有机工质朗肯循环中低温余热发电技术

合集下载

低温余热有机工质朗肯循环概要

低温余热有机工质朗肯循环概要

工质选择
工质选择的原则:(1)化学稳定性好;(2)具有较低的 臭氧破坏性和温室效应;(3)传热性能好;(4)价格低廉; (5)无毒、不可燃、不可爆 国内研究根据各自情况采用比较多的工质是R245fa、 R123和R134a。
工质选择
—— 冷凝温度 冷凝温度(℃) R245fa 40 冷凝压力(Mpa) 0.25
接触式机械密封
缺点 1. 结构较复杂,对制造加工要求高; 2. 安装与更换比较麻烦,要求工人有一定的安装技术水 平; 3. 发生偶然事故时,处理比较困难;
非接触式机械密封
干气密封
非接触式机械密封
干气密封旋转环旋转时,密封气体 被吸入动压槽内,由外径朝向中心, 径向分量朝着密封堰流动。由于密 封堰的节流作用,进入密封面的气 体被压缩,气体压力升高。在该压 力作用下,密封面被推开,流动的 气体在两个密封面间形成一层很薄 的气膜,此气膜厚度一般在3微米 左右。气体动力学研究表明,当干 气密封两端面间的间隙在2—3微米 时,通过间隙的气体流动层最为稳 定。当气体静压力、弹簧力形成的 闭合力与气膜反力相等时,该气膜 厚度十分稳定。
排烟温度,℃ 100~300 400~550 350~550
设备名称 干法水泥窑 氧吹平炉 炼锌烟化炉 炼铜反射炉 镍精炼炉 氧气顶吹转炉
排烟温度,℃ 600~800 700~1100 1000~1100 1100 ~1300 1400~1600 1650~1900
>400
650~900 260~600 排烟余热
国内行情
工程应用: (1)目前国内ORC仅应用于西藏地热发电,采用以色列 ORMAT的ORC透平 (2)包钢烟气ORC发电,正处于试运行阶段,由西安交 大程代京教授带领的团队开发

有机工质朗肯循环余热发电技术

有机工质朗肯循环余热发电技术

螺杆膨胀机的基本构造
螺杆膨胀机是一种依据容积变化原理工作的 双轴回转式螺杆机械。它的结构与螺杆压缩机 基本相同,主要由一对螺杆转子、缸体、轴承 、同步齿轮、密封组件以及联轴节等零件组成 ,结构简单,其气缸呈两圆相交的“∞”字形 ,两根按一定传动比反向旋转相互啮合的螺旋 形阴、阳转子平行地置于气缸中。
12
Depart. Thermal Energy & Refrigeration Eng.
螺杆膨胀机的应用
●螺杆膨胀机的输出功率可以在5kW~1000kW之间,弥补了蒸 汽轮机单机功率不能太小的空间。
●对于有压力的余热流体,可直接利用螺杆膨胀机 ●对于<250℃的无压力的余热流体,利用有机工质朗肯循环螺杆
膨胀机系统。 ●有机工质朗肯循环螺杆膨胀机系统。还可以用到太阳能、地热
能等中低温可再生能源发电项目中去。 有机工质循环螺杆膨胀机系统用于低温余热回收利用,有广阔
的技术发展空间。
13
Depart. Thermal Energy & Refrigeration Eng.
螺杆膨胀机作为余热回收动力机,具有的技术特点
第四届全国余热回收再利用技术与产业发展研讨会
有机工质朗肯2.24 深圳
1
Depart. Thermal Energy & Refrigeration Eng.
▪技术应用背景介绍 ▪有机工质朗肯循环余热发电原理 ▪ 螺杆膨胀机简介及技术特点 ▪ 研究状况 ▪有机工质朗肯循环余热发电系统 ▪经济效益和环境效益 ▪总结
(1)螺杆膨胀机适用于过热蒸汽、饱和蒸汽、汽水两相流 体、(带压)热水及无压热流体的动力机械,可以回收 不同种类的工业余热;
(2)螺杆膨胀机还适用于高盐份的强碱流体,能除垢自洁 ,而且结垢有利于提高机器效率,因而对余热流体品质 要求不高,扩大了应用范围;

有机朗肯循环低温余热发电系统综述

有机朗肯循环低温余热发电系统综述

有机朗肯循环低温余热发电系统综述引言在工业生产过程中,大量的热能会以余热的形式排放到环境中,造成了能源的浪费。

这些废热也可能对环境造成影响。

利用余热进行发电,不仅可以提高能源利用效率,还可以减少对环境的影响。

有机朗肯循环低温余热发电系统正是一种利用余热发电的新型技术,本文将就有机朗肯循环低温余热发电系统的原理、特点、应用及发展前景进行综述。

一、有机朗肯循环低温余热发电系统的原理有机朗肯循环低温余热发电系统是利用有机朗肯循环技术,将低温余热转化为电能的一种系统。

其原理是利用有机朗肯循环工质和低温热源之间的温差来驱动发电机发电。

有机朗肯循环是将有机工质置于一个封闭的循环系统内,利用热能的输入和排出来驱动涡轮机进行发电的一种循环系统。

当有机工质受热使得蒸汽压升高时,蒸汽压推动涡轮机工作,从而带动发电机发电;而在冷凝器中,有机工质又被冷却再次变成液态,完成循环。

有机朗肯循环低温余热发电系统是通过这样一个闭合的循环系统,将低温余热转化为电能。

二、有机朗肯循环低温余热发电系统的特点1. 低温工作:有机朗肯循环低温余热发电系统的工作温度低,通常在100°C以下。

这使得这种系统可以有效利用那些传统热能利用技术无法利用的低品位热能资源,如煤矿瓦斯、生活污水、工业废热等。

2. 环保高效:有机朗肯循环低温余热发电系统的工作过程无需核心机械设备如大型锅炉或锅炉,排放的废气和废水相对较少,具有较高的环保性。

由于其低温工作特点,利用的低品位热能资源不会与食品、药品等高温生产过程相冲突,环保性较好。

3. 经济效益:有机朗肯循环低温余热发电系统具有投资少、成本低、回收期短等特点,从经济角度来看很有吸引力。

4. 可操作性强:有机朗肯循环低温余热发电系统的操作比较简便,不需要特别复杂的操作程序,管理维护成本低。

三、有机朗肯循环低温余热发电系统的应用有机朗肯循环低温余热发电系统已经在多个领域得到了应用,主要包括以下几个方面:1. 电厂余热利用:在电厂生产过程中,通常会有大量的低温余热排放,有机朗肯循环低温余热发电系统可以有效地利用这些余热进行发电,提高能源利用效率。

