第一章__自然电位测井解析
地球物理测井重点知识

第一章自然电位1 石油钻井中产生自然电场的主要原因是什么?扩散电动势ED扩散吸附式电动势EDA和过滤电动势EF产生的机理和条件是什么?自然电位形成原因:由于泥浆与地层水的矿化度不同,在钻开岩层后,在井壁附近两种不同矿化度的溶液发生电化学反应,产生电动势,形成自然电场.一般地层水为NaCL溶液,当不同浓度的溶液在一起时存在使浓度达到平衡的自然趋势,即高浓度溶液中的离子要向低浓度溶液一方迁移,这种过程叫离子扩散.在扩散过程中,各种离子的迁移速度不同,如氯离子迁移速度大于钠离子(后者多带水分子),这样在低浓度溶液一方富集氯离子(负电荷)高浓度溶液富集钠离子(正电荷),形成一个静电场,电场的形成反过来影响离子的迁移速度,最后达到一个动态平衡,如此在接触面附近的电动势保持一定值,这个电动势叫扩散电动势记为Ed同样离子将要扩散,但泥岩对负离子有吸附作用,可以吸附一部分氯离子,扩散的结果使浓度小的一方富集大量的钠离子而带正电,浓度大的一方富集大量的氯离子而带负电,这样在泥岩薄膜形成扩散吸附电动势记为Eda此外还有过滤电动势,这种电动势是在压力差作用下泥浆滤液向地层渗入时产生的,只有在压力差较大时才考虑过滤电动势的影响.2 影响SP曲线幅度的因素是什么?想想在SP曲线解释过程中,如何把影响因素考虑进去,从而得到与实际相符的结论?在自然电位测井时一般把测量电极N放在地面上,电极M用电缆放在井下,提升M电极,沿井轴测量自然电位(M电位)随深度变化的曲线叫自然电位曲线(SP).影响因素:1 溶液成分的影响;2岩性的影响砂岩泥岩3温度的影响;4地层电阻率的影响5地层厚度影响厚度增加SP增加6井眼的影响井径扩大截面积增加,泥浆电阻变小,SP变小3 SP的单位是什么?毫普第二章普通电阻率测井1 岩石的电阻率和岩性有什么关系?沉积岩属于什么导电类型?沉积岩石在水中沉淀的岩石碎屑或者矿物经胶结压实而成,其结构可视为矿物骨架与空隙中流体的组合。
2-第一章_电法测井(自然电位测井)

常规法 新方法 换泥浆法
求Rw
(1)常规法
引入等效电阻率的概念,即不论溶液的浓度
高低,都与其电阻率成反比。
SSP K lg
Rmfe Rwe
①确定 SSP
如果渗透层的h/d>40,无侵入,且RtRmRs,则SSP
Es Vsp I rm ri rsh rt 1 rm rm rm
Es=f(Cw、Cmf、T、Vsh、盐类有关)
(1)地层水和泥浆中含盐量的比值(Cw/Cmf)的影响
Cw / Cmf > 1 Cw / Cmf < 1 Cw / Cmf = 1
渗透层的△Vsp有负异常 渗透层的△Vsp有正异常 渗透层的△Vsp无异常
2.SP曲线的特点
(1)自然电位(△VSP):是指自然电流在井中泥浆柱上产 生的电压降。
Es Vsp Irm rt ri rsh 1 rm rm rm
(△VSP)
< PSP 或者SSP
测量时N电极固定在地面,但VN≠0。因SP 曲线没有“0” 刻度,而是用带正负号的比例尺来表示的,为了读数的方 便,选泥岩的SP作为基线,在一个地区它是稳定的,并且 是一条直线。
所以,E总 =(Kda -
lg(Rmf / Rw ) = Es
则令:K=Kda – Kd;K只与盐类成分、温度有关。
静自然电位:纯砂岩与纯泥岩交界面处的总电化学电 动势用SSP来表示。
SSP K lg Rmf Rw
