
35°9.如图,点E在AB的延长线上,下列条件中,能判断AD//BC的是()A.∠3=∠4 B.∠1=∠2 C.∠C=∠CBE D.∠C+∠ABC=180°10.如图,所有正方形的中心均在坐标原点,且各边与x轴或y轴平行.从内到外,它们的边长依次为2。
4,6,8,…,顶点依次用A1,A2,A3,A4,…表示,则顶点A55的坐标()A、(13,13)B、(-13,-13)C、(14,14)D、(-14,-14)二、填空题:(每小题2分,共20分)11.16的算术平方根是4,若2-x有意义,则x的取值范围是(-∞,2)。
2019-2020学年海淀高三年级第二学期数学期中练习试题-附详细答案(理)
海淀区高三年级第二学期期中练习数 学 (理科) 2019.4选择题 (共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1、已知集合{}30<<∈=x x A R ,{}42≥∈=x x B R ,则=B AA. {}32<<x xB. {}32<≤x xC. {}322<≤-≤x x x 或D. R2.已知数列{}n a 为等差数列,n S 是它的前n 项和.若21=a ,123=S ,则=4S A .10 B .16 C .20 D .243. 在极坐标系下,已知圆C 的方程为2cos ρθ=,则下列各点在圆C 上的是 A .1,3π⎛⎫- ⎪⎝⎭B . 1,6π⎛⎫⎪⎝⎭C.34π⎫⎪⎭D .54π⎫⎪⎭4.执行如图所示的程序框图,若输出x 的值为23,则输入的x 值为A .0 B.1 C .2 D .11 5.已知平面l =αβ,m 是α内不同于l 的直线,那么下列命题中错误..的是 A .若β//m ,则l m // B .若l m //,则β//m C .若β⊥m ,则l m ⊥ D .若l m ⊥,则β⊥m 6. 已知非零向量,,a b c 满足++=a b c 0,向量,a b 的夹角为120,且||2||=b a ,则向量a 与c 的夹角为A .︒60B .︒90C .︒120D . ︒1507.如果存在正整数ω和实数ϕ使得函数)(cos )(2ϕω+=x x f (ω,ϕ为常数)的图象如图所示(图象经过点(1,0)),那么ω的值为A .1B .2C . 3 D. 48.已知抛物线M :24y x =,圆N :222)1(r y x =+-(其中r 为常数,0>r ).过点(1,0)的直线l 交圆N 于C 、D 两点,交抛物线M 于A 、B 两点,且满足BD AC =的直线l 只有三条的必要条件是A .(0,1]r ∈B .(1,2]r ∈C .3(,4)2r ∈D .3[,)2r ∈+∞非选择题(共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上.9.复数3i1i-+= . 10.为了解本市居民的生活成本,甲、乙、丙三名同学利用假期分别对三个社区进行了“家庭每月日常消费额”的调查.他们将调查所得到的数据分别绘制成频率分布直方图(如图所示),记甲、乙、丙所调查数据的标准差分别为1s ,2s ,3s ,则它们的大小关系为 . (用“>”连接)11.如图,A ,B ,C 是⊙O 上的三点,BE 切⊙O 于点B ,D 是CE 与⊙O 的交点.若︒=∠70BAC ,则=∠CBE ______;若2=BE ,4=CE , 则=CD .12.已知平面区域}11,11|),{(≤≤-≤≤-=y x y x D ,在区域D 内任取一点,则取到的点位于直线y kx =(k R ∈)下方的概率为____________ .13.若直线l 被圆22:2C x y +=所截的弦长不小于2,则在下列曲线中:乙丙0.0002甲①22-=x y ② 22(1)1x y -+= ③ 2212x y += ④ 221x y -=与直线l 一定有公共点的曲线的序号是 . (写出你认为正确的所有序号)14.如图,线段AB =8,点C 在线段AB 上,且AC =2,P 为线段CB 上一动点,点A 绕点C 旋转后与点B 绕点P 旋转后重合于点D .设CP =x , △CPD 的面积为()f x .则()f x 的定义域为 ; '()f x 的零点是 .三、解答题: 本大题共6小题,共80分.解答应写出文字说明, 演算步骤或证明过程.15. (本小题共13分)在ABC ∆中,内角A 、B 、C 所对的边分别为,,a b c ,已知1tan 2B =,1tan 3C =,且1c =. (Ⅰ)求tan A ;(Ⅱ)求ABC ∆的面积.16. (本小题共14分)在如图的多面体中,EF ⊥平面AEB ,AE EB ⊥,//AD EF ,//EF BC ,24BC AD ==,3EF =,2AE BE ==,G 是BC 的中点.(Ⅰ) 求证://AB 平面DEG ; (Ⅱ) 求证:BD EG ⊥;(Ⅲ) 求二面角C DF E --的余弦值.17. (本小题共13分)某厂生产的产品在出厂前都要做质量检测,每一件一等品都能通过检测,每一件二等品通过检测的概率为23.现有10件产品,其中6件是一等品,4件是二等品. (Ⅰ) 随机选取1件产品,求能够通过检测的概率;ACP BD A DFEB G C(Ⅱ)随机选取3件产品,其中一等品的件数记为X ,求X 的分布列; (Ⅲ) 随机选取3件产品,求这三件产品都不能通过检测的概率.18. (本小题共13分)已知函数()ln f x x a x =-,1(), (R).ag x a x+=-∈ (Ⅰ)若1a =,求函数()f x 的极值;(Ⅱ)设函数()()()h x f x g x =-,求函数()h x 的单调区间;(Ⅲ)若在[]1,e (e 2.718...=)上存在一点0x ,使得0()f x <0()g x 成立,求a 的取值范围.19. (本小题共14分)已知椭圆2222:1x y C a b += (0)a b >>经过点3(1,),2M 其离心率为12.(Ⅰ)求椭圆C 的方程;(Ⅱ)设直线1:(||)2l y kx m k =+≤与椭圆C 相交于A 、B 两点,以线段,OA OB 为邻边作平行四边形OAPB ,其中顶点P 在椭圆C 上,O 为坐标原点.求OP 的取值范围.20. (本小题共13分)已知每项均是正整数的数列A :123,,,,n a a a a ,其中等于i 的项有i k 个(1,2,3)i =⋅⋅⋅,设j j k k k b +++= 21 (1,2,3)j =,12()m g m b b b nm =+++-(1,2,3)m =⋅⋅⋅.(Ⅰ)设数列:1,2,1,4A ,求(1),(2),(3),(4),(5)g g g g g ; (Ⅱ)若数列A 满足12100n a a a n +++-=,求函数)(m g 的最小值.海淀区高三年级第二学期期中练习数 学(理)答案及评分参考 2019.4选择题 (共40分)一、选择题(本大题共8小题,每小题5分,共40分)二、填空题(本大题共6小题,每小题5分. 共30分.有两空的题目,第一空3分,第二空2分)9.12i - 10. s 1>s 2>s 3 11. 70; 3 12.1213. ① ③ 14. (2,4); 3 三、解答题(本大题共6小题,共80分) 15.(共13分) 解:(I )因为1tan 2B =,1tan 3C =,tan tan tan()1tan tan B CB C B C ++=-, …………………1分代入得到,1123tan()111123B C ++==-⨯ . …………………3分 因为180A B C =-- , …………………4分所以tan tan(180())tan()1A B C B C =-+=-+=-. …………………5分 (II )因为0180A <<,由(I )结论可得:135A = . …………………7分 因为11tan tan 023B C =>=>,所以090C B <<< . …………8分所以sin B=sin C =. …………9分由sin sin a cA C=得a =, …………………11分 所以ABC ∆的面积为:11sin 22ac B =. ………………13分16. (共14分)解:(Ⅰ)证明:∵//,//AD EF EF BC ,∴//AD BC .又∵2BC AD =,G 是BC 的中点, ∴//AD BG ,∴四边形ADGB 是平行四边形,∴ //AB DG . ……………2分 ∵AB ⊄平面DEG ,DG ⊂平面DEG ,∴//AB 平面DEG . …………………4分 (Ⅱ) 解法1证明:∵EF ⊥平面AEB ,AE ⊂平面AEB , ∴EF AE ⊥, 又,AE EB EBEF E ⊥=,,EB EF ⊂平面BCFE ,∴AE ⊥平面BCFE . ………………………5分过D 作//DH AE 交EF 于H ,则DH ⊥平面BCFE .∵EG ⊂平面BCFE , ∴DH EG ⊥. ………………………6分 ∵//,//AD EF DH AE ,∴四边形AEHD 平行四边形, ∴2EH AD ==,∴2EH BG ==,又//,EH BG EH BE ⊥, ∴四边形BGHE 为正方形,∴BH EG ⊥, ………………………7分H ADFEBGC又,BH DH H BH =⊂平面BHD ,DH ⊂平面BHD ,∴EG ⊥平面BHD . ………………………8分 ∵BD ⊂平面BHD ,∴BD EG ⊥. ………………………9分 解法2∵EF ⊥平面AEB ,AE ⊂平面AEB ,BE ⊂平面AEB ,∴EF AE ⊥,EF BE ⊥,又AE EB ⊥,∴,,EB EF EA 两两垂直. ……………………5分 以点E 为坐标原点,,,EB EF EA 分别为,,x y z 轴建立如图的空间直角坐标系.由已知得,A (0,0,2),B (2,0,0), C (2,4,0),F (0,3,0),D (0,2,2), G (2,2,0). …………………………6分∴(2,2,0)EG =,(2,2,2)BD =-,………7分 ∴22220BD EG ⋅=-⨯+⨯=, ………8分 ∴BD EG ⊥. …………………………9分(Ⅲ)由已知得(2,0,0)EB =是平面EFDA 的法向量. …………………………10分 设平面DCF 的法向量为(,,)x y z =n ,∵(0,1,2),(2,1,0)FD FC =-=,∴00FD n FC n ⎧⋅=⎪⎨⋅=⎪⎩,即2020y z x y -+=⎧⎨+=⎩,令1z =,得(1,2,1)=-n . …………………………12分设二面角C DF E --的大小为θ,则cos cos ,6EB =<>==-θn , …………………………13分 ∴二面角C DF E --的余弦值为 …………………………14分 17. (共13分)解:(Ⅰ)设随机选取一件产品,能够通过检测的事件为A …………………………1分事件A 等于事件 “选取一等品都通过检测或者是选取二等品通过检测” ……………2分151332104106)(=⨯+=A p …………………………4分 (Ⅱ) 由题可知X 可能取值为0,1,2,3.30463101(0)30C C P X C ===,21463103(1)10C C P X C ===, 12463101(2)2C C P X C ===,03463101(3)6C C P X C ===. ………………8分……………9分(Ⅲ)设随机选取3件产品都不能通过检测的事件为B ……………10分 事件B 等于事件“随机选取3件产品都是二等品且都不能通过检测” 所以,3111()()303810P B =⋅=. ……………13分18. (共13分)解:(Ⅰ)()f x 的定义域为(0,)+∞, ………………………1分 当1a =时,()ln f x x x =-,11()1x f x x x-'=-=, ………………………2分………………………3分所以()f x 在1x =处取得极小值1. ………………………4分 (Ⅱ)1()ln ah x x a x x+=+-, 22221(1)(1)[(1)]()1a a x ax a x x a h x x x x x +--++-+'=--==………………………6分 ①当10a +>时,即1a >-时,在(0,1)a +上()0h x '<,在(1,)a ++∞上()0h x '>, 所以()h x 在(0,1)a +上单调递减,在(1,)a ++∞上单调递增; ………………………7分 ②当10a +≤,即1a ≤-时,在(0,)+∞上()0h x '>,所以,函数()h x 在(0,)+∞上单调递增. ………………………8分 (III )在[]1,e 上存在一点0x ,使得0()f x <0()g x 成立,即 在[]1,e 上存在一点0x ,使得0()0h x <,即函数1()ln ah x x a x x+=+-在[]1,e 上的最小值小于零. ………………………9分 由(Ⅱ)可知①即1e a +≥,即e 1a ≥-时, ()h x 在[]1,e 上单调递减,所以()h x 的最小值为(e)h ,由1(e)e 0eah a +=+-<可得2e 1e 1a +>-, 因为2e 1e 1e 1+>--,所以2e 1e 1a +>-; ………………………10分 ②当11a +≤,即0a ≤时, ()h x 在[]1,e 上单调递增,所以()h x 最小值为(1)h ,由(1)110h a =++<可得2a <-; ………………………11分 ③当11e a <+<,即0e 1a <<-时, 可得()h x 最小值为(1)h a +, 因为0ln(1)1a <+<,所以,0ln(1)a a a <+< 故(1)2ln(1)2h a a a a +=+-+>此时,(1)0h a +<不成立. ………………………12分综上讨论可得所求a 的范围是:2e 1e 1a +>-或2a <-. ………………………13分19. (共14分)解:(Ⅰ)由已知可得222214a b e a -==,所以2234a b = ① ……………1分 又点3(1,)2M 在椭圆C 上,所以221914a b+= ② ……………2分 由①②解之,得224,3a b ==.故椭圆C 的方程为22143x y +=. ……………5分 (Ⅱ) 当0k =时,(0,2)P m 在椭圆C上,解得2m =±,所以||OP = ……6分 当0k ≠时,则由22,1.43y kx m x y=+⎧⎪⎨+=⎪⎩ 消y 化简整理得:222(34)84120k x kmx m +++-=,222222644(34)(412)48(34)0k m k m k m ∆=-+-=+-> ③ ……………8分 设,,A B P 点的坐标分别为112200(,)(,)(,)x y x y x y 、、,则012012122286,()23434km mx x x y y y k x x m k k =+=-=+=++=++. ……………9分 由于点P 在椭圆C 上,所以 2200143x y +=. ……………10分 从而222222216121(34)(34)k m m k k +=++,化简得22434m k =+,经检验满足③式. ………11分又||OP ===== ………………………12分因为102k <≤,得23434k <+≤,有2331443k ≤<+,2OP <≤. ………………………13分 综上,所求OP的取值范围是. ………………………14分 (Ⅱ)另解:设,,A B P 点的坐标分别为112200(,)(,)(,)x y x y x y 、、, 由,A B 在椭圆上,可得2211222234123412x y x y ⎧+=⎨+=⎩①② ………………………6分 ①—②整理得121212123()()4()()0x x x x y y y y -++-+=③ ………………………7分 由已知可得OP OA OB =+,所以120120x x x y y y +=⎧⎨+=⎩④⑤……………………8分由已知当1212y y k x x -=- ,即1212()y y k x x -=- ⑥ ………………………9分把④⑤⑥代入③整理得0034x ky =- ………………………10分与22003412x y +=联立消0x 整理得202943y k =+ ……………………11分由22003412x y +=得2200443x y =-, 所以222222000002413||4443343OP x y y y y k =+=-+=-=-+ ……………………12分因为12k≤,得23434k≤+≤,有2331443k≤≤+,2OP≤≤. ………………………13分所求OP的取值范围是. ………………………14分20. (共13分)解:(1)根据题设中有关字母的定义,12342,1,0,1,0(5,6,7)jk k k k k j======12342,213,2103,4,4(5,6,7,)mb b b b b m==+==++====112123123412345(1)412(2)423,(3)434,(4)444,(5)45 4.g bg b bg b b bg b b b bg b b b b b=-⨯=-=+-⨯=-=++-⨯=-=+++-⨯=-=++++-⨯=-(2)一方面,1(1)()mg m g m b n++-=-,根据“数列A含有n项”及jb的含义知1mb n+≤,故0)()1(≤-+mgmg,即)1()(+≥mgmg①…………………7分另一方面,设整数{}12max,,,nM a a a=,则当m M≥时必有mb n=,所以(1)(2)(1)()(1)g g g M g M g M≥≥≥-==+=所以()g m的最小值为(1)g M-. …………………9分下面计算(1)g M-的值:1231(1)(1)Mg M b b b b n M--=++++--1231()()()()Mb n b n b n b n-=-+-+-++-233445()()()()M M M M k k k k k k k k k k =----+----+----++-23[2(1)]Mk k M k=-+++-12312(23)()M Mk k k Mk k k k=-++++++++123()n Ma a a a b=-+++++123()na a a a n=-+++++…………………12分∵123100na a a a n++++-=,∴(1)100,g M-=-∴()g m最小值为100-. …………………13分说明:其它正确解法按相应步骤给分.。
2019-2020学年北师大版五年级数学第二学期期中测试卷 (含答案)
