北航航空燃气涡轮发动机燃烧特性课件
燃气涡轮发动机第4~6章讲义

燃气涡轮发动机:第四章 发动机特性
4.2 涡轮风扇发动机
4.2.1工作原理及特点
涡轮风扇发动机有内涵和外涵两个通道。空气经过风扇之后分成
两路:一路是内涵气流,经低压压气机、高压压气机、燃烧室、高压
涡轮、低压涡轮,燃气从喷管排出;另一路是外涵气流,风扇后空气
经外涵道直接排入大气或同内涵燃气一起在喷管排出。也就是说,涡
涡扇发动机的推力和燃油消耗率随发动机转速、飞行
速度和飞行高度的变化规律称为:流过内涵的空气流量、单位推力和涵
道比。影响燃油消耗率的因素有:油气比、单位推力和涵
道比。
燃气涡轮发动机:第四章 发动机特性
这里转速特性所指的发动机转速是高压转子转速,推力随转速的增大 而一直增大;燃油消耗率随转速增大开始降低得较快,后来下降缓慢, 到接近最大转速时有所增加(见图4-5)。
分别组成低压转子和高压转子,它们在各自的转速下工作。两个转子
会随着各自负荷的变化自动地调整其转速。双转子与单转子发动机相
比有以下优点:
-双转子可使压气机在更宽的范围内稳定工作,是防喘的有效措施;
-双转子的压气机具有更高的增压比,可以产生更大的推力;
-双转子在发动机低转速下具有较高的压气机效率和较低的涡轮前总 温,在低转速工作时,燃油消耗率比单转子发动机低得多;
燃气涡轮发动机:第四章 发动机特性
4.1.3发动机的特性
1.民航发动机常用的工作状态 -最大起飞工作状态,不使用喷水时批准使用的最大起飞推力,该推
力级别使用有时间限制,仅用于起飞; -最大连续工作状态,这是批准发动机连续使用的最大推力,为延长
发动机寿命,这个级别推力在驾驶员的判断下保证安全飞行使用; -最大巡航工作状态,巡航时批准使用的最大推力; -慢车工作状态,这是发动机能够保持稳定工作的最小转速,用于在
北航航空燃气涡轮发动机课件(全集)

对应点速度方向相同, 大小成比例
f1 ( M a , M u ) f1 (
* K
qm 2
2 2
n , ) 2 n , ) 2
动力相似
轴向Ma相等 切向Mu相等
K f2 (M a , M u ) f2 ( 2 P2* /101325 2 T2* / 288
+i
扭速
后果:强烈振动、熄火
V1a +i Wu
喘振现象
压气机喘振的现象是气流发生低频大 幅度脉动,产生爆音 压气机出口压力迅速下降,排气温度 T*4迅速升高,转速nL、nH下降,发动 机振动加大 仪表指示摆动,严重时发动机停车 应采取必要的防喘措施,尽可能避免 压气机工作不稳定、发生喘振
2k 2
2k 几何出口角 2 出口气流角
通用特性线的变化原因
当相似转速一定、减少相似 流量将引起 PA 正攻角、叶背分离 扭速增加,增压比增加 效率先升后降 严重时喘振
低频、高振幅脉动 放“炮声” “吐火” 出口压力迅速降低,涡轮前温 度迅速提高,转速迅速下降
2012/10/31 8
引起性能参数变化的原因
外界条件:进气总温和总压 工作转速 压气机空气流量
f1 (qm , n, p , T )
* K * 2 * 2
K f 2 (qm , n, p , T )
* 2 * 2
2012/10/31 9
压气机通用特性线
相似理论 相似准则
20
可转动静子导流叶片防喘
通过调节静子叶片角度,使动叶进口气流的绝 对速度向转动方向偏斜,相对速度的方向与设 计状态相接近,进气攻角恢复到“零”,消除 了叶背分离,因此防止了喘振发生
1航空燃气涡轮发动机概述共97页PPT资料

喷管:使燃气继续膨胀, 加速, 提高燃气的速度。
一、涡轮喷气发动机的理想循环
布莱顿循环
