高分子流变学基础Chapter 6 流变仪的基本原理及应用

合集下载

流变仪的用途和应用

流变仪的用途和应用
食品科学
1. 测定食品的流变性质,如酸奶、果酱、果冻等产品的稠度、流动性。2. 研究食品在加工和储存过程中的流变行为变化,优化食品加工工艺。
其他应用
1. 涂料和油墨行业:用于测定涂料和油墨的流变性质,如粘度、流动性和稳定性。2. 制药行业:研究药物溶液的流动性和稳定性,优化药物制剂工艺。3. 石油化工行业:研究石油产品的流变性质,如原油、润滑油等的粘度和流动性。4. 地质学:研究岩石和土壤的流变性质,有助于地质勘探和地质灾害预测。
流变仪的用途和应用
用途/应用领域
具体应用
材料科学研究
1. 研究高分子材料(如塑料、橡胶、树脂)的流变性,包括材料的粘性、弹性、塑性等。2. 表征高分子材料的分子量和分子量分布。3. 指导材料制备工艺和加工工艺的优化。
物理学研究
1. 研究液体的黏性行为。2. 研究固体的弹性行为及固液转变过程中的力学性质。3. 揭示物质的物理性质与微观结构之间的关系。
化学研究
1. 研究化学反应过程中的流变性变化,如黏度变化、凝胶化过程中的黏弹性行为。2. 揭示化学反应机理和化学反应动力学规律。
生物学研究
1. 研究生物组织的力学性质和流变性,如细胞培养液的黏度、细胞膜的弹性。2. 揭示生物组织的结构和功Байду номын сангаас之间的关系,有助于生物医学研究的发展。
工程学研究
1. 研究各种工程材料的流变性,如塑料、涂料、石油等。2. 指导工程材料的制备和加工过程,提高工程材料的性能和使用效果。3. 应用于塑料加工、涂料生产、石油开采等领域的质量控制和产品研发。

Chapter6流变仪的基本原理及应用解读

Chapter6流变仪的基本原理及应用解读

存在原因: 物料经历强烈拉伸和剪切流动, 牛顿流体:∆pent很小,忽略不计
贮存、消耗了部分能量
粘弹性流体:必须考虑因弹性形变导致的压力损失
8
修正方法:
毛细管流变仪
e0为Bagley修正因子
压力梯度:
完全发展区 管壁上的剪切应力:
9
毛细管流变仪
确定e0的实验方法
同一体积流量
长径比不同
横向截距 LB /D = e0 /2
rr r
0
0
0 zzr
动量方程在r 方向上可以简化为
积分并简化得
d drprrdd rr rV r2rrr
r R r r K r K R 1 N 1 K 1 1 r 2
38
旋转流变仪
测量系统的选择
39
旋转流变仪
40
旋转流变仪
测量模式的选择
107
Viscosity [Pa.s]
1、从锥板的测量结果可得第一法向应力差:
N1 1122 2RFcc2pp
2、从平行板的测量结果可以得到法向应力差:
N1RN2R2R Fp p 2p p11 2d dlln nF p Rp
35
旋转流变仪
同轴圆筒
1、基本结构
R KR
V
L
同轴圆筒流变仪的示意图
内筒静止
KKR R
R
同轴圆筒间的流动
而后者是匀速运动
6
毛细管流变仪
物料在毛细管中流动的三区域: 入口区、完全发展区、出口区
L: 毛细管总长 p1 :柱塞杆对聚合物熔体施加的压力 p0 :大气压 pe :出口处熔体压力
7
毛细管流变仪
完全发展区的流场分析

高分子流变学基本概念课件

高分子流变学基本概念课件

高分子流体的粘弹性
弹性
高分子流体在受到外力作用时发生的形变能够部分恢复。
粘性
高分子流体在受到外力作用时产生的剪切应力。
粘弹性
高分子流体同时具有弹性和粘性,其流变行为受温度、应力和分 子结构的影响。
高分子流体的流动行为
层流与湍流
高分子流体在管中流动时,层流 状态下剪切速率与距离成线性关 系,湍流状态下剪切速率与距离 成非线性关系。
高分子流变学基本概 念课件
目录
CONTENTS
• 高分子流变学简介 • 高分子流体的基本性质 • 高分子流变学的基本理论 • 高分子流变学在工业中的应用 • 高分子流变学的未来发展
01 高分子流变学简介
高分子流变学的定义
总结词
高分子流变学是一门研究高分子材料 流动和变形的学科。
详细描述
高分子流变学主要研究高分子材料在 受到外力作用时发生的流动和变形行 为,以及流动和变形过程中涉及的物 理、化学和力学等现象。
流动曲线
描述剪切速率与剪切应力之间关 系的曲线,分为牛顿区、屈服点 和粘弹性区域。
流动不稳定性
高分子流体在流动过程中可能出 现的各种不稳定性现象,如拉伸 流动、漩涡脱落等。
03 高分子流变学的基本理论
唯象理 论
唯象理论是从宏观角度研究高分子流体的行为,通过实验观察和经验公式 来描述高分子流体的流变性质。
高分子流变学的跨学科研究
01
与物理学的交叉
研究高分子流体的热力学性质和 流动行为,探索高分子链的动力 学过程。
02
与化学的交叉
03
与工程的交叉
研究高分子材料的合成和改性, 探索高分子链的化学结构和反应 机理。
将高分子流变学的理论应用于实 际生产过程中,解决工程实际问 题。