有机朗肯循环低温余热发电的模型优化分析

有机朗肯循环低温余热发电的模型优化分析

有机朗肯循环低温余热发电的模型优化分析摘要:建立有机朗肯循环低温余热发电过程的物理模型,分析热力系统参数和运行效率的关系,揭示有机工质热物性、蒸发温度、冷凝温度和过热度等因素对循环热效率和净输出功率的影响规律。

结果表明在本计算工况下,有机工质R141b的循环热效率和净输出功率最大,为最优工质。

净输出功率随膨胀比和过热度的增加而单调增大。

循环热效率随蒸发温度和过热度的增加,均先增大,后减小。

蒸发温度为140℃时,循环热效率取得最大值17.86%。

循环热效率、膨胀比和净输出功率均随冷凝温度的增加而单调降低。

关键词:有机朗肯循环;低温余热发电;有机工质;循环热效率;蒸发温度1.引言为了利用冶金、水泥、化工和电力等工业生产过程中200℃以下的余热废气,有必要开发新技术利用这部分能量品味较低、难以充分利用的低温余热,以提高能源综合利用效率[1-3]。

目前最有前景的低温余热利用方法是基于低沸点有机物作为循环工质的有机朗肯循环(简称ORC)发电技术,能将热水、废烟气或废蒸汽中的余热热能转化为机械能和电能[2-5]。

本研究拟建立有机朗肯循环低温余热发电过程的物理模型,分析热力系统参数和运行效率的关系,揭示有机工质热物性、蒸发温度、冷凝温度和过热度等因素对循环热效率和净输出功率的影响规律。

本文的分析有助于了解有机工质和运行参数的选择对基本ORC循环的影响规律,优化系统指标,提高能量的综合利用效率。

2.工作原理图1示出有机朗肯循环系统主要包括蒸发器、膨胀机、冷凝器和压缩泵4个部分。

图2示出理想有机朗肯循环包括定压加热(5-6-7-1)、绝热膨胀(1-2)、定压冷却(2-3-4)和绝热加压(4-5)四个热力过程[1-5]:(1)绝热加压(4-5)。

储液器中的液态工质通过压缩泵,近似等熵绝热压缩,升压成为低温高压的过冷液体,再送入蒸发器。

(2)定压加热(5-6-7-1)。

有机工质在蒸发器中被热源加热,有机工质等压吸热,升温转变成高温高压的饱和蒸气或过热蒸气,随后进入膨胀机。

水泥厂有机郎肯循环低温余热发电系统原理解析

水泥厂有机郎肯循环低温余热发电系统原理解析

O : , ( - h 4 )
( 6 ) 式
在此过程 中 , 蒸发器存在着不可避免的能量损失 , 其损失 率计算公式如下 :

( 7 )式
在公式 ( 7 )中 ,s 则为工质在通过工质泵出口后的熵值 ,
图2 O RC循环 T — S图
T H 代表着蒸发器 中热源的平均温度 。
5) 有机朗肯循环低温余热发电系统的净输出功率有如下公
式 :
W = r 口
( 8) 式
热 力 学定 律的效 率如 下表 示 :
r / i : ×1 00%
( 9) 式

热力 学第 二定 律的效 率如 下表 示 :
W h e t ×l 0

) 式
余热利用率为 :
2 0 1 3 年第 1 2 期总第1 3 2 期
S- L- C0N VALLE Y

水泥厂有机郎肯循环低温余热发电系统原理解析
张 凯
( 山西省 电力公 司 , 山西 太原 0 3 0 0 0 1)
摘 要 本 丈对有 机 朗肯低 温 余热发 电 系统 的基 本原理 进 行 了分析 和研 究 , 重点对 其 组成 结构和 工质 进行 了解 析 。 关 键 词 有机朗肯循环 ; 低温余热 ; 工质 中圈 分类 号 : T Q 1 7 2 文献标 识码 : A 文章编 号 : 1 6 7 卜7 5 9 7( 2 0 1 3 )1 2 - 0 0 6 卜O 2
在公 式 ( 4)中 ,h 和s 分 代 表 着 工 质 在通 过 冷 凝 器 后 在 其 出 口焓 值 、熵值 ; T 则为冷却源的平均温度。 3 ) 在3 — 4过 程 , 其 为加 压的 过程 , 在 这 过程 中工 质泵 所 做 功为 如下 :

ORC低温余热发电技术

ORC低温余热发电技术

基于有机朗肯循环的ORC低温余热发电技术伴随国际能源价格持续上涨,及对可再生能源、清洁能源的呼声日益升高,有机工质朗肯循环(Organic Rankine Cycle简称ORC)低温发电技术在国际电力工业市场已经成为一个异军突起的黑马。

典型的蒸汽动力发电系统,其工作循环可以理想化为由两个可逆定压过程和两个可逆绝热过程组成的理想循环,包括以下四个热力学过程:第一步:定压吸热过程,第二步:绝热膨胀过程,第三步:定压放热过程,第四步:绝热加压过程。

该热力循环理论是由19世纪苏格兰工程师W.J.M.Rankine提出,为纪念其取得的成就,蒸汽动力装置的基本循环亦称为为朗肯循环(Rankine Cycle)。

有机工质朗肯循环专指以低沸点(蒸发温度38度,正戊烷)氟碳氢化合物为循环工质的热力系统,ORC低温发电技术就是基于这一工作过程的发电系统,也称有机工质朗肯循环发电。

ORC低温发电技术,这里低温泛指的温度小于150度但大于90度的热源,其低温热源是工业过程废热、太阳能、海洋温差、地热等清洁能源,技术突破点在于研究更低的热源温度以驱动透平做功发电,以适应更多的工况条件。

尽管发电效率低于传统火电,但由于使用的是清洁能源及工业过程中被废弃的低品质余热,因此在国际能源市场发展迅速。

常规的化石燃料发电技术(火力发电),即利用煤炭、重油或天然气等燃料燃烧时产生的热能来加热水,使水变成高温、高压水蒸气,然后再由水蒸气冲转汽轮机驱动发电机来发电。

这个系统中的循环工质是除盐水,由于水的物理性质(一个大气压,100度蒸发),因此传统电力工业追求的是更高的温度计压力,以提高发电效率,如:超临界、超超临界等。

但是提高发电效率的同时,也带来了环境污染、粉尘、气候变化等负面因素。

因此在低温发电领域,ORC与传统的发电技术相比,具备以下几个优势:1)有机工质具有良好的热力学性质,低的沸点及高的蒸气压力使0RC方法比水蒸气朗肯循环具有较高的热效率,对较低温度热源的利用有更高的效率。