布莱顿循环由绝热压缩过程 1-2、等压加热过程2-3、绝 热膨胀过程3-4和等压放热过 程4-1组成。由于这个循环在 等压加热,故也称为等压加 热循环。涡轮喷气发动机和 冲压喷气发动机的理想循环 就是布莱顿循环。
燃料使用效率高,噪声小,能获得较大加力比。
(3)涡轮螺旋浆发动机
涡轮螺旋桨发动机
由燃气涡轮发动机和螺旋桨组成,在它们之间还安 排了一个减速器
涡轮螺旋桨发动机的工作原理
螺旋桨产生拉力 气体流过发动机时产生反作用推力
在较低的飞行速度下,具有较高的推进效率, 所以 它在低亚音速飞行时的经济性较好
飞机动力装置
第三部分:燃气涡轮发动机 刘熊
第一章 航空燃气涡轮发动机概述
第一节 航空燃气涡轮发动机简介
燃气涡轮发动机的发展
喷气发动机的分类
发动机:将燃油燃烧释放出的热能转变为机 械能的装置
喷气发动机:把燃料的化学能转化为发动机 高速喷出燃气的动能,从而获得反作用力, 推进飞行器飞行的发动机。
喷入大气中的燃气与大气进行定压的放热过程。
0→2:绝热压缩 (进气道、压气机) 2→3:等压加热 (燃烧室) 3→5:绝热膨胀 (涡轮、喷管) 5→0:等压放热 (外界大气)
布莱顿循环
1kg工质所作的循环功(加热量与放热量之
略去压缩与膨胀过程中工质与各部件之间的热量交换, 忽 略实际过程中的摩擦, 假设在燃烧室中进行的燃油燃烧释 放出热能的化学反应过程为外部热源对工质加热的过程, 并且忽略由流动阻力和加热所引起的压力降低, 从而用定 压加热过程代替之
北京航空航天大学航空航天概论课件第三章 飞行器动力系统

螺旋桨 减速齿轮 进气道 压气机 燃烧室 涡轮 尾喷管
空气喷气发动机
航空航天概论
第3章 飞行器动力系统
C-130大力神
运7
图95战略轰炸机
航空航天概论
第3章 飞行器动 经济性好 噪音水平低 效率高 起飞推力大 涡轮风扇发动机的结构参见教材
涵道比:外股气流与内股气流流量之比
SMART-1探测器及其太阳能离子发动机 将太阳能转化为电能,再通过电能电 离惰性气体原子,喷射出高速氙离子流, 为探测器提供主要动力
航空航天概论
第3章 飞行器动力系统
日本国家空间发展局的MUSES-C航天 器,使用4台Y-2发动机。Y-2微波离子发动 机是针对小行星交会采样飞行任务的需要 而研制的一种微波电离式离子发动机。
火箭发动机
航空航天概论
第3章 飞行器动力系统
2、双组元液体火箭发动机
(1)液体火箭发动机的组成及工作原理
燃烧剂箱及输送系统 燃烧室 喷管
氧化剂箱及输送系统 喷注器
推进剂输送系统 推力室(喷注器、燃烧室、喷管)
航空航天概论
流量调节控制活门 冷却系统……
火箭发动机
第3章 飞行器动力系统
推进剂输送系统
航空航天概论
第3章 飞行器动力系统
燃烧室
涡流器
空气喷气发动机
涡轮喷气发动机
航空航天概论
第3章 飞行器动力系统
涡轮
将燃烧室出口的高温、高压气体的能量转变为 机械能,驱动压气机、风扇、螺旋桨和其他附件
工作叶轮
导向器
空气喷气发动机
涡轮喷气发动机
航空航天概论
第3章 飞行器动力系统
加力燃烧室
功用:使燃烧更充分燃烧,产生更大的推力。
北航航空燃气涡轮发动机燃烧特性课件

(非加力式发动机的最大推力状态)
2012/11/7 5
最大连续状态
可以连续工作的最高推力状态 推力=85-90% Fmax , n nmax ,T*4 T*4max 连续工作时间不限 一般用于飞机长时间爬升和高速平态
俄国发动机及其衍生的发动机使用的一种主要工 作状态 在地面试车条件下额定状态 推力=80-85% Fmax , n = 95% nmax左右 涡桨和涡轴发动机也规定有额定状态 连续工作时间在规定的寿命范围内不受限制 一般常在飞机爬升时使用