当泥质含量 时 QV kd 从负变至正 Es 当 Qv ∞时, kd ≈ Kda Es = 0 泥质砂岩和纯砂岩的总电动势称为假静自然电位。符号用PSP 来 表示,它的大小反映了泥质的多少,总有 SSP>PSP(因K值以负 往正值方向发生变化)
1 第一章 自然电位测井

是产生自然电场的总电动势E总:
E总=Ed+Eda =Klg(Rmf/Rw)
=SSP
式中:K为自然电位系数。
19
3、扩散作用在井内形成的总电动势及电位分析
(2)电位分布
把 E总叫作静自然电位,记作SSP。
此时Ed的幅度称砂岩线,Eda的幅度叫泥 岩线。实际测井中以泥岩线作自然电位测
井曲线的基线(即零线),在18℃时的纯砂
通常,泥浆柱的压力大于地层压力,并在渗透 性岩层(如砂岩层)处,都不同程度的有泥饼存在。由 于组成泥饼的泥质颗粒表面有一层松散的阳离子扩 散层,在压力差的作用下,这些阳离子就会随着泥 浆滤液的渗入向压力低的地层内部移动。于是在地
层内部一方出现了过多的阳离子,使其带正电,而
在井内泥饼一方正离子相对减少,使其带负电,从 而产生了电动势。由此形成的电动势,叫做过滤电
Es-井筒及邻近地层中自然电动势。
17
3、扩散作用在井内形成的总电动势及电位分析
(2)电位分布
18
3、扩散作用在井内形成的总电动势及电位分析
(2)电位分布
由自然电场分布特征可知,在 砂岩和泥岩交界处自然电位有明显
变化,变化幅度与Ed、Eda有关。
在相当厚的纯砂岩和纯泥岩交 界面附近的自然电位变化最大。它
第四节 自然电位测井曲线的地质应用
21
1、自然电位测井曲线的特征
(1)异常幅度及其定量计算 (巨厚砂岩) rm比rsd、rsh大得多,所以有
ΔUSP≈SSP
(砂岩有限厚) 自然电位幅度ΔUSP定义为: 自然电流I在流经泥浆等效电阻 rm 上的电位降落, 即ΔUSP=Irm。由于Es=I(rs+rt+rm),则有 ΔUsp=I×rm
自然电位测井

18 °C 时几种盐溶液的 K d 值
CaCl 2
-19.7
MgCl 2
-22.5
NaSO 4
+5
KCl -0.4
K d(mV)
+2.2
五、地层电阻率的影响
ΔU sp = SSP(
1 1+
rsd + rsh rm
)
地层厚,电阻率差异不大时,rsh+rsa远小于rm;当地层电 阻率增高时,rsh、rsa与rm相比不能忽略,此时ΔUSP<SSP。 地层电阻率越高, ΔUSP越低,可定性识别油、水层。 六、地层厚度的影响 地层厚度变薄,rsd增加, ΔUSP降低。 七、井径扩大和泥浆侵入的影响 rm减小, ΔUSP降低
问题: 1、井中自然电位产生的机制有哪些? 2、以砂泥岩剖面为例,当泥浆电阻率大于地层水电阻率 时,绘制井中自然电动势及其等效电路图,并说明自然电 位测井幅值的计算公式。 3、影响自然电位曲线的七种因素有哪些? 4、自然电位曲线有哪方面的应用? 5、简述利用自然电位曲线计算地层水电阻率的4个步骤 6、什么是泥岩基线?
识别出渗透层后,通常可用自然电位测井曲线的半幅点 来确定渗透层界面,进而计算出渗透层厚度。
二、地层对比和研究沉积相 自然电位测井曲线常常作为单层划相、井 间对比、绘制沉积体等值图的手段之一。
S108
0 0 6 SP 100 GR 150 CAL 16 0.2 0.2 0.2 RFOC RILM RILD 20 20 20 45 CNL -15 140 AC 40 2 DEN 3
ΔU sp = SSP(
1 1+
rsd + rsh rm
)
当岩层较厚时,ΔUsp=SSP,对 于纯砂岩,接近自然电动势的 自然电位幅值,称为静自然电 位(SSP).