流变仪的基本应用和原理讲课文档

流变仪的基本应用和原理讲课文档
第四页,共90页。
⑵ 工程流变学研究和设计。借助流变测量研究聚合反应
工程、高聚物加工工程及加工设备、模具设计制造中的流
场及温度场分布,研究极限流动条件及其与工艺过程的
关系,确定工艺参数,为实现工程优化,完成设备与模具
CAD设计提供可靠的定量依据。
⑶ 检验和指导流变本构方程理论的发展。流变测量的 最高级任务。这种测量必须是科学的,经得起验证的。 通过测量,获得材料真实的粘弹性变化规律及与材料结 构参数的内在联系,检验本构方程的优劣,推动本构方 程理论的发展。
毛 为材料弹性性能的一种度量。最典型的应用是表征PVC
细 的塑化程度(凝胶化程度)。

PVC是几种最常用的通用塑料之一。在硬质PVC制品
流 加工中,PVC的凝胶化程度一直是质量控制的关键。因
变 为凝胶化程度强烈影响PVC制品最终的物理机械性能。

第二十五页,共90页。
悬浮法合成的PVC具有多层次亚微观结构(介观结构
哈根-泊肃叶流量方程
Q
pR4 8 L'
管壁上的剪切速率,即为最大剪切速率

R
4Q R3
定义熔体通过毛细管的表观剪切
速率等于管壁的剪切速率


R
4Q
R3
第十七页,共90页。
2 非牛顿流体

Kn
非牛顿流体的速率和流量,不能用单个的粘度参量来
描述,而是作为流动指数n和流体稠度K的函数。n和K又
是剪切速率

的实验流变曲线上的变量。流动方程在建
立与流道几何参量关系时,要顾及实验获得流变参量的
现实性。这使得非牛顿流体在研究和应用流动方程和流
变曲线时,必须多方面的考虑真实参量、表观参量、管

流变仪原理

流变仪原理

流变仪原理
流变仪是一种用于测试物质流变性质的仪器。

它可以测量物质在外力作用下的变形,以及相应的应力响应。

流变仪原理主要基于牛顿流体力学和材料学知识,可用于研究各种物质的流变性质,包括液体、半固体和固体。

流变学是一个交叉学科,包含材料学、化学、物理学和机械工程学等多个学科。

流变学研究的是物质在非平衡状态下的力学行为,即物质在受到外力作用时的形变和应力变化。

通过流变仪测试物质在不同温度、压力和频率下的流变性质,可以获得材料的力学特性和性能参数,为材料设计和工程应用提供重要的科学依据。

流变仪的基本原理是利用旋转或振荡的方式施加外力,在物质内部形成剪切应力,然后通过测量形变和应力来确定物质的流变性质。

对于牛顿流体,剪切应力与剪切速率成正比;而对于非牛顿流体,则存在剪切变稠或剪切变稀现象。

通过流变仪可以测量这些非牛顿流体的变稠或变稀特性,判断物质的流变性质。

流变仪的应用广泛,涵盖了食品、化妆品、胶体、涂料、塑料、橡胶、金属、土壤、岩石等各个领域。

在食品工业中,流变仪可以测量食品的黏度、弹性和塑性等特性,帮助制定食品配方和加工工艺;在化妆品领域,流变仪可以评估化妆品的流动性、黏度和稳定性等特性,帮助改善产品性能;在橡胶和塑料工业中,流变仪可以测试材料的拉伸、弯曲和压缩等性能,帮助改进材料的制造和加工过程。

总之,流变仪原理在材料科学和工程中具有重要的应用价值,为
各个领域的科学研究和工程应用提供了必要的技术支持。

简述流变仪在高分子物理试验中的应用 流变仪是如何工作的

简述流变仪在高分子物理试验中的应用 流变仪是如何工作的

简述流变仪在高分子物理试验中的应用流变仪是如何工作的将流变仪应用于高分子物理试验教学,可以使同学加深对高分子物理理论课中聚合物粘弹性与流变性能的理解。

简要介绍了旋转流变仪的基本原理和紧要检测功能,并通过一些实例阐述了旋转流变仪在高分子物理试验教学中的实在应用。

该试验的设置可以使同学通过试验巩固高分子物理学问,分析流变试验中体现的实在的高分子物理问题,更好地理解与把握高分子科学的基本理论。

高分子物理是高分子材料相关专业的本科必修专业基础课,紧要讨论聚合物的结构—性能—分子运动之间的关系。

通过开设高分子物理试验,一方面可以使同学加添感性认得,加深对课堂理论学问的理解,另一方面可以使同学把握聚合物结构和性能测定的基本方法,培育同学的试验技能。

聚合物流变性能测试是察看高分子材料内部结构的窗口,不仅可以认得聚合物的结构与性能的关系,还能简便地进行高分子材料的质量检测和质量掌控,从而对其加工成型过程供应理论引导。

旋转流变仪是讨论高分子材料流变性能紧要的流变学测试系统,它不仅可以测量聚合物流体的粘度,还能在较宽的频率、温度范围内讨论聚合物的动态粘弹性,从而揭示聚合物体系内在的结构—性能—分子运动之间的关系。