其他状态
反推状态 应急状态 风车状态
2012/11/7
2
最大状态
发动机产生最大推力的工作状态
复燃加力发动机的全加力状态 涡轮前燃气温度、转速、空气流量、各部件的气动负 荷和热负荷以及加力温度都达到最大值,等于或接近 于相应的最大允许值 连续工作时间受到限制,通常为10 分钟 (个别发动机 不限制其连续工作时间) 限制这种最大负荷状态的总工作时间,通常不大于发 动机总寿命的30%~35% 最大状态用于起飞、作战、爬升以及达到最大马赫数 或升限的飞行
13
共同工作关系式
T4* K const * q(2 )........(1) T2
以单轴涡喷发动机为例说明 为什么要制定控制规律 由共同工作条件和压气机特 性,在给定飞行条件,且涡 轮和尾喷管均处于临界和超 临界状态时: 当A8= A8d可获得共同 工作线 还需要且只需要补充一 个条件,共同工作点被 唯一确定 补充的条件即被控制参 数,被控参数的变化规 律即控制规律
发动机控制系统的作用非常重要 通过多个控制装置(如主燃油控制器, 加力燃油控制器、可变几何部件的位置 控制器等)实现对发动机的控制 在不同的飞行条件、环境条件、油门角 度下,控制装置用于实现以下控制:
北航航空燃气涡轮发动机燃烧特性课件

获得πTH =const 共同工作方程
2012/11/7
T4* KH 1 1 const * 1 T23 KH (1 )TH eTH
qmcor .23 KH
1
1 KHΒιβλιοθήκη KH CH11
高低压涡轮共同工作
流量连续条件
高压涡轮导向器喉道 截面流量与低压涡轮 导向器喉道截面流量 引入多变指数 nT
1 g 1 g
流量连续
KH
T4* const * qmcor .23 T23
核心机共同工作方程
联立消去温度比 当: πTH =const
(证明见下一页)
KH
T4* const * qmcor .23 T23
1
g 1
eTH THg
几何尺寸固定
2012/11/7 9
WTHm WKH
功平衡方程
1 * eKH 1 c T (1 )TH c pT23 ( ) eTH KH
* pg 4
T4* eKH 1 1 const * T23 KH (1 1 ) TH eTH eKH KH ,eTH TH
图3-3
2012/11/7 13
核心机共同工作线
共同工作线
几何不变的核心机,当低压 涡轮处于临界工作状态时: 无论飞行条件或发动机工作 转速如何变化 核心机的共同工作点总在共 同工作线上移动
共同工作线与每一条等相似 转速线( n Hcor =const)有唯
2012/11/7
KH
* T4* qm 23 T23 T4* const * const * qmcor .23 * T23 P23 T23
11航发原理-第十一章发动机特性

(1) 全加力状态(最大加力状态)≤5-10min; (2) 最小加力状态; (3) 最大工作状态; (4) 最大连续工作状态(额定状态,85-90%最大推力); (5) 巡航状态(50-80%最大推力); (6) 慢车状态(3-5%最大推力)。
4
¾ 几何不可调的发动机节流特性
② 当H<11km时,随着H ↑, T0 ↓ , Tt0 ↓ , Tt3 ↓ ,调节规 律Tt4 →, q ∝( Tt4 - Tt3 ) ↑ , ηt ↑, sfc ↓ ;
③ 当H≥11km时,随着H ↑, T0 →, q →, Fs →, 因此sfc → ;
④ P0的变化对 sfc没有影响。
三、节流特性
3
3. 耗油率 sfc变化原因;
sfc = 3600 f Fs