低温余热回收有机朗肯循环技术

低温余热回收有机朗肯循环技术

低温余热回收有机朗肯循环技术摘要:低温余热广泛存在于高耗能行业中,有机朗肯循环(ORC)利用低温余热发电技术具有众多优势,国内外的许多学者展开了各方面的研究工作,使该技术在工业余热、地热等领域商业化成功。

在采用有机朗肯循环(ORC)发电技术时要充分考虑项目的经济效益,而不能一味地考虑余热的回收效率。

关键词:低温余热有机朗肯循环余热回收经济性分析能源是人类社会生存发展的重要物质基础,攸关国计民生和国家战略竞争力。

“节能减排”是我国可持续发展的一项长远发展战略,也是我国的重要基本国策,随着工业化、城镇化进程加快和消费结构持续升级,我国能源需求刚性增长,资源环境问题仍是制约我国经济社会发展的瓶颈之一,节能减排依然形势严峻、任务艰巨[1]。

加大节能减排设备的研发,即减少能源浪费和环境污染,将创造巨大的经济效益和社会效益。

工业低温余热广泛存在于电力、钢铁、有色金属、建材、石油、化工、煤炭等高耗能行业中,据工信部统计,目前,在七大高耗能行业中余热总资源量约3.5亿吨标煤,其中200℃以下的低品位余热资源约占总余热资源的54%左右,如果将此余热资源加以转换,将可实现约1840万KW的装机规模。

有机朗肯循环(ORC)发电原理有机朗肯循环(ORC)发电系统和传统的朗肯循环发电系统原理相同,区别在于有机朗肯循环采用低沸点的有机工质作为循环工质,最大限度的回收余热资源。

有机朗肯循环(ORC)发电系统主要设备包括:换热器(蒸发器和冷凝器),低沸点工质透平压缩机,膨胀机和发电机等(如图1所示)。

图1 有机朗肯循环(ORC)发电系统图有机朗肯循环(ORC)发电系统主要包括以下4个过程。

:(1)低温低压液体有机工质通过工质泵升压后进入蒸发器中(1-2过程),有机工质泵做功:式中:m——有机工质质量流量(Kg/s)h1——工质泵入口有机工质焓值(KJ/Kg)h2——工质泵出口有机工质焓值(KJ/Kg)——工质泵出口等熵工质焓值(KJ/Kg)——工质泵效率(2)高压低温有机工质进入蒸发器后,被高温流体加热,变成高温高压蒸汽(2-3-4过程),有机工质吸热量为:式中:——蒸发器入口工质焓值(KJ/Kg)——蒸发器出口工质焓值(KJ/Kg)(3)高温高压蒸汽进入膨胀机做功,膨胀机进而拖动发电机发电(4-5过程),膨胀做功量为:式中:——膨胀机入口工质焓值(KJ/Kg)——膨胀机出口工质焓值(KJ/Kg)——膨胀机等熵膨胀效率(4)膨胀后的低压低温蒸汽进入冷凝器,和循环冷却水进行换热,冷却成低温低压液体有机工质,完成整个循环(5-6-1过程)。

2024年ORC低温余热发电系统市场需求分析

2024年ORC低温余热发电系统市场需求分析

2024年ORC低温余热发电系统市场需求分析引言在当前可持续发展的时代背景下,对清洁能源和高效能源利用的需求日益增长。

为了更好地利用产业生产过程中产生的低温余热能,ORC(有机朗肯循环)低温余热发电系统逐渐受到市场的关注。

本文旨在分析ORC低温余热发电系统市场的需求状况,并探讨其未来发展前景。

1. ORC低温余热发电系统的基本原理ORC低温余热发电系统是利用有机朗肯循环原理,将低温余热能转化为电能的一种高效发电技术。

其基本原理是通过将低温热源与工质介质进行热交换,使工质介质蒸发产生高温高压蒸汽,然后通过涡轮机将蒸汽转化为机械能,最后驱动发电机产生电能。

2. 2024年ORC低温余热发电系统市场需求分析2.1 市场规模和增长趋势随着环境保护和资源节约意识的增强,ORC低温余热发电系统在市场上的需求逐渐增加。

根据市场调研数据显示,目前ORC低温余热发电系统市场规模已经达到XX 亿美元,并且预计在未来几年内将保持稳定增长。

2.2 市场驱动因素2.2.1 环境政策支持各国政府出台的环境政策将清洁能源发展作为重点内容之一,鼓励企业采用可再生能源发电技术,促进能源的可持续利用。

ORC低温余热发电系统作为一种利用低温余热能的高效发电技术,在环境政策的支持下,受到了市场的青睐。

2.2.2 能源效率提升需求工业生产过程中产生的低温余热能通常被忽视或未得到有效利用,导致能源资源浪费。

ORC低温余热发电系统的应用可以将这些低温余热能转化为实用电能,提高能源的利用效率,减少能源浪费,满足工业企业节能减排的需求。

2.2.3 技术进步推动ORC低温余热发电系统的技术不断创新和进步,使其在性能、效率等方面得到提升。

新型工质介质的研发、热交换器技术的改进以及涡轮机、发电机的优化等方面的技术进步,为市场需求的增加提供了技术支撑。

2.3 发展前景和市场机遇2.3.1 市场前景广阔ORC低温余热发电系统具有广泛的应用场景,包括钢铁、化工、电力、水泥等多个行业。

有机朗肯循环中低温余热发电技术.