流变仪即用于测定聚合物熔体、聚合物溶液、悬浮液、乳液、涂料、油墨和食品等流变性质的仪器。

哈克流变仪的工作原理1.哈克流变仪是通过计算机测定各种压力作用时,各种规格的毛细管在不同的升温速率下,不同温度时的挤出速度。

2.可以仿佛实际加工的情况下连续精准牢靠地对材料的流变性能进行测定。

3.是在稳定或者变速的情况下测量扭矩,用夹具因子将物理量转化成流变学的参数。

4.有振荡液滴、振荡剪切等几种原理,用于测量小振幅下的动态力学性能。

哈克流变仪的基本结构可分为三部分:① 微机掌控系统:用于试验参数的设置及试验结果的显示;② 机电驱动系统:用于掌控试验温度转子速度、压力,并可记录温度、压力和转矩随时间的变化;③ 可更换的试验部件:一般依据需要配备密闭式混合器或螺杆挤出器。

第六章 流变测量学

第六章 流变测量学

第六章流变测量学1.引言随着高分子材料流变学的发展,流变测量的方法和仪器也日臻完善。

流变测量的目的至少可归纳为三个方面:(a)物料的流变学表征。

最基本的流变测量任务。

通过测量掌握物料的流变性质与体系的组分、结构及测试条件的关系,为材料设计、配方设计、工艺设计提供基础数据,控制、达到期望的加工流动性和主要物理力学性能。

(b)工程的流变学研究和设计。

借助流变测量研究聚合反应工程,高分子加工工程及加工设备、模具设计制造中的流场及温度场分布,确定工艺参数,研究极限流动条件及其与工艺过程的关系,为实现工程优化,完成设备与模具CAD设计提供定量依据。

(c)检验和指导流变本构方程理论的发展。

流变测量的最高级任务。

这种测量必须是科学的,经得起验证的。

通过测量,获得材料真实的粘弹性变化规律及与材料结构参数的内在联系,检验本构方程的优劣。

由此,流变测量学首先必需担当起如下两项任务;理论上,要建立各种边界条件下的可测量(如压力、扭矩、转速、频率、线速度、流量、温度等)与描写材料流变性质但不能直接测量的物理量(如应力、应变、应变速率、粘度、模量、法向应力差系数等)间的恰当联系,分析各种流变测量实验的科学意义,估计引入的误差。

实验技术上,要能够完成很宽的粘弹性变化范围内(往往跨越几个乃至十几个数量级的变化范围),针对从稀溶液到熔体等不同高分子状态的体系的粘弹性测量,并使测得的量值尽可能准确地反映体系真实的流变特性和工程的实际条件。

这两项任务都是相当艰巨的。

常用的流变测量仪器可分以下几种类型。

毛细管型流变仪根据测量原理不同又可分为恒速型(测压力)和恒压力型(测流速)两种。

通常的高压毛细管流变仪多为恒速型;塑料工业中常用的熔融指数仪属恒压力型毛细管流变仪的一种。

转子型流变仪根据转子几何构造的不同又分为锥一板型、平行板型(板—板型)、同轴圆筒型等。

橡胶工业中常用的门尼粘度计可归为一种改造的转子型流变仪。

混炼机型转矩流变仪实际上是一种组合式转矩测量仪。

06 第六章 转矩流变仪

06 第六章 转矩流变仪
第六章 转矩流变仪 6-1 概述
转矩流变仪是一种多功能、 积木式流变测量仪, 通过记录物料在混合过程中对转子或螺 杆产生的反扭矩以及温度随时间的变化, 可研究物料在加工过程中的分散性能、 流动行为及 结构变化(交联、热稳定性等),同时也可作为生产质量控制的有效手段。由于转矩流变仪与 实际生产设备(密炼机、单螺杆挤出机、双螺杆挤出机等)结构类似,且物料用量少,所以可 在实验室中模拟混炼、挤出等工艺过程,特别适宜于生产配方和工艺条件的优选。 转矩流变仪的基本结构可分为三部分: 微机控制系统, 用于实验参数的设置及实验结果 的显示;机电驱动系统,用于控制实验温度、转子速度、压力,并可记录温度、压力和转矩 随时间的变化;可更换的实验部件,一般根据需要配备密闭式混合器或螺杆挤出器。 密闭式混合器(图 6-1)相当于一个小型的密炼机,由一个“∞”字型的可拆卸混合室和 一对以不同转速、相向旋转的转子组成。在混合室内,转子相向旋转,对物料施加剪切,使 物料在混合室内被强制混合;两个转子的速度不同,在其间隙中发生分散性混合。
∆E -1 T + n ln N R
(6-3)
显然,根据系统自动记录的转矩 M、温度 T 和转速 N,利用多元回归分析可得到∆E 和 n、 K′。但困难在于常数 K、C1、C2 无法确定。 6-2.2 温度补偿转矩 物料在混炼过程中,由于摩擦生热导致物料温度随时间延长而升高。对高聚物而言,其 粘度随温度的升高而降低,导致转矩下降。因此,应当对温度效应进行补偿。通常可采用 Arrhenuius 公式获得温度补偿转矩:
转速 N 为常量,因此上式两边积分可得
EM =
(6-9)
其中 MT 为总转矩,可由系统自动积分得到。 定义比机械能为机械能与物料重量的比值:
ES =