f ≈ ( Cp Tt4 − Tt3 ) = q
Hu
Hu
sfc = 3600q Hu Fs
① 当Ma0 ↑时, Tt0 ↑ , Tt3 ↑ ,调节规律Tt4 →, q ∝( Tt4 Tt3 )↓ ,
② 当Ma0 ↑时, Fs ↓ ↓ 比q ↓ 快,因此sfc ↑ ;
nD2 = const Tt 2 n = const Tt 2
¾几何相似的WP/WS发动机工作状态相似的充分必要条件是:
Ma0 = const
n = const Tt 2
¾以单轴WP为例分析相似准则
a) 当尾喷管最小截面处于临界或超临界时,共同工作线只有一条, 通过 n Tt2 (ncor)确定共同工作点,保证压气机及其后面部件 工作状态相似;
② 当Ma0 ↑时,Tt0 ↑, Tt2 ↑,Wa↓; Pt0 ↑, Pt2 ↑, Wa ↑。 由于Pt2 ↑快, Wa ↑ ;
典型航空燃气涡轮发动机PPT课件

Typical aero gas turbine engines
精品ppt
1
主要内容
• 燃气涡轮发动机的发明 • 航空燃气涡轮发动机的作用和要求 • 航空燃气涡轮发动机的基本类型 • 典型航空燃气涡轮发动机介绍
精品ppt
2
燃气涡轮喷气发动机的发明
弗兰克·惠特尔 (Frank Whittle) 英国航空工程师、 发明家、喷气 推进技术的先驱、空军准将。1907年6月1日生于英国考文垂的伊 尔斯顿。1923年加入皇家空军,入克伦威尔皇家空军学院学习并 接受飞行训练。1928年在一篇《关于燃气涡轮和喷气反作用飞机》的论 文中,首次提出了喷气热力学的基本公式。同年,惠特尔以优异成绩毕业, 成为皇家空军的战斗机驾驶员。1930年又取得第一个涡轮喷气发动机设计 的专利。1931—1932年任新型飞机试飞员。后到皇家空军工程学校和剑桥 大学进修。
6
航空燃气涡轮发动机的作用和要求
设计要求
军用发动机
民用发动机
1. 性能:推力、耗油率、起动等 2. 适用性:稳定性、加力、吸烟 3. 结构和安装 4. 可靠性 5. 维修性 6. 隐身性、矢量推力
1. 起飞推力和推重比 2. 巡航耗油率 3. 结构和安装 4. 可靠性、寿命和维护性 5. 污染物排放 6. 低噪声
英国在第二次世界大战后期和战后使用的各型喷气战斗机,大都是 根据惠特尔的设计而研制成的。50年代初,惠特尔又先后研制成世界上第 一种涡轮螺旋桨旅客机“子爵号”和第一架涡轮喷气客机“彗星号”。 1953年出版了《喷气机:开拓者的精故品事ppt》。1996年8月9日去世,享年3 89岁。
燃气涡轮喷气发动机的发明
1. 涡轮喷气发动机 Turbo-jet engine
燃气涡轮发动机01-基础知识幻灯片课件

14
1.3 热力学基础--内能
➢ 1.3.2 热力学基本定律
一、热力学第一定律
热力学第一定律是能量守衡和转换定律在热力学中的应用。 1 、内能: 热力系内部储存的能量。
U=UK + Up+UM+UA 式中:U-内能;
UK –内动能,它的大小取决于温度; Up –内势能;它的大小取决于分子间的距离,即取决于比容; UM –化学能; UA –原子能。 在工程热力学范围内,内能只包含有内动能和内势能。 内能是状态参数。 对于完全气体,内能只包含有内动能,所以,完全气体的内能只是温度的单值 函数。 内能的法定计量单位为j(焦尔), 1公斤工质的内能称为比内能,比内能的法定计量单位为j/kg。
• 绝对压力的基准点是绝对真空。
表压力:系统的真实压力超出当地大气压力的部分叫表压。
pg=p - p0
真空度:系统的真实压力低于当地大气压力的部分叫真空度。
pv=p0 - p