第1章 自然电位测井

2011-2-18
地球物理测井方法与原理
7 /51
1.1 井内自然电位产生的原因
1.1.2 扩散吸附电位
粘土晶体的 置换和破健 作用
扩散时,如果地层的固体
颗粒(泥质)的表面带有了 强的负电荷之后,固体颗粒
将阻止负离子的通过(好象 负离子被吸附住了一样), 这种现象我们称之为扩散吸 附作用。
2011-2-18
1.2 自然电位曲线的形状
1.2.2 自然电位曲线
回路总电动势等 于扩散电动势和吸附 电动势之和,它相当 于回路中没有电流时 井中地层上下界面的 自然电位差,习惯称 为静自然电位,SSP 表示。
静自然电位曲线是无法 测定的,因为地层和泥浆都 具有导电性。 19 /51
2011-2-18
1.2 自然电位曲线的形状
2011-2-18
地球物理测井方法与原理
2 /51
1.1 井内自然电位产生的原因
斯仑贝谢1928年发现了这样的 现象:在未通电的情况下,井中电 极(M)与位于地面的电极(N)之 间存在着电位差,而且该电位差随 着地层的不同而变化。另外,电位 差的变化规律性很强。后来、道尔 、威利、费多尼、斯卡拉和安德森 等人对这一现象进行了研究,同时 ,自然电位测井(SP)也就诞生了
1 自然电位测井(SP)
1.1 井内自然电位产生的原因 1.2 自然电位测井曲线的形状 1.3 影响渗透层自然电位曲线的主要因素 1.4 自然电位曲线的应用
2011-2-18
地球物理测井方法与原理
1 /51
1.1 井内自然电位产生的原因
电化学测井包括天然电化学测井和人工 电化学测井两类。天然电化学测井分为自然 电位测井和电极电位测井,而激发极化测井 属于人工电化学测井。本章只讲述自然电位 测井方法的原理、基本理论及资料解释的方 法。
第一章 自然电位测井

1 2 3
Cw
Cw C注
Cmf
E1
E2 Cmf
E总
Cw
E3 △Esp
W E总
图1-19 水淹层的SP曲线基线偏移示意图
CW C注 Cmf
48
偏移量的计算
在未被水淹的上部砂岩和泥岩交界处的电动
势为
Cw E1 K lg( ) Cmf
在砂岩内水淹部分和未被水淹部分交界 面处的总电动势为
4
由于泥浆和地层水的矿化度不同,在钻开 岩层后,井壁附近两种不同矿化度的溶液接触 产生电化学过程,产生电动势形成自然电场。 在石油井中自然电场主要由扩散电动势和扩散
吸附电动势产生。
5
二、扩散电动势产生机理
氯化钠溶液
1、泥浆、地层水 矿化度不同; 2 、井壁地层具有 渗透性;
3 、正、负离子迁
移速率不同。
地层的实际值,半幅点对应地层界面;
C、随地层变薄,曲线读数受围岩影响增
加,幅度降低,半幅点向围岩方向移动。
57
深度变化而变化的一条自然电位曲线。单位毫
伏。
Usp(h);8采样点/米
13
图1-4、自然电位测井示意图
图1-5、自然电位测井曲线实例
14
二、 SP曲线的特征
1、泥岩基线:均质、巨厚泥岩的SP曲线。 2、最大静自然电位SSP:均质、巨厚完全含水纯砂岩的SP 值与泥岩基线值的差。
SSP U sp |含水纯砂岩 -U sp |泥岩基线
图1-8、地层模型及其自然电位测井理论曲线
20
问题 (1)、自然电位异常性与泥浆性质的关系? (2)、 自然电位幅度差与地层厚度的关系? (3)、地层厚度对半幅点的位置和地层界面 的关系的影响?
第1章 sp测井

图1-1 扩散电动势产生示意图
2018/10/11 测井方法 4
扩散电动势产生的示意图如图1-1所示。扩散电动势可
由Nernst方程计算:
E
d
Cw RT n u n v 2.3 lg F Z n u Z n v C m
其中:R—克分子气体常数,8.313J/(K);
T—绝对温度,K;
2018/10/11 测井方法 5
F—Farady常数,96520 C/equiv;
Cw、Cm—两种溶液的浓度;
U、v—— 正、负离子的迁移率,S/(m· N)
Z —正、负离子的离子价; Z 、
n
、n
—每个分子离解后形成的正离子数和负
离子数;
2018/10/11
测井方法
SP曲线位于泥岩基线的左侧;
2018/10/11 测井方法 17
2)正异常:在砂泥岩剖面井中,当井内为盐水泥
浆( C < w
Cmf
)时,渗透性地层的SP
曲线位于泥岩基线的右侧。
2018/10/11
