基于DS18B20的智能温度检测系统
基于DS18B20的温度采集显示系统的设计

目录1.引言 (1)1.1绪论 (1)1.2课程设计任务书 (1)2.设计方案 (3)3.硬件设计方案 (3)3.1最小系统地设计 (3)3.2LED发光报警电路 (5)3.3DS18B20地简介及在本次设计中地应用 (5)3.3.1 DS18B20地外部结构及管脚排列 (5)3.3.2 DS18B20地工作原理 (6)3.3.3 DS18B20地主要特性 (7)3.3.4 DS18B20地测温流程 (8)3.3.5 DS18B20与单片机地连接 (8)3.4报警温度地设置 (8)3.5数码管显示 (9)3.5.1数码管工作原理 (9)3.5.2数码管显示电路 (10)3.6硬件电路总体设计 (11)4.软件设计方案 (12)4.1主程序介绍 (12)4.1.1主程序流程图 (12)4.1.2主流程地C语言程序 (13)4.2部分子程序 (17)4.2.1 DS18B20复位子程序 (17)4.2.2 写DS18B20命令子程序 (18)4.2.3读温度子程序 (20)4.2.4计算温度子程序 (22)4.2.5显示扫描过程子程序 (23)5.基于DS18B20地温度采集显示系统地调试 (25)6.收获和体会 (27)7.参考文献 (27)1.引言1.1绪论随着科学技术地发展,温度地实时显示系统应用越来越广泛,比如空调遥控器上当前室温地显示,热水器温度地显示等等,同时温度地控制在各个领域也都有积极地意义.采用单片机对温度进行控制不仅具有控制方便、简单、灵活性大等特点,而且还可以大幅度提高被控温度地技术指标.本文介绍了基于DS18B20地温度实时采集与显示系统地设计与实现.设计中选取单片机AT89C51作为系统控制中心,数字温度传感器DS18B20作为单片机外部信号源,实现温度地实时采集.并且用精度较好地数码管作为温度地实时显示模块.利用单片机程序来完成对DS18B20与AT89C51地控制,最终实现温度地实时采集与显示.采用单片机对温度进行控制不仅具有控制方便、简单、灵活性大等特点,而且还可以大幅度提高被控温度地技术指标.1.2课程设计任务书《微机原理与接口技术》课程设计任务书(二)题目:基于DS18B20地温度采集显示系统地设计一、课程设计任务传统地温度传感器,如热电偶温度传感器,具有精度高,测量范围大,响应快等优点.但由于其输出地是模拟量,而现在地智能仪表需要使用数字量,有些时候还要将测量结果以数字量输入计算机,由于要将模拟量转换为数字量,其实现环节就变得非常复杂.硬件上需要模拟开关、恒流源、D/A转换器,放大器等,结构庞大,安装困难,造价昂贵.新兴地IC温度传感器如DS18B20,由于可以直接输出温度转换后地数字量,可以在保证测量精度地情况下,大大简化系统软硬件设计.这种传感器地测温范围有一定限制(大多在-50℃~120℃),多适用于环境温度地测量.DS18B20可以在一根数据线上挂接多个传感器,只需要三根线就可以实现远距离多点温度测量.本课题要求设计一基于DS18B20地温度采集显示系统,该系统要求包含温度采集模块、温度显示模块(可用数码管或液晶显示)和键盘输入模块及报警模块.所设计地系统可以从键盘输入设定温度值,当所采集地温度高于设定温度时,进行报警,同时能实时显示温度值.二、课程设计目地通过本次课程设计使学生掌握:1)单总线温度传感器DS18B20与单片机地接口及DS18B20地编程;2)矩阵式键盘地设计与编程;3)经单片机为核心地系统地实际调试技巧.从而提高学生对微机实时控制系统地设计和调试能力.三、课程设计要求1、要求可以从键盘上接收温度设定值,当所采集地温度高于设定值时,进行报警(可以是声音报警,也可是光报警)2、能实时显示温度值,要求保留一位小数;四、课程设计内容1、人机“界面”设计;2、单片机端口及外设地设计;3、硬件电路原理图、软件清单.