流变仪 原理

流变仪 原理

流变仪原理流变仪是一种用来测试材料流变性质的仪器,它可以帮助我们了解材料在受力作用下的变形特性和流动行为。

流变仪的原理是基于流变学的理论,通过施加不同的力或应变,来观察材料的变形情况,从而得出材料的流变特性。

下面我们将详细介绍流变仪的原理。

首先,流变仪的原理基于流变学的基本原理,流变学是研究物质在外力作用下发生形变和流动的学科。

流变仪通过施加不同的外力,如剪切力、扭转力等,来测试材料的变形情况。

在流变仪中,我们可以通过测量材料的应力-应变关系曲线,来了解材料的流变特性。

这些曲线可以帮助我们分析材料的黏弹性、塑性流变等特性。

其次,流变仪的原理还涉及到流变仪的工作原理。

流变仪通常由外部驱动装置、变形装置、检测装置和控制系统等部分组成。

外部驱动装置可以提供不同的力,如剪切力、扭转力等,来施加在材料上。

变形装置可以将外部力传递给材料,引起材料的变形。

检测装置可以实时监测材料的变形情况,并将数据传输给控制系统进行处理和分析。

最后,流变仪的原理还包括了流变仪的测试原理。

在使用流变仪进行测试时,我们通常会对材料施加不同的外力,如剪切力、扭转力等,同时监测材料的应力和应变情况。

通过对应力-应变关系曲线的分析,我们可以得出材料的流变特性,如剪切黏度、塑性流变指数等参数。

这些参数可以帮助我们了解材料的变形特性和流动行为,对材料的研究和应用具有重要意义。

综上所述,流变仪的原理是基于流变学的理论,通过施加不同的外力,来测试材料的变形情况,从而得出材料的流变特性。

流变仪的工作原理包括外部驱动装置、变形装置、检测装置和控制系统等部分,通过这些装置可以实现对材料的测试和分析。

通过对应力-应变关系曲线的分析,我们可以了解材料的流变特性,这对材料的研究和应用具有重要意义。

流变仪的原理是流变学理论的具体应用,对于材料科学和工程领域具有重要的意义。

流变仪的工作原理

流变仪的工作原理

流变仪的工作原理流变仪的工作原理1.旋转流变仪:有两种,控制应力型和控制应变型A:控制应力型:使用最多,如Physica MCR系列、TA的AR系列、Haake、Malven,都是这一类型的流变仪;其中Physica的马达属于同步直流马达,这种马达相对响应速度快,控制应变能力强;其他厂家使用的属于托杯马达,托杯马达属于异步交流马达,这种马达响应速度相对较慢。

这一类型的流变仪,采用马达带动夹具给样品施加应力,同时用光学解码器测量产生的应变或转速。

B:控制应变型:目前只有ARES属于单纯的控制应变型流变仪,这种流变仪直流马达安装在底部,通过夹具给样品施加应变,样品上部通过夹具连接倒扭矩传感器上,测量产生的应力;这种流变仪只能做单纯的控制应变实验,原因是扭矩传感器在测量扭矩时产生形变,需要一个再平衡的时间,因此反应时间就比较慢,这样就无法通过回馈循环来控制应力。

2.毛细管流变仪毛细管流变仪主要用于高聚物材料熔体流变性能的测试;工作原理是,物料在电加热的料桶里北加热熔融,料桶的下部安装有一定规格的毛细管口模(有不同直径0.25~2mm和不同长度的0.25~40mm),温度稳定后,料桶上部的料杆在驱动马达的带动下以一定的速度或以一定规律变化的速度把物料从毛细管口模种挤出来。

在挤出的过程中,可以测量出毛细管口模入口出的压力,在结合已知的速度参数、口模和料桶参数、以及流变学模型,从而计算出在不同剪切速率下熔体的剪切粘度。

3.转矩流变仪实际上是在实验型挤出机的基础上,配合毛细管、密炼室、单双螺杆、吹膜等不同模块,模拟高聚物材料在加工过程中的一些参数,这种设备相当于聚合物加工的小型实验设备,与材料的实际加工过程更为接近,主要用于与实际生产接近的研究领域。

4.界面流变仪:目前这种流变仪有振荡液滴、振荡剪切等几种原理;是流变测试中最难以准确实现的一个领域;还没有一种特别好而又通用的方法。

美国Brookfield公司正式向中国推出R/S Plus系列流变仪美国Brookfield工程实验室(有限公司)是全球首屈一指的粘度测定/流变学研究仪器的专业厂家,70多年来,始终致力于在流体流变学领域研制简单易用的,功能多样的,产品系列齐全的粘度计/流变仪产品,Brookfield的表盘式粘度计(VT),数字式粘度计(DV-E、DV-I+、DV-II+Pro、DV-III_ULTRA)包含4种不同型号(LV,RV,HA,HB)近二十个产品系列,成为全球最畅销的粘度测定仪器,产品覆盖面达到70%以上,并成为一些粘度计生产厂家争相模仿的对象。