2019-2020学年北师大版五年级数学下册期中测试卷一.选择题(共10小题,满分20分,每小题2分)1.已知3a=5b(a、b都不为零),下面的比例中,()不成立.A.3:5=b:a B.a:b=3:5C.5:a=3:b D.5:3=a:b 2.如图,把一个直径为4cm,高为8cm的圆柱,沿底面直径切开,表面积增加了多少平方厘米?答案正确的是()A.100.48 cm2B.64cm2C.32 cm23.下面()杯中的饮料最多(单位:厘米).A.甲B.乙C.丙4.等底等高的圆柱和圆锥的体积相差6.28立方厘米,它们的体积之和是()立方厘米.A.12.56B.9.42C.15.75.在比例尺是1:14000000的地图上,量的甲地到乙地的长是5cm,如果改画在比例尺是1:35000000的地图上.甲地到乙地应画()cm.A.4B.12.5C.26.一个圆柱体的上下两个底面是()的圆.A.完全相等B.不完全相等C.不确定7.宝贵的课间10分钟.你知道分针从你下课到上课,旋转了()度.A.6B.10C.30D.608.小芳把一个边长3厘米的正方形按2:1的比放大,放大后正方形的面积是多少?()A.6厘米B.18平方厘米C.36平方厘米9.下列各式中(a、b均不为0),a和b成反比例的是()A.a×8=B.9a=6b C.2a﹣5=b D.a×﹣1÷b=010.把一张平行四边形卡片剪一刀分成两个图形,下面几种情况中不可能出现的是()A.两个三角形B.两个平行四边形C.两个梯形D.一个平行四边形与一个梯形二.填空题(共6小题,满分18分,每小题3分)11.16:20==20÷=%=(填小数).12.将一个底面周长是9.42dm的圆柱形木料,沿着底面直径垂直切一刀,切成两个半圆柱,表面积增加4.8dm2,这个圆柱形木料的体积是立方分米.13.如果8a=10b,那么a:b=:,a与b成比例.14.一个圆柱体的底面直径是15cm,高20cm,将它的侧面展开后得到一个长方形,这个长方形的长是cm,宽是cm.15.底面积相等的圆柱体和圆锥体,它们的体积比是3:1.圆锥体的高是12厘米,圆柱体的高是厘米.16.小明参加市环保知识竞赛,竞赛试卷的满分是80分,小明得72分,按这样计算,如果竞赛试卷的满分是100分,则小明应得分.三.计算题(共3小题,满分24分)17.递等式计算.15÷×÷()﹣÷[(+)÷]18.解方程.x﹣x=6+4x=50=.19.把一个底面积为125.6平方厘米,高18厘米的圆锥体铝锭熔铸成一个长10厘米,宽8厘米的长方体,这个长方体的高是多少厘米?四.解答题(共6小题,满分38分)20.张叔叔要做一个无盖的圆柱形铁皮水桶,底面直径是6分米,高5分米,做这个水桶至少需要多少平方分米的铁皮?21.画出下面的图形绕点O顺时针旋转90°后得到的图形.22.在标有的地图上,量得甲、乙两地相距9厘米.一列客车与一列货车从甲、乙两地同时相向而行,4小时后相遇,已知客车与货车的速度比是5:4,求客车的速度.23.判断下面两个量是否成正比例或反比例,说明理由.(1)每箱木瓜的个数一定,运来木瓜的箱数和木瓜的总个数..(2)看一本书,每天看的页数和所看的天数..(3)房间的面积一定,铺地砖的块数与每块地砖的面积..(4)每块地砖的面积一定,铺地面积与所需地砖的块数..24.爷爷的茶杯中部有一圈装饰(如图),是笑笑怕烫伤爷爷的手特意贴上的.这条装饰圈宽5cm,装饰圈的面积是多少平方厘米?(接头处长度忽略不计)25.一块长方形铁板,长30厘米,宽25厘米.像图那样从四个角切掉边长为5厘米的正方形,然后做成盒子.这个盒子的体积有多少立方厘米?参考答案与试题解析一.选择题(共10小题,满分20分,每小题2分)1.解:A、因为3:5=b:a所以3a=5bB、因为a:b=3:5所以5a=3bC、因为5:a=3:b所以3a=5bD、因为5:3=a:b所以3a=5b由此得出B是要选的选项.故选:B.2.解:增加的面积就是2个长是8厘米,宽是4厘米的长方形的面积,即:8×4×2=32×2=64(平方厘米);答:表面积增加了64平方厘米.故选:B.3.解:甲:3.14×(8÷2)2×4=3.14×16×4=3.14×64(立方厘米)乙:3.14×(6÷2)2×7=3.14×9×7=3.14×63(立方厘米)丙:3.14×(5÷2)2×10=3.14×6.25×10=3.14×62.5(立方厘米)因为64>63>62.5,所以甲杯中的饮料最多.故选:A.4.解:6.28÷(3﹣1)×(3+1)=6.28÷2×4=3.14×4=12.56(立方厘米);答:它们的体积之和是12.56立方厘米.故选:A.5.解:5÷×=70000000×=2(cm)答:应画2cm.故选:C.6.解:一个圆柱体的上下两个底面是完全相等的两个圆.故选:A.7.解:时钟上的分针匀速旋转一周的度数为360°,时钟上的分针匀速旋转一周需要60分钟,则时钟上的分针匀速旋转一分钟时的度数为:360÷60=6°,那么10分钟,分针旋转了10×6°=60°,故选:D.8.解:放大后的正方形边长是:3×2=6(厘米),所以放大后的面积是:6×6=36(平方厘米),故选:C.9.解:A、因为a×8=,所以a÷b=,a和b成正比例;B、因为9a=6b,所以a÷b=,a和b成正比例;C、2a﹣5=b,即2a﹣b=5,是差一定,不成比例;D、a×﹣1÷b=0,即a×b=3,是比值一定,所以a和b成反比例.故选:D.10.解:在一张平行四边形纸片上剪一刀可能变成:①一个三角形和一个梯形;②两个三角形;③两个平行四边形;④两个梯形.不可能出现一个梯形和一个平行四边形.故选:D.二.填空题(共6小题,满分18分,每小题3分)11.解:16:20==20÷25=80%=0.8.故答案为:12,25,80,0.8.12.解:9.42÷3.14=3(分米)4.8÷2÷3=0.8(分米)3.14×(3÷2)2×0.8=3.14×2.25×0.8=7.065×0.8=5.652(立方分米)答:这个圆柱形木料的体积是5.652立方分米.故答案为:5.652.13.解:(1)因为8a=10b,使a和8做比例的外项,b和10做比例的内项,所以a:b=10:8=5:4;(2)因为a:b=5:4=,是a和b对应的比值一定,符合正比例的意义,所以a和b成正比例.故答案为:5,4,正.14.解:3.14×15=47.1(厘米)宽是20厘米;答:这个长方形的长是47.1厘米,宽是20厘米.故答案为:47.1,20.15.解:设圆柱与圆锥的底面积相等是S,圆柱的体积是V,圆锥的体积是3V,根据圆柱与圆锥的体积公式可得:圆柱与圆锥的高的比是::=1:1,即圆柱与圆锥的高相等,因为圆锥的高是12厘米,所以圆柱的高也是12厘米,故答案为:12.16.解:设小明应得x分,=,80x=7200,x=90.答:则小明应得90分.故答案为:90.三.计算题(共3小题,满分24分)17.解:(1)15÷×=15××=×=10(2)÷()﹣=÷﹣=1﹣=(3)÷[(+)÷]=÷[÷]=÷=18.解:(1)x﹣x=x=x=x=(2)6+4x=506+4x﹣6=50﹣64x=444x÷4=44÷4x=11(3)=2.4x=64×0.92.4x=57.62.4x÷2.4=57.6÷2.4x=2419.解:125.6×18÷(10×8)=753.6÷80=9.42(厘米),答:这个长方体的高是9.42厘米.四.解答题(共6小题,满分38分)20.解:3.14×6×5+3.14×(6÷2)2=94.2+28.26=122.46(平方分米)答:做这个水桶至少需要铁皮122.46平方分米.21.解:如图:22.解:由线段比例尺可知1厘米代表40千米,两地的路程:40×9=360(千米),速度和:360÷4=90(千米),客车速度:90×=50(千米);答:客车的速度是50千米/小时.23.解:(1)每箱木瓜的个数一定,运来木瓜的箱数和木瓜的总个数成正比例;因为运来木瓜的总个数÷木瓜的箱数=每箱木瓜的个数(一定),是比值一定.(2)看一本书,每天看的页数和所看的天数成反比例;因为每天看的页数×所看的天数=一本书的总页数(一定),是乘积一定.(3)房间的面积一定,铺地砖的块数与每块地砖的面积成反比例;因为铺地砖的块数×每块地砖的面积=房间的面积(一定),是乘积一定.(4)每块地砖的面积一定,铺地面积与所需地砖的块数成正比例;因为铺地面积÷所需地砖的块数=每块地砖的面积(一定),是比值一定.故答案为:成正比例,因为运来木瓜的总个数÷木瓜的箱数=每箱木瓜的个数(一定),是比值一定;成反比例,因为每天看的页数×所看的天数=一本书的总页数(一定),是乘积一定;成反比例,因为铺地砖的块数×每块地砖的面积=房间的面积(一定),是乘积一定;成正比例,因为铺地面积÷所需地砖的块数=每块地砖的面积(一定),是比值一定.24.解:3.14×6×5=3.14×30=94.2(平方厘米)答:装饰圈的面积是94.2平方厘米.25.解:因为做成的盒子的长是:30﹣5×2=20(厘米),宽是:25﹣5×2=15(厘米),高是5厘米,所以盒子的容积是:20×15×5=300×5=1500(立方厘米);答:这个盒子的体积有1500立方厘米.。
北京市海淀区2019-2020学年中考第二次质量检测数学试题含解析
北京市海淀区2019-2020学年中考第二次质量检测数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.在银行存款准备金不变的情况下,银行的可贷款总量与存款准备金率成反比例关系.当存款准备金率为7.5%时,某银行可贷款总量为400亿元,如果存款准备金率上调到8%时,该银行可贷款总量将减少多少亿()A.20 B.25 C.30 D.352.计算﹣1﹣(﹣4)的结果为()A.﹣3 B.3 C.﹣5 D.53.“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x万平方米,则下面所列方程中正确的是()A.606030 (125%)x x-=+B.606030(125%)x x-=+C.60(125%)6030x x⨯+-=D.6060(125%)30x x⨯+-=4.二次函数2y ax bx c=++的图象如图所示,则一次函数24y bx b ac=+-与反比例函数a b cyx++=在同一坐标系内的图象大致为( )A.B.C.D.5.一个多边形的边数由原来的3增加到n时(n>3,且n为正整数),它的外角和()A.增加(n﹣2)×180°B.减小(n﹣2)×180°C.增加(n﹣1)×180°D.没有改变6.若方程x2﹣3x﹣4=0的两根分别为x1和x2,则11x+21x的值是()A.1 B.2 C.﹣34D.﹣437.已知一次函数y=kx+b 的大致图象如图所示,则关于x 的一元二次方程x2﹣2x+kb+1=0 的根的情况是( )A.有两个不相等的实数根B.没有实数根C.有两个相等的实数根D.有一个根是08.甲、乙、丙三家超市为了促销同一种定价为m元的商品,甲超市连续两次降价20%;乙超市一次性降价40%;丙超市第一次降价30%,第二次降价10%,此时顾客要购买这种商品,最划算的超市是( ) A.甲B.乙C.丙D.都一样9.在学校演讲比赛中,10名选手的成绩折线统计图如图所示,则下列说法正确的是( )A.最高分90 B.众数是5 C.中位数是90 D.平均分为87.510.下列运算错误的是()A.(m2)3=m6B.a10÷a9=a C.x3•x5=x8D.a4+a3=a711.在如图的2016年6月份的日历表中,任意框出表中竖列上三个相邻的数,这三个数的和不可能是()A.27 B.51 C.69 D.7212.如图,剪两张对边平行且宽度相同的纸条随意交叉叠放在一起,转动其中一张,重合部分构成一个四边形,则下列结论中不一定成立的是()A.∠ABC=∠ADC,∠BAD=∠BCD B.AB=BCC.AB=CD,AD=BC D.∠DAB+∠BCD=180°二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图是某商品的标志图案,AC与BD是⊙O的两条直径,首尾顺次连接点A、B、C、D,得到四边形ABCD ,若AC=10cm ,∠BAC=36°,则图中阴影部分的面积为_____.14.计算:|-3|-1=__.15.如图,在△ABC 中,∠A =60°,若剪去∠A 得到四边形BCDE ,则∠1+∠2=______.16.已知线段c 是线段a 和b 的比例中项,且a 、b 的长度分别为2cm 和8cm ,则c 的长度为_____cm . 17.在如图的正方形方格纸中,每个小的四边形都是相同的正方形,A ,B ,C ,D 都在格点处,AB 与CD 相交于O ,则tan ∠BOD 的值等于__________.18.分解因式:244m m ++=___________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)为了加强学生的安全意识,某校组织了学生参加安全知识竞赛.从中抽取了部分学生成绩(得分数取正整数,满分为100分)进行统计,绘制统计频数分布直方图(未完成)和扇形图如下,请解答下列问题:(1)A 组的频数a 比B 组的频数b 小24,样本容量 ,a 为 :(2)n 为 °,E 组所占比例为 %:(3)补全频数分布直方图;(4)若成绩在80分以上优秀,全校共有2000名学生,估计成绩优秀学生有 名.20.(6分)已知.化简;如果、是方程的两个根,求的值.21.(6分)已知关于x的方程x2-(m+2)x+(2m-1)=0。
【最新】北京市海淀区2019-2020届高三第二学期期中考试练习(一模)数学(理)试卷(含答案).d
海淀区高三年级第二学期期中练习数学(理科)本试卷共4页,150分。
考试时长120分钟。
考生务必将答案答在答题纸上,在试卷上作答无效。
考试结束后,将答题纸交回。
第一部分(选择题共40 分)、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
⑴已知集合A={0,a},B={x —1Y X Y2>,且B,则a可以是(A) -1 (B)0 (C)l (D)2⑵已知向量a=(|,2),b=( -1,0),则a+2b=(A)( -1,2)(B) ( -1,4)(C)(1,2) (D) (1 ,4)(3)执行如图所示的程序框图,输出的S值为(A)2 (B)6(C)8 (D) 10(4)如图,网格纸上小正方形的边长为1,若四边形ABCD及其内部的点组成的集合记为P(x, y)为M中任意一点,贝U y - x的最大值为(A)1 (B)2(C)-1 (D) -2(5)已知a , b 为正实数,则“ a>1 , b 》1 ”是“ Iga • lgb>0”的(A)充分而不必要条件 (B) 必要而不充分条件 (C)充分必要条件(D)既不充分也不必要条件(6)如图所示,一个棱长为1的正方体在一个水平放置的转盘上转动,用垂直于竖直墙面的水平光线照射,该正方体在竖直墙面 上的投影的面积记作 S ,则S 的值不可能是643(A) 1(B)(C)(D)5 3 2(7)下列函数f(x)中,其图像上任意一点P(x,y)的坐标都满足条件 y 乞x 的函数是f (x)二 x 3(B) f (x) = i x (C) f(x)二 e x -1 (D) f (x) = ln(x 1)OM —ON 的取值范围为[22,2血+2]若 OM = ON ,则实数■的取值范围为[-3-2..2,-3 • 2、、2]第二部分(非选择题,共110分)二、填空题共6小题,每小题5分,共30分。
(9) 复数 2___ . ___1 +i2x 2(10) __________________________________________________________________ 已知点(2,0)是双曲线C :-^ -y =1的一个顶点,贝y C 的离心率为 ____________________________ .—(8)已知点 M 在圆 C 1: (x-1)2 (y -1)2 2 2=1上,点在圆C2:(x+1) +(y+1) =1上,则下列说法错误的是 iO M [_O (A)OM LON 的取值范围为[-3 - 2 .. 2,0] (B )OM +ON 取值范围为[0, 2运] (A)(C)(D)at x 二2t f x 二2+cos 二(11) 直线(t为参数)与曲线(二为参数)的公共点个数为I y =t I y =sin 占(12) 在 i_ABC 中,右 c=2 , a=,3,― A ,则 sinC=, co s2 C = ___ . __6(13) 一次数学会议中,有五位教师来自A , B, C 三所学校,其中 A 学校有2位,B 学校有2位,C 学校有1位•现在五位教师排成一排照相,若要求来自同一所学校的教师不相邻,则 共有 _________ 种不同的站队方法.X(14)设函数 f (x) =2 'x -3x,①若f (x)有两个零点,则实数 a 的取值范围是②若a —2,则满足f(x)+ f(x-1)>-3的x 的取值范围是 _____________________________三、解答题共6小题,共80分。
北京市海淀区清华附中2019-2020学年七年级下学期4月月考数学试题(含答案及解析)
2019-2020学年北京市海淀区清华附中七年级(下)月考数学试卷(4月份)一、选择题1. 9的算术平方根是( )A. -3B. 3C. 13D. ±3 【答案】B【解析】【详解】解:93= ,故选B.2. 已知a b <,下列不等式中,正确的是( )A. 44a b +>+B. 33a b ->-C. 1122a b <D. 22a b -<- 【答案】C【解析】【分析】根据不等式的性质,可得出答案.【详解】解:A.两边都加4,不等号的方向不变,此选项错误;B. 两边都减3,不等号的方向不变,此选项错误;C. 两边都乘以12,不等号的方向不变,此选项正确; D. 两边都乘以-2,不等号的方向改变,此选项错误;故选:C .【点睛】本题考查知识点是不等式的性质,熟记不等式性质内容是解此题的关键.3. 在平面直角坐标系中,如果点(1,2)P m --+在第三象限,那么m 的取值范围为( )A. 2m <B. 2m ≤C. 0m ≤D. 0m <【答案】A【解析】【分析】根据第三象限内点的坐标特征可得出答案.【详解】解:∵点(1,2)P m --+在第三象限,∴20m -+<,∴2m <.故选:A .【点睛】本题难度较低,主要考查学生对直角坐标系与解不等式知识点的掌握,分析直角坐标系中第三象限坐标特点为解题关键.4. 若12x y =⎧⎨=-⎩是关于x 和y 的二元一次方程ax +y =1的解,则a 的值等于( ) A. 3 B. 1 C. ﹣1D. ﹣3【答案】A【解析】【分析】把解代入方程进行求解即可;【详解】解:将12x y =⎧⎨=-⎩是代入方程ax +y =1得:a ﹣2=1,解得:a =3.故选:A .【点睛】本题主要考查了二元一次方程的根,准确计算是解题的关键.5. 如图所示,下列说法不正确的是( )A. ∠1和∠2是同旁内角B. ∠1和∠3是对顶角C. ∠3和∠4是同位角D. ∠1和∠4是内错角【答案】A【解析】【分析】根据对顶角、邻补角、同位角、内错角定义判断即可.【详解】A. ∠1和∠2是邻补角,故此选项错误;B. ∠1和∠3是对顶角,此选项正确;C. ∠3和∠4是同位角,此选项正确;D. ∠1和∠4是内错角,此选项正确;故选A.【点睛】此题考查对顶角,邻补角,同位角,内错角,同旁内角,解题关键在于掌握各性质定义.6. 过点B画线段AC所在直线的垂线段,其中正确的是()A. B.C. D.【答案】D【解析】【分析】根据垂线段的定义判断即可.【详解】根据垂线段的定义可知,过点B画线段AC所在直线的垂线段,可得:故选D.【点睛】本题考查了垂线段的定义,过直线外一点做直线的垂线,这点与垂足间的线段叫做这点到直线的垂线段.7. 如图,数轴上点N表示的数可能是()A. 2B. 3C. 7D. 10【答案】C【解析】【分析】根据题意可得2<N<34N9.【详解】解:∵N在2和3之间,∴2<N <3, ∴4<N <9,∵24<,34<,109>,∴排除A ,B ,D 选项,∵479<<,故选C.【点睛】本题主要考查无理数的估算,在一些题目中我们常常需要估算无理数的取值范围,要想准确地估算出无理数的取值范围需要记住一些常用数的平方.8. 如图,直线AB 、CD 相交于点O ,EO ⊥CD ,下列说法错误的是( )A. ∠AOD =∠BOCB. ∠AOE +∠BOD =90°C. ∠AOC =∠AOED. ∠AOD +∠BOD =180°【答案】C【解析】【分析】 根据对顶角性质、邻补角定义及垂线的定义逐一判断可得.【详解】A 、∠AOD 与∠BOC 是对顶角,所以∠AOD=∠BOC ,此选项正确;B 、由EO ⊥CD 知∠DOE=90°,所以∠AOE+∠BOD=90°,此选项正确;C 、∠AOC 与∠BOD 是对顶角,所以∠AOC=∠BOD ,此选项错误;D 、∠AOD 与∠BOD 是邻补角,所以∠AOD+∠BOD=180°,此选项正确;故选C .【点睛】本题主要考查垂线、对顶角与邻补角,解题的关键是掌握对顶角性质、邻补角定义及垂线的定义. 9. 下图是北京世界园艺博览会园内部分场馆的分布示意图,在图中,分别以正东、正北方向为x 轴、y 轴的正方向建立平向直角坐标系,如果表示演艺中心的点的坐标为()1,2,表示水宁阁的点的坐标为()4,1-,那么下列各场馆的坐标表示正确的是( )A. 中国馆的坐标为()1,2--B. 国际馆的坐标为()1,3-C. 生活体验馆的坐标为()4,7D. 植物馆的坐标为()7,4-【答案】A【解析】【分析】根据演艺中心的点的坐标为(1,2),表示水宁阁的点的坐标为(-4,1)确定坐标原点的位置,建立平面直角坐标系,进而可确定其它点的坐标.【详解】解:根据题意可建立如下所示平面直角坐标系,A 、中国馆的坐标为(-1,-2),故本选项正确;B 、国际馆的坐标为(3,-1),故本选项错误;C 、生活体验馆的坐标为(7,4),故本选项错误;D 、植物馆的坐标为(-7,-4),故本选项错误.故选A .【点睛】此题考查坐标确定位置,解题的关键就是确定坐标原点和x ,y 轴的位置.10. 三名快递员某天的工作情况如图所示,其中点1A ,2A ,3A 的横、纵坐标分别表示甲、乙、丙三名快递员上午派送快递所用的时间和件数;点1B ,2B ,3B ,的横、纵坐标分别表示甲、乙、丙三名快递员下午派送快递所用的时间和件数.有如下三个结论:①上午派送快递所用时间最短的是甲;②下午派送快递件数最多的是丙;③在这一天中派送快递总件数最多的是乙.上述结论中,所有正确结论的序号是( )A. ①②B. ①③C. ②D. ②③【答案】B【解析】【分析】 根据所给的点的信息进行辨析即可得解.【详解】①上午派送快递所用时间最短的是A 1,即甲,不足2小时;故①正确;②下午派送快递件数最多的是B 2即乙,超过40件,其余的不超过40件,故②错误;③在这一天中派送快递总件数为:甲:40+25=65(件),乙:45+30=75;丙:30+20=50,所以这一天中派送快递总件数最多的是乙,故③正确.故选B.【点睛】本题考查的知识点是函数的图象,分析出图象中点的几何意义,是解答的关键.二、填空题11. 点(2,3)M 到x 轴和y 轴的距离之和是__________.【答案】5【解析】【分析】根据点到x 轴和y 轴的距离分别为点的纵坐标、点的横坐标的绝对值,再求和即可.