➢ 注意:表压和真空度都不是状态参数,因为它们的数值
不但与系统的真实压力有关,而且与当地的大气压力有
关。所以绝对压力才是状态参数。
➢ 系统的分类:
闭口系:与外界无质量交换的系统称为闭口系。
• 特点是系统中包含工质的质量保持不变。
开口系:与外界有质量交换的系统称为开口系。
• 特点是系统的容积保持不变。
绝热系:与外界无热量交换的系统称为绝热系。 孤立系:与外界既无质量的交换也无能量的交换称为孤立系。
• 特点是系统中包含工质的质量和能量均保持不变。
6
1.3 热力学基础
➢ 状态:
平衡状态:是系统与外界不发生相互作用的条件下, 其宏观性 质不随时间变化的状态。
北航航空燃气涡轮发动机课件

6.4 环境特性
发动机吸入外来物
美国客机迫降纽约河道155人获救
2009年1月15日下午,美国全美航空公司一架前往北卡罗来纳州夏洛特市的A-
320班机(1549 航班)从纽约拉瓜蒂亚机场起飞过程中遭飞鸟撞击失去动力
,迫降在纽约哈德逊河河面上。由于驾驶员临危不惧、处置得当,机上155人 全部获救,引起世人观注!
原因
ncor
对于同样的发动机转速, 只增加大气温度 T0 使得换 n 算转速下降,导致共同工 T0* 作点沿工作线下移,增压 比和空气流量减小
qmcor qm T2* P2*
大气压力对特性的影响
气压降低 推力下降
PS0从10.98个大气压 F下降10%
耗油率不变 原因
小小的飞鸟为何能威胁这么大的飞机飞行安全:一只体重900克的鸟, 如果以相对时速185公里与飞机相撞,其冲击力就有1190公斤
鸟撞民用飞机
2002年A320从美国西部一机场起飞时吸入大鸟 2004.09 Foker100 2号发动机吸鸟
改进发动机风扇部件设计 提高抗鸟撞能力
风扇叶片 风扇机匣(包容环)
③雨天工作时,相当于在发动 机进口喷水,水沿流程蒸发, 使压缩过程的吸热过程变成 放热过程,压气机各级进口 温度下降,使各级换算转速 增加,后几级流通能力加大
湿度增加使 R湿空气和Cp湿空气 增加,导致发动机排气 V9 加大,但空气流量减小 , 综合作用使推力减小
6.3 雷诺数对发动机性能影响
大气条件对起飞性能的影响
民用涡扇发动机
常采用控制发动机压比EPR=const的起飞状态 控制规律,随着 T0 升高,发动机转速和排气 温度T*5(即EGT)增大,以保持推力不变 为保证发动机工作安全,当 T*5达到最高允许 排气温度T*5max ,改为T*5 = const的起飞状态 控制规律 转换这两种控制规律的T0大约为30℃ T0<30℃时发动机控制规律制定应保证起飞推 力(即起飞状态保持推力不变的控制) T0>30℃以后,因随 T0增加发动机热端部件温 度而增高,采用超温保护控制,控制规律自 动保持T*5 = T*5max,推力将随气温增加而下降
第九章 航空燃气轮机主燃烧室工作特性

第九章航空燃气轮机主燃烧室工作特性主燃烧室工作特性的好坏,取决于燃油雾化、与燃油雾化相匹配的空气流动、以及在此基础上的燃烧特性。
本章所涉及的基本内容包括燃油雾化、燃烧室空气动力学、燃油散布、燃烧效率、点火及熄火、燃烧室火焰筒壁冷却等特性分析。
9.1 燃油雾化在航空燃气涡轮发动机中,燃油喷嘴的功能和要求如下:1) 在宽广的流量范围内提供良好的雾化;2) 快速响应燃油流量变化;3) 与流动的不稳定性无关;4) 耗能小;5) 可以缩放设计,提供设计的灵活性;6) 低成本,轻重量,维护容易,拆装容易;7) 对制造和安装过程中的轻微损伤不敏感;8) 燃油受到污染和喷嘴表面积碳时不易堵塞;9) 受热时不易结焦;10) 均匀的径向和周向燃油浓度分布。