测井方法
18
5、曲线形态:
1)、曲线关于地层中点对称; 2)、厚地层(h>4d)的SP曲线幅度近似等于 地层的实际值 ,半幅点对应地层界面; 3)、随地层变薄,曲线读数受围岩影响增加, 幅度降低,半幅点向围岩方向移动。
2018/10/11 测井方法 31
四、判断水淹层
水淹层:含有注入水的油层,称之为水淹层。 SP测井曲线能够反映水淹层的条件及现象: 当注入水与原地层水及钻井液 的矿化度互不相同时, 与水淹层相邻的泥岩层的基线出现偏移,如图1-9、
1-10所示。
地球物理测井-第一章第四节自然电位测井

Rmf-泥浆滤液电阻率; Rw-地层水电阻率。
过程:根据SP求出SSP,根据温度求出K,已知钻井液滤液电阻率Rmf,便可求出Rw。
第四节 SP曲线的应用
四、估算泥质含量 泥质含量及其存在状态与砂岩井段产生的扩散吸附电动势有直接关系,因而用自然电位曲线可以 计算泥质含量。目前用的方法是建立在大量的实验工作基础上的,常用方法是图版法和计算法:
当溶液矿化度低或中等时,可表示为:
Ea KalgC Cm wf KalgRRm wf
低浓度
高浓度
泥岩
低浓度
高浓度
Ka
Ka
Ka
9
第一节 自然电场产生的原因
一、电化学电动势 ■ 1. 吸附电动势又称泥岩薄膜电位 (Membrane Potential)
实际钻井中,泥浆的矿化度一般比地层水低,即aw大于amf。 地层中的Na+和Cl-离子要向井筒内迁移,在不同岩性的地层,有不 同的情况:
一、温度的影响 温度变化导致电动势系数变化。 Kda
二、岩性的影响 在砂泥岩剖面井中,通常以大段泥岩处的SP曲线作基线,在自然电位曲线上出现异常变化的多为砂 质岩层。当目的层为纯砂岩时,其与围岩交界处的SSP达到最大值SSPmax。当目的层含有泥质(其他 条件不变)时,SP降低,因而曲线异常的幅度也减小。此外,当剖面上有部分泥岩的阳离子交换能力 减弱时,渗透层的自然电位异常幅度也会相对降低。
在石油钻井的砂泥岩剖面中,自然电位的幅度和特点主要决定于造成自然电场的静自然电位SSP, 并且受自然电流 I 分布的影响。SSP的大小取决于岩性、地层温度、地层水和钻井液中所含离子成 分和钻井液滤液电阻率与地层水电阻率之比;而自然电场中自然电流 I 的分布则决定于流经路径 中介质的电阻率及地层的厚度和井径的大小。这些因素对自然电位幅度SP及曲线形状均有影响, 但影响的主次存在差异。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二节 自然电位测井及曲线特征
理论上:在砂岩层为有限厚时, ΔUsp定 义为自然电流I在井内泥浆等效电阻rm上 的电位降,即
ΔUsp=I.rm
其中,I为自然电流,可由闭合回路的欧 姆定律求得
I
SSP
rm rsd rsh
第二节 自然电位测井及曲线特征
曲线形态:
曲线关于地层中点对称; 厚地层(h>4d)的SP
Eda Kda lg Cw Cm
Kda 2.3 RT F
地层水和泥浆滤液中含盐浓度的比值
地层水和泥浆滤液含盐浓度的差异,是产生扩 散电动势及扩散吸附电动势的基本原因。差异 越大,Ed和Eda越大,产生的电场越强,测井 值高。比值大于1,在渗透层段出现负异常; 比值小于1,在渗透层出现正异常。
三、自然电位测井的影响因素
岩性
随地层泥质含量的增加,SP曲线异常幅度降 低。
三、自然电位测井的影响因素
地层温度
由于Kd及Kda与绝对温度成正比,因此地层温 度的高低将会影响Kd及Kda大小,进而影响Ed 及Eda的大小。
RT Ed 2.3
nunv
lg Cw
F Z n u Z n v Cm
三、自然电位测井的影响因素
Ed Kd lg Rmf Rw
二、扩散吸附电动势产生的机理
泥浆和地层水的 矿化度不同;
井壁地层具有一 定的渗透性;
地层颗粒对不同 极性的离子具有 不同的吸附性。 泥质选择吸附负 离子。
泥岩挡板
二、扩散吸附电动势产生的机理
组成泥岩的粘土,其结晶构造和化学性质只允许阳离子 通过泥岩扩散,而吸附带负电的阴离子,这样,当Cw大 于Cmf时,对着泥岩的井眼中建立了正电位。
测井时,将测量电极N放在地面,用电缆 将M电极放置井下,提升M电极,沿井轴 测量自然电位随井深的变化曲线,即为自 然电位曲线。常称SP曲线。实际测井时 与电阻率同时测量,用电极系中的M 电极 即可。