【详解】解:∵点(2,3)M -到x 轴的距离即为纵坐标的绝对值,∴点(2,3)M -到x 轴的距离是3;∵点(2,3)M -到y 轴的距离即为横坐标坐标的绝对值,∴点(2,3)M -到x 轴的距离是2;∴点(2,3)M -到x 轴和y 轴的距离之和是5.故答案为:5.【点睛】本题考查的知识点是点的坐标,难度不大,需注意点到x 轴和y 轴的距离分别为点的纵坐标、点的横坐标的绝对值.12. 物体自由下落的高度h (单位:m )与下落时间t (单位:s )的关系式是24.9h t =.在一次实验中,一个物体从490m 高的建筑物上自由下落,到达地面需要的时间为________s .【答案】10【解析】【分析】直接将490代入所给关系式,可求出2100t =,再利用算术平方根定义求解即可.【详解】解:把490h =代入24.9h t =中,得24.9490t =,∴2100t =.0,t >10t ∴=.故答案为:10.【点睛】本题考查的知识点利用算术平方根求解,此题中需注意的是时间t 的取值范围是大于0的. 13. 若关于x 的一元一次方程411x m x ++=-的解是负数,则m 的取值范围是_______.【答案】m >﹣2【解析】【分析】把m 看做已知数表示出方程的解,由解为负数求出m 的范围即可.【详解】方程4x+m+1=x﹣1,移项合并得:3x=﹣2﹣m,化系数为1得:23m x--=由解为负数,得到23mx--=<0,解得:m>﹣2.故答案为:m>﹣2.【点睛】本题考查了一元一次方程的解以及解一元一次不等式,方程的解即为能使方程左右两边相等的未知数的值.14. 如图,已知C为线段AB的中点,D在线段CB上.若DA=6,DB=3,则CD=_____.【答案】1.5【解析】【分析】根据题意即可求出AB的长,然后根据中点的定义即可求出CB,从而求出CD的长.【详解】解:∵DA=6,DB=3,∴AB=DA+DB=9∵C为线段AB的中点,∴CB=12AB=4.5∴CD=CB-DB=1.5故答案为:1.5.【点睛】此题考查的是线段的和与差,掌握各线段之间的关系是解决此题的关键.15. 如图,点A,B,C,D,E在直线l上,点P在直线l外,PC⊥l于点C,在线段PA,PB,PC,PD,PE中,最短的一条线段是_____,理由是___【答案】(1). PC;(2). 垂线段最短.【解析】【分析】点到直线的距离是指该点到直线的垂线段的长,根据定义即可选出答案.【详解】根据点到直线的距离的定义得出线段PC的长是点P到直线l的距离,从直线外一点到这条直线所作的垂线段最短.故答案是:PC;垂线段最短.【点睛】本题考查了对点到直线的距离的应用,注意:点到直线的距离是指该点到直线的垂线段的长.16. 某手机店今年1-4月的手机销售总额如图1,其中一款音乐手机的销售额占当月手机销售总额的百分比如图2.有以下四个结论:①从1月到4月,手机销售总额连续下降②从1月到4月,音乐手机销售额在当月手机销售总额中的占比连续下降③音乐手机4月份的销售额比3月份有所下降④今年1-4月中,音乐手机销售额最低的是3月其中正确的结论是________(填写序号).【答案】④ .【解析】【分析】分别求出1-4月音乐手机的销售额,再逐项进行判断即可.【详解】1月份的音乐手机销售额是85×23%=19.55(万元)2月份的音乐手机销售额是80×15%=12(万元)3月份音乐手机的销售额是60×18%=10.8(万元),4月份音乐手机的销售额是65×17%=11.05(万元).①从1月到4月,手机销售总额3-4月份上升,故①错误;②从1月到4月,音乐手机销售额在当月手机销售总额中的占比没有连续下降,故②错误;③由计算结果得,10.8<11.05,因此4月份音乐手机的销售额比3月份的销售额增多了.故③错误;④今年1-4月中,音乐手机销售额最低的是3月,故④正确.故答案为④.【点睛】此题主要考查了拆线统计图与条形图的综合应用,利用两图形得出正确信息是解题关键.17. 如图,直线AB、CD相交于点O,OE⊥AB于点O,且∠COE=34°,则∠BOD为______.【答案】56°【解析】【分析】依据OE⊥AB,可得∠BOE=90°;再根据∠COE=34°,即可得到∠BOD的度数.【详解】解:∵OE⊥AB,∴∠BOE=90°,又∵∠COE=34°,∴∠BOD=180°-90°-34°=56°,故答案是:56°.【点睛】本题考查了垂线、对顶角与邻补角.注意,邻补角互补,即和为180°.18. 已知正实数x的两个平方根是m和m+b.当b=8时,m的值是_____;若m2x+(m+b)2x=4,则x=_____.【答案】(1). -4(2). 2【解析】【分析】(1)由题意直接利用正实数平方根互为相反数即可求出m的值;(2)根据题意利用平方根的定义得到(m+b)2=x,m2=x,代入式子m2x+(m+b)2x=4即可求出x值.【详解】解:(1)∵正实数x的平方根是m和m+b∴m+m+b=0,∵b=8,∴2m+8=0∴m=﹣4;故答案为:-4;(2)∵正实数x 的平方根是m 和m+b ,∴(m+b )2=x ,m 2=x ,∵m 2x+(m+b )2x =4,∴x 2+x 2=4,∴x 2=2,∵x >0,∴x 2 2【点睛】本题考查平方根的定义及平方根的性质,熟练掌握这两个知识点是解题的关键. 三、解答题19. 232564(3)+--【答案】-2【解析】【分析】直接利用立方根以及二次根式的性质化简得出答案. 232564(3)5432--=--=-.【点睛】本题考查的知识点是实数的运算,掌握实数的运算顺序以及立方根和二次根式的性质是解此题的关键.20. 解方程组2632x y x y =-⎧⎨+=⎩. 【答案】02x y =⎧⎨=⎩【解析】【分析】用代入消元法,求出二元一次方程组的解即可.【详解】解:2632x y x y =-⎧⎨+=⎩①② 由②得,2x y =-③,把③代入①中得,2(2)63y y -=-,解得:2y =,把2y =代入③可得,0x =,∴原方程组的解为:02x y =⎧⎨=⎩. 【点睛】本题考查的知识点是解二元一次方程组,解二元一次方程组一般用代入消元法和加减消元法,掌握二者的一般步骤是解此题的关键.21. 解不等式组513(1)1213x x x x -≤+⎧⎪+⎨-<⎪⎩并写出这个不等式组的所有整数解. 【答案】225x -<≤;01,2, 【解析】【分析】先求出每个不等式的解集,再求出不等式组的解集,最后求出答案即可. 【详解】解:513(1)1213x x x x -≤+⎧⎪⎨+-<⎪⎩①②∵由①,得2x ≤, 由②,得25x >-, ∴原不等式组的解集为:225x -<≤, ∴原不等式组的所有整数解为:01,2,. 【点睛】本题考查的知识点是解一元一次不等式组及求其整数解,解决此类问题的关键是正确解得一元一次不等式组的解集.22. 已知2x +是27的立方根,31x y +-的算术平方根是4,求73x y +平方根.【答案】7±【解析】【分析】根据立方根的定义和算术平方根的定义,可得二元一次方程组,根据解方程组,可得x 、y 的值,再计算73x y +的值,根据平方根的定义,可得答案. 【详解】由题意得:3227314x x y ⎧+=⎪⎨+-=⎪⎩,解得:114x y =⎧⎨=⎩, ∴7374249x y +=+=,∵49的平方根为±7,∴73x y +的算术平方根为±7.【点睛】本题考查了立方根,平方根和算术平方根,根据题意得出二元一次方程组是解题的关键. 23. 如图,直线AB 、CD 相交于点O ,OE 平分∠BOD ,∠AOC=76°,∠DOF=90°,求∠EOF 的度数.【答案】∠EOF=52°. 【解析】【分析】根据对顶角相等可得∠BOD =∠AOC ,再根据角平分线的定义求出∠DOE ,然后根据∠EOF =∠DOF -∠DOE 代入数据计算即可得解.【详解】由对顶角相等得,∠BOD =∠AOC =76°, ∵OE 平分∠BOD ,∴∠DOE =12∠BOD =38°, ∵∠DOF =90°,∴∠EOF =∠DOF ﹣∠DOE =90°﹣38°=52° 【点睛】本题考查了对顶角、邻补角,和角平分线的定义,熟练掌握这些定义是本题解题的关键. 24. 在正方形网格中建立平面直角坐标系xOy ,使得A ,B 两点的坐标分别为A(4,1),B(1,﹣2),过点B 作BC ⊥x 轴于点C .(1)按照要求画出平面直角坐标系xOy ,线段BC ,写出点C 的坐标 ;(2)直接写出以A ,B ,O 为顶点的三角形的面积 ;(3)若线段CD 是由线段AB 平移得到的,点A 的对应点是C ,写出一种由线段AB 得到线段CD 的过程.【答案】(1)(1,0);(2)4.5;(3)先向左平移3个单位长度,再向下平移1个单位长度【解析】【分析】(1)直接利用已知点画出平面直角坐标系进而得出答案;(2)利用△AOB所在矩形面积减去周围三角形面积进而得出答案;(3)直接利用平移的性质得出平移规律.【详解】解:(1)如图所示:点C的坐标为:(1,0);故答案为:(1,0);(2)△AOB的面积为:3×4﹣12×1×4﹣12×1×2﹣12×3×3=4.5;故答案为:4.5;(3)答案不唯一,如:先向左平移3个单位长度,再向下平移1个单位长度.故答案为:先向左平移3个单位长度,再向下平移1个单位长度.【点睛】本题考查网格作图、平移、三角形面积公式、直角坐标系点坐标的特征等知识,是常见基础考点,掌握相关知识是解题关键.25. 某年级共有300名学生,为了解该年级学生在A,B两个体育项目上的达标情况,进行了抽样调査.过程如下,请补充完整.收集数据从该年级随机抽取30名学生进行测试,测试成绩(百分制)如下:A项目78 86 74 81 75 76 87 49 74 91 75 79 81 71 74 81 86 69 83 77 82 85 92 9558 54 63 67 82 74B项目93 73 88 81 72 81 94 83 77 83 80 81 70 81 73 78 82 100 70 40 84 86 92 96 53 57 63 68 81 75整理、描述数据B项目的频数分布表分组划记频数≤<— 1x4050x≤< 25060≤< 2x6070≤<87080xx≤<8090≤< 590100x(说明:成绩80分及以上为优秀,60~79分为基本达标,59分以下为不合格)根据以上信息,回答下列问题:(1)补全统计图、统计表;(2)在此次测试中,成绩更好的项目是__________,理由是__________;(3)假设该年级学生都参加此次测试,估计A项目和B项目成绩都是优秀的人数最多为________人.【答案】(1)见详解;(2)B,在此次测试中,B项目80分及以上人数为17人,高于项目A,59分以下人数与项目A相同,因此B项目成绩更好些;(3)130【解析】【分析】(1)根据题意,画出直方图,频数分布表即可;(2)B 较好,根据两个项目优秀人数以及不及格人数的比较即可;(3)由统计图可知,30名学生中A 、B 项目优秀的人数分别为13 人和17人,据此解答即可.【详解】解:(1)A 项目在70~80分之间有:3012310311-----=人;B 项目在8090x ≤<之间有:301228512-----=人,因此,补全图表如下:(2)在此次测试中,成绩更好的项目是B ,理由如下:在此次测试中,B 项目80分及以上人数为17人,高于项目A ,59分以下人数与项目A 相同,因此B 项目成绩更好些;故答案为:B ,在此次测试中,B 项目80分及以上人数为17人,高于项目A ,59分以下人数与项目A 相同,因此B 项目成绩更好些(3)∵A 项目优秀的人数约为:10330013030+⨯=人;B 项目优秀的人数约为:12530017030+⨯=人, ∴A 项目和B 项目成绩都是优秀的人数最多为130人.故答案为:130.【点睛】本题考查知识点是条形统计图以及频数(频率)分布表,解此题的关键是弄清题意,能够根据所给数据补全图表.26. 国家发改委、工业和信息化部、财政部公布了“节能产品惠民工程”,公交公司积极响应将旧车换成节能环保公交车,计划购买A 型和B 型两种环保型公交车10辆,其中每台的价格、年载客量如表:A 型B 型 价格(万元/台) x y若购买A型环保公交车1辆,B型环保公交车2辆,共需400万元;若购买A型环保公交车2辆,B型环保公交车1辆,共需350万元.(1)求x、y的值;(2)如果该公司购买A型和B型公交车的总费用不超过1200万元,且确保10辆公交车在该线路的年载客量总和不少于680万人次,问有哪几种购买方案?(3)在(2)的条件下,哪种方案使得购车总费用最少?最少费用是多少万元?【答案】(1)100150xy=⎧⎨=⎩;(2)有三种购车方案,方案一:购买A型公交车6辆,购买B型公交车4辆;方案二:购买A型公交车7辆,购买B型公交车3辆;方案三:购买A型公交车8辆,购买B型公交车2辆;(3)总费用最少的方案是购买A型公交车8辆,购买B型公交车2辆,购车总费用为1100万元.【解析】【分析】(1)根据“购买A型环保公交车1辆,B型环保公交车2辆,共需400万元;若购买A型环保公交车2辆,B型环保公交车1辆,共需350万元”列出二元一次方程组求解可得;(2)购买A型环保公交车m辆,则购买B型环保公交车(10﹣m)辆,根据“总费用不超过1200万元、年载客量总和不少于680万人次”列一元一次不等式组求解可得;(3)设购车总费用为w万元,根据总费用的数量关系得出w=100m+150(10﹣m)=﹣50m+1500,再进一步利用一次函数的性质求解可得.【详解】(1)由题意,得2400 2350 x yx y+=⎧⎨+=⎩,解得100150 xy=⎧⎨=⎩;(2)设购买A型环保公交车m辆,则购买B型环保公交车(10﹣m)辆,由题意,得60100(10)680 100150(10)1200 m mm m+-≥⎧⎨+-≤⎩,解得6≤m≤8,∵m为整数,∴有三种购车方案方案一:购买A 型公交车6辆,购买B 型公交车4辆;方案二:购买A 型公交车7辆,购买B 型公交车3辆;方案三:购买A 型公交车8辆,购买B 型公交车2辆.(3)设购车总费用为w 万元则w =100m+150(10﹣m )=﹣50m+1500,∵﹣50<0,6≤m≤8且m 为整数,∴m =8时,w 最小=1100,∴购车总费用最少的方案是购买A 型公交车8辆,购买B 型公交车2辆,购车总费用为1100万元.【点睛】本题主要考查一元一次不等式组和二元一次方程的应用,理解题意,找到题目蕴含的数量关系是解题的关键.四、拓展题27. 若关于x ,y 的二元一次方程组3123x y a y x -=+⎧⎨-=⎩ 的解满足2x +y ≤3,则a 的取值范围是____________. 【答案】a ≤-1【解析】【分析】根据3123x y a y x -=+⎧⎨-=⎩①②,令①+②得2x+y=4+a ,由2x +y ≤3,故得不等式即可求出a 的取值.【详解】由3123x y a y x -=+⎧⎨-=⎩①② 令①+②得2x+y=4+a ,∵2x +y ≤3,故4+a ≤3,解得a ≤-1【点睛】此题主要考查加减消元法求解二元一次方程组,解题的关键是根据方程组的特点与已知条件进行加减合并. 28. 已知关于x 的一元一次不等式152mx x +>-的解集是42x m <+,如图,数轴上的,,,A B C D 四个点中,实数m 对应的点可能是________.【答案】A【解析】【分析】求出不等式的解集,根据已知条件得出关于m 的不等式,求出不等式的解集即可.【详解】解:∵152mx x +>-,∴(2)4m x +>,∵关于x 的一元一次不等式152mx x +>-的解集是42x m <+, ∴20m +<,∴2m <-,∵数轴上只有点A 表示的数小于-2,∴实数m 对应的点可能是A .故答案为:A .【点睛】本题考查的知识点是解一元一次不等式,掌握不等式的性质是解此题的关键.29. 按下面程序计算,即根据输入的x 判断51x +是否大于500,若大于500则输出,结束计算,若不大于500,则以现在的51x +的值作为新的x 的值,继续运算,循环往复,直至输出结果为止.若开始输入x 的值为正整数,最后输出的结果为656,则满足条件的所有x 的值是__.【答案】131或26或5.【解析】【分析】利用逆向思维来做,分析第一个数就是直接输出656,可得方程5x+1=656,解方程即可求得第一个数,再求得输出为这个数的第二个数,以此类推即可求得所有答案.【详解】解:当第一次输入x ,第一次输出的结果为51x +,当第二次输入51x +,第二次输出的结果为5(51)1256x x ++=+,当第三次输入256x +,第三次输出的结果为5(256)112531x x ++=+,当第四次输入12531x +,第三次输出的结果为5(12531)1625156x x ++=+,若51656x +=,解得131x =;、若256656x +=,解得26x =;若12531656x +=,解得5x =;若625156656x +=,解得45x =, 所以当开始输入x 的值为正整数,最后输出的结果为656,则满足条件的所有x 的值是131或26或5.【点睛】此题考查了方程与不等式的应用.注意理解题意与逆向思维的应用是解题的关键.30. 已知关于x 的不等式组40339ax x +<⎧⎨-<⎩恰好有2个整数解,则整数a 的值是___________. 【答案】4-,3-【解析】【分析】首先确定不等式组的解集,先利用含a 的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a 的不等式,从而求出a 的范围. 【详解】解:解得不等式组40339ax x +<⎧⎨-<⎩的解集为: 4-<x<4a 且a<0 ∵不等式组只有2个整数解∴不等式组的整数解是:2,3 ∴41-2a≤< ∴-4a<2≤-,∵a 为整数∴整数a 的值是-4, -3故答案为:4-,3-【点睛】此题考查一元一次不等式组的整数解,熟练掌握运算法则是解题关键31. 定义:给定两个不等式组P 和Q ,若不等式组P 的任意一个解,都是不等式组Q 的一个解,则称不等式组P 为不等式组Q 的“子集”.例如:不等式组:M :21x x ⎧⎨⎩>>是N :-2-1x x ⎧⎨⎩>>的“子集”. (1)若不等式组:A :+14+15x x ⎧⎨⎩><,B :2-11-3x x ⎧⎨⎩>>,则其中不等式组 是不等式组M :21x x ⎧⎨⎩>>的“子集”(填A 或B );(2)若关于x 的不等式组1x a x ⎧⎨-⎩>>是不等式组21x x ⎧⎨⎩>>的“子集”,则a 的取值范围是 ;(3)已知a ,b ,c ,d 为互不相等的整数,其中a <b ,c <d ,下列三个不等式组:A :a≤x≤b ,B :c≤x≤d ,C :1<x <6满足:A 是B 的“子集”且B 是C 的“子集”,则a ﹣b+c ﹣d 的值为 ;(4)已知不等式组M :23x m x n ≥⎧⎨⎩<有解,且N :1<x≤3是不等式组M 的“子集”,请写出m ,n 满足的条件: .【答案】(1)A ;(2)a≥2;(3)-4;(4)m≤2,n >9【解析】【分析】(1)根据题意求出不等式组A 与B 的解集,进而利用题中的新定义判断即可(2)由题意根据“子集”的定义确定出a 的范围即可;(3)由题意根据“子集”的定义确定出各自的值,代入原式计算即可求出值;(4)由题意根据“子集”的定义确定出所求即可. 【详解】解:(1)A :+14+15x x ⎧⎨⎩><的解集为3<x <6,B :2-11-3x x ⎧⎨⎩>>的解集为x >1,M :21x x ⎧⎨⎩>>的解集为x >2,则不等式组A 是不等式组M 的子集,故答案为:A ;(2)∵关于x 的不等式组1x a x ⎧⎨-⎩>>是不等式组21x x ⎧⎨⎩>>的“子集”, ∴a≥2,故答案为:a≥2;(3)∵a ,b ,c ,d 为互不相等的整数,其中a <b ,c <d , A :a≤x≤b ,B :c≤x≤d ,C :1<x <6满足:A 是B 的“子集”且B 是C 的“子集”, ∴a =3,b =4,c =2,d =5,则a ﹣b+c ﹣d =3﹣4+2﹣5=﹣4,故答案为:﹣4;(4)不等式组M :23x m x n ≥⎧⎨⎩<整理得:23m x n x ⎧≥⎪⎪⎨⎪⎪⎩<, 由不等式组有解得到2m <3n ,即2m ≤x <3n ,∵N :1<x≤3是不等式组的“子集”, ∴2m ≤1,3n >3,即m≤2,n >9, 故答案为:m≤2,n >9.【点睛】本题考查解一元一次不等式组以及定义运算,读懂题干“子集”的定义以及能求出不等式组的解集是解答此题的关键.。
2019-2020学年北京市海淀区八年级下学期期中考试数学模拟试卷及答案解析
2019-2020学年北京市海淀区八年级下学期期中考试
数学模拟试卷
一.选择题(共10小题,满分30分,每小题3分)
1.(3分)△ABC三边长分别为a、b、c,则下列条件不能判断△ABC是直角三角形的是()A.a=3,b=4,c=5B.a=4,b=5,c=6
C.a=6,b=8,c=10D.a=5,b=12,c=13
2.(3分)下列二次根式中,是最简二次根式的是()
A .
B .
C .
D .