航空燃气轮机主燃烧室中,主要的喷嘴有离心喷嘴、空气雾化喷嘴、甩油盘喷嘴和蒸发管喷嘴。
如图9-1-1所示。
(a)离心喷嘴(b)空气雾化喷嘴(c)甩油盘喷嘴(d)蒸发管喷嘴图9-1-1 航空燃气轮机燃烧室中各种喷嘴9.1.1 离心喷嘴(压力雾化喷嘴)离心喷嘴属于压力雾化喷嘴的一种.主要有两种结构,一种是单油路离心喷嘴,一种是双油路离心喷嘴,双油路离心喷嘴相比于单油路离心喷嘴扩大了工作范围.如图9-1-2所示.单油路离心喷嘴双油路离心喷嘴图9-1-2 离心喷嘴的结构进入离心喷嘴的燃油做切向运动,由于离心运动建立了空心涡,在喷嘴出口,旋转的燃油同时有轴向速度和切向速度,形成空心油膜,油膜失稳形成液雾,如图9-1-3所示。
图9-1-3 离心喷嘴的油膜运动由于压力不同,将形成不同的形态,如图9-1-4所示随着燃油压力的增加,喷嘴喷雾的形态变化。
通常,喷嘴压力降大于0.1MPa,即可得到一个充分发展的油雾。
图9-1-4 燃油喷雾的各种形态 燃油流量和喷嘴压力降之间的关系设通过离心喷嘴出口的截面积为n A 的液体流量为l m ,如图9-1-5所示。
则通过喷嘴的燃油流量如下式计算:v A C mn l d l ρ=上式中,d C 是考虑了通过离心喷嘴流动时的各种损失的流量系数,v 是通过喷嘴在一定压力降l P ∆的情况下能够达到的理论喷射速度,该喷射速度由下式计算:llP v ρ∆=2可以建立燃油流量l m与喷嘴压力降l P ∆之间的关系如下: ll n d l P A C m ∆=ρ2图9-1-5 喷嘴几何结构示意可以稍加变形得到流量数的定义:ln d ll A C P m FN ρ2=∆=流量数是一个表达喷嘴特性广泛使用的参数,仅与喷嘴的几何结构和通过的流体有关,与喷嘴的工况无关,因此它给定了某种用途下的喷嘴“尺寸”。
燃气涡轮发动机概述

F100-PW-229
129.4 kN
推重比=8.0
F110-GE-129
129.1 kN
推重比=8.0
AL-31F(АЛ-31Ф) 122.6 kN
推重比=8.0
授课人 贾斯法
4
第4代战斗机的特点
❖高的敏捷性 ❖好的隐身性 ❖短距起飞着陆能力 ❖超声速巡航能力
授课人 贾斯法
5
四代机对发动机的要求
授课人 贾斯法
2
4.涡轮喷气发动机—压气机
❖ 作用: ❖提高进入燃烧室的空气压力
❖ 重要参数: ❖增压比(P出口/P进口)
❖ 影响发动机性能好坏的一个主要参数
授课人 贾斯法
3
4.涡轮喷气发动机—燃烧室
❖ 作用、特点、构造
授课人 贾斯法
4
4.涡轮喷气发动机—涡轮
❖作用: ❖燃气膨胀作功驱动压气机
授课人 贾斯法
8
联合攻击机 JSF
❖一机三型 ❖ 一条生产线完成三型飞机生产
一机三型 ❖ CTOL型 常规起降 23 t 空军用 ❖ STOVL短距起飞垂直降落型 23 t
海军陆战队、英海军用 ❖ CV即舰载型 海军用 较前二者重
授课人 贾斯法
9
联合攻击机 JSF
❖ ~2010年服役 ❖ 将与F-22成为美国主力战斗机 ❖ 投资约160亿美元 ❖ 计划生产3000架 ❖ 供英海军60架、英空军200架
0
高涵道比涡扇发动机
❖ 2001年11月19月 ❖ GE-90推力达到
535 kN
授课人 贾斯法
1
2006年3月 航空发动机发展特点
航空发动机结构设计
❖对产品的设计要求 ❖适用性、可靠性、维修性 ❖经济性、耐久性
北航燃烧与燃烧室课程课件c_c_9_1

y P1P2 v t tan 2 z z vu
《燃烧与燃烧室》
热能工程系
授课专用
Atomization of the pressure swirl nozzle(雾化原理?)