流变仪原理

流变仪原理

流变仪原理
流变仪是一种用来测量材料的流变性质的仪器。

其原理基于牛顿流体力学和弹性变形力学的基本原理,并利用材料在外力作用下的变形与应力的关系来描述材料的流动特性。

流变仪的基本构造包括旋转驱动系统和变形检测系统。

旋转驱动系统通过旋转固体静态的环状试样来施加剪切力,而变形检测系统则通过传感器来测量试样的变形和应力。

在流变仪实验中,通常使用圆盘式或平板式试样。

试样被装入流变仪的试样夹具中,并施加被称为剪切应力的外力。

试样在旋转驱动系统的驱动下开始变形,此时流变仪的变形检测系统会监测试样的变形并记录下来。

利用测得的变形数据,可以计算出材料的应力、应变和黏度等流变物性参数。

这些参数可以帮助我们了解材料的流动性能,包括流动的趋势、变形的程度以及流体的黏度等。

总的来说,流变仪的原理是通过施加剪切力并测量材料的变形和应力,从而得出材料的流变性质参数。

通过对流体材料的流变性质研究,我们可以更好地了解材料的流动行为,并为相关工程和科学研究提供基础数据。

《聚合物加工流变学基础》课程教学大纲

《聚合物加工流变学基础》课程教学大纲

《聚合物加工流变学基础》课程教学大纲FoundationofPoIymerRheo1ogy一、课程基本信息学分:2.0学时:32考核方式:各教学环节占总分的比例:作业及平时测验:30%,期末考试:70%中文简介:聚合物加工流变学基础是高分子材料与工程专业成型加工方向的一门专业基础课程。

该课程介绍了聚合物流变学的基本概念、聚合物溶液和熔体的基本流变特性及主要影响、以及聚合物流变性能的测试等。

高分子材料的加工成型几乎都是在流动状态下进行的。

通过该课程的学习,学生应掌握聚合物的流变性质,为改进聚合物加工工艺条件、制品性能以及加工机械的设计提供理论上的指导。

二、教学目的与要求1.使学生对高分子材料加工过程的基本原理,主要包括高分子材料在成型加工过程中的基本流变学原理和传热学原理有比较全面的认识。

结合高分子物理学、材料加工工艺学、加工机械及模具设计,理解高分子材料的流变性质与材料的结构、性能、制品配方、加工工艺条件、加工机械及模具的设计和应用之间的关系。

2.掌握高分子材料的基本流变学性质;了解研究高分子材料流变性质的基本数学、力学方法;掌握测量、研究高分子材料流变性质的基本实验方法和手段。

为进一步学习《聚合反应工程》、、《高分子材料成型加工工艺学》、《高分子材料成型加工机械》、《模具设计》等课程打下基础。

3.讨论典型高分子材料成型加工过程的流变学原理,讨论多相聚合物体系(复合材料)的流变性质,为分析和改进生产工艺、指导配方设计、开发和应用高分子材料提供一定的理论基础。

三、教学方法和手段授课方式为课堂讲授为主,辅以实验教学,且与学生自学相结合,通过习题使学生加深对教学内容的理解,通过思考题鼓励学生思考问题和参阅文献。

教学方法上,通过讲授高分子流变的特点和原理,同时将课程学习与高分子的热点研究相结合。

课程教学中引入多媒体教学,采用新颖、多样的教学方式,引导学生,激发学生的学习兴趣与求知的欲望。

五、推荐教材和教学参考资源推荐教材:1.史铁钧,吴德峰.高分子流变学基础.北京:化学工业出版社,2009.06教学参考资源:2.吴其晔.《高分子材料流变学》(第一版).北京:高等教育出版社,2002.103.顾国芳,浦鸿汀.《聚合物流变学基础》(第一版).上海:同济大学出版社,2000.014.王玉忠,郑长义.《高聚物流变学导论》(第一版).成都:四川大学出版社,1993.07O5.周彦豪.《聚合物加工流变学基础》(第一版).西安:西安交通大学出版社,1988.03o六、其他说明该教学大纲依据教育部工科学校教学基本要求,借鉴国内同类专业办学经验,并结合我校的特色,在本专业教师的共同商讨下编写而成。

流变仪

流变仪

5、点击开始实验快捷键,将原料加入密炼机中, 并将压杆放下用将压杆锁紧 6、实验时仔细观察转矩和熔体温度随时间的变化 7、达到实验时间,密炼机会自动停止,或点击结 束实验 8、贮存全部实验数据 9、数据处理 10、曲线分析
二、实验数据处理 1、把系统40程序几贮存实验数据的两磁盘分别插 入一号、二号磁盘驱动器,用T指令阅读存入的实 验数据 2、用R指令,输入欲得实验数据的起、止时间和 显示数据的间隔时间,得到实验数值表,用P指 令打印出来 3、用A指令,输入欲得实验图形起、止时间和图 形X/Y/Z轴表征的实验参数,得出实验图,用P指 令打印出来
实际上是一种组合式转矩测 量仪。除主机外,带有一种 小型密炼器和小型螺杆挤出 机及各种口模。转矩流变仪 可以用来研究热塑性材料的 热稳定性、剪切稳定性、流 动和固化行为。
转矩流变仪
转矩流变仪的基本结构可分为三部分: 微机控制系统:用于实验参数的设置及实验结果的显示; 机电驱动系统:用于控制实验温度转子速度、压力, 并可记录温度、 压力和转矩随时间的变化; 可更换的实验部件:一般根据需要配备密闭式混合器或螺杆挤出器。
U-PVC流变曲线及加工设备中的物料状态
a-b 段:当克服静摩擦力之后,粒子之间产生滑 移,从而进入动摩擦过程,粉料混合物中空气 被逐步挤出,并受到加热,转矩下降至b点;
o-a 段: 由于摩擦 力作用, 转矩上升
b 点:物料呈压实状态
b-c段:PVC粉体粒子外包膜被融化、撕破,包膜内 的微细粒子挣脱出来而独立存在,随着微细粒子的 增多,转矩上升
旋转流变仪:在稳定或变速情况下测量扭矩,用夹具因子将物理 量转化为流变学的参数 毛细管流变仪:计算机测控智能化恒压式毛细管流变仪,通过 计算机测定各种压力作用下的各种规格毛细管在不同的升温速 率下、不同温度时的挤出速度。