3.(3分)▱ABCD中,∠A=55°,则∠B,∠C的度数分别是()A.135°,55°B.55°,135°C.125°,55°D.55°,125°4.(3分)如图,矩形ABCD的两条对角线相交于点O,AB=2,∠ACB=30°,则矩形的面积为()
A.4B.2C.4D.2
5.(3分)下列函数中,能表示y是x的反比例函数的是()
A.y=2x B .C.y=x2D.y=x﹣1
6.(3分)已知平行四边形ABCD中,对角线AC、BD相交于O,则下列说法准确的是()A.当OA=OC时,平行四边形ABCD为矩形
B.当AB=AD时,平行四边形ABCD为正方形
C.当∠ABC=90°时,平行四边形ABCD为菱形
D.当AC⊥BD时,平行四边形ABCD为菱形
7.(3分)如图,正方形ABOC的边长为3,点A在反比例函数y =(k≠0)的图象上,则k的值是()
第1页(共39页)。
(新课标人教版)北京市海淀区2019-2020学年高二下期中考试数学理测试题(附详细答案)
海淀区高二年级第二学期期中练习数 学(理科)2019.4学校 班级 姓名 成绩本试卷共100分.考试时间90分钟.一、选择题:本大题共8小题, 每小题4分,共32分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数12i z =-的虚部是A. 2-B. 2C.2i -D. 2i 2.下列导数运算错误..的是( ) A. 21()'2x x --=- B.(cos )'sin x x =- C. (ln )'1ln x x x =+ D. (2)'2ln 2x x = 3. 函数()f x 的图象如图所示,则()f x 的极大值点的个数为( ) A. 0 B. 1 C. 2 D. 34.若函数()f x 的导函数'()(2)e x f x x x -=-,则下列关系一定成立的是( )A.(2)0f >B. (0)(1)f f >C. (2)(1)f f <D. (2)(3)f f > 5. 已知两个命题::p “若复数12,z z 满足120z z ->,则1z >2z .”:q “存在唯一的一个实数对(,)a b 使得i i(2i)a b -=+.” 其真假情况是( )A.p 真q 假B. p 假q 假C. p 假q 真D. p 真q 真 6.若小球自由落体的运动方程为21()2s t gt =(g 为常数),该小球在1t =到3t =的平均速度为v ,在2t =的瞬时速度为2v ,则v 和2v 关系为( ) A .2vv > B .2v v < C .2v v = D .不能确定7.如图,过原点斜率为k 的直线与曲线ln y x =交于两点11(,)A x y ,22(,)B x y . ① k 的取值范围是1(0,)e.②1211k x x <<. ③ 当12(,)x x x ∈时,()ln f x kx x =-先减后增且恒为负. 以上结论中所有正确结论的序号是( ) A.① B.①② C.①③ D.②③8.已知函数32()f x ax bx cx d =+++,其导函数的图象如图所示,则函数()f x 的图象可能是( )二、填空题:本大题共4小题, 每小题4分,共16分.把答案填在题中横线上.9.计算1+2ii=_________. 10.2(3)x dx -=⎰_____________.11.已知()1xf x x =- ,则'()f x =______________. 12. 方程(1)1x x e -=的解的个数为_______________.三、解答题:本大题共5小题,共52分. 解答应写出文字说明,证明过程或演算步骤.13.(本小题12分)已知函数cx bx ax x f ++=23)(,其导函数为)('x f 的部分值如下表所示:根据表中数据,回答下列问题:(Ⅰ)实数c 的值为___________;当x = ________时,()f x 取得极大值...(将答案填写在横线上). (Ⅱ)求实数a ,b 的值.(Ⅲ)若()f x 在(,2)m m +上单调递减,求m 的取值范围.14.(本小题10分)-的底面ACDE满足DE //AC,AC=2DE.如图,四棱锥B ACDE(Ⅰ)若DC⊥平面ABC,AB⊥BC,求证:平面ABE⊥平面BCD;(Ⅱ)求证:在平面ABE内不存在直线与DC平行;某同学用分析法证明第(1)问,用反证法证明第(2)问,证明过程如下,请你在横线上填上合适的内容. (Ⅰ)证明:欲证平面ABE⊥平面BCD,Array只需证_______________________________,由已知AB⊥BC,只需证_________________,由已知DC⊥平面ABC可得DC⊥AB成立,所以平面ABE⊥平面BCD.(Ⅱ)证明:假设________________________________________,DC平面ABE.又因为DC⊄平面ABE,所以//又因为平面ACDE平面ABE=AE,所以__________________,又因为DE //AC,所以ACDE是平行四边形,=,这与_______________________________矛盾,所以AC DE所以假设错误,原结论正确.15.(本小题12分)已知函数()ln f x x ax =+(a ∈R ).(Ⅰ)若函数)(x f 在点))1(,1(f 处的切线与直线x y 2=平行,求实数a 的值及该切线方程; (Ⅱ)若对任意的),0(+∞∈x ,都有1)(≤x f 成立,求实数a 的取值范围.16. (本小题8分)请阅读问题1的解答过程,然后借鉴问题1的解题思路完成问题2的解答: 问题1:已知数集{}()1212,,1,2n n A a a a a a a n =≤<<<≥具有性质P :对任意的(),1i j i j n ≤≤≤,i j a a 与j ia a 两数中至少有一个属于A .若数集{}14,2,3,a a 具有性质P ,求14,a a 的值.1212n n 具有性质P :对任意的(),1i j i j n ≤≤≤,i j a a +与j i a a -两数中至少有一个属于A .若数集{}14,1,3,a a 具有性质P ,求14,a a 的值.17. (本小题10分)已知函数1()(0)f x x x=>,对于正数1x ,2x ,…,n x (n ∈N +),记12n n S x x x =+++,如图,由点(0,0),(,0)i x ,(,())i i x f x ,(0,())i f x 构成的矩形的周长为i C (1,2,,)i n =,都满足4i i C S =(1,2,,)i n =.(Ⅰ)求1x ;(Ⅱ)猜想n x 的表达式(用n 表示),并用数学归纳法证明.海淀区高二年级第二学期期中练习参考答案数 学(理科)一、选择题:本大题共8小题, 每小题4分,共32分.AABD CC C D二、填空题:本大题共4小题, 每小题4分,共16分.9.2i - 10. 4- 11. 21(1)x -- 12. 1三、解答题:本大题共5小题,共52分. 解答应写出文字说明,证明过程或演算步骤. 13.(本小题12分)(Ⅰ)6,3. ------------------------------------------------------------------4分 (Ⅱ)解:2'()32f x ax bx c =++,--------------------------------------------------------------5分由已知表格可得'(1)8,'(3)0,f f =⎧⎨=⎩解得2,32.a b ⎧=-⎪⎨⎪=⎩---------------------------------------------7分(Ⅲ)解:由(Ⅱ)可得2'()2462(3)(1)f x x x x x =-++=--+,-----------------------8分 由'()0f x <可得(,1)x ∈-∞-(3,)+∞,------------------------------------------------9分因为()f x 在(,2)m m +上单调递减,所以仅需21m +≤-或者3m ≥, ------------------------------------------------------11分 所以m 的取值范为3m ≥或3m ≤-.-----------------------------------------------------12分 14.(本小题10分)(Ⅰ)证明:欲证平面ABE ⊥平面BCD ,---------------------------------------------------------------2分由已知AB ⊥BC ----------------------------------------------------4分 由已知DC ⊥平面ABC 可得DC ⊥AB 成立,所以平面ABE ⊥平面BCD .------------------------------------6分又因为DC ⊄平面ABE ,所以//DC 平面ABE . 又因为平面ACDE平面ABE =AE ,------------------------------------------8分 又因为DE //AC ,所以ACDE 是平行四边形,所以AC DE =-----------------------------------------------10分 所以假设错误,原结论正确.15.(本小题12分) (Ⅰ)解:11'()ax f x a x x+=+=,0x >.----------------------------------------------------------2分 由已知可得'(1)12f a =+=,解得1a =.---------------------------------------------------3分因为(1)1f =,所以在点))1(,1(f 处的切线方程为21y x =-.------------------------4分(Ⅱ)解1:若对任意),0(+∞∈x ,都有1)(≤x f 成立,即1ln xa x-≤成立.------------6分 设1ln ()xg x x-=, --------------------------------------------------------------7分 2ln 2'()x g x x-=,令'()0g x =,解得2e x =,则'(),()g x g x 的情况如下:分 所以()g x 的最小值为22(e )e g -=-, ------------------------------------------10分 所以,依题意只需实数a 满足2e a -≤-,---------------------------------------11分故所求a 的取值范围是2(,e ]--∞-. --------------------------------------------12分 解2:当0a ≥时,'()0f x >恒成立,所以函数()f x 的单调递增区间为(0,)+∞又因为11(1)ln(1)11f a a a+=+++>,所以不符题意,舍.--------------------6分当0a <时,令'()0f x =,得1x a=-.----------------------------------------------7分 所以'(),()f x f x 随x 的变化如下表所示:分 所以()f x 的最大值为1()f a-,------------------------------------------------------10分 所以,依题意只需11()ln()11f a a-=--≤即可,解得2e a -≤-.---------------11分 综上,a 的取值范围是2(,e ]--∞-.---------------------------------------------------12分16. (本小题8分)解:对于集合中最大的数4a ,因为444a a a +>,443a a +>,441a a +>-----------------2分所以44a a -,43a -,41a -,41a a -都属于该集合.--------------------------------------------4分 又因为14013a a ≤<<<,所以44a a -<43a -<41a -41a a <-.-----------------------6分-- 所以1440a a a =-=,431a -=,------------------------------------------------------------------7分 即140,4a a ==.-------------------------------------------------------------------------------------8分17. (本小题10分) (Ⅰ)解:由题意知,12(())2()i i i i i C x f x x x =+=+(1,2,,)i n =, 所以12i i i S x x =+(1,2,,)i n =.--------------------------------------------------------------1分令i =1,得11112S x x =+, 又11S x =,且1x >0,故11x =.---------------------------------------------------------------2分 (Ⅱ)解:令i =2,得22212S x x =+, 又212S x x =+,11x =,且2x >0,故21x =;------------------------------------3分 令i =3,得33312S x x =+, 又3123S x x x =++,11x =,21x =,且3x >0,故3x =----------4分由此猜想,n x =n ∈N +).-------------------------------------------------------5分 下面用数学归纳法证明:①当n =1时,11x =,命题成立;---------------------------------------------------------6分 ②假设n =k时命题成立,即k x =(k ∈N +), -----------------------------7分 则当n =k +1时,11112k k k S x x +++=+,又11k k k S S x ++=+,12k k k S x x =+, 故11111()2k k k k k x x x x x +++++=+,由k x =,得21110k k x +++-=,--------------------------------------8分所以1k x +=).-------------------------------------------9分 即当n =k +1时命题成立。
北京市海淀区2019-2020学年七年级数学下学期期中试卷【含答案】
北京市海淀区2019-2020学年七年级数学下学期期中试卷一、选择题(共10小题,每小题3分,满分30分)1.若x是9的算术平方根,则x是( )A.3B.﹣3C.9D.812.在﹣2,,,3.14,,,这6个数中,无理数共有( )A.4个B.3个C.2个D.1个3.不等式x﹣1<0的解集在数轴上表示正确的是( )A.B.C.D.4.下列调查方式,你认为最合适的是( )A.旅客上飞机前的安检,采用抽样调查方式B.了解北京市每天的流动人口数,采用抽样调查方式C.了解北京市居民“一带一路”期间的出行方式,采用全面调查方式D.日光灯管厂要检测一批灯管的使用寿命,采用全面调查方式5.若m>n>0,则下列结论正确的是( )A.﹣2m>﹣2n B.m_2<n﹣2C.>D.m<n6.若是关于x和y的二元一次方程ax+y=1的解,则a的值等于( )A.3B.1C.﹣1D.﹣37.在下列各式中正确的是( )A.=﹣2B.=3C.=8D.=28.若方程组的解中x与y的值相等,则k为( )A.4B.3C.2D.19.在一次科技知识竞赛中,共有20道选择题,每道题的四个选项中,有且只有一个答案正确,选对得10分,不选或错选倒扣5分,如果得分不低于90分才能得奖,那么要得奖至少应选对的题数是( )A.13B.14C.15D.1610.以下是某手机店1~4月份的统计图,分析统计图,对3、4月份三星手机的销售情况四个同学得出的以下四个结论,其中正确的为( )A.4月份三星手机销售额为65万元B.4月份三星手机销售额比3月份有所上升C.4月份三星手机销售额比3月份有所下降D.3月份与4月份的三星手机销售额无法比较,只能比较该店销售总额二、填空题(每小题2分,共16分)11.直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点由原点到达O′点,点O′对应的数是 .12.一瓶饮料净重360g,瓶上标有“蛋白质含量≥0.5%”,设该瓶饮料中蛋白质的含量为xg,则x g.13.为了了解某校七年级420名学生的视力情况,从中抽查一个班60人的视力,在这个问题中总体是 ,样本是 .14.若有一个数m,它的平方根是a+1和2a﹣7,则m为 .15.已知关于x的不等式2x﹣k>3x只有两个正整数解,则k的取值范围为 .16.被历代数学家尊为“算经之首”的《九章算术》是中国古代算法的扛鼎之作.《九章算术》中记载:“今有五雀、六燕,集称之衡,雀俱重,燕俱轻.一雀一燕交而处,衡适平.并燕、雀重一斤.问燕、雀一枚各重几何?”译文:“今有5只雀、6只燕,分别聚集而且用衡器称之,聚在一起的雀重,燕轻.将一只雀、一只燕交换位置而放,重量相等.5只雀、6只燕重量为1斤.问雀、燕每只各重多少斤?”设每只雀重x斤,每只燕重y斤,可列方程组为 .17.已知关于x的不等式组的解集是x>4,则m的取值范围是 .18.大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部写出来,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分,于是可以用﹣1表示的小数部分.若2+=x+y,其中x是整数,且0<y<1,写出x﹣y的相反数 .三、解答题(共31分)19.根据如表回答下列问题x23.123.223.323.423.523.623.723.823.9x2533.61538.24542.89547.56552.25556.96561.69566.44571.21(1)566.44的平方根是 ;(2)﹣≈ ;(保留一位小数)(3)满足23.6<<23.7的整数n有 个.20.(1)计算:++|1﹣|;(2)解方程组;(3)解不等式组,并写出它的所有整数解..21.在大课间活动中,同学们积极参加体育锻炼.小丽在全校随机抽取一部分同学就“一分钟跳绳”进行测试,并以测试数据为样本绘制如图所示的部分频数分布直方图(从左到右依次为第一小组到第六小组,每小组含最小值,不含最大值)和扇形统计图.根据图中提供的信息完成下列问题.(1)本次抽样调查的样本容量为 .(2)请根据题意将频数分布直方图补充完整.(3)第五小组对应圆心角的度数为 .(4)若“一分钟跳绳”次数不低于130次的成绩为优秀,全校共有1200名学生,根据图中提供的信息,估计该校“一分钟跳绳”成绩优秀的人数?22.已知关于x,y的方程组的解满足x<y,求p的取值范围?23.有一张面积为196平方厘米的正方形贺卡,另有一个长方形信封,长宽比为5:3,面积为150平方厘米,能将这张贺卡不折叠的放入此信封吗?请通过计算说明你的判断.24.有A、B两个商场以同样价格出售同样商品,且各自推出了不同的优惠方案:在A商场累计购物超过400元后,超出部分按80%收费;在B商场累计购物超过200元后,超出的部分按90%收费.顾客选择到哪家购物花费少?25.对有序数对(m,n)定义“f运算”:f(m,n)=(am+bn,am﹣bn),其中a,b为常数.f运算的结果也是一个有序数对,比如当a=l,b=1时,f(﹣2,3)=(1,﹣5)(1)当a=2,b=﹣1时,f(1,2)= .(2)f(﹣3,﹣1)=(3,1),则a= ,b= ;(3)有序数对(m,n),满足方程n=2m,f(m,n)=(m,n),求a,b的值.26.如果把一个非负实数t“四舍五入”到个位的值记为[t].那么当n为非负整数时,若n﹣≤t<n+,则[t]=n.如:[6.4]]=6,[6.5]=7.根据以上材料,解决下列问题:(1)填空:①若[t]=4,则t满足的条件: ;②若[4t+1]=3,则t应满足的条件: ;(2)求满足[t]=t﹣2的所有非负实数t的值(要求书写解答过程).2019-2020学年北京市海淀区八一学校七年级(下)期中数学试卷参考答案与试题解析一.选择题(共10小题)1.若x是9的算术平方根,则x是( )A.3B.﹣3C.9D.81【分析】根据平方运算,可得一个数的算术平方根.【解答】解:∵32=9,∴=3,故选:A.2.在﹣2,,,3.14,,,这6个数中,无理数共有( )A.4个B.3个C.2个D.1个【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:﹣2是整数,属于有理数;,是整数,属于有理数;是无理数;3.14是有限小数,属于有理数;是无理数;是无理数;无理数有,,共3个.故选:B.3.不等式x﹣1<0的解集在数轴上表示正确的是( )A.B.C.D.【分析】原不等式移项可得x<1,据此可得答案.【解答】解:x﹣1<0,x<1,故选:D.4.下列调查方式,你认为最合适的是( )A.旅客上飞机前的安检,采用抽样调查方式B.了解北京市每天的流动人口数,采用抽样调查方式C.了解北京市居民“一带一路”期间的出行方式,采用全面调查方式D.