Effect of liquid properties on the atomization: Increase of SMD with increase of the surface tension Increase of SMD with increase of the viscosity
《燃烧与燃烧室》
热能工程系
授课专用
9.0 Preface
Performances of combustor determined by: Fuel Atomization(燃油雾化) Combustor Aerodynamics(燃烧室空气动力学) Match of fuel droplets and air flow(燃油油雾与 空气流动的匹配) Combustion Performance(燃烧性能) Liner Cooling(壁面冷却)
《燃烧与燃烧室》
热能工程系
授课专用
Main types of atomizers(分类原则?why?)
Rotary atomizer (Mechanical) (旋转喷嘴)
Vaporizer (Heat) (蒸发管喷嘴) Airblast atomizer (aerodynamic) (空气雾化喷嘴)
Pressure swirl atomizer (离心雾化喷嘴)
American F110(1986) American CFM56(1979)
《燃烧与燃烧室》
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
进气道特性
内流特性
总压恢复系数σin
外流特性
作用在进气道外表面 所受气动阻力沿飞行 方向分力的变化
2012/12/3
分类
亚音进气道 超音进气道
6
进气道在机身的位置
亚音飞机
吊装机翼下的短舱 飞机尾部
超音飞机
头部、机身两侧、翼 根、腹部等 后三种采用较多,起 遮蔽即隐身作用 遮蔽会使进气不同于 外界大气并可能引起 畸变风扇/压气机 喘振
2012/12/3 7
亚音进气道
1.结构形式 皮托管式 2.流动模型
飞行M数 发动机工作状态
流量系数大小决定于
K
* p0 A0 q (0 )
T
* 0
K
* p01 A01q (01 )
T
* 01
0 <<
为适应 的变化,减少分 离,具有钝圆形唇口
2012/12/3
A0 q(01 ) A01 q(0 )
第八章
推进系统性能
2012/12/3
1
第一节 推进系统及安装推力
推进系统组成
进气道、发动机和排气装置
安装推力Fa
整个推进系统所能提供的推力称为发动机 安装推力,或称为可用推力
非安装推力F
发动机未安装到飞机前产生的推力
2012/12/3 2
Fa 和F的区别
① 进气道总压恢复系数σin 计算非安装推力F时,σin按标准曲线或标准公式确定, 或令σin等于某个定值 计算安装推力 Fa时, σin用进气道和发动机匹配后的
实际值
②喷管损失系数
计算非安装推力F时,通常按喷管完全膨胀和给定的 排气速度损失系数计算 计算安装推力 Fa 时,按喷管实际的几何参数和喷管 压比计算喷管膨胀程度,并采用安装后的实际喷管 推力系数CFG来计算喷管损失
①和②为进气和排气装置的内流损失
2012/12/3 3
F和Fa的区别
③ 安装推力还应考虑飞机从发动机引气和 提取功率对发动机推力的影响 用FR表示考虑了①、②、③项后的推力
8
飞机以攻角飞行
2012/12/3 9
超音速进气道
2012/12/3
10
三、超音速进气道
将气流从Ma>1 Ma<1滞止过程中, 不可避免产生激波损失 如何利用激波的性质设计超音速进气道, 使滞止过程激波损失尽可能小?