有机朗肯循环中低温余热发电技术.
从而拓宽了可以回收发电的余热资源范围,为建材、 冶金、化工等行业的低温余热资源回收提供了技术手
段和设备。同时,这项技术还可以推广到可再生能源 发电系统中,(如地热、太阳能和生物质能)为可再 生能源发电提供关键技术和设备。
10
Depart. Thermal Energy & Refrigeration Eng.
有机工质朗肯循环中低温余热发电 关键设备之一
螺杆膨胀机简介
螺杆膨胀机的基本构造
螺杆膨胀机是一种依据容积变化原理工作的 双轴回转式螺杆机械。它的结构与螺杆压缩机 基本相同,主要由一对螺杆转子、缸体、轴承 、同步齿轮、密封组件以及联轴节等零件组成 ,结构简单,其气缸呈两圆相交的“∞”字形 ,两根按一定传动比反向旋转相互啮合的螺旋 形阴、阳转子平行地置于气缸中。
9
Depart. Thermal Energy & Refrigeration Eng.
有机工质朗肯循环余热发电原理
有机工质朗肯循环系统能够实现余热回收和发电的最 低余热资源温度可到80℃,(这一温度还可降低,但 发电效率会降低,影响经济性)这是常规发电技术不 能做到的(常规发电要求热源温度在350℃以上),
2.透平进排气压力低,蒸汽体积较大,透平通流面积较大。 3.通常透平进口蒸汽需具有一定的过热度,在余热锅炉中必然要
设置过热蒸汽加热段,余热锅炉的结构比较复杂。 4.需要较多的运行、维修人员,运行成本较高。 5.单机容量不能太小,系统满负荷运行率不高。 6.一般只适用于烟气温度高于350℃以上的余热。
余热余压利用工程是我国《节能中长期发展专 项规划》中的十大重点节能工程之一。目前在我 国工业的各个领域中存在大量的低温余热资源( 350℃以下,低压或常压),由于缺乏有效的技术 手段而没有得到充分利用,传统发电技术的工作 参数大多为高参数、大容量,无法利用这部分较 为分散但总量巨大的能源。而利用有机工质朗肯 循环,开发新型、高效的低温余热发电系统,对 于提高我国能源利用率、节能减排,保护环境具 有重要的意义。

有机朗肯循环低温余热发电技术在QHD32-6FPSO上的应用

有机朗肯循环低温余热发电技术在QHD32-6FPSO上的应用

有机朗肯循环低温余热发电技术在QHD32-6FPSO上的应用作者:刘冬青李洪强来源:《机电信息》2020年第17期摘要:余热是在一定的经济技术条件下,在能源利用设备中没有被利用的能源,也就是多余、废弃的能源。

海洋石油平台在生产过程中,主电站作为海洋平台的电力供给设备,在运行过程中产生大量的高温废气余热,往往这部分热量被浪费,同时对环境造成了污染。

为了达到节能减排和降本增效的目的,QHD32-6世纪号FPSO计划利用有机朗肯循环低温余热发电技术,实现废热资源的充分利用,减少主机原油消耗量,以供FPSO生活楼等使用。

但经过综合分析,在海上增加有机朗肯低温发电系统,经济效益较差,且影响船体稳定性,可操作难度较大。

关键词:低温余热;有机朗肯循环发电;节能减排0 引言秦皇岛32-6世纪号油田浮式生产储油船(FPSO)位于渤海海域,目前世纪号上的热介质系统有3台热介质锅炉和1台透平废热回收装置同时运行,热负荷基本无富裕热量。

主发电系统中有5台7 300 kW原油发电机组和1台6 500 kW燃气透平,其中原油机组负荷目前在50%左右,本次设计考虑在现有基础上适当增加余量,推荐按照原油机组的65%负荷考虑。

为了达到节能减排和降本增效的目的,QHD32-6世纪号计划回收和利用主机产生的高温烟气(平均烟气温度为330 ℃),实现废热资源的充分利用,减少主机原油消耗量,利用有机朗肯循环低温余热发电技术,主机烟气废热实现转换发电,以供FPSO生活楼等使用。

1 有机朗肯循环低温余热发电技术系统设计有机朗肯循环发电,即在传统朗肯循环中,由有机工质代替水推动涡轮机组做功。

本项目有机朗肯循环发电系统示意图如图1所示。

低压液态有机工质经过工质泵增压后进入预热器、蒸发器吸收烟气热量转变为高温高压蒸汽之后,高温高压有机工质蒸汽推动涡轮机做功,产生能量输出,涡轮机出口的低压蒸汽进入冷凝器,向低温热源放热并冷凝为液态,如此往复循环,不断由余热转化为电能。

低温余热发电ORC有机朗肯循环技术及其产业化

低温余热发电ORC有机朗肯循环技术及其产业化

低温余热发电ORC有机朗肯循环技术及其产业化2022年3月报告大纲低温余热资源低温余热发电技术昆工-昆钢合作开发的可行性探讨一、低温余热资源目前我国能源形势严峻的根本原因在于用能效率低下。

我国每吨标准煤的产出效率仅相当于日本的10.3%、美国的28.6%。

我国工业用能中近60-65%的能源转化为余热资源,其中温度低于350℃以下的低温余热,约占余热总量的60%,目前技术尚无法实现对其有效的回收利用。

1.工业余热资源我国钢铁工业余热按品质分类高品位余热(>900℃)47%中品位余热(400℃~900℃)30%低品位余热(<400℃)23%120220806040200114.7回收潜力回收潜力74.5回收潜力56.247%50.5130%44%22.523%0低品位30%高品位中品位我国钢铁冶金余热总量达15000万tce/a,目前平均余热回收水平仅为30%。

主要原因在于我国现有技术难以回收数量庞大的中低温余热。

因此,我国钢铁工业中有大量的中低温余热资源可供开发。

我国有色冶金工业余热我国有色冶金行业存在大量的容易收集的温度在60℃以上的液态余热(如冷却水)及低压蒸汽,据不完全统计蕴含可用的热能约1800万tce/a,潜在发电能力相当于3/4个三峡工程发电量。

我国建材工业余热陶瓷窑炉玻璃窑炉水泥窑炉1.水泥工业:随着新型干法水泥熟料技术在全国范围内的推广、普及,水泥生产过程中存在大量350-400℃以下的余热不能充分利用,这部分热量占到水泥熟料烧成总耗热量35%以上造成的能源浪费高得惊人。

我国水泥低温余热潜在的发电容量约在800亿kWh/a,相当于1个三峡工程的年发电量我国建材工业余热2.陶瓷工业:日用陶瓷烧制窑炉排烟温度一般在200-300℃,排烟带走的热量损失约占总热量的20%-40%。

我国现有陶瓷生产企业约3000家,余热发电能力约1200亿kWh/a,相当于2个三峡工程的年发电量。

低沸点工质的有机朗肯循环纯低温余热发电技术

低沸点工质的有机朗肯循环纯低温余热发电技术

低沸点工质的有机朗肯循环纯低温余热发电技术引言废弃物排放的优点。

(ORMAT)公司利用低温热源的有机朗肯循环(Orga nicRankine Cyck ,简称()RC)纯低温余热发电技术。

该技术有别于常规技术,其特点是:不是用水作为工质,而是使用低沸点的有机物作为工质 来吸收废气余热,汽化,进入汽轮机膨胀做功。

1.低沸点的有机物在一个大气压下,水的沸点足100 C,而一些有机物的沸点却低于水的沸 点,见表I 。

有机物的沸点与压力之间存在着对应关系,以氯乙烷为例,见表 2。

水的沸点与压力之间对应关系见表 3。

1 几种有机狗的游直£廈5作者:来源:更新日期:2007-3-19我国水泥厂的余热发电, 先后经历高温余热发电、带补燃炉的中低温余热发电和纯低温余热发电3个阶段。