日光灯管厂要检测一批灯管的使用寿命,采用全面调查方式【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【解答】解:A、旅客上飞机前的安检,采用全面调查方式,本选项说法不合适;B、了解北京市每天的流动人口数,采用抽样调查方式,本选项说法合适;C、了解北京市居民“一带一路”期间的出行方式,采用抽样调查方式,本选项说法不合适;D、日光灯管厂要检测一批灯管的使用寿命,采用抽样调查方式,本选项说法不合适;故选:B.5.若m>n>0,则下列结论正确的是( )A.﹣2m>﹣2n B.m_2<n﹣2C.>D.m<n【分析】根据不等式的性质逐个判断即可.【解答】解:A、∵m>n,∴﹣2m<﹣2n,故本选项不符合题意;B、∵m>n,∴m﹣2>n﹣2,故本选项不符合题意;C、∵m>n>0∴>,故本选项符合题意;D、∵m>n,∴m n,故本选项不符合题意;故选:C.6.若是关于x和y的二元一次方程ax+y=1的解,则a的值等于( )A.3B.1C.﹣1D.﹣3【分析】将方程的解代入方程得到关于a的方程,从而可求得a的值.【解答】解:将代入方程ax+y=1得:a﹣2=1,解得:a=3.故选:A.7.在下列各式中正确的是( )A.=﹣2B.=3C.=8D.=2【分析】算术平方根的概念:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.记为a.【解答】解:A、=2,故A选项错误;B、=±3,故B选项错误;C、=4,故C选项错误;D、=2,故D选项正确.故选:D.8.若方程组的解中x与y的值相等,则k为( )A.4B.3C.2D.1【分析】根据题意得出x=y,然后求出x与y的值,再把x、y的值代入方程kx+(k﹣1)y=6即可得到答案.【解答】解:由题意得:x=y,∴4x+3x=14,∴x=2,y=2,把它代入方程kx+(k﹣1)y=6得2k+2(k﹣1)=6,解得k=2.故选:C.9.在一次科技知识竞赛中,共有20道选择题,每道题的四个选项中,有且只有一个答案正确,选对得10分,不选或错选倒扣5分,如果得分不低于90分才能得奖,那么要得奖至少应选对的题数是( )A.13B.14C.15D.16【分析】首先设做对x道,则做错或不做的有(20﹣x)道,做对的题目共得10x分,做错的须扣5×(20﹣x)分,根据最后得分不低于90分可得不等式10x﹣5×(20﹣x)≥90,解不等式可得答案.【解答】解:设做对x道,则做错或不做的有(20﹣x)道,根据题意得:10x﹣5×(20﹣x)≥90,解得x≥12,∵x为整数,∴至少应选对13道题.故选:A.10.以下是某手机店1~4月份的统计图,分析统计图,对3、4月份三星手机的销售情况四个同学得出的以下四个结论,其中正确的为( )A.4月份三星手机销售额为65万元B.4月份三星手机销售额比3月份有所上升C.4月份三星手机销售额比3月份有所下降D.3月份与4月份的三星手机销售额无法比较,只能比较该店销售总额【分析】根据销售总额乘以三星所占的百分比,可得三星的销售额,根据有理数的大小比较,可得答案.【解答】解:A、4月份三星手机销售额为65×17%=11.05万元,故A错误;B、3月份三星手机的销售额60×18%=10.8万元,4月份三星手机销售额为65×17%=11.05万元,故B正确;C、3月份三星手机的销售额60×18%=10.8万元,4月份三星手机销售额为65×17%=11.05万元,故C错误;D、3月份三星手机的销售额60×18%=10.8万元,4月份三星手机销售额为65×17%=11.05万元,故D错误;故选:B.二.填空题(共8小题)11.直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点由原点到达O′点,点O′对应的数是 π .【分析】直径为1个单位长度的圆从原点沿数轴向右滚动一周,说明OO′之间的距离为圆的周长=π,由此即可确定O′点对应的数.【解答】解:因为圆的周长为π•d=π×1=π,所以圆从原点沿数轴向右滚动一周OO'=π.故答案为:π.12.一瓶饮料净重360g,瓶上标有“蛋白质含量≥0.5%”,设该瓶饮料中蛋白质的含量为xg,则x ≥1.8 g.【分析】根据题意,可以得到关于x的不等式,从而可以解答本题.【解答】解:由题意可得,x≥360×0.5%=1.8,故答案为:≥1.8.13.为了了解某校七年级420名学生的视力情况,从中抽查一个班60人的视力,在这个问题中总体是 某校七年级420名学生的视力 ,样本是 被抽查的一个班60人的视力 .【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.考查的对象是:某校七年级420名学生的视力.【解答】解:为了了解某校七年级420名学生的视力情况,从中抽查一个班60人的视力,在这个问题中总体是某校七年级420名学生的视力,样本是被抽查的一个班60人的视力.故答案为:某校七年级420名学生的视力;被抽查的一个班60人的视力.14.若有一个数m,它的平方根是a+1和2a﹣7,则m为 9 .【分析】根据平方根的定义得到a+1+2a﹣7=0,然后解方程即可.【解答】解:由题意得a+1+2a﹣7=0,解得:a=2,∴这个数m为:32=9.故答案为:9.15.已知关于x的不等式2x﹣k>3x只有两个正整数解,则k的取值范围为 ﹣3≤k<﹣2 .【分析】根据一元一次不等式的解法即可求出答案.【解答】解:∵2x﹣k>3x,∴2x﹣3x>k,∴x<﹣k,由题意可知:2<﹣k≤3,∴﹣3≤k<﹣2,故答案为:﹣3≤k<﹣2.16.被历代数学家尊为“算经之首”的《九章算术》是中国古代算法的扛鼎之作.《九章算术》中记载:“今有五雀、六燕,集称之衡,雀俱重,燕俱轻.一雀一燕交而处,衡适平.并燕、雀重一斤.问燕、雀一枚各重几何?”译文:“今有5只雀、6只燕,分别聚集而且用衡器称之,聚在一起的雀重,燕轻.将一只雀、一只燕交换位置而放,重量相等.5只雀、6只燕重量为1斤.问雀、燕每只各重多少斤?”设每只雀重x斤,每只燕重y斤,可列方程组为 .【分析】设每只雀有x两,每只燕有y两,根据五只雀、六只燕,共重1斤(等于16两),雀重燕轻,互换其中一只,恰好一样重,列方程组即可.【解答】解:设每只雀有x两,每只燕有y两,由题意得,.故答案为.17.已知关于x的不等式组的解集是x>4,则m的取值范围是 m≤3 .【分析】先求出不等式的解集,根据已知不等式组的解集即可得出关于m的不等式,求出不等式的解集即可.【解答】解:∵不等式①的解集为x>4,不等式②的解集为x>m+1,,又∵不等式组的解集为x>4,∴m+1≤4,∴m≤3,故答案为:m≤3.18.大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部写出来,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分,于是可以用﹣1表示的小数部分.若2+=x+y,其中x是整数,且0<y<1,写出x﹣y的相反数 ﹣6 .【分析】根据题意的方法,估计的大小,易得2+的范围,进而可得x﹣y的值;再由相反数的求法,易得答案.【解答】解:∵<<,∴在2和3之间,∴2+在4和5之间,∵2+=x+y,其中x是整数,且0<y<1,∴x=4,y=2+﹣4=﹣2,∴x﹣y=6﹣,∴x﹣y的相反数是﹣6,故答案为:﹣6.三.解答题19.根据如表回答下列问题x23.123.223.323.423.523.623.723.823.9 x2533.61538.24542.89547.56552.25556.96561.69566.44571.21(1)566.44的平方根是 ;(2)﹣≈ ;(保留一位小数)(3)满足23.6<<23.7的整数n有 个.【考点】平方根;估算无理数的大小.【专题】计算题;运算能力;推理能力.【答案】见试题解答内容【分析】(1)直接利用平方根的定义结合表格中数据得出答案;(2)结合表格中数据再利用算术平方根的定义得出答案;(3)结合表格中数据即可得出答案.【解答】解:(1)由表中数据可得:566.44的平方根是:±23.8;故答案为:±23.8;(2)∵23.72=561.69,∴≈23.7,∴﹣≈﹣23.7,故答案为:﹣23.7;(3)∵23.62=556.96,23.72=561.69,∴满足23.6<<23.7的整数n有5个,故答案为:5.20.(1)计算:++|1﹣|;(2)解方程组;(3)解不等式组,并写出它的所有整数解..【考点】实数的运算;解二元一次方程组;解一元一次不等式组;一元一次不等式组的整数解.【专题】计算题;一元一次不等式(组)及应用;运算能力.【答案】见试题解答内容【分析】(1)先去绝对值符号、计算立方根和算术平方根,再计算加减可得;(2)利用加减消元法求解可得;(3)先求出每个不等式组的解集,再根据口诀“大小小大中间找”得出不等式组的解集,从而求出不等式组的整数解.【解答】解:(1)原式=3﹣4+﹣1,=﹣2+.(2),①×2﹣②得,﹣9n=﹣18,解得n=2,把n=2代入①得,m=7,∴方程组的解为;(3),解①得:x≤3;解②得:x>﹣1;则不等式组的解集为﹣1<x≤3,∴这个不等式组的整数解为0,1,2,3.21.在大课间活动中,同学们积极参加体育锻炼.小丽在全校随机抽取一部分同学就“一分钟跳绳”进行测试,并以测试数据为样本绘制如图所示的部分频数分布直方图(从左到右依次为第一小组到第六小组,每小组含最小值,不含最大值)和扇形统计图.根据图中提供的信息完成下列问题.(1)本次抽样调查的样本容量为 .(2)请根据题意将频数分布直方图补充完整.(3)第五小组对应圆心角的度数为 .(4)若“一分钟跳绳”次数不低于130次的成绩为优秀,全校共有1200名学生,根据图中提供的信息,估计该校“一分钟跳绳”成绩优秀的人数?【考点】总体、个体、样本、样本容量;用样本估计总体;频数(率)分布直方图;扇形统计图.【专题】统计的应用;运算能力.【答案】见试题解答内容【分析】(1)根据第二组的人数和所占的百分比即可得出答案;(2)用总人数减去其它组的人数,求出第四组的人数,从而补全统计图;(3)用360°乘以第五小组所占的百分比,即可得出答案;(4)用样本估计总体的思想即可解决问题.【解答】解:(1)本次抽样调查的样本容量为:10÷20%=50;故答案为:50;(2)第四组的人数有:50﹣4﹣10﹣16﹣6﹣4=10(人),补图如下:(3)第五小组对应圆心角的度数为:360°×=43.2°;故答案为:43.2°;(4)根据题意得:1200×=480(人),答:该校“一分钟跳绳”成绩优秀的人数有480人.22.已知关于x,y的方程组的解满足x<y,求p的取值范围?【考点】二元一次方程组的解;解一元一次不等式.【专题】一元一次不等式(组)及应用;运算能力.【答案】见试题解答内容【分析】解不等式组求出,再根据x<y得出关于p的不等式,解之可得答案.【解答】解:解方程组,得:,∵x<y,∴p+5<﹣p﹣7,解得p<﹣6.23.有一张面积为196平方厘米的正方形贺卡,另有一个长方形信封,长宽比为5:3,面积为150平方厘米,能将这张贺卡不折叠的放入此信封吗?请通过计算说明你的判断.【考点】一元二次方程的应用【专题】一元二次方程及应用;应用意识.【答案】不能.【分析】设长方形信封得长为5x厘米,则宽为3x厘米,根据长方形信封的面积为150平方厘米,即可得出关于x的一元二次方程,解之即可得出x的值,进而可得出长方形信封的宽,由正方形贺卡的面积可求出贺卡的边长,将长方形信封的宽与正方形贺卡的边长比较后即可得出结论.【解答】解:设长方形信封得长为5x厘米,则宽为3x厘米,依题意得:5x•3x=150,解得:x1=,x2=﹣(不合题意,舍去),∴3x=3.正方形贺卡的边长为=14(厘米).∵3<3=12<14,∴不能将这张贺卡不折叠的放入此信封.24.有A、B两个商场以同样价格出售同样商品,且各自推出了不同的优惠方案:在A商场累计购物超过400元后,超出部分按80%收费;在B商场累计购物超过200元后,超出的部分按90%收费.顾客选择到哪家购物花费少?【考点】一元一次方程的应用;一元一次不等式的应用.【专题】一次方程(组)及应用;一元一次不等式(组)及应用;应用意识.【答案】见试题解答内容【分析】设顾客购买物品的原价为x元,分x≤200、200<x≤400及x>400三种情况考虑,显然,当x≤200时,在两商场购物花费一样多;当200<x≤400时,在B商场购物花费少;当x>400时,分到B商场购物花费少、到两商场购物花费相同及到A商场购物花费少三种情况,找出关于x的一元一次不等式(或一元一次方程),解之即可得出结论.【解答】解:设顾客购买物品的原价为x元.当x≤200时,在两商场购物花费一样多;当200<x≤400时,在B商场购物花费少;当x>400时,若200+90%(x﹣200)<400+80%(x﹣400),解得:x<600;若200+90%(x﹣200)=400+80%(x﹣400),解得:x=600;若200+90%(x﹣200)>400+80%(x﹣400),解得:x>600.答:当x≤200或x=600时,到两商场购物花费相同;当400<x<600时,到B商场购物花费少;当x>600时,到A商场购物花费少.25.对有序数对(m,n)定义“f运算”:f(m,n)=(am+bn,am﹣bn),其中a,b为常数.f运算的结果也是一个有序数对,比如当a=l,b=1时,f(﹣2,3)=(1,﹣5)(1)当a=2,b=﹣1时,f(1,2)= .(2)f(﹣3,﹣1)=(3,1),则a= ,b= ;(3)有序数对(m,n),满足方程n=2m,f(m,n)=(m,n),求a,b的值.【考点】有理数的混合运算;一元一次方程的解;点的坐标.【专题】新定义;方程思想;创新意识.【答案】见试题解答内容【分析】(1)根据“f运算”的定义计算即可;(2)根据“f运算”的定义列出方程组即可解决问题;(3)根据“f运算”的定义列出方程组即可解决问题.【解答】解:(1)2×1﹣1×2=0,2×1+1×2=4,f(1,2)=(0,4);(2)由题意得,解得:;(3)由题意得,解得:.故答案为:(0,4);﹣,﹣1.26.如果把一个非负实数t“四舍五入”到个位的值记为[t].那么当n为非负整数时,若n﹣≤t<n+,则[t]=n.如:[6.4]]=6,[6.5]=7.根据以上材料,解决下列问题:(1)填空:①若[t]=4,则t满足的条件: ;②若[4t+1]=3,则t应满足的条件: ;(2)求满足[t]=t﹣2的所有非负实数t的值(要求书写解答过程).【考点】取整函数.【专题】运算能力;推理能力.【答案】(1)①;②;(2)或3或.【分析】(1)①因为[t]=4,根据,求得t取值范围即可;②由①得出4t+1的取值范围,进一步解不等式组得出答案即可;(2)设,m为整数,用m表示出t,进一步得出不等式组,解出答案即可.【解答】解:(1)①∵[t]=4,∴,∴,故答案为.②∵[4t+1]=3,∴,∴,∴,∴,故答案为.(2)设为整数,则,∴,∴,∴,∴m=2 或m=3或m=4,当m=2时,,当m=3时,,当m=4时,.所以t的值为或3或.。
2019-2020学年北京市海淀区清华附中七年级(下)月考数学试卷(4月份) 解析版
2019-2020学年北京市海淀区清华附中七年级(下)月考数学试卷(4月份)一.选择题(本题共30分,每小题3分)1.(3分)9的算术平方根是()A.﹣3B.3C.D.±32.(3分)已知a<b,下列不等式中,正确的是()A.a+4>b+4B.a﹣3>b﹣3C.a<b D.﹣2a<﹣2b 3.(3分)在平面直角坐标系中,如果点P(﹣1,﹣2+m)在第三象限,那么m的取值范围为()A.m<2B.m≤2C.m≤0D.m<04.(3分)若是关于x和y的二元一次方程ax+y=1的解,则a的值等于()A.3B.1C.﹣1D.﹣35.(3分)如图所示,下列说法中,不正确的是()A.∠1和∠4是内错角B.∠1和∠3是对顶角C.∠3和∠4是同位角D.∠1和∠2是同旁内角6.(3分)过点B画线段AC所在直线的垂线段,其中正确的是()A.B.C.D.7.(3分)如图,数轴上点N表示的数可能是()A.B.C.D.8.(3分)如图,直线AB、CD相交于点O,∠EOD=90°.下列说法不正确的是()A.∠AOD=∠BOC B.∠AOC=∠AOEC.∠AOE+∠BOD=90°D.∠AOD+∠BOD=180°9.(3分)如图是北京世界园艺博览会园内部分场馆的分布示总图.在图中,分别以正东、北方向为x轴、y轴的正方向建立平面直角坐标系.如果表示演艺中心的点的坐标为(1,2),表示永宁阁的点的坐标为(﹣4,1),那么下列各场阁的坐标表示正确的是()A.中国馆的坐标为(﹣1,﹣2)B.国际馆的坐标为(1,﹣3)C.生活体验馆的坐标为(4,7)D.植物馆的坐标为(﹣7,4)10.(3分)三名快递员某天的工作情况如图所示,其中点A1,A2,A3的横、纵坐标分别表示甲、乙、丙三名快递员上午派送快递所用的时间和件数;点B1,B2,B3的横、纵坐标分别表示甲、乙、丙三名快递员下午派送快递所用的时间和件数.有如下三个结论:①上午派送快递所用时间最短的是甲;②下午派送快递件数最多的是丙;③在这一天中派送快递总件数最多的是乙.上述结论中,所有正确结论的序号是()A.①②B.①③C.②D.②③二.填空题(本题共24分,每小题3分)11.(3分)点M(﹣2,3)到x轴和y轴的距离之和是.12.(3分)物体自由下落的高度h(单位:m)与下落时间t(单位:s)的关系是h=4.9t2.在一次实验中,一个物体从490m高的建筑物上自由落下,到达地面需要的时间为s.13.(3分)若关于x的一元一次方程4x+m+1=x﹣1的解是负数,则m的取值范围是.14.(3分)如图,已知C为线段AB的中点,D在线段CB上.若DA=6,DB=3,则CD =.15.(3分)如图,点A,B,C,D,E在直线l上,点P在直线l外,PC⊥l于点C,在线段P A,PB,PC,PD,PE中,最短的一条线段是,理由是16.(3分)某机店今年1~4月的手机销售总额如图1,其中一款音乐手机的销售额占当月手机销售总额的百分比如图2.有以下四个结论:①从1月到4月,手机销售总额连续下降;②从1月到4月,音乐手机销售额在当月手机销售总额中的占比连续下降;③音乐手机4月份的销售额比3月份有所下降;④今年1~4月中,音乐手机销售额最低的是3月;其中正确的结论是(填写序号).17.(3分)如图,直线AB,CD相交于O,OE⊥AB,O为垂足,∠COE=34°,则∠BOD =度.18.(3分)已知正实数x的两个平方根是m和m+b.(1)当b=8时,m的值是;(2)若m2x+(m+b)2x=4,则x=.三.解答题(本题共46分,第19-21每小题5分,第22-25每小题5分,第26题7分)19.(5分)计算:.20.(5分)解方程组.21.(5分)解不等式组并写出这个不等式组的所有整数解.22.(6分)已知x+2是27的立方根,3x+y﹣1的算术平方根是4,求7x+3y平方根.23.(6分)如图,直线AB、CD相交于点O,OE平分∠BOD,∠AOC=76°,OF⊥OD.求∠EOF的度数.24.(6分)在正方形网格中建立平面直角坐标系xOy,使得A,B两点的坐标分别为A(4,1),B(1,﹣2),过点B作BC⊥x轴于点C.(1)按照要求画出平面直角坐标系xOy,线段BC,写出点C的坐标;(2)直接写出以A,B,O为顶点的三角形的面积;(3)若线段CD是由线段AB平移得到的,点A的对应点是C,写出一种由线段AB得到线段CD的过程.25.(6分)某年级共有300名学生,为了解该年级学生在A,B两个体育项目上的达标情况,进行了抽样调查.过程如下,请补充完整.收集数据从该年级随机抽取30名学生进行测试,测试成绩(百分制)如下:A项目78 86 74 81 75 76 87 49 74 91 75 79 81 71 74 81 86 6983 77 82 85 92 95 58 54 63 67 82 74B项目93 73 88 81 72 81 94 83 77 83 80 81 70 81 73 78 82 100 70 40 84 86 92 96 53 57 63 68 81 75整理、描述数据B项目的频数分布表分组划记频数40≤x<50150≤x<60260≤x<70270≤x<80880≤x<9090≤x<1005(说明:成绩80分及以上为优秀,60~79分为基本达标,59分以下为不合格)根据以上信息,回答下列问题:(1)补全统计图、统计表;(2)在此次测试中,成绩更好的项目是,理由是;(3)假设该年级学生都参加此次测试,估计A项目和B项目成绩都是优秀的人数最多为人.26.(7分)国家发改委、工业和信息化部、财政部公布了“节能产品惠民工程”,公交公司积极响应将旧车换成节能环保公交车,计划购买A型和B型两种环保型公交车10辆,其中每台的价格、年载客量如表:A型B型价格(万元/台)x y年载客量/万人次60100若购买A型环保公交车1辆,B型环保公交车2辆,共需400万元;若购买A型环保公交车2辆,B型环保公交车1辆,共需350万元.(1)求x、y的值;(2)如果该公司购买A型和B型公交车的总费用不超过1200万元,且确保10辆公交车在该线路的年载客量总和不少于680万人次,问有哪几种购买方案?(3)在(2)的条件下,哪种方案使得购车总费用最少?最少费用是多少万元?27.(4分)若关于x,y的二元一次方程组的解满足2x+y≤3,则a的取值范围是.28.(4分)已知关于x的一元一次不等式mx+1>5﹣2x的解集是x<,如图,数轴上的A,B,C,D四个点中,实数m对应的点可能是.29.(4分)按下面程序计算,即根据输入的x判断5x+1是否大于500,若大于500则输出,结束计算,若不大于500,则以现在的5x+1的值作为新的x的值,继续运算,循环往复,直至输出结果为止.若开始输入x的值为正整数,最后输出的结果为656,则满足条件的所有x的值是.30.(4分)已知关于x的不等式组恰好有2个整数解,则整数a的值是.31.