第二节 自然电位测井 及曲线特征
泥岩基线:均质、巨厚的 泥岩地层对应的自然电位 曲线。
最大静自然电位SSP:均 质、巨厚的完全含水的纯 砂岩层的自然电位读数与 泥岩基线读数的差。
比例尺:SP曲线的图头上 标有的线性比例尺。用于 计算非泥岩层与泥岩基线 的自然电位差。
第二节 自然电位测井 及曲线特征
异常:指相对泥岩基线而 言,渗透性地层的SP曲线 的位置。
负异常:在砂泥岩剖面井中, 当井内为淡水泥浆 (Cw>Cmf)时,渗透性地 层的SP曲线位于泥岩基线的 左侧;
正异常:在砂泥岩剖面井中, 当井内为盐水泥浆 (Cw<Cmf)时,渗透性地 层的SP曲线位于泥岩基线的 右侧。
自然电位 /mv
14
结 论
0.5
50
深三侧向(25天后) /Ωm
声波时差 /μs/m
-140
-40
0.5
50 650
150
3600
42
43
自 3610
然
电
位
正
异
3620
常
3630
44
45
3640
第三节 自然电位测井的影响因素
RT Ed 2.3
nunv
lg Cw
F Z n u Z n v Cm
半透膜
一、扩散电动势产生的机理
扩散电动势可由Nernst方程计算:
Ed 2.3 RT n u n v lg Cw F Z n u Z n v Cm
在砂泥岩剖面井中的纯砂岩段,在井壁附近 产生的扩散电动势可表示为:
Ed Kd lg Cw Cm
Kd 2.3 RT u v F uv
第一节 自然电场的产生
由于泥浆和地层水的矿化度不同,在钻开 岩层后,井壁附近两种不同矿化度的溶液 接触产生电化学过程,结果产生电动势形 成自然电场。在石油井中自然电场主要是 由扩散电动势和扩散吸附电动势组成。
几个重要概念:
泥浆:钻井时在井内流动的一种介质。 泥浆滤液:在一定压差下,进入到井壁地层孔
曲线幅度近似等于地层 的实际值,半幅点对应 地层界面; 随地层变薄,曲线读数 受围岩影响增加,幅度 降低,半幅点向围岩方 向移动。
泥岩基线
负异常 正异常。
A
3590 附图1-10 L10井裸眼井电阻率与过套管电阻率对比图
过套管电阻率 /Ωm
深
自然伽马 /μR/h
解
0.5
50
释
深三侧向 /Ωm
度4 (m)
Eda 2.3 RT n u n v lg Cw F Z n u Z n v Cm
Eda Kda lg Cw Cm
Kda 2.3 RT F
当泥浆滤液和地层水矿化度都较低时,上式可写为:
Eda Kda lg Rmf Rw
第二节 自然电位测井及曲线特点
rsh
rm
rt
第二节 自然电位测井及曲线特点
ΔUsp=I.rm
SSP I
rm rsd rsh
Usp SSP • rm rm rsd rsh
三、自然电位测井的影响因素
地层厚度
地层厚度减小,围岩 影响增加,测量值与 实际值的差距加大。
隙内的液体。 地层水:地层孔隙内的水。 溶液的矿化度:溶液含盐的浓度。溶质ቤተ መጻሕፍቲ ባይዱ量与
溶液重量之比。 离子扩散:两种不同浓度的盐溶液接触时,在
渗透压的作用下高浓度溶液中的离子,穿过渗 透性隔膜迁移到低浓度溶液中的现象。
一、扩散电动势产生的机理
泥浆和地层水的 矿化度不同;
井壁地层具有渗 透性;
正、负离子的迁 移速率不同。氯 离子迁移速度大 于钠离子的迁移 速度。
测井方法原理
第一章 自然电位测井
第一章 自然电位测井
自然电位:在没有人工供电的情况下,测 量电极在井内移动时仍能测量到的电位的 变化,这个电位称为自然电位。用SP表 示。
沿井轴测量自然电位变化的测井方法称为 自然电位测井,表示为SP测井。
第一章 自然电位测井
井下自然电场是由钻开岩石时井内钻井液 的矿化度与地层水矿化度不同,井壁附近 出现电化学活动产生的。自然电场的分布 特点取决于井孔剖面岩层的性质。沿井轴 测量自然电位变化可以帮助我们判断地层 的岩性。
地层水及泥浆滤液中含盐性质
地层水及泥浆滤液所含盐分不同,则溶液中所 含离子不同,不同离子的离子价及迁移速率不 同,这将影响Kd及Kda的大小。
RT Ed 2.3
nunv
lg Cw
F Z n u Z n v Cm
三、自然电位测井的影响因素
地层的导电性
地层导电性差,测量回路的电流小,在井内泥 浆柱上产生的压差小,测量值低。