纯低温余热发电与带补燃的中低温余热发电相比,具有投资省、 生产过程中不增加粉尘、废渣、N0。

和S0。

等本文介绍以色列奥玛特*2 »乙«沸点与a力的5F)fl关系*3由表2和表3可见,氯乙烷的沸点比水低,蒸气压力很高。

根据低沸点有机工质的这种特点,就可以利用低温热源来加热低沸点工质,使它产生具有较高压力的蒸气来推动汽轮机做功。

2ORC纯低温余热发电在地热发电方面的应用0RC纯低温余热发电技术在我国地热发电方面已得到初步应用,我国目前已经勘测发现的地热田均属热水型热储。

热水型资源发电采用的热力系统主要有两种,即扩容(闪蒸)系统和双工质循环系统。

西藏羊八井地热电站, 热水温度145 C,采用二次扩容热力系统,汽轮机(青岛汽轮机厂设计制造D3 一1. 7/0. 5型地热汽轮机发电机组)单机容量3000W , 3000W / m in , 一次进汽压力182kPa ,温度115 C,二次进汽压力54kPa ,温度8「C, 额定排汽压力为10kPa。

双工质循环系统中,地热水流经热交换器,把地热能传递给另一种低沸点丁质,使之蒸发产生蒸气,组成低沸点工质朗肯循环发电。

6-3 中低温余热有机朗肯循环发电(ORC发电) 支持政策 一览-2

6-3 中低温余热有机朗肯循环发电(ORC发电) 支持政策 一览-2

中低品位余热有机朗肯循环发电政策导向一览( 截止于2017年)有机朗肯循环(ORC)低温发电技术利用中低品味余热进行发电,该技术可利用80~300℃的低温热源进行发电,热电转换效率达到10~23%,向心涡轮透平是目前该领域内效率最高的低温发电技术。

这一技术可广泛用于化工石油、钢铁冶金、水泥建材、化肥制药、印染造纸等高能耗行业的余热回收发电,也可以推广到可再生能源如地热发电、太阳能光热发电和生物质发电等系统中。

我国中低品位余热有机朗肯循环发电技术的市场水平,与我国工业节能挖掘潜力需求、以及能源结构优化目标相比,有非常大的差距,之所以市场发展动能不足,主要原因表现在以下四方面:①一是自主技术能力不强:产学研结合不够紧密,企业ORC技术体系不完善,技术开发投入不足,一些核心技术尚未完全掌握;②二是产业集中度低:行业龙头骨干企业带动作用不强,ORC产品设备成套化、系列化、标准化水平低;③三是国外品牌掌握核心技术形成“垄断”格局,导致项目实施造价偏高,投资回报预期并不理想;④四是政策不完善:相关法规、标准体系以及金融、财税政策不健全。

针对上述不利因素,天加热能凝心聚力,攻坚克难,建立中国最大的低温发电研发制造基地,以引进的国际先进品牌及掌握的成熟技术产品为依托,加强自身技术创新能力,强化行业龙头带头作用,占领市场领先地位,从而国产化、本土化发展工业绿动力,推广地热能应用。

不断发展壮大中的中低温余热发电市场,将不断涌现更新的有机朗肯循环工业余热发电、地热发电等能源设备技术,并提供高效综合能源解决方案。

借助行业政策的“东风”,余热发电市场将培育出更多优秀的节能环保设备品牌。

目前,随着行业技术的深入发展,有关中低品位余热有机朗肯循环发电的各项政策将逐渐明朗起来。

近几年中低品位余热有机朗肯循环发电主要政策导向一览如下:(截止2017年01月)。

No.1《重大节能技术与装备产业化工程实施方案》发改环资[2014]2423号发布日期:2014.10.27No.2《国家重点节能低碳技术推广目录(2014年本,节能部分)》2014年第24号发布日期:2014.12.31◆No.3《国际“双十佳”最佳节能技术和实践清单》2015年第32号发布日期:2015.12.16关键词:No.4《国家重点节能低碳技术推广目录(2015年本,节能部分)》2015年第35号发布日期:2015.12.30◆No.5《能源技术革命创新行动计划》发改能源[2016]513号发布日期:2016.04.07No.6《“十三五”节能环保产业发展规划》2016年12月发布日期:2016.12.22No.7《国家重点节能低碳技术推广目录(2016年本,节能部分)》2016第30号发布日期:2016.12.30◆推广前景及节能减排潜力预计未来5 年,全国低品位ORC 发电的总装机容量可达50 万kW,形成的年节能能力约为150 万tce,减排能力400 万tCO2。

有机朗肯循环(ORC)中低温余热发电与工业余热利用

有机朗肯循环(ORC)中低温余热发电与工业余热利用

技术应用背景 有机朗肯循环(ORC)余热发电技术 研究概况 关键设备与技术 工业余热回收利用
建议和总结
有机工质朗肯循环中低温余热发电
关键设备之一
螺杆膨胀机简介
螺杆膨胀机的基本构造 螺杆膨胀机是一种依据容积变化原理工作
的双轴回转式螺杆机械。它的结构与螺杆压缩机 基本相同,主要由一对螺杆转子、缸体、轴承、 同步齿轮、密封组件以及联轴节等零件组成,结 构简单,其气缸呈两圆相交的“∞”字形,两根 按一定传动比反向旋转相互啮合的螺旋形阴、阳 转子平行地置于气缸中。
不同国家ORC发电机组的装机数量
国外的研究应用状况
国外ORC技术已成功商业化,涌现出许多ORC设计与制造厂,如美国 ORMAT公司、意大利Turboden、德国GMK公司等,普惠、GE、三菱等著名 叶轮机械设计制造企业也成立了专门的ORC公司。
国内的研究应用状况
国内对于ORC发电技术的研究较多,目前仍需要深入 解决理论研究与工程实际相结合问题,ORC发电系统的工 程化应用仍需要有多项关键技术攻克。
资源范围,为建材、冶金、化工等行业的低温余
热资源回收提供了技术手段和设备。
同时,这项技术还可以推广到可再生能源发 电系统中(如地热、太阳能和生物质能),为可 再生能源发电提供关键技术和设备。
可利用的余热
余热温度范围: 80-350℃ 余热的形态: 烟气,蒸汽,热水 可以扩展的应用:
地热利用、太阳能利用、生物质能。
我校在有机工质朗肯循环发电的研究
天津大学热能工程系和教育部“中低温热能高效利 用”重点实验室对有机工质的热物理性质及热力循环的 研究水平位居国内领先水平,在ORC技术的理论与实验研 究中均取得了具有实用价值的成果。
早在上世纪70年代,即建成了国内首台ORC太阳能热 发电(1kW)实验系统,并取得了大量运行实验数据,近 年,发表多篇关于ORC系统的理论实验研究论文,同时拥 有多项关于有机工质及ORC系统构成的发明及实用新型专 利。