(4分)定义:给定两个不等式组P和Q,若不等式组P的任意一个解,都是不等式组Q的一个解,则称不等式组P为不等式组Q的“子集”.例如:不等式组:M:是N:的“子集”.(1)若不等式组:A:,B:,则其中不等式组是不等式组M:的“子集”(填A或B);(2)若关于x的不等式组是不等式组的“子集”,则a的取值范围是;(3)已知a,b,c,d为互不相等的整数,其中a<b,c<d,下列三个不等式组:A:a ≤x≤b,B:c≤x≤d,C:1<x<6满足:A是B的“子集”且B是C的“子集”,则a ﹣b+c﹣d的值为;(4)已知不等式组M:有解,且N:1<x≤3是不等式组M的“子集”,请写出m,n满足的条件:.2019-2020学年北京市海淀区清华附中七年级(下)月考数学试卷(4月份)参考答案与试题解析一.选择题(本题共30分,每小题3分)1.(3分)9的算术平方根是()A.﹣3B.3C.D.±3【分析】根据算术平方根的定义解答.【解答】解:∵32=9,∴9的算术平方根是3.故选:B.2.(3分)已知a<b,下列不等式中,正确的是()A.a+4>b+4B.a﹣3>b﹣3C.a<b D.﹣2a<﹣2b 【分析】根据不等式的性质,可得答案.【解答】解:A、两边都加4,不等号的方向不变,故A错误;B、两边都减3,不等号的方向不变,故B错误;C、两边都乘,不等号的方向不变,故C正确;D、两边都乘﹣2,不等号的方向改变,故D错误;故选:C.3.(3分)在平面直角坐标系中,如果点P(﹣1,﹣2+m)在第三象限,那么m的取值范围为()A.m<2B.m≤2C.m≤0D.m<0【分析】根据解一元一次不等式基本步骤移项、合并同类项1可得.【解答】解:由题意知﹣2+m<0,则m<2,故选:A.4.(3分)若是关于x和y的二元一次方程ax+y=1的解,则a的值等于()A.3B.1C.﹣1D.﹣3【分析】将方程的解代入方程得到关于a的方程,从而可求得a的值.【解答】解:将是代入方程ax+y=1得:a﹣2=1,解得:a=3.故选:A.5.(3分)如图所示,下列说法中,不正确的是()A.∠1和∠4是内错角B.∠1和∠3是对顶角C.∠3和∠4是同位角D.∠1和∠2是同旁内角【分析】根据内错角,对顶角,同位角以及同旁内角的概念进行判断.【解答】解:A、∠1和∠4是内错角,说法正确,故本选项错误;B、∠1和∠3是对顶角,说法正确,故本选项错误;C、∠3和∠4是同位角,说法正确,故本选项错误;D、∠1和∠2是邻补角,说法错误,故本选项正确.故选:D.6.(3分)过点B画线段AC所在直线的垂线段,其中正确的是()A.B.C.D.【分析】垂线段满足两个条件:①经过点B.②垂直于AC;由此即可判断.【解答】解:根据垂线段的定义可知,过点B画线段AC所在直线的垂线段,可得:故选:D.7.(3分)如图,数轴上点N表示的数可能是()A.B.C.D.【分析】根据估算无理数大小的方法进行估算,再确定数字在数轴上的位置即可求解.【解答】解:A.1<<2,不符合题意;B.1<<2,不符合题意;C.2<<3,符合题意;D.3<<4,不符合题意.故选:C.8.(3分)如图,直线AB、CD相交于点O,∠EOD=90°.下列说法不正确的是()A.∠AOD=∠BOC B.∠AOC=∠AOEC.∠AOE+∠BOD=90°D.∠AOD+∠BOD=180°【分析】根据对顶角相等可得∠AOD=∠BOC,AO不是∠COE的角平分线,因此∠AOC 和∠AOE不一定相等,根据∠EOD=90°,利用平角定义可得∠AOE+∠BOD=90°,根据邻补角互补可得∠AOD+∠BOD=180°【解答】解:A、∠AOD=∠BOC,说法正确;B、∠AOC=∠AOE,说法错误;C、∠AOE+∠BOD=90°,说法正确;D、∠AOD+∠BOD=180°,说法正确;故选:B.9.(3分)如图是北京世界园艺博览会园内部分场馆的分布示总图.在图中,分别以正东、北方向为x轴、y轴的正方向建立平面直角坐标系.如果表示演艺中心的点的坐标为(1,2),表示永宁阁的点的坐标为(﹣4,1),那么下列各场阁的坐标表示正确的是()A.中国馆的坐标为(﹣1,﹣2)B.国际馆的坐标为(1,﹣3)C.生活体验馆的坐标为(4,7)D.植物馆的坐标为(﹣7,4)【分析】根据演艺中心的点的坐标为(1,2),表示永宁阁的点的坐标为(﹣4,1)建立平面直角坐标系,确定坐标原点的位置,进而可确定表示留春园的点的坐标.【解答】解:根据题意可建立如下所示平面直角坐标系,A、中国馆的坐标为(﹣1,﹣2),故本选项正确;B、国际馆的坐标为(3,﹣1),故本选项错误;C、生活体验馆的坐标为(7,4),故本选项错误;D、植物馆的坐标为(﹣7,﹣4),故本选项错误;10.(3分)三名快递员某天的工作情况如图所示,其中点A1,A2,A3的横、纵坐标分别表示甲、乙、丙三名快递员上午派送快递所用的时间和件数;点B1,B2,B3的横、纵坐标分别表示甲、乙、丙三名快递员下午派送快递所用的时间和件数.有如下三个结论:①上午派送快递所用时间最短的是甲;②下午派送快递件数最多的是丙;③在这一天中派送快递总件数最多的是乙.上述结论中,所有正确结论的序号是()A.①②B.①③C.②D.②③【分析】从图中根据①②③的信息依次统计,即可求解;【解答】解:从图可知以下信息:上午送时间最短的是甲,①正确;下午送件最多的是乙,②不正确;一天中甲送了65件,乙送了75件,③正确;故选:B.二.填空题(本题共24分,每小题3分)11.(3分)点M(﹣2,3)到x轴和y轴的距离之和是5.【分析】根据点的坐标与其到坐标轴的距离的关系进行解答.【解答】解:点M(﹣2,3)到x轴的距离为:3,到y轴的距离为:2,故点M(﹣2,3)到x轴和y轴的距离之和是:3+2=5.故答案为:5.12.(3分)物体自由下落的高度h(单位:m)与下落时间t(单位:s)的关系是h=4.9t2.在一次实验中,一个物体从490m高的建筑物上自由落下,到达地面需要的时间为10s.【分析】把h=490代入h=4.9t2即可求解.【解答】解:把h=490代入h=4.9t2中,t2=100,∵t>0,∴t=10.故答案是:10.13.(3分)若关于x的一元一次方程4x+m+1=x﹣1的解是负数,则m的取值范围是m>﹣2.【分析】求出方程的解,根据已知得关于m的不等式,求出即可.【解答】解:4x+m+1=x﹣1,移项得:4x﹣x=﹣1﹣1﹣m,∴x=,∵方程的解是负数,∴<0,∴m>﹣2,故答案为m>﹣2.14.(3分)如图,已知C为线段AB的中点,D在线段CB上.若DA=6,DB=3,则CD = 1.5.【分析】先根据DA=6,DB=3求出线段AB的长,再由C为线段AB的中点求出BC的长,根据CD=BC﹣DB即可得出结论.【解答】解:∵DA=6,DB=3,∴AB=DB+DA=3+6=9,∵C为线段AB的中点,∴BC=AB=×9=4.5,∴CD=BC﹣DB=4.5﹣3=1.5.故答案为:1.5.15.(3分)如图,点A,B,C,D,E在直线l上,点P在直线l外,PC⊥l于点C,在线段P A,PB,PC,PD,PE中,最短的一条线段是PC,理由是垂线段最短【分析】点到直线的距离是指该点到直线的垂线段的长,根据定义即可选出答案.【解答】解:根据点到直线的距离的定义得出线段PC的长是点P到直线l的距离,从直线外一点到这条直线所作的垂线段最短.故答案是:PC;垂线段最短.16.(3分)某机店今年1~4月的手机销售总额如图1,其中一款音乐手机的销售额占当月手机销售总额的百分比如图2.有以下四个结论:①从1月到4月,手机销售总额连续下降;②从1月到4月,音乐手机销售额在当月手机销售总额中的占比连续下降;③音乐手机4月份的销售额比3月份有所下降;④今年1~4月中,音乐手机销售额最低的是3月;其中正确的结论是④(填写序号).【分析】根据图象信息一一判断即可.【解答】解:①从1月到4月,手机销售总额连续下降;错误,3月到4月是增长的.②从1月到4月,音乐手机销售额在当月手机销售总额中的占比连续下降;错误,2月到3月是增长的.③音乐手机4月份的销售额比3月份有所下降;错误,是增加长的.④今年1~4月中,音乐手机销售额最低的是3月;正确.故答案为④17.(3分)如图,直线AB,CD相交于O,OE⊥AB,O为垂足,∠COE=34°,则∠BOD =56度.【分析】由OE⊥AB,∠COE=34°,利用互余关系可求∠BOD.【解答】解:∵OE⊥AB,∠COE=34°,∴∠BOD=90°﹣∠COE=90°﹣34°=56°.故答案为:56.18.(3分)已知正实数x的两个平方根是m和m+b.(1)当b=8时,m的值是﹣4;(2)若m2x+(m+b)2x=4,则x=.【分析】(1)利用正实数平方根互为相反数即可求出m的值;(2)利用平方根的定义得到(m+b)2=x,m2=x,代入式子m2x+(m+b)2x=4即可求出x值.【解答】解:(1)∵正实数x的平方根是m和m+b∴m+m+b=0,∵b=8,∴2m+8=0∴m=﹣4;(2)∵正实数x的平方根是m和m+b,∴(m+b)2=x,m2=x,∵m2x+(m+b)2x=4,∴x2+x2=4,∴x2=2,∵x>0,∴x=.故答案为:(1)4;(2).三.解答题(本题共46分,第19-21每小题5分,第22-25每小题5分,第26题7分)19.(5分)计算:.【分析】直接利用立方根以及二次根式的性质化简得出答案.【解答】解:原式=5﹣4﹣3=﹣2.20.(5分)解方程组.【分析】应用代入法,求出二元一次方程组的解是多少即可.【解答】解:由(2),可得x=2﹣y(3),将(3)代入(1)得,可得2(2﹣y)=6﹣3y,解得y=2,将y=2代入(3),可得x=0,∴原方程组的解为:.21.(5分)解不等式组并写出这个不等式组的所有整数解.【分析】先求出每个不等式的解集,再求出不等式组的解集,最后求出答案即可.【解答】解:,∵由①,得x≤2,由②,得x>﹣,∴原不等式组的解集为﹣<x≤2,∴原不等式组的所有整数解为0,1,2.22.(6分)已知x+2是27的立方根,3x+y﹣1的算术平方根是4,求7x+3y平方根.【分析】根据立方根的定义和算术平方根的定义,可得二元一次方程组,根据解方程组,可得x、y的值,再计算3x+5y的值,根据平方根的定义,可得答案.【解答】解:由x+2是27的立方根,3x+y﹣1的算术平方根是4,得:,解得:,∴7x+3y=7+42=49,∵49的平方根为±7,∴7x+3y的平方根为±7.23.(6分)如图,直线AB、CD相交于点O,OE平分∠BOD,∠AOC=76°,OF⊥OD.求∠EOF的度数.【分析】依据对顶角的性质以及角平分线的定义,即可得到∠DOE的度数,再根据垂线的定义,即可得到∠EOF的度数.【解答】解:∵∠AOC与∠BOD是对顶角,∴∠BOD=∠AOC=76°,∵OE平分∠BOD,∴∠EOD=∠BOD=×76°=38°,∵OF⊥OD,∴∠DOF=90°,∴∠FOE+∠EOD=90°,∴∠FOE=90°﹣∠EOD=90°﹣38°=52°.24.(6分)在正方形网格中建立平面直角坐标系xOy,使得A,B两点的坐标分别为A(4,1),B(1,﹣2),过点B作BC⊥x轴于点C.(1)按照要求画出平面直角坐标系xOy,线段BC,写出点C的坐标(1,0);(2)直接写出以A,B,O为顶点的三角形的面积 4.5;(3)若线段CD是由线段AB平移得到的,点A的对应点是C,写出一种由线段AB得到线段CD的过程先向左平移3个单位长度,再向下平移1个单位长度.【分析】(1)直接利用已知点画出平面直角坐标系进而得出答案;(2)利用△AOB所在矩形面积减去周围三角形面积进而得出答案;(3)直接利用平移的性质得出平移规律.【解答】解:(1)如图所示:点C的坐标为:(1,0);故答案为:(1,0);(2)△AOB的面积为:3×4﹣×1×4﹣×1×2﹣×3×3=4.5;故答案为:4.5;(3)答案不唯一,如:先向左平移3个单位长度,再向下平移1个单位长度.故答案为:先向左平移3个单位长度,再向下平移1个单位长度.25.(6分)某年级共有300名学生,为了解该年级学生在A,B两个体育项目上的达标情况,进行了抽样调查.过程如下,请补充完整.收集数据从该年级随机抽取30名学生进行测试,测试成绩(百分制)如下:A项目78 86 74 81 75 76 87 49 74 91 75 79 81 71 74 81 86 6983 77 82 85 92 95 58 54 63 67 82 74B项目93 73 88 81 72 81 94 83 77 83 80 81 70 81 73 78 82 100 70 40 84 86 92 96 53 57 63 68 81 75整理、描述数据B项目的频数分布表分组划记频数40≤x<50150≤x<60260≤x<70270≤x<80880≤x<9090≤x<1005(说明:成绩80分及以上为优秀,60~79分为基本达标,59分以下为不合格)根据以上信息,回答下列问题:(1)补全统计图、统计表;(2)在此次测试中,成绩更好的项目是B,理由是在此次测试中,B项目80分及以上的人数为17人,高于A项目;59分及以下人数相同.所以B项目成绩更好些.;(3)假设该年级学生都参加此次测试,估计A项目和B项目成绩都是优秀的人数最多为130人.【分析】(1)根据题意,画出直方图,频数分布表即可.(2)B较好.理由是:在此次测试中,B项目80分及以上的人数为17人,高于A项目;59分及以下人数相同.所以B项目成绩更好些.(3)求出A项目优秀人数即可判断.【解答】解:(1)补全图、表如下.(2)B.理由是:在此次测试中,B项目80分及以上的人数为17人,高于A项目;59分及以下人数相同.所以B项目成绩更好些.故答案为:B,在此次测试中,B项目80分及以上的人数为17人,高于A项目;59分及以下人数相同.所以B项目成绩更好些.(3)300×=130.答:估计A项目和B项目成绩都是优秀的人数最多为130人.故答案为130.26.(7分)国家发改委、工业和信息化部、财政部公布了“节能产品惠民工程”,公交公司积极响应将旧车换成节能环保公交车,计划购买A型和B型两种环保型公交车10辆,其中每台的价格、年载客量如表:A型B型价格(万元/台)x y年载客量/万人次60100若购买A型环保公交车1辆,B型环保公交车2辆,共需400万元;若购买A型环保公交车2辆,B型环保公交车1辆,共需350万元.(1)求x、y的值;(2)如果该公司购买A型和B型公交车的总费用不超过1200万元,且确保10辆公交车在该线路的年载客量总和不少于680万人次,问有哪几种购买方案?(3)在(2)的条件下,哪种方案使得购车总费用最少?最少费用是多少万元?【分析】(1)根据“购买A型环保公交车1辆,B型环保公交车2辆,共需400万元;若购买A型环保公交车2辆,B型环保公交车1辆,共需350万元”列出二元一次方程组求解可得;(2)购买A型环保公交车m辆,则购买B型环保公交车(10﹣m)辆,根据“总费用不超过1200万元、年载客量总和不少于680万人次”列一元一次不等式组求解可得;(3)设购车总费用为w万元,根据总费用的数量关系得出w=100m+150(10﹣m)=﹣50m+1500,再进一步利用一次函数的性质求解可得.【解答】解:(1)由题意,得,解得;(2)设购买A型环保公交车m辆,则购买B型环保公交车(10﹣m)辆,由题意,得,解得6≤m≤8,∵m为整数,∴有三种购车方案方案一:购买A型公交车6辆,购买B型公交车4辆;方案二:购买A型公交车7辆,购买B型公交车3辆;方案三:购买A型公交车8辆,购买B型公交车2辆.(3)设购车总费用为w万元则w=100m+150(10﹣m)=﹣50m+1500,∵﹣50<0,6≤m≤8且m为整数,∴m=8时,w最小=1100,∴购车总费用最少的方案是购买A型公交车8辆,购买B型公交车2辆,购车总费用为1100万元.27.(4分)若关于x,y的二元一次方程组的解满足2x+y≤3,则a的取值范围是a≤﹣1.【分析】先把两式相加求出2x+y的值,再代入2x+y≤3中得到关于a的不等式,求出a 的取值范围即可.【解答】解:,①+②得,2x+y=4+a,∵2x+y≤3,∴4+a≤3,解得:a≤﹣1,故答案为:a≤﹣1.28.(4分)已知关于x的一元一次不等式mx+1>5﹣2x的解集是x<,如图,数轴上的A,B,C,D四个点中,实数m对应的点可能是点A.【分析】求出不等式的解集,根据已知得出关于m的不等式,求出不等式的解集即可.【解答】解:mx+1>5﹣2x,(m+2)x>4,∵关于x的一元一次不等式mx+1>5﹣2x的解集是x<,∴m+2<0,∴m的取值范围是m<﹣2,∵数轴上的A,B,C,D四个点中,只有点A表示的数小于﹣2,∴实数m对应的点可能是点A.故答案为点A29.(4分)按下面程序计算,即根据输入的x判断5x+1是否大于500,若大于500则输出,结束计算,若不大于500,则以现在的5x+1的值作为新的x的值,继续运算,循环往复,直至输出结果为止.若开始输入x的值为正整数,最后输出的结果为656,则满足条件的所有x的值是131或26或5..【分析】利用运算程序,当第一次输入x,第一次输出的结果为5x+1,当第二次输入5x+1,第二次输出的结果为5(5x+1)+1=25x+6,当第三次输入25x+6,第三次输出的结果为5(25x+6)+1=125x+31,当第四次输入125x+31,第三次输出的结果为5(125x+31)+1=625x+156,…,然后把输出结果分别等于656,再解方程求出对应的正整数x的值即可.【解答】解:当第一次输入x,第一次输出的结果为5x+1,当第二次输入5x+1,第二次输出的结果为5(5x+1)+1=25x+6,当第三次输入25x+6,第三次输出的结果为5(25x+6)+1=125x+31,当第四次输入125x+31,第三次输出的结果为5(125x+31)+1=625x+156,若5x+1=656,解得x=131;、若25x+6=656,解得x=26;若125x+31=656,解得x=5;若625x+156=656,解得x=,所以当开始输入x的值为正整数,最后输出的结果为656,则满足条件的所有x的值是131或26或5.30.(4分)已知关于x的不等式组恰好有2个整数解,则整数a的值是﹣4,﹣3.【分析】表示出不等式组的解集,由解集中恰好有2个整数解,确定出整数a的值即可.【解答】解:不等式组,由①得:ax<﹣4,当a<0时,x>﹣,当a>0时,x<﹣,由②得:x<4,又∵关于x的不等式组恰好有2个整数解,∴不等式组的解集是﹣<x<4,即整数解为2,3,∴1≤﹣<2(a<0),解得:﹣4≤a<﹣2,则整数a的值为﹣4,﹣3,故答案为:﹣4,﹣3.31.(4分)定义:给定两个不等式组P和Q,若不等式组P的任意一个解,都是不等式组Q的一个解,则称不等式组P为不等式组Q的“子集”.例如:不等式组:M:是N:的“子集”.(1)若不等式组:A:,B:,则其中不等式组A是不等式组M:的“子集”(填A或B);(2)若关于x的不等式组是不等式组的“子集”,则a的取值范围是a ≥2;(3)已知a,b,c,d为互不相等的整数,其中a<b,c<d,下列三个不等式组:A:a ≤x≤b,B:c≤x≤d,C:1<x<6满足:A是B的“子集”且B是C的“子集”,则a ﹣b+c﹣d的值为﹣4;(4)已知不等式组M:有解,且N:1<x≤3是不等式组M的“子集”,请写出m,n满足的条件:m≤2,n>9.【分析】(1)求出不等式组A与B的解集,利用题中的新定义判断即可(2)根据“子集”的定义确定出a的范围即可;(3)根据“子集”的定义确定出各自的值,代入原式计算即可求出值;(4)根据“子集”的定义确定出所求即可.【解答】解:(1)A:的解集为3<x<6,B:的解集为x>1,M:的解集为x>2,则不等式组A是不等式组M的子集,故答案为A;(2)∵关于x的不等式组是不等式组的“子集”,∴a≥2,故答案为a≥2;(3)∵a,b,c,d为互不相等的整数,其中a<b,c<d,A:a≤x≤b,B:c≤x≤d,C:1<x<6满足:A是B的“子集”且B是C的“子集”,∴a=3,b=4,c=2,d=5,则a﹣b+c﹣d=3﹣4+2﹣5=﹣4,故答案为﹣4;(4)不等式组M:整理得:,由不等式组有解得到<,即≤x<,∵N:1<x≤3是不等式组的“子集”,∴≤1,>3,即m≤2,n>9,故答案为m≤2,n>9.。
2019-2020学年北京市海淀区八一学校七年级下学期期中数学试卷(含答案解析)