流变仪在高分子材料研究中的应用

流变仪在高分子材料研究中的应用

转矩流变仪在高分子材料研究中的应用一、仪器简介转矩流变仪是研究材料的流动、塑化、热、剪切稳定性的理想设备,该流变仪提供了更接近于实际加工的动态测量方法,可以在类似实际加工的情况下,连续、准确可靠地对材料的流变性能进行测定,如多组份物料的混合、热固性树脂的交联固化、弹性体的硫化,材料的动态稳定性以及螺杆转速对体系加工性能的影响等。

二、结构组成机电驱动系统:用于控制实验温度转子速度、压力,并可记录温度、压力和转矩随时间的变化;微机控制系统:用于实验参数的设置及实验结果的显示;可更换的实验部件:一般根据需要配备密闭式混合器或螺杆挤出器。

三、工作原理转矩流变仪配有不同参数的螺杆,在具有一定温度的圆筒内旋转,筒的另端设有送料斗。

当原料被送至筒的2/3处时逐步增塑,进入到筒的剩余部分内被均化,当所有颗粒全部溶化后即可利用毛细管挤出模具成为母料或注入模具成形,同时设备也完成对材料的表现粘度与剪切速度及剪切应力关系的测量。

矩矩流变仪支持软件集由表观粘度试验软件plastic与表观粘度测试数据处理软件WinNian组成。

plastic软件可通过PC机的串行口分别实现对试验数据进行采集和参数控制,以及建立人机信息交互界面,这个界面功能比较齐全,可以完成6路温度的测控,包括转速设定、测量和控制,扭矩、压力测量等。

曲线窗口可以实时显示以上各数据对时间的曲线。

这些数据可以由专用的WinNian进行数据处理。

当改变挤出机的螺杆转速,可改变口模内外压力差P值和挤出流量Q值,试验数据可以以文件的形式保存下来。

它是在试验挤出机的基础上配合毛细管、单双螺杆、密炼室、吹膜等不同模块,模拟高聚物材料在加工过程中的一些参数,这种设备相当于聚合物加工的小型试验设备,与材料的实际加工过程更相近,转矩流变仪主要用于与实际生产相接近的研究领域。

四、转矩流变仪的应用1、混合器试验在高分子材料的研发过程中,混合试验是必不可少的。

混合样品的同时,测试转矩、温度、总转矩以及随时间变化的关系。

第6章-流变仪的基本原理及应用

第6章-流变仪的基本原理及应用

0
熔体指数仪 1~100
转动性流变仪 10-6~103
旋转流变仪 10-3~1
门尼黏度计
压缩性、振荡型
混炼型
≥10-2
挤出式毛细管 10-2~105
黏度/Pa.s 10-3~103 ~104 10-2~1011
10-1~107
6.1 毛细管流变仪
毛细管流变仪是目前发展最成熟、应用最广的 流变测量仪 优点:操作简单、测量范围宽(10-2~105剪切速率) 具体应用: (1)测定高分子熔体在毛细管中的剪切应力和 剪切速率的关系; (2)根据挤出物的直径和外观,在恒定应力下 通过改变毛细管的长径比来研究熔体的弹性和 熔体破裂等不稳定流动现象;
6.1.2 恒速型毛细管流变仪
物料从直径直大的料筒经挤压通过有一定入口角的人 口区进入毛细管,然后从出口挤出,其流动状况发生 巨大变化。人口区附近物料有明显的流线收敛现象。 物料在进入毛细管一段距 离之后才能得到充分发展, 成为稳定的直动。而在出 口区附近。由于约束消失, 熔体出现挤出胀大现象, 流线也发生变化。因此, 物料在毛细管中的流动 动可分为三个区域:入口区、 完全发展的流动区和出口区
d)流道收缩比(DR/D)的影响
6.1.5 出口区的流动行为
影响挤出胀大的因素: e)分子量的影响
分子量越大,松弛时间增加,挤出胀大越大。
f)在平均分子量相等下,分子量分布 的影响(主要是高分子量影响)
分子量分布越宽,挤出胀大越大。
g)增塑剂的影响
增塑剂的加入,减弱分子间的相互作用,缩短松弛时间, 挤出胀大减少。
R
R 2
L'
P e0R
或 R
R 2
P-Pent L'