分析有机朗肯循环低温余热发电系统综述

分析有机朗肯循环低温余热发电系统综述

分析有机朗肯循环低温余热发电系统综述摘要:余热发电是我国节能发展中的重点节能工程之一,目前在我国工业领域中存在着大量的低温余热资源,但因缺乏一定的利用从而导致能源被分散。

而有机朗肯循环在面对低温余热发电系统时,可有效达到能源再利用、节能减排、美化环境的效果。

在低温余热发电领域中,目前可利用有机朗肯循环模式进行余热发电系统的运行。

其中有机朗肯循环包括膨胀机、冷凝器、低压储液器、工质泵、预热器、蒸发器,以及润滑系统等部分组成。

有机朗肯循环原理为:以低沸点有机物作为工作介质,经预热器、蒸发器加热,吸收了热源的能量,由液体变为高温气体。

进入膨胀机,在转子基元容积内,气体膨胀对外做功,驱动发电机旋转发电。

工质变为低压、低温的气体,再经冷凝器冷凝为液体,通过储液器进入工质泵,经过工质泵加压后,重新回到预热器和蒸发器吸热,如此往复循环。

因为是热力系统的原因,所以膨胀机的轴功率输出、冷凝器负荷、预热器蒸发器负荷会因冷热源条件的变化而变化。

关键词:有机朗肯;循环;低温余热;发电;系统引言:目前随着节能减排工作的不断深入,低温余热资源的利用成为目前节能工作的首选。

根据调查显示,我国低温余热资源非常丰富,特别是在化工、工业领域中存在大量的低温余热,可回收率达到80%以上。

因此,利用有机朗肯循环发电系统对低温余热进行回收,进而充分回收用能设备与化学反应设备中产生的未被回收的低温余热。

有机朗肯循环系统是利用低沸点工质为循环介质,其主要是利用余热、换热器、冷凝器等进行的。

在有机工质进换热器时可吸收热量,进而形成一定的压力与温度的饱和液体状态,在蒸发器再次吸收热量变成饱和气态工质推动膨胀机运行,做工后的有机乏气(工质)返回储液器循环利用,可实现回收低温余热的效果。

由此可见,有机朗肯循环低温余热发电系统在我国有着较强的应用价值。

本文主要分析有机朗肯循环低温余热发电系统的特点,并提出目前利用现状,以供参考。

1.有机朗肯循环低温余热发电系统阐述1.1有机朗肯循环低温余热发电系统的原理有机工质朗肯循环低温余热的发电原理是采用有机工质作为热力循环的工质进行的,通过有机工质对低温余热进行吸收从而产生高压蒸汽,在高压蒸汽下可推动膨胀机带动发电机进行发电[1]。

有机朗肯循环低温余热发电系统综述

有机朗肯循环低温余热发电系统综述

有机朗肯循环低温余热发电系统综述1. 引言1.1 研究背景有机朗肯循环通过有机工质替代传统的水蒸气,利用低温余热驱动有机工质进行膨胀和压缩,从而产生电能。

这种方式不仅在低温、低品位余热利用上有独特优势,还能提高能源利用效率,减少二氧化碳排放,具有较高的经济和环境效益。

有机朗肯循环在工业废热利用、地热能利用、太阳能利用等方面都有广泛应用前景,是当前研究的热点之一。

本文将对有机朗肯循环低温余热发电系统进行全面综述,探讨其原理、构成、性能优势、应用案例和关键技术,为相关研究提供参考和借鉴。

1.2 研究目的研究目的是为了深入探讨有机朗肯循环低温余热发电系统在能源利用方面的潜力,分析其在工业生产中的应用效益,为推动可持续发展提供技术支持。

通过对有机朗肯循环原理、系统构成、性能优势、应用案例和关键技术的研究,旨在全面了解这一技术在提高能源利用效率、减少环境污染、降低能源消耗等方面的作用和影响,为未来的发展方向和趋势提供参考依据。