2019-2020学年北京市海淀区八一学校七年级下学期期中数学试卷一、选择题(本大题共10小题,共30.0分)1. 在实数−π2、|−3|、√9、(√7)0、√6、3.14、0.808008000、0中无理数有( ) A. 2 B. 3C. 4D. 5 2. 已知(a −3)2+|b −4|=0,则√a 3b 的值是( )A. 14B. −14C. √334D. 34 3. 关于x 的分式方程x+m x−2+2m 2−x =3的解为非负实数,则实数m 的取值范围是( )A. m ≥−6且m ≠2B. m ≤6且m ≠2C. m ≤−6且m ≠−2D. m <6且m ≠24. 下列说法不正确的是( ) A. 给出一组数据:1,4,12,17,20,则这组数据的极差为19,平均数是10.8B. 某校在校内对文明行动展开调查法,则应该选择普查法C. 必然事件的发生概率是1,不可能事件的概率是0D. 对于数据:7,x ,4,1,如果这组数据的平均值是x 的无限倍,则平均值为35. 若a >b ,则下列各式变形正确的是( )A. a −2<b −2B. −2a <−2bC. |a|>|b|D. a 2>b 26. 若{x =1y =2是二元一次方程mx −y =3的解,则m 为( ) A. 5 B. 1 C. −1 D. 27. 下列各数中,无理数有( )个.3.141459,−√625,π4,227,−√163,√(−7)2,0,0.15⋅⋅,0.2525525552…(相邻两个2之间5的个数逐次加1) A. 4B. 3C. 2D. 1 8. 5.已知方程组的解满足,则的值是A. B. C. D.9.“一方有难,八方支援”,雅安芦山4⋅20地震后,某单位为一中学捐赠了一批新桌椅,学校组织初一年级200名学生搬桌椅.规定一人一次搬两把椅子,两人一次搬一张桌子,每人限搬一次,最多可搬桌椅(一桌一椅为一套)的套数为()A. 60B. 70C. 80D. 9010.某文具商店共有单价分别为10元、15元和20元的三种文具盒出售,该商店统计了2019年3月份这三种文具盒的销售情况,并绘制如图所示的统计图.根据统计图,你认为这个商店4月份购进这三种文具盒的比例较为合理的是()A. 1:2:3B. 2:3:4C. 5:12:3D. 1:1:1二、填空题(本大题共8小题,共16.0分)11.有理数a、b、c在数轴上的位置如图所示,则化简|a+c|+|a−b|−|c−a|=______.12.若|2a−6|>6−2a,则实数a的取值范围是______.13.“建设大美青海,创建文明城市”,西宁市加快了郊区旧房拆迁的步伐.为了解被拆迁的236户家庭对拆迁补偿方案是否满意,小明利用周末调查了其中的50户家庭,有32户对方案表示满意.在这一抽样调查中,样本容量为________.14.若x−1与2x−3是同一个数的平方根,则x=______.15.不等式5x−3<x+5的最大整数解是______.16.乙组人数是甲组人数的一半,且甲组人数比乙组多15人.设甲组原有x人,乙组原有y人,则可得方程组为______.17.若不等式组的解集为,那么的值等于.18.已知0<x<1,那么在x,1,√x,x2中,最大的数是.x三、计算题(本大题共2小题,共20.0分)19.(1)求下列各数的平方根.81;;;(2)求下列各数的立方根1;−;)−2+2cos60°−(π−3)0+√27.20.计算:(−12四、解答题(本大题共6小题,共34.0分)21.某中学开展以“我最喜爱的传统文化”为主题的调查活动从“诗词、国画、对联、书法、戏曲”五种传统文化中,选取喜欢的一种(只选一种)进行调查,将调查结果整理后绘制成如图所示的不完整统计图.(1)本次调查共抽取了多少名学生?(2)喜欢“书法”的有多少名学生?并补全条形统计图;(3)求喜欢“国画”对应扇形圆心角的度数.22. 已知关于x 、y 的二元一次方程组{3x −5y =2a2x +7y =a −18.(1)消去a ,试用含y 的代数式表示x ;(2)若方程组的解中x 、y 互为相反数,则求出该方程组的解.23. 如图,在Rt △ABC 中,∠B =90°,AB =6cm ,BC =3cm ,点P 从点A 开始沿AB 边向点B 以1cm/s 的速度移动,点Q 从点B 开始沿BC 边向点C 以2cm/s 的速度移动,如果P 、Q 两点同时出发。
北京市海淀区2019-2020学年中考二诊数学试题含解析
北京市海淀区2019-2020学年中考二诊数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图所示,在矩形ABCD中,AB=6,BC=8,对角线AC、BD相交于点O,过点O作OE垂直AC 交AD于点E,则DE的长是()A.5 B.32C.74D.1542.如图,AB为⊙O的直径,C、D为⊙O上的点,若AC=CD=DB,则cos∠CAD =()A.13B.22C.12D.33.据史料记载,雎水太平桥建于清嘉庆年间,已有200余年历史.桥身为一巨型单孔圆弧,既没有用钢筋,也没有用水泥,全部由石块砌成,犹如一道彩虹横卧河面上,桥拱半径OC为13m,河面宽AB为24m,则桥高CD为()A.15m B.17m C.18m D.20m4.用6个相同的小正方体搭成一个几何体,若它的俯视图如图所示,则它的主视图不可能是()A.B.C.D.5.如果关于x 的分式方程1311a xx x--=++有负分数解,且关于x的不等式组2()4,3412a x xxx-≥--⎧⎪⎨+<+⎪⎩的解集为x<-2,那么符合条件的所有整数a的积是()A.-3 B.0 C.3 D.96.下列图标中,既是轴对称图形,又是中心对称图形的是()A.B.C.D .7.如图,正比例函数11y k x=的图像与反比例函数22kyx=的图象相交于A、B两点,其中点A的横坐标为2,当12y y>时,x的取值范围是()A.x<-2或x>2 B.x<-2或0<x<2C.-2<x<0或0<x<2 D.-2<x<0或x>28.已知3a﹣2b=1,则代数式5﹣6a+4b的值是()A.4 B.3 C.﹣1 D.﹣39.下列是我国四座城市的地铁标志图,其中是中心对称图形的是()A.B.C.D.10.下表是某校合唱团成员的年龄分布.年龄/岁13 14 15 16频数 5 15 x 10x-对于不同的x,下列关于年龄的统计量不会发生改变的是()A.众数、中位数B.平均数、中位数C.平均数、方差D.中位数、方差11.下列计算正确的是()A.(﹣2a)2=2a2B.a6÷a3=a2C.﹣2(a﹣1)=2﹣2a D.a•a2=a212.如图是一个放置在水平桌面的锥形瓶,它的俯视图是()A.B.C.D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在正方形ABCD中,O是对角线AC、BD的交点,过O点作OE⊥OF,OE、OF分别交AB、BC于点E、点F,AE=3,FC=2,则EF的长为_____.14.如图,已知P是线段AB的黄金分割点,且PA>PB.若S1表示以PA为一边的正方形的面积,S2表示长是AB、宽是PB的矩形的面积,则S1_______S2.(填“>”“="”“" <”)15.使分式的值为0,这时x=_____.16.抛物线y=(x+1)2 - 2的顶点坐标是______ .17.矩形纸片ABCD中,AB=3cm,BC=4cm,现将纸片折叠压平,使A与C重合,设折痕为EF,则重叠部分△AEF的面积等于_____.18.《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?设有x匹大马,y匹小马,根据题意可列方程组为______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)截至2018年5月4日,中欧班列(郑州)去回程开行共计1191班,我省与欧洲各国经贸往来日益频繁,某欧洲客商准备在河南采购一批特色商品,经调查,用1600元采购A型商品的件数是用1000元采购B型商品的件数的2倍,一件A型商品的进价比一件B型商品的进价少20元,已知A型商品的售价为160元,B型商品的售价为240元,已知该客商购进甲乙两种商品共200件,设其中甲种商品购进x件,该客商售完这200件商品的总利润为y元(1)求A、B型商品的进价;(2)该客商计划最多投入18000元用于购买这两种商品,则至少要购进多少件甲商品?若售完这些商品,则商场可获得的最大利润是多少元?(3)在(2)的基础上,实际进货时,生产厂家对甲种商品的出厂价下调a元(50<a<70)出售,且限定商场最多购进120件,若客商保持同种商品的售价不变,请你根据以上信息及(2)中的条件,设计出使该客商获得最大利润的进货方案.20.(6分)为加快城乡对接,建设全域美丽乡村,某地区对A、B两地间的公路进行改建.如图,A、B 两地之间有一座山,汽车原来从A地到B地需途径C地沿折线ACB行驶,现开通隧道后,汽车可直接沿直线AB行驶.已知BC=80千米,∠A=45°,∠B=30°.开通隧道前,汽车从A地到B地大约要走多少千米?开通隧道后,汽车从A地到B地大约可以少走多少千米?(结果精确到0.1千米)(参考数据:2≈1.41,3≈1.73)21.(6分)为了提高学生书写汉字的能力,增强保护汉子的意识,某校举办了首届“汉字听写大赛”,学生经选拔后进入决赛,测试同时听写100个汉字,每正确听写出一个汉字得1分,本次决赛,学生成绩为(分),且,将其按分数段分为五组,绘制出以下不完整表格:组别成绩(分)频数(人数)频率一 2 0.04二10 0.2三14 b四 a 0.32五80.16请根据表格提供的信息,解答以下问题: (1)本次决赛共有名学生参加; (2)直接写出表中a= ,b= ; (3)请补全下面相应的频数分布直方图;(4)若决赛成绩不低于80分为优秀,则本次大赛的优秀率为 .22.(8分)如图,已知A (﹣4,n ),B (2,﹣4)是一次函数y=kx+b 的图象与反比例函数my x= 的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)求直线AB 与x 轴的交点C 的坐标及△AOB 的面积; (3)求方程0x xk b m+-p 的解集(请直接写出答案).23.(8分)如图,在平行四边形ABCD 中,边AB 的垂直平分线交AD 于点E ,交CB 的延长线于点F ,连接AF ,BE.(1)求证:△AGE ≌△BGF ;(2)试判断四边形AFBE 的形状,并说明理由.24.(10分)如图,直线:3l y x =-+与x 轴交于点M ,与y 轴交于点A ,且与双曲线ky x=的一个交点为(1,)B m -,将直线l 在x 轴下方的部分沿x 轴翻折,得到一个“V ”形折线AMN 的新函数.若点P 是线段BM 上一动点(不包括端点),过点P 作x 轴的平行线,与新函数交于另一点C ,与双曲线交于点D .(1)若点P 的横坐标为a ,求MPD V 的面积;(用含a 的式子表示) (2)探索:在点P 的运动过程中,四边形BDMC 能否为平行四边形?若能,求出此时点P 的坐标;若不能,请说明理由.25.(10分)如图,四边形ABCD 中,∠A=∠BCD=90°,BC=CD ,CE ⊥AD ,垂足为E ,求证:AE=CE .26.(12分)如图所示,已知一次函数y kx b =+(k≠0)的图象与x 轴、y 轴分别交于A 、B 两点,且与反比例函数y mx=(m≠0)的图象在第一象限交于C 点,CD 垂直于x 轴,垂足为D .若OA=OB=OD=1.(1)求点A 、B 、D 的坐标;(2)求一次函数和反比例函数的解析式. 27.(12分)如图,直线y 1=﹣x+4,y 2=34x+b 都与双曲线y=kx 交于点A (1,m ),这两条直线分别与x轴交于B ,C 两点.(1)求y与x之间的函数关系式;(2)直接写出当x>0时,不等式34x+b>kx的解集;(3)若点P在x轴上,连接AP把△ABC的面积分成1:3两部分,求此时点P的坐标.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】先利用勾股定理求出AC的长,然后证明△AEO∽△ACD,根据相似三角形对应边成比例列式求解即可.【详解】∵AB=6,BC=8,∴AC=10(勾股定理);∴AO=12AC=5,∵EO⊥AC,∴∠AOE=∠ADC=90°,∵∠EAO=∠CAD,∴△AEO∽△ACD,∴AE AO AC AD=,即5 108 AE=,解得,AE=254,∴DE=8﹣254=74, 故选:C . 【点睛】本题考查了矩形的性质,勾股定理,相似三角形对应边成比例的性质,根据相似三角形对应边成比例列出比例式是解题的关键. 2.D 【解析】 【分析】根据圆心角,弧,弦的关系定理可以得出»AC =»CD=»BD =°°1180603⨯=,根据圆心角和圆周角的关键即可求出CAD ∠的度数,进而求出它的余弦值. 【详解】解:AC CD DB ==Q»AC =»CD=»BD =°°1180603⨯=, °°160302CAD ∠=⨯=°3cos cos30CAD ∠==故选D . 【点睛】本题考查圆心角,弧,弦,圆周角的关系,熟记特殊角的三角函数值是解题的关键. 3.C 【解析】连结OA ,如图所示:∵CD ⊥AB , ∴AD=BD=12AB=12m. 在Rt △OAD 中,OA=13,2213125-=, 所以CD=OC+OD=13+5=18m. 故选C.4.D【解析】分析:根据主视图和俯视图之间的关系可以得出答案.详解:∵主视图和俯视图的长要相等,∴只有D选项中的长和俯视图不相等,故选D.点睛:本题主要考查的就是三视图的画法,属于基础题型.三视图的画法为:主视图和俯视图的长要相等;主视图和左视图的高要相等;左视图和俯视图的宽要相等.5.D【解析】解:2()43412a x xxx①②-≥--⎧⎪⎨+<+⎪⎩,由①得:x≤2a+4,由②得:x<﹣2,由不等式组的解集为x<﹣2,得到2a+4≥﹣2,即a≥﹣3,分式方程去分母得:a﹣3x﹣3=1﹣x,把a=﹣3代入整式方程得:﹣3x﹣6=1﹣x,即72x=-,符合题意;把a=﹣2代入整式方程得:﹣3x﹣5=1﹣x,即x=﹣3,不合题意;把a=﹣1代入整式方程得:﹣3x﹣4=1﹣x,即52x=-,符合题意;把a=0代入整式方程得:﹣3x﹣3=1﹣x,即x=﹣2,不合题意;把a=1代入整式方程得:﹣3x﹣2=1﹣x,即32x=-,符合题意;把a=2代入整式方程得:﹣3x﹣1=1﹣x,即x=1,不合题意;把a=3代入整式方程得:﹣3x=1﹣x,即12x=-,符合题意;把a=4代入整式方程得:﹣3x+1=1﹣x,即x=0,不合题意,∴符合条件的整数a取值为﹣3;﹣1;1;3,之积为1.故选D.6.D【解析】试题分析:根据轴对称图形和中心对称图形的概念,可知:A既不是轴对称图形,也不是中心对称图形,故不正确;B不是轴对称图形,但是中心对称图形,故不正确;C是轴对称图形,但不是中心对称图形,故不正确;D即是轴对称图形,也是中心对称图形,故正确.故选D.考点:轴对称图形和中心对称图形识别7.D【解析】【分析】先根据反比例函数与正比例函数的性质求出B 点坐标,再由函数图象即可得出结论. 【详解】解:∵反比例函数与正比例函数的图象均关于原点对称, ∴A 、B 两点关于原点对称,∵点A 的横坐标为1,∴点B 的横坐标为-1,∵由函数图象可知,当-1<x <0或x >1时函数y 1=k 1x 的图象在22k y x的上方, ∴当y 1>y 1时,x 的取值范围是-1<x <0或x >1. 故选:D . 【点睛】本题考查的是反比例函数与一次函数的交点问题,能根据数形结合求出y 1>y 1时x 的取值范围是解答此题的关键. 8.B 【解析】 【分析】先变形,再整体代入,即可求出答案. 【详解】 ∵3a ﹣2b=1,∴5﹣6a+4b=5﹣2(3a ﹣2b )=5﹣2×1=3, 故选:B . 【点睛】本题考查了求代数式的值,能够整体代入是解此题的关键. 9.D 【解析】 【分析】根据中心对称图形的定义解答即可. 【详解】选项A 不是中心对称图形; 选项B 不是中心对称图形; 选项C 不是中心对称图形; 选项D 是中心对称图形. 故选D. 【点睛】本题考查了中心对称图形的定义,熟练运用中心对称图形的定义是解决问题的关键.10.A【解析】【分析】由频数分布表可知后两组的频数和为10,即可得知总人数,结合前两组的频数知出现次数最多的数据及第15、16个数据的平均数,可得答案.【详解】由题中表格可知,年龄为15岁与年龄为16岁的频数和为1010x x +-=,则总人数为3151030++=,故该组数据的众数为14岁,中位数为1414142+=(岁),所以对于不同的x ,关于年龄的统计量不会发生改变的是众数和中位数,故选A.【点睛】本题主要考查频数分布表及统计量的选择,由表中数据得出数据的总数是根本,熟练掌握平均数、中位数、众数及方差的定义和计算方法是解题的关键.11.C【解析】【详解】解:选项A ,原式=24a ;选项B ,原式=a 3;选项C ,原式=-2a+2=2-2a ;选项D , 原式=3a故选C12.B【解析】【分析】根据俯视图是从上面看到的图形解答即可.【详解】锥形瓶从上面往下看看到的是两个同心圆.故选B.【点睛】本题考查三视图的知识,解决此类图的关键是由三视图得到相应的平面图形.从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,被遮挡的线画虚线.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.13【解析】【分析】由△BOF≌△AOE ,得到BE=FC=2,在直角△BEF中,从而求得EF的值.【详解】∵正方形ABCD中,OB=OC,∠BOC=∠EOF=90°,∴∠EOB=∠FOC,在△BOE和△COF中,45{OCB OBEOB OCEOB FOC∠∠︒∠∠====,∴△BOE≌△COF(ASA)∴BE=FC=2,同理BF=AE=3,在Rt△BEF中,BF=3,BE=2,∴EF=2223+=13.故答案为13【点睛】本题考查了正方形的性质、三角形全等的性质和判定、勾股定理,在四边形中常利用三角形全等的性质和勾股定理计算线段的长.14.=.【解析】【分析】黄金分割点,二次根式化简.【详解】设AB=1,由P是线段AB的黄金分割点,且PA>PB,根据黄金分割点的,AP=512-,BP=5135122---=.∴21151353535S S1⎛⎫----===⨯=⎪⎪⎝⎭,.∴S1=S1.15.1【解析】试题分析:根据题意可知这是分式方程,=0,然后根据分式方程的解法分解因式后约分可得x-1=0,解之得x=1,经检验可知x=1是分式方程的解.答案为1.考点:分式方程的解法16.(-1,-2)【解析】试题分析:因为y=(x+1)2﹣2是抛物线的顶点式,根据顶点式的坐标特点可知,顶点坐标为(﹣1,﹣2),故答案为(﹣1,﹣2).考点:二次函数的性质.17..【解析】试题分析:要求重叠部分△AEF的面积,选择AF作为底,高就等于AB的长;而由折叠可知∠AEF=∠CEF,由平行得∠CEF=∠AFE,代换后,可知AE=AF,问题转化为在Rt△ABE中求AE.因此设AE=x,由折叠可知,EC=x,BE=4﹣x,在Rt△ABE中,AB2+BE2=AE2,即32+(4﹣x)2=x2,解得:x=,即AE=AF=,因此可求得=×AF×AB=××3=.考点:翻折变换(折叠问题)18.100 31003x yyx+=⎧⎪⎨+=⎪⎩【解析】分析:根据题意可以列出相应的方程组,从而可以解答本题.详解:由题意可得,100 31003x yyx⎧⎪⎨⎪⎩+=+=,故答案为100 31003x yyx⎧⎪⎨⎪⎩+=+=点睛:本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)80,100;(2)100件,22000元;(3)答案见解析.(1)先设A 型商品的进价为a 元/件,求得B 型商品的进价为(a+20)元/件,由题意得等式16001000220a a =⨯+ ,解得a =80,再检验a 是否符合条件,得到答案.(2)先设购机A 型商品x 件,则由题意可得到等式80x+100(200﹣x )≤18000,解得,x≥100;再设获得的利润为w 元,由题意可得w =(160﹣80)x+(240﹣100)(200﹣x )=﹣60x+28000,当x=100时代入w =﹣60x+28000,从而得答案.(3)设获得的利润为w 元,由题意可得w (a ﹣60)x+28000,分类讨论:当50<a <60时,当a =60时,当60<a <70时,各个阶段的利润,得出最大值.【详解】解:(1)设A 型商品的进价为a 元/件,则B 型商品的进价为(a+20)元/件,16001000220a a =⨯+ , 解得,a =80,经检验,a =80是原分式方程的解,∴a+20=100,答:A 、B 型商品的进价分别为80元/件、100元/件;(2)设购机A 型商品x 件,80x+100(200﹣x )≤18000,解得,x≥100,设获得的利润为w 元,w =(160﹣80)x+(240﹣100)(200﹣x )=﹣60x+28000,∴当x =100时,w 取得最大值,此时w =22000,答:该客商计划最多投入18000元用于购买这两种商品,则至少要购进100件甲商品,若售完这些商品,则商场可获得的最大利润是22000元;(3)w =(160﹣80+a )x+(240﹣100)(200﹣x )=(a ﹣60)x+28000,∵50<a <70,∴当50<a <60时,a ﹣60<0,y 随x 的增大而减小,则甲100件,乙100件时利润最大;当a =60时,w =28000,此时甲乙只要是满足条件的整数即可;当60<a <70时,a ﹣60>0,y 随x 的增大而增大,则甲120件,乙80件时利润最大.【点睛】本题考察一次函数的应用及一次不等式的应用,属于中档题,难度不大.20.(1)开通隧道前,汽车从A 地到B 地大约要走136.4千米;(2)汽车从A 地到B 地比原来少走的路程为27.2千米(1)过点C作AB的垂线CD,垂足为D,在直角△ACD中,解直角三角形求出CD,进而解答即可;(2)在直角△CBD中,解直角三角形求出BD,再求出AD,进而求出汽车从A地到B地比原来少走多少路程.【详解】解:(1)过点C作AB的垂线CD,垂足为D,∵AB⊥CD,sin30°=CDBC,BC=80千米,∴CD=BC•sin30°=80×1402=(千米),AC==402sin452CD=︒,2≈40×1.41+80=136.4(千米),答:开通隧道前,汽车从A地到B地大约要走136.4千米;(2)∵cos30°=BDBC,BC=80(千米),∴BD=BC•cos30°=80×34032=,∵tan45°=CDAD,CD=40(千米),∴AD=4040tan451CD==︒(千米),∴3(千米),∴汽车从A地到B地比原来少走多少路程为:AC+BC﹣AB=136.4﹣109.2=27.2(千米).答:汽车从A地到B地比原来少走的路程为27.2千米.【点睛】本题考查了勾股定理的运用以及解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.21.(1)50;(2)a=16,b=0.28;(3)答案见解析;(4)48%.【解析】试题分析:(1)根据第一组别的人数和百分比得出样本容量;(2)根据样本容量以及频数、频率之间的关系得出a和b的值,(3)根据a的值将图形补全;(4)根据图示可得:优秀的人为第四和第五组的人,将两组的频数相加乘以100%得出答案.试题解析:(1)2÷0.04=50(2)50×0.32=16 14÷50=0.28(3)(4)(0.32+0.16)×100%=48%考点:频数分布直方图22.