流变仪的基本原理及应用

流变仪的基本原理及应用
锥板结构的优点:
(i) 剪切速率恒定,在确定流变学性质时不需要对流动动力学作任 何假设。不需要流变学模型;
(ii) 测试时仅需要很少量的样品,这对于样品稀少的情况显得尤为 重要,如生物流体和实验室合成的少量聚合物;
(iii) 体系可以有极好的传热和温度控制; (iv) 末端效应可以忽略,特别是在使用少量样品,并且在低速旋转 的情况下。
(iii) 平行板结构可以更方便地安装光学设备和施加电磁场。
(iv) 在一些研究中,剪切速率是一个重要的独立变量。平行板中剪切速率沿径向的分布可以 使剪切速率的作用在同一个样品中得到表现。
(v) 对于填充体系,板间距可以根据填料的大小进行调整。因此平行板更适用于测量聚合物 共混物和多相聚合物体系(复合物和共混物)的流变性能。
实验中: 1、应保持Q恒定,若Q变,相当于 剪切速率改变, e0 也随之变化; 2、由于∆pent主要因流体贮存弹性 引起,故影响材料弹性的因素同样 会影响e0取值; 3、当长径比小、剪切速率大、温 度低时,不可忽略入口校正; 4、长径比>40时,∆pent所占比例 小可不做入口校正。
11
毛细管流变仪
熔体指数仪的基本结构与恒速型流变仪类似 不同之处:熔体指数测量仪中柱塞是变速运动
而后者是匀速运动
7
毛细管流变仪
物料在毛细管中流动的三区域: 入口区、完全发展区、出口区
L: 毛细管总长 p1 :柱塞杆对聚合物熔体施加的压力 p0 :大气压 pe :出口处熔体压力
8
毛细管流变仪
完全发展区的流场分析
1、Bagley 校正 牛顿流体:∆pexit 为零 粘弹性流体: 若其弹性形变在经毛细管后尚未完全恢复, 至出口处任存部分内压力,则导致∆pexit

流变仪的基本原理及应用63页文档

流变仪的基本原理及应用63页文档

41、学问是异常珍贵的东西,从任何源泉吸 收都不可耻。——阿卜·日·法拉兹
42、只有在人群中间,才能认识自 己。——德国
43、重复别人所说的话,只需要教育; 而要挑战别人所说的话,则需要头脑。—— 玛丽·佩蒂博恩·普尔
流变仪的基本原理及应用
16、人民应该为法律而战斗,就像为 了城墙 而战斗 一样。 ——赫 拉克利 特 17、人类对于不公正的行为加以指责 ,并非 因为他 们愿意 做出这 种行为 ,而是 惟恐自 己会成 为这种 行为的 牺牲者 。—— 柏拉图 18、制定法律法令,就是为了不让强 者做什 么事都 横行霸 道。— —奥维 德 19、法律是社会的习惯和思想的结晶 。—— 托·伍·威尔逊 20、人们嘴上挂着的法律,其真实含 义是财 富。— —爱献 生
44、卓越的人一大优点是:在不利与艰 难的遭遇里百折不饶。——贝多芬
45、自己的饭量己知道。——苏联
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