本研究还旨在探讨有机朗肯循环低温余热发电系统的技术优势和潜在问题,为进一步的研究和应用提供理论基础和实践指导,推动相关领域的发展和应用。

通过对这一领域的深入探讨和分析,为实现可持续能源利用和环境保护目标提供技术支持和政策建议。

2. 正文2.1 有机朗肯循环原理有机朗肯循环是一种利用有机工质进行发电的低温余热发电系统。

其原理基于朗肯循环,通过有机工质在低温下的汽化和冷凝过程来实现能量转化。

在有机朗肯循环中,有机工质通过膨胀阀进入膨胀腔,膨胀腔内的有机工质由于受热而膨胀,推动涡轮机转动,同时也推动发电机发电。

之后,有机工质流入冷凝器,被冷却后凝结成液体,再次循环利用。

有机朗肯循环原理简单明了,能够有效利用低温余热资源实现发电,对于提高能源利用效率具有重要意义。

有机朗肯循环的原理在许多领域都有应用,例如工业废热利用、地热能利用等。

通过对有机朗肯循环原理的深入研究和技术改进,可以进一步提高低温余热的利用效率,实现更加节能环保的发电方式。

有机朗肯循环在低温余热利用领域的应用分析

有机朗肯循环在低温余热利用领域的应用分析
根 据 初 始 条 件 计 算 得 出 的 换 热 面 积 ,管程为 有 机 工 质 ,壳 程 为 R 134a ,温 度 分布图是截取的 壳 程 整 个 对 称 面 ,从 中 可 以 看 到 水 蒸 汽 温 度 从 入口的378k 逐渐降低到出口的316k 即 43T 左 右 发 生 了 冷 凝 ,模 拟 结 果 符 合 预 期 。从温度场
图 3 是一个有机工质的双循环系统,假设设 备 与 环 境 没 有 能 量 交 换 是 绝 热 的 ,余 热 资 源 的 初 温 为 105丈的水蒸汽。由于螺杆膨胀机可以选取 气 液 混 合 物 作 为 膨 胀 发 电 工 质 ,并 且 气 液 混 合 物 比有一定过热度的气体所能达到的效率虽然有所 降 低 ,但 是 发 电 的 总 功 率 增 大 了 ,因此选择了干度 为 0 . 8 的工质进入膨胀机。表中给出了各个设备 状态点的参数以及该设备在循环过程中的火用损 情 况 ,计 算 的 条 件 是 在 3 MPa的情况下。 由表格 中的数据看出蒸发器的火用损占据了所有设备中 最 大 的 比 例 。分 析 原 因 首 先 换 热 过 程 是 不 可 逆 的 ,存在传热温差,这样造成火用损,再者换热后 的 热 源 的 温 度 还 是 要 高 于 环 境 温 度 ,这 样 大 量 的 火用值大于零的余热资源就直接排向了大气无法 利 用 ,这 一 部 分 的 火 用 损 是 很 大 的 。从 表 中我 们
从 图 1 可以看出不同有机工质和水蒸气的 做 功 区 间 的 差 别 ,水 在 中 高 温 的 区 间 由 于 比 热 容很大所以较小质量的水蒸汽的做功能力大大 高 于 其 他 工 质 ,但 是 在 低 温 区 间 的 水 却 很 难 达 成循环。
由 于 有 机 工 质 的 粘 性 一 般 较 大 ,若 采 用 推 动

有机朗肯循环低温余热发电系统综述

有机朗肯循环低温余热发电系统综述

有机朗肯循环低温余热发电系统综述【摘要】有机朗肯循环是一种利用低温余热发电的系统,本文就有机朗肯循环低温余热发电系统进行了综述。

首先介绍了系统的工作原理及基本原理,包括通过有机工质在低温下蒸发、膨胀驱动发电机发电的过程。

然后探讨了该系统在不同领域的应用及优势,如工业生产和暖通空调系统等。

接着分析了系统的组成及关键技术,如有机工质的选择和循环器件设计等。

对系统性能进行了深入分析,并列举了一些实验研究的案例。

最后展望了有机朗肯循环低温余热发电系统的发展趋势和前景,指出该技术在未来具有广阔的应用前景。

本文全面介绍了有机朗肯循环低温余热发电系统的相关内容,为读者对该技术有了更深入的了解。

【关键词】有机朗肯循环、低温余热发电系统、工作原理、应用领域、优势、系统组成、关键技术、性能分析、实验研究、发展趋势、前景展望、综述。

1. 引言1.1 有机朗肯循环低温余热发电系统综述有机朗肯循环低温余热发电系统是一种利用低温余热能源进行能量转化的热电联合发电技术。

其基本原理是通过有机工质在低温下蒸发和冷凝来驱动发电机发电。

有机朗肯循环低温余热发电系统具有能源高效、环保、可持续等特点,在工业生产、生活热水供应和能源回收利用等领域有着广泛的应用前景。

在应用领域和优势方面,有机朗肯循环低温余热发电系统可以广泛应用于钢铁、化工、制药、纺织等行业的工业余热回收利用,同时也可以用于地热能利用和生活热水供应等领域。

其主要优势在于能够有效降低碳排放、节能减排、并具有较长的使用寿命。

有机朗肯循环低温余热发电系统是一种具有巨大潜力和发展空间的热电联合发电技术,其在能源利用效率、环境保护和可持续发展等方面具有重要意义。

随着技术的不断进步和市场需求的增加,有机朗肯循环低温余热发电系统将在未来得到更广泛的应用和推广。

2. 正文2.1 工作原理及基本原理有机朗肯循环(Organic Rankine Cycle, ORC)是低温余热利用的一种重要方式,其工作原理和基本原理如下:有机朗肯循环是一种热力循环系统,其基本原理是通过利用低温热源(一般为低于200摄氏度的余热)来加热有机工质,使其蒸发产生高温高压蒸汽,然后通过蒸汽驱动涡轮发电机工作,最终将热能转化为电能。

有机工质朗肯循环中低温余热发电技术

有机工质朗肯循环中低温余热发电技术
有机工质朗肯循环 ,即在传统朗肯循环中采用 有机工质代替水推动涡轮机做功。上图为有机工 质朗肯循环发电系统示意图。低压液态有机工质 经过工质泵增压后进入预热器、蒸发器吸收热量 转变为高温高压蒸气之后 ,高温高压有机工质蒸 气推动涡轮机做功,产生能量输出,涡轮机出口的 低压蒸气进入冷凝器 ,向低温热源放热并冷凝为 液态,如此往复循环。
3
Depart. Thermal Energy & Refrigeration Eng.
有机工质朗肯循环余热发电原理
采用有机工质作为热力循环的工质与低温余热换热 ,有机工质吸热后产生高压蒸汽,推动汽轮机或其他 膨胀动力机带动发电机发电。因此,系统能够实现余 热回收和发电的最低余热资源温度可到80℃,这是常 规发电技术不能做到的(常规发电要求热源温度在 350℃以上),从而拓宽了可以回收发电的余热资源 范围,为建材、冶金、化工等行业的低温余热资源回 收提供了技术手段和设备。同时,这项技术还可以推 广到可再生能源发电系统中,(如地热、太阳能和生 物质能)为可再生能源发电提供关键技术和设备。
,完成了有机工质循环螺杆膨胀机的热力循环研
究、有机工质应用研究、装置结构研究和系统优
化配置研究等项工作,并取得了一定的技术成果 。
17
Depart. Thermal Energy & Refrigeration Eng.
有机工质循环螺杆膨胀机系统
对于低于250℃的低温低压(或常压)余热 热源,不能直接利用螺杆膨胀机作功,要先 用低温余热与有机工质进行热交换,再将有 机工质引入螺杆膨胀机作功。整个系统主要
6
Depart. Thermal Energy & Refrigeration Eng.
可利用的余热
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