2012/12/3
11
激
内凹壁面(a) 楔形物和锥形物(b) 流向高压区(c)
来流Ma1数=2.0
激波波系 正激波 楔板角1=2044 正激波 二道斜激波正激波 楔板角1=1036 楔板角2=1239 正激波
波后M数 0.577 1.16 0.868 1.617 1.12 0.8965
0.72 0.87 0.996 0.98 0.947 0.9982
用经过激波的总压恢复系数表示激波损失
* P波后 * 波前
P
1.0
激波的性质
不同类型激波的共性
强压缩波:经激波后静参数突变,总压下降 波前Ma1越高,激波越强,参数变化越剧烈
个性
经正激波,波后Ma2<1;经斜激波,波后一般仍为Ma2>1 对相同超音速来流,经正激波的总压损失大于斜激波 例如:来流(波前)Ma1=1.5 正激波:s=0.92 Ma2=0.7 斜激波: (楔形物=108’,=57), s=0.986,Ma2=1.107 对于斜激波,越大, 越大,激波越强,损失越大 经正激波,气流方向不变;经斜激波气流向波面转折 相交与反射
波
产生:超音速气流受到压缩产生的强压缩波
a b 分类:正激波、斜激波、弓形波
气体速度方向与激波波面夹角=90 ° 气流速度方向与激波波面夹角90 ° 激波波面为弧形
c
激波的性质
气流受强烈压缩,分子间摩擦剧烈,经激波的流动 为绝能不等熵流动 经激波气流总温不变,但气流的熵增加、总压下降 强压缩波:经激波后静参数突变,静压、静温和密 度突升,且波前M数越高,激波越强,参数变化越 剧烈
0.12/12/3
* P 波后 * P 波前
15
波系最高总压恢复系数—Ma0
2012/12/3
16
超音速进气道
1、气动设计原理 利用激波的性质,设计为多波系结构,即先 利用损失小的斜激波,逐步将高超音流滞止 为低超音流,再利用一道弱的正激波将超音 流滞止为亚音流。 目的:减小因激波引起的总压损失 波系结构
气流经激波转折,外罩唇口设计 与之相适应 多道激波汇交外罩唇口,激发更 强的激波
2012/12/3 22
混压式超音进气道
超音亚音:介乎于 前两者之间
超声速来流在进口外 经若干道斜激波减速 在进口内再经过若干 斜激波和结尾正激波 滞止为亚音流
外罩平直,外阻小 结尾正激波可自动调 节,工作稳定 起动较容易
Ath q (0 ) A01
超音亚音:全部在口内完成 理想状况:总压损失小 因需要喉道面积大小随来流Ma数变化进行调节,引发 起动问题,较少实用
2012/12/3 21
外压式超音进气道
超音气流经过若干道斜激波后, 气流速度减小,压力提高,再 经过一道位于进口处的正激波 降为亚音流,在口内的扩张通 道内进一步减速增压 超音亚音:全部在口外完成 外阻较大
2012/12/3
17
F15 超音速进气道
2012/12/3
18
超音速进气道基本几何类型
轴对称 二元(矩形)
2012/12/3
19
超音速进气道气动原理
M>1M<1 收敛—扩张 三种类型
dA dV 2 ( M 1) A V
混压式 外压式 内压式
2012/12/3
20
内压式超音进气道
④ Fa计入了与发动机状态有关的进气道外 阻力增量△Xin和飞机后体阻力增量△Xn Fa = FR-△Xin-△Xn
2012/12/3 4
第二节 进气道和喷管/后体特性
2012/12/3
5
进气道功能及设计要求
功能
引入空气 高亚音或超音速飞行 时减速
设计要求
损失小(内流、外阻) 工作稳定性好 高流通能力 出口流场尽量均匀 • 温度畸变:吸入热气流 • 压力畸变:来流方向与发动机轴 线夹角0 • 提高压气机对抗畸变能力