27
旋转流变仪
锥板结构的优点:
(i) 剪切速率恒定,在确定流变学性质时不需要对流动动力学作任 何假设。不需要流变学模型;
(ii) 测试时仅需要很少量的样品,这对于样品稀少的情况显得尤为 重要,如生物流体和实验室合成的少量聚合物;
(iii) 体系可以有极好的传热和温度控制; (iv) 末端效应可以忽略,特别是在使用少量样品,并且在低速旋转 的情况下。
◆ 旋转流变仪一般是通过一对夹具的相对运动来产生流动。引入流动的方法 有两种:
※一种是驱动一个夹具,测量产生的力矩,也称为应变控制型,即控制 施加的应变,测量产生的应力;
※另一种是施加一定的力矩,测量产生的旋转速度,也称为应力控制型, 即控制施加的应力,测量产生的应变。
◆ 一般商用应力控制型流变仪的力矩范围为10−7 到10−1 N⋅m,由此产生的 可测量的剪切速率范围为10−6 到103 s−1,实际的测量范围取决于夹具结构、 物理尺寸和所测试材料的粘度。
存在原因: 物料经历强烈拉伸和剪切流动, 贮存、消耗了部分能量
牛顿流体:∆pent很小,忽略不计
粘弹性流体:必须考虑因弹性形变导致的压力损失9
毛细管流变仪
修正方法:
e0为Bagley修正因子
压力梯度:
完全发展区 管壁上的剪切应力:
10
毛细管流变仪
确定e0的实验方法
同一体积流量
长径比不同
横向截距 LB /D = e0 /2
13
毛细管流率流最大变时 仪
凝胶度:
流率最小时
14
毛细管流变仪
出口区的流动行为
1、挤出胀大现象
产生原因
A、
B、
影响因素 A、高分子链结构及物料配方对挤出胀大现象有明显影响
B、毛细管长径比和料筒尺寸影响挤出胀大比 B = d/D
15
毛细管流变仪
长径比增大, B减小
ቤተ መጻሕፍቲ ባይዱ
L/D较大时: B与长径比几乎无关; 此时挤出胀大原因主要来 自分子链取向产生的弹性 形变, 而入口区弹性形变影响已 不明显
3
混炼机型流变仪: 一种组合式转矩流变
仪,带有小型密炼机和小 型螺杆挤出机及各种口模
优点:测量结果和实际加 工过程相仿
毛细管流变仪
旋转流变仪
转矩流变仪
2
关于流变仪的简单介绍
常见流变仪的剪切速率范围及测黏范围
精确测量范围取决于各自测量面积和样品性质 压缩型门尼粘度计的剪切速率范围大于振荡型
3
关于流变仪的简单介绍
◆ 实际用于粘度及流变性能测量的几何结构有同轴圆筒、锥板和平行板等。
26
旋转流变仪
椎板
在板间隙内速度沿θ 方向的分布是线性的,可以表示为
V
2
r
0
Ω:施加于椎板的
旋转角速度
θ0:锥顶角
0
1 r
R
应变速率张量的θφ 分量为剪切速率
s in r
V s in
0
F
锥板结构的示意图
※在锥顶角很小的情况下,剪切速率是常数,并且相应的流动为简单剪切流动。 这个结果是从牛顿流体得出的,我们也假设对于粘弹性流体它也成立。因此, 一般建议锥顶角应该小于3°。
4
毛细管流变仪
两类主流毛细管流变仪的主要区别
恒速型
恒压型
柱塞前进速率恒定, 作匀速运动
待测量为毛细管两端的压力差
柱塞前进压力恒定, 作变速运动
待测量为物料的挤出速度
一般用来测量物料黏度及 其它流变参数
塑料工业中常使用熔体指数仪 来测熔融指数
5
毛细管流变仪
核心部件 长径比:10/1、20/1、30/1、40/1等
实验中: 1、应保持Q恒定,若Q变,相当于 剪切速率改变, e0 也随之变化; 2、由于∆pent主要因流体贮存弹性 引起,故影响材料弹性的因素同样 会影响e0取值; 3、当长径比小、剪切速率大、温 度低时,不可忽略入口校正; 4、长径比>40时,∆pent所占比例 小可不做入口校正。
11
毛细管流变仪
测黏数据处理
22
毛细管流变仪
负荷与滑塞速度 平衡
此处n不是幂律指数 23
毛细管流变仪
计算出毛细管管壁处剪切速率 管壁处黏度
用毛细管流变仪所测得数据实为 管壁处流变数据
24
毛细管流变仪
25
旋转流变仪
基本结构
◆ 旋转流变仪是现代流变仪中的重要组成部分,它们依靠旋转运动来产生简 单剪切流动,可以用来快速确定材料的粘性、弹性等各方面的流变性能。
2、Rabinowitsch 校正
该公式为通式,推导时并未限制流体类型
壁剪切应力
真实剪切速率
牛顿黏度
牛顿流体表达式
n与1的差异可描述偏离牛顿流体的程度; 大多数高分子浓溶液和熔体n通常小于1; 此处n并非幂律定律中的非牛顿指数;
12
毛细管流变仪
入口压力降的典型应用
零长毛细管流变仪法测量PVC样品在不同辊温下素炼后的凝胶化程度
16
毛细管流变仪
B
DR / D
料筒内径 / 毛细管直径
17
毛细管流变仪
2、出口压力降不为零
18
毛细管流变仪
测试方法
19
毛细管流变仪
20
毛细管流变仪
基本应用
聚合物熔体剪切黏度的研究
流动曲线的时温叠加 聚合物熔体弹性的研究
由末端校正计算熔体弹性 法向应力差的计算
挤出胀大比的研究
21
毛细管流变仪
28
第六章 流变仪的基本原理及 应用
6.1
毛细管流变仪
6.2
旋转流变仪
6.3
转矩流变仪
4
1
三种主流流变仪
1
恒速型(测压力): eg.通常的高压毛细
管流变仪 恒压型(测流速):
eg.塑料工业常用的 熔体指数测量仪 重力型:
eg.乌氏粘度计
2
根据夹具几何构造的不同 分三类:锥-板型
平行板型 同轴圆筒型
eg.橡胶工业中常用的门 尼粘度计
物料加热成熔体
从料筒经挤压
通过入口区进入毛细管 柱塞的高压作用 从毛细管
中挤出
测物料黏度及其它流变参数
恒速型毛细管流变仪 的外形构造
物料从大截面流进小截面 此时流动状况发生巨大改变,入口区附近物料由 于受拉伸出现明显地流线收敛现象,此现象对刚 进入毛细管的物料流动有很大影响。
6
毛细管流变仪
恒压型毛细管流变仪
熔体指数仪的基本结构与恒速型流变仪类似 不同之处:熔体指数测量仪中柱塞是变速运动
而后者是匀速运动
7
毛细管流变仪
物料在毛细管中流动的三区域: 入口区、完全发展区、出口区
L: 毛细管总长 p1 :柱塞杆对聚合物熔体施加的压力 p0 :大气压 pe :出口处熔体压力
8
毛细管流变仪
完全发展区的流场分析
1、Bagley 校正 牛顿流体:∆pexit 为零 粘弹性流体: 若其弹性形变在经毛细管后尚未完全恢复, 至出口处任存部分内压力,则导致∆pexit
相关文档
最新文档