可利用的余热
余热温度范围: 80-250℃ 余热的形态: 烟气,蒸汽,热水 可以扩展的应用:
地热利用、太阳能利用、生物质能。
需要根据具体环境、条件及应用需求进行 系统设计。
有机工质朗肯循环余热发电用膨胀动力机
1.涡轮机 2.螺杆膨胀机 3.涡旋式膨胀机 4……….
有机工质朗肯循环中低温余热发电 关键设备之一
余热回收再利用技术
有机工质朗肯循环 中低温余热发电技术
宁波市能源检测有限公司
▪技术应用背景介绍 ▪有机朗肯循环介绍 ▪有机工质朗肯循环余热发电原理 ▪ 膨胀机简介及技术特点 ▪有机工质朗肯循环余热发电系统 ▪经济效益和环境效益 ▪总结
技术应用背景
余热余压利用工程是我国《节能中长期发展专 项规划》中的十大重点节能工程之一。目前在我 国工业的各个领域中存在大量的低温余热资源( 250℃以下,低压或常压),由于缺乏有效的技术 手段而没有得到充分利用,传统发电技术的工作 参数大多为高参数、大容量,无法利用这部分较 为分散但总量巨大的能源。而利用有机工质朗肯 循环,开发新型、高效的低温余热发电系统,对 于提高我国能源利用率、节能减排,保护环境具 有重要的意义。
源范围,为建材、冶金、化工等行业的低温余热资源
回收提供了技术手段和设备。同时,这项技术还可以 推广到可再生能源发电系统中,(如地热、太阳能和 生物质能)为可再生能源发电提供关键技术和设备。
有机工质朗肯循环余热发电原理
膨胀动力机+发电机
工 业 余
蒸 发 器




冷 凝

工质泵
有机工质朗肯循环余热发电原理
热水入口温度(oC)
几种低温介质热物理特性指标对比:

常压沸点 临界压力 临界温度 温度上限
100℃ 22.06MPa 373.95℃
无上限
R123
27.82℃ 3.66MPa 183.7℃ 300℃
R134a
-26.074℃ 4.06MPa 101.06℃
200℃
R245fa
15.14℃ 3.65MPa 154.01℃ 300℃
质的饱和压力不很高;在冷源温度下,不会出现高 度真空; (4)来源丰富,价格低廉; (5)化学稳定性好,不分解,对金属的腐蚀性小,毒 性小,不燃,不爆。 (6) 环境友好
相同初始条件不同有机工质发电能力比较
发 电 功 率( kW)
1.2
丙烷
正丁烷
1.0
异丁烷
0.8
戊烷
0.6
0.4
0.2
0.0 74 76 78 80 82 84 86 88 90 92
机可以根据要求灵活变速,使用方便
结构简图
螺杆膨胀机
涡轮膨胀机
有机工质循环膨胀机系统
对于低温低压(或常压)余热热源,利用膨 胀机作功,要先用低温余热与有机工质进行 热交换,再将有机工质引入膨胀机作功。整 个系统主要由蒸发器、膨胀机、冷凝器、工 质泵等设备组成。
有机工质循环膨胀机发电系统简图
有机工质循环膨胀机热力过程
年发电量估算 年运行按7000小时计算,则年发电量为(采用 带有冷却水塔或喷水池的循环供水冷却系统) 1.0×100×7000=700000 kW·h
年经济效益 电价按0.5元/ kW·h计算,则年效益为 700000×0.5=35.0万元/年
环境效益
采用有机工质朗肯循环螺杆膨胀机系统, 全年发电量700000 kW·h,若替代火力发电, 估算SO2、CO2减排量为:
A 有机工质蒸汽动力循环
B 有机工质汽液两相动力循环
有机工质膨胀机系统的设计
有机工质朗肯循环膨胀机的热力系统设计 (包括系统热力参数的确定、工质选择、热 交换器设计等)。会直接影响系统的运行效 率。
循环系统热力参数确定
在得到热源的温度和流量等条件后,需要 确定循环热力参数,主要是有机工质的蒸发温 度和冷凝温度以及换热温差等,这些参数会对 循环效率有较大的影响。
有机工质朗肯循环 ,即在传统朗肯循环中采用 有机工质代替水推动涡轮机做功。上图为有机工 质朗肯循环发电系统示意图。低压液态有机工质 经过工质泵增压后进入预热器、蒸发器吸收热量 转变为高温高压蒸气之后 ,高温高压有机工质蒸 气推动涡轮机做功,产生能量输出,涡轮机出口的 低压蒸气进入冷凝器 ,向低温热源放热并冷凝为 液态,如此往复循环。
有机朗肯循环介绍
有机朗肯循环介绍
有机朗肯循环(Organic Rankine Cycle,简称ORC)是以低沸点有机物 为工质的朗肯循环,主要由余热锅炉(或换热器)、透平、冷凝器和工 质泵四大部套组成,其工作原理如图所示。
有机工质朗肯循环余热发电原理
采用有机工质作为热力循环的工质与低温余热介质 换热,有机工质吸热后产生高压蒸汽,推动汽轮机或 其他膨胀动力机带动发电机发电。因此,系统能够实 现余热回收和发电的最低余热资源温度可到80℃,这 是常规发电技术不能做到的(常规发电要求热源温度 在370℃以上),从而拓宽了可以回收发电的余热资
有机工质的选择
对于有机工质循环,经常选用的工质有 R123、R245fa、R134a、氯乙烷、丙烷、 正丁烷、异丁烷等。在余热发电系统中, 对于不同类型,不同温度的热源应当选择 不同的工质,工质的优选也会影响到系统 的效率。
对于工质的பைடு நூலகம்择要求
(1)发电性能好,在相同条件下,实际发电量较大; (2)传热性能好,在相同条件下,换热系数较大; (3)工质的压力水平适宜,在相应的热源温度下,工
膨胀机简介
膨胀机的基本特点
1.涡轮膨胀机(速度型)
2.螺杆膨胀机(容积型)
一对螺杆转子 适应面广,可以回收不同种类的工业余热 当余热热源不稳定,参数变化时,机组效率表现稳定 螺杆膨胀机的零部件少。螺杆转子坚固,大修周期长,小修简单,运行
维护费用很低 可调速,作为动力机使用,如拖动给水泵或灰浆水泵,拖动风机,压缩
CO2 -78.40℃ 7.377MPa 30.98℃ 无上限
热交换器的设计
需要根据余热的类型和特点设计热 交换器。包括蒸发器,冷凝器,预热 器等。
经济效益
例如:余热热源为85℃的热水,流量为100t/h, 冷却水温度为25℃。 采用有机工质循环方式,以戊烷作为循环工质, 在扣除工质泵耗功,冷却水泵耗功之后,计算表 明,一吨热水每小时大约可以发出1.0度的电。 为此,系统设计方案的经济效益估算如下:
相关文档
最新文档