(1)y=﹣8x,y=﹣x﹣2(2)3(3)﹣4<x<0或x>2【解析】试题分析:(1)将B坐标代入反比例解析式中求出m的值,即可确定出反比例解析式;将A坐标代入反比例解析式求出n的值,确定出A的坐标,将A与B坐标代入一次函数解析式中求出k与b的值,即可确定出一次函数解析式;(2)对于直线AB,令y=0求出x的值,即可确定出C坐标,三角形AOB面积=三角形AOC面积+三角形BOC面积,求出即可;(3)由两函数交点A与B的横坐标,利用图象即可求出所求不等式的解集.试题解析:(1)∵B(2,﹣4)在y=mx上,∴m=﹣1.∴反比例函数的解析式为y=﹣8x.∵点A(﹣4,n)在y=﹣8x上,∴n=2.∴A(﹣4,2).∵y=kx+b经过A(﹣4,2),B(2,﹣4),∴42 24k bk b-+=⎧⎨+=-⎩,解之得12k b =-⎧⎨=-⎩. ∴一次函数的解析式为y=﹣x ﹣2.(2)∵C 是直线AB 与x 轴的交点,∴当y=0时,x=﹣2.∴点C (﹣2,0).∴OC=2.∴S △AOB =S △ACO +S △BCO =12×2×2+12×2×4=3. (3)不等式0m kx b x+-<的解集为:﹣4<x <0或x >2. 23. (1)证明见解析(2)四边形AFBE 是菱形【解析】试题分析:(1)由平行四边形的性质得出AD ∥BC ,得出∠AEG=∠BFG ,由AAS 证明△AGE ≌△BGF 即可;(2)由全等三角形的性质得出AE=BF ,由AD ∥BC ,证出四边形AFBE 是平行四边形,再根据EF ⊥AB ,即可得出结论.试题解析:(1)证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠AEG=∠BFG ,∵EF 垂直平分AB ,∴AG=BG ,在△AGEH 和△BGF 中,∵∠AEG=∠BFG ,∠AGE=∠BGF ,AG=BG ,∴△AGE ≌△BGF (AAS );(2)解:四边形AFBE 是菱形,理由如下:∵△AGE ≌△BGF ,∴AE=BF ,∵AD ∥BC ,∴四边形AFBE 是平行四边形,又∵EF ⊥AB ,∴四边形AFBE 是菱形.考点:平行四边形的性质;全等三角形的判定与性质;线段垂直平分线的性质;探究型.24.(1)213222=-++S a a ;(2)不能成为平行四边形,理由见解析 【解析】【分析】(1)将点B 坐标代入一次函数3y x =-+上可得出点B 的坐标,由点B 的坐标,利用待定系数法可求出反比例函数解析式,根据M 点的坐标为(3,0),可以判断出13a -<<,再由点P 的横坐标可得出点P 的坐标是(,3)P a a -+,结合PD ∥x 轴可得出点D 的坐标,再利用三角形的面积公式即可用含a 的式子表示出△MPD 的面积;(2)当P 为BM 的中点时,利用中点坐标公式可得出点P 的坐标,结合PD ∥x 轴可得出点D 的坐标,由折叠的性质可得出直线MN 的解析式,利用一次函数图象上点的坐标特征可得出点C 的坐标,由点P ,C ,D 的坐标可得出PD≠PC ,由此即可得出四边形BDMC 不能成为平行四边形.【详解】解:(1)∵点(1,)B m -在直线3y x =-+上,∴4m =.∵点(1,4)B -在k y x =的图像上, ∴4k =-,∴4y x =-. 设(,3)P a a -+,则4,33D a a -⎛⎫-+ ⎪-+⎝⎭. ∵(3,0)M ∴13a -<<.记MPD V 的面积为S ,∴14(3)23S a a a -⎛⎫=--+ ⎪-+⎝⎭213222a a =-++.(2)当点P 为BM 中点时,其坐标为(1,2)P ,∴(2,2)D -.∵直线l 在x 轴下方的部分沿x 轴翻折得MN 表示的函数表达式是:3(3)y x x =-…, ∴(5,2)C ,∴3PD =,4PC =∴PC 与PD 不能互相平分,∴四边形不能成为平行四边形.【点睛】本题考查了一次函数图象上点的坐标特征、待定系数法求反比例函数解析式、反比例函数图象上点的坐标特征、三角形的面积、折叠的性质以及平行四边形的判定,解题的关键是:(1)利用一次(反比例)函数图象上点的坐标特征,找出点P ,M ,D 的坐标;(2)利用平行四边形的对角线互相平分,找出四边形BDMC不能成为平行四边形.25.证明见解析.【解析】【分析】过点B 作BF ⊥CE 于F ,根据同角的余角相等求出∠BCF=∠D ,再利用“角角边”证明△BCF 和△CDE 全等,根据全等三角形对应边相等可得BF=CE ,再证明四边形AEFB 是矩形,根据矩形的对边相等可得AE=BF ,从而得证.【详解】证明:如图,过点B 作BF ⊥CE 于F ,∵CE ⊥AD ,∴∠D+∠DCE=90°,∵∠BCD=90°,∴∠BCF+∠DCE=90°∴∠BCF=∠D ,在△BCF 和△CDE 中,90BCF D CED BFC BC CD ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩∴△BCF ≌△CDE(AAS),∴BF=CE ,又∵∠A=90°,CE ⊥AD ,BF ⊥CE ,∴四边形AEFB 是矩形,∴AE=BF ,∴AE=CE.26.(1)A (-1,0),B (0,1),D (1,0)(2)一次函数的解析式为y x 1=+ 反比例函数的解析式为2y x=【解析】解:(1)∵OA=OB=OD=1, ∴点A 、B 、D 的坐标分别为A (-1,0),B (0,1),D (1,0)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
海淀区高三年级第二学期阶段性测试数 学 2020春本试卷共6页,150分。
考试时长120分钟。
考生务必将答案答在答题纸上,在试卷上作答无效。
考试结束后,将本试卷和答题纸一并交回。
第一部分(选择题 共40分)一、选择题共10小题,每小题4分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)在复平面内,复数i(2i)-对应的点位于(A )第一象限 (B )第二象限 (C )第三象限(D )第四象限(2)已知集合{ |0 3 }A x x =<<,A B =I { 1 },则集合B 可以是(3)已知双曲线2221(0)y x b b-=>的离心率为5,则b 的值为(A )1 (B )2 (C )3(D )4(4)已知实数a ,b ,c 在数轴上对应的点如图所示,则下列式子中正确的是(A )b a c a -<+ (B )2c ab < (C )c cb a> (D )||||b c a c <(5)在61(2)x x-的展开式中,常数项为(A )120-(B )120 (C )160- (D )160(A ){ 1 2 }, (B ){ 1 3 }, (C ){ 0 1 2 },, (D ){ 1 2 3 },,(6)如图,半径为1的圆M 与直线l 相切于点A ,圆M 沿着直线l 滚动.当圆M 滚动到圆M '时,圆M '与直线l 相切于点B ,点A 运动到点A ',线段AB 的长度为3π2,则点M '到直线BA '的距离为 (A )1 (B )32(C )22(D )12(7)已知函数()||f x x m =-与函数()g x 的图象关于y 轴对称.若()g x 在区间(1,2)内单调递减,则m 的取值范围为 (A )[1,)-+∞ (B )(,1]-∞- (C )[2,)-+∞(D )(,2]-∞-(8)某四棱锥的三视图如图所示,该四棱锥中最长棱的棱长为(A )5 (B )22 (C )23 (D )13(9)若数列{}n a 满足1= 2 a ,则“p ∀,r *∈N ,p r p r a a a +=”是“{}n a 为等比数列”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件(10)形如221n+(n 是非负整数)的数称为费马数,记为n F .数学家费马根据0F ,1F ,2F ,3F ,4F 都是质数提出了猜想:费马数都是质数.多年之后,数学家欧拉计算出5F 不是质数,那么5F 的位数是(参考数据:lg20.3010≈) (A )9 (B )10 (C )11(D )121 1 22第二部分(非选择题 共110分)二、填空题共5小题,每小题5分,共25分。
(11)已知点(1,2)P 在抛物线2:2C y px =上,则抛物线C 的准线方程为 . (12)在等差数列{}n a 中, 13a =,2516a a +=,则数列{}n a 的前4项的和为 . (13)已知非零向量a ,b 满足||=||-a a b ,则1()2-⋅=a b b .(14)在△ABC 中,43AB =,4B π∠=,点D 在边BC 上,23ADC π∠=,2CD =, 则AD = ;△ACD 的面积为 .(15)如图,在等边三角形ABC 中,6AB =. 动点P 从点A 出发,沿着此三角形三边逆时针运动回到A 点,记P 运动的路程为x ,点P 到此三角形中心O 距离的平方为()f x ,给出下列三个结论:①函数()f x 的最大值为12;②函数()f x 的图象的对称轴方程为9x =; ③关于x 的方程()3f x kx =+最多有5个实数根. 其中,所有正确结论的序号是 .注:本题给出的结论中,有多个符合题目要求。
全部选对得5分,不选或有错选得0分,其他得3分。
OBCAP三、解答题共6小题,共85分。
解答应写出文字说明、演算步骤或证明过程。
(16)(本小题共14分)如图,在三棱柱111ABC A B C -中, AB ⊥平面11BB C C ,122AB BB BC ===,13BC =, (Ⅰ)求证:1C B ⊥平面ABC ; (Ⅱ)求二面角A BC E --的大小.(17)(本小题共14分)已知函数212()2cos sin f x x x ωω=+. (Ⅰ)求(0)f 的值;(Ⅱ)从①11ω=,22ω=; ②11ω=,21ω=这两个条件中任选一个,作为题目的已知条件,求函数()f x 在[2π-,]6π上的最小值,并直接写出函数()f x 的一个周期. 注:如果选择两个条件分别解答,按第一个解答计分。
ECAB科技创新能力是决定综合国力和国际竞争力的关键因素,也是推动经济实现高质量发展的重要支撑,而研发投入是科技创新的基本保障.下图是某公司从2010年到2019年这10年研发投入的数据分布图:其中折线图是该公司研发投入占当年总营收的百分比,条形图是当年研发投入的数值(单位:十亿元).(Ⅰ)从2010年至2019年中随机选取一年,求该年研发投入占当年总营收的百分比超过10%的概率;(Ⅱ)从2010年至2019年中随机选取两个年份,设X表示其中研发投入超过500亿元的年份的个数,求X的分布列和数学期望;(Ⅲ)根据图中的信息,结合统计学知识,判断该公司在发展的过程中是否比较重视研发,并说明理由.已知函数()e x f x ax =+. (Ⅰ)当1a =-时,①求曲线()y f x =在点(0,(0))f 处的切线方程; ②求函数()f x 的最小值;(Ⅱ)求证:当(2a ∈-,0)时,曲线()y f x =与1ln y x =-有且只有一个交点. (20)(本小题共14分)已知椭圆2222:1x y C a b+=(0)a b >>,1(,0)A a -,2(,0)A a ,(0,)B b ,△12A BA 的面积为2. (Ⅰ)求椭圆C 的方程;(Ⅱ)设M 是椭圆C 上一点,且不与顶点重合,若直线1A B 与直线2A M 交于点P ,直线1A M与直线2A B 交于点Q . 求证:△BPQ 为等腰三角形.(21)(本小题共14分)已知数列{}n a 是由正整数组成的无穷数列. 若存在常数*k ∈N ,使得212n n n a a ka -+=对任意的*n ∈N 成立,则称数列{}n a 具有性质()k ψ.(Ⅰ)分别判断下列数列{}n a 是否具有性质(2)ψ;(直接写出结论)①1n a =; ②2n n a =.(Ⅱ)若数列{}n a 满足1n a +≥(1,2,3,)n a n =L ,求证:“数列{}n a 具有性质(2)ψ”是“数列{}n a 为常数列”的充分必要条件;(Ⅲ)已知数列{}n a 中11a =,且1(1,2,3,)n n a a n +>=L .若数列{}n a 具有性质(4)ψ,求数列{}n a 的通项公式.海淀区高三年级第二学期阶段性测试参考答案数学 2020春阅卷须知:1.评分参考中所注分数,表示考生正确做到此步应得的累加分数。
2.其它正确解法可以参照评分标准按相应步骤给分。
一、选择题共10小题,每小题4分,共40分.二、填空题:本大题共5小题,每小题5分,共25分.143,2155得3分。
三、解答题共6小题,共85分。
解答应写出文字说明、演算步骤或证明过程。
(16)解:(Ⅰ)因为AB ⊥平面11BB C C ,1C B ⊂平面11BB C C所以1AB C B ⊥. 在△1BCC 中,1BC =,1BC =12CC =, 所以22211BC BC CC +=.所以1CB C B ⊥. 因为AB BC B =I , ,AB BC ⊂平面ABC ,所以1C B ⊥平面ABC .(Ⅱ)由(Ⅰ)知,1AB C B ⊥,1BC C B ⊥,AB BC ⊥,如图,以B 为原点建立空间直角坐标系B xyz -.则(0,0,0)B,1(2E -,(1,0,0)C .(1,0,0)BC =u u u r,1(2BE =-u u u r .设平面BCE 的法向量为(,,)x y z =n ,则0,0.BC BE ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u ur n n即0,10.2x x z =⎧⎪⎨-+=⎪⎩令y 0x =,3z =-,所以3)=-n . 又因为平面ABC 的法向量为(0,1,0)=m ,所以1cos ,||||2⋅<>==m n m n m n .由题知二面角A BC E --为锐角,所以其大小为3π. (17)解:(Ⅰ)2(0)2cos 0sin 02f =+=.(Ⅱ)选择条件①.()f x 的一个周期为π. 2()2cos sin 2f x x x =+(cos21)sin 2x x =++22)1x x +2)14x π++(.因为[,]26x ππ∈-,所以372+[,]4412x πππ∈-.所以 1sin 2)14x π-≤+≤(.所以1()1f x ≤≤+当2=42x ππ+-时,即3π=8x -时,()f x 在[,]26ππ-取得最小值1选择条件②.()f x 的一个周期为2π. 2()2cos sin f x x x =+22(1sin )sin x x =-+21172(sin )48x =--+.因为[,]26x ππ∈-,所以1sin [1,]2x ∈-.所以 当sin =1x -时,即π=2x -时, ()f x 在[,]26ππ-取得最小值1-.(18)解:(Ⅰ)设事件A 为“从2010年至2019年中随机选取一年,研发投入占当年总营收的百分比超过10%”,从2010年至2019年一共10年,其中研发投入占当年总营收的百分比超过10%有9年,所以9()10P A =. (Ⅱ)由图表信息,从2010年至2019年10年中有5年研发投入超过500亿元,所以X 的所有可能取值为0,1,2.且25210C 2(0)=C 9P X ==;1155210C C 5(1)=C 9P X ==;25210C 2(2)=C 9P X ==.所以X 的分布列为:故X 的期望252()0121999E X =⨯+⨯+⨯=.(Ⅲ)本题为开放问题,答案不唯一. 要求用数据说话,数据可以支持自己的结论即可,阅卷时按照上述标准酌情给分.(19)解:(Ⅰ)①当1a =-时,e ()x x f x =-,则 )1(e x f x =-'.所以'(0)0.f = 又(0)1f =, 所以曲线()y f x =在点(0,(0))f 处的切线方程为1y = ②令'()0f x =,得0x =. 此时()f x ',()f x 随x 的变化如下:可知()min 01()f x f ==,函数()f x 的最小值为1. (Ⅱ)由题意可知,0,x ∈∞+().令l (1)e n x g ax x x =++-,则1'e ()x g a xx =++. 由(Ⅰ)中可知e 1x x -≥,故 e 1x x ≥+. 因为2,0a ∈-(), 则()11'(1)e x g a x a x x x=++≥+++130a a ≥++=+>. 所以函数()g x 在区间(0,)+∞上单调递增.因为11e 21()e 2e 20e eag =+-<-<,又因为e 2(e)e e e 2e 0g a =+>->, 所以()g x 有唯一的一个零点.即函数()y f x =与1ln y x =-有且只有一个交点.(20)解:(Ⅰ)由题2222.c a ab a b c ⎧=⎪⎪⎪=⎨⎪=+⎪⎪⎩,解得21.a b =⎧⎨=⎩,所以椭圆方程为2214x y +=.(II )解法1证明:设直线2A M 方程为1(2)(0)2y k x k k =-≠≠±且,直线1A B 方程为112y x =+由(2),11.2y k x y x =-⎧⎪⎨=+⎪⎩解得点424(,)2121k k P k k +--. 由22(2)1.4y k x x y =-⎧⎪⎨+=⎪⎩,得222(41)161640k x k x k +-+-=, 则221642=41M k x k -+.所以2282=41M k x k -+,24=41M ky k -+.即222824(,)4141k k M k k --++.12224141824241A Mk k k k kk -+==--++. 于是直线1A M 的方程为1(2)4y x k =-+,直线2A B 的方程为112y x =-+. 由1(2)4112y x k y x ⎧=-+⎪⎪⎨⎪=-+⎪⎩解得点422(,)2121k Q k k +--- .设PQ 中点为N ,则N 点的纵坐标为42212112k k k -+--=.故PQ 中点在定直线1y =上. 从上边可以看出点B 在PQ 的垂直平分线上,所以BP BQ =, 所以△BPQ 为等腰三角形. 解法2证明:设0000(,)(2,1)M x y x y ≠±≠±则220044x y +=. 直线2A M 方程为00(2)2y y x x =--,直线1A B 方程为112x y =+. 由00(2)21 1.2y y x x y x ⎧=-⎪-⎪⎨⎪=+⎪⎩, 解得点00000002444(,)2222x y y P y x y x +--+-+.直线1A M 方程为00(2)2y y x x =++,直线2A B 方程为112y x =-+. 由00(2)21 1.2y y x x y x ⎧=+⎪+⎪⎨⎪=-+⎪⎩,解得点000000024+44(,)2+222x y y Q y x y x -+++.0000000024424+4222+2P Q x x y x y y x y x x +-----++=0000000000002(22)(2+2)2(2+2)(22)(22)(2+2)x y y x x y y x y x y x +-+---+=-++22000000002(2)4)(4(2)0(22)(2+2)x y x y y x y x ⎡⎤+----⎣⎦==-++.00000044222+2P Q y y y x y x y y +-+=++ 0000220000004(44)4(44)2(22)(2+2)(22)y y y y y x y x y x ++===-+++-. 故PQ 中点在定直线1y =上. 从上边可以看出点B 在PQ 的垂直平分线上,所以BP BQ =, 所以△BPQ 为等腰三角形.(21)解:(Ⅰ)①数列{}n a 具有“性质(2)ψ”;②数列{}n a 不具有“性质(2)ψ”. (Ⅱ)先证“充分性”:当数列{}n a 具有“性质(2)ψ”时,有2122n n n a a a -+=又因为1n n a a +≥,所以22100n n n n a a a a -≤-=-≤,进而有2n n a a = 结合1n n a a +≥有12n n n a a a +==⋅⋅⋅=,即“数列{}n a 为常数列”; 再证“必要性”:若“数列{}n a 为常数列”, 则有212122n n n a a a a -+==,即“数列{}n a 具有“性质(2)ψ”. (Ⅲ)首先证明:12n n a a +-≥.因为{}n a 具有“性质(4)ψ”, 所以2124n n n a a a -+=.当1n =时有21=33a a =. 又因为*212n n n a ,a ,a -∈N 且22-1n n a a >,所以有22121,21n n n n a a a a -≥+≤-, 进而有221121122n n n n a a a a +++≤≤-≤-, 所以12()3n n a a +-≥,结合*+1n n a ,a ∈N 可得:12n n a a +-≥. 然后利用反证法证明:12n n a a +-≤. 假设数列{}n a 中存在相邻的两项之差大于, 即存在*k ∈N 满足:2123k k a a +-≥或2+22+13k k a a -≥, 进而有1222+12214()(+)(+)k k k k k k a a a a a a ++--=- 2222+121=()+()k k k k a a a a +---[][]22212+122+12221=()+()+()()k k k k k k k k a a a a a a a a ++----+-9≥. 又因为*1k k a a +-∈N , 所以13k k a a +-≥依次类推可得:213a a -≥,矛盾,所以有12n n a a +-≤. 综上有:12n n a a +-=, 结合11a =可得21n a n =-,经验证,该通项公式满足2124n n n a a a -+=, 所以:21n a n =-.。