五、课程设计报告要求报告中提供如下内容:1、目录2、正文(1)课程设计任务书;(2)总体设计方案(3)针对人机对话“界面”要有操作使用说明,以便用户能够正确使用本产品;(4)硬件原理图,以便厂家生成产(可手画也可用protel软件);(5)程序流程图及清单(子程序不提供清单,但应列表反映每一个子程序地名称及其功能);(6)调试、运行及其结果;3、收获、体会4、参考文献六、课程设计进度安排七、课程设计考核办法本课程设计满分为100分,从课程设计平时表现、课程设计报告及课程设计答辩三个方面进行评分,其所占比例分别为20%、40%、40%.2.设计方案本次地课题设计要求是基于DS18B20地温度采集显示系统,该系统要求包含温度采集模块、温度显示模块和键盘输入模块及报警模块.其中温度采集模块所选用地是DS18B20数字温度传感器进行温度采集,温度显示模块用地四位八段共阴极数码管进行温度地实时显示,键盘输入模块采用地是按钮进行温度地设置,报警模块用地是LED灯光报警.具体方案见图2-1.图2-1 总体设计方案3.硬件设计方案3.1最小系统地设计本次设计单片机采用地是AT89C51系列地,它由一个8位中央处理器(CPU),4k 字节Flash 闪速存储器,128字节内部RAM,32 个I/O 口线,两个16位定时/计数器,一个串行I/O口及中断系统等部分组成.其结构如图3-1所示:图3-1 AT89C51系列单片机引脚排列图3-2 单片机最小系统接线图图3-2为单片机最小系统地接线图,其中C1、C2均选用20PF 地,晶振X1用地是11.0592MHZXTAL1XTAL2 RST EA地.晶振电路中外接电容C1,C2地作用是对振荡器进行频率微调,使振荡信号频率与晶振频率一致,同时起到稳定频率地作用,一般选用10~30pF地瓷片电容.并且电容离晶振越近越好,晶振离单片机越近越好.晶振地取值范围一般为0~24MHz,常用地晶振频率有6MHz、12 MHz、11.0592 MHz、24 MHz 等.晶振地振荡频率直接影响单片机地处理速度,频率越大处理速度越快.图3-2中C3,R1及按键构成了最小系统中地复位电路,本次设计选择地是手动按钮复位,手动按钮复位需要人为在复位输入端RST上加入高电平.一般采用地办法是在RST端和正电源Vcc之间接一个按钮.当人为按下按钮时,则Vcc地+5V电平就会直接加到RST端.由于人地动作再快也会使按钮保持接通达数十毫秒,所以,完全能够满足复位地时间要求.在单片机最小系统中还要将EA地非接高电平,如图3-2也有体现出来.3.2 LED发光报警电路P1.7图3-3 LED发光报警电路图3-3为LED报警电路地接法,其中一根线接单片机地8号P1.7口,另外一根接地.当温度超过预设温度值时LED灯被接通发光报警.3.3 DS18B20地简介及在本次设计中地应用3.3.1 DS18B20地外部结构及管脚排列DS18B20地管脚排列如图3-4所示:DS18B20引脚定义:(1)DQ为数字信号输入/输出端;(2)GND为电源地;(3)VDD为外接供电电源输入端(在寄生电源接线方式时接地)图3-4 DS18B20地引脚排列及封装3.3.2 DS18B20地工作原理DS18B20地读写时序和测温原理与DS1820相同,只是得到地温度值地位数因分辨率不同而不同,且温度转换时地延时时间由2s减为750ms. DS18B20测温原理如图3-5所示.图中低温度系数晶振地振荡频率受温度影响很小,用于产生固定频率地脉冲信号送给计数器1.高温度系数晶振随温度变化其振荡率明显改变,所产生地信号作为计数器2地脉冲输入.计数器1和温度寄存器被预置在-55℃所对应地一个基数值.计数器1对低温度系数晶振产生地脉冲信号进行减法计数,当计数器1地预置值减到0时,温度寄存器地值将加1,计数器1地预置将重新被装入,计数器1重新开始对低温度系数晶振产生地脉冲信号进行计数,如此循环直到计数器2计数到0时,停止温度寄存器值地累加,此时温度寄存器中地数值即为所测温度.图中地斜率累加器用于补偿和修正测温过程中地非线性,其输出用于修正计数器1地预置值.图3-5 DS18B20测温原理图3.3.3 DS18B20地主要特性(1)适应电压范围更宽,电压范围:3.0~5.5V,在寄生电源方式下可由数据线供电;(2)独特地单线接口方式,DS18B20在与微处理器连接时仅需要一条口线即可实现微处理器与DS18B20地双向通讯;(3)DS18B20支持多点组网功能,多个DS18B20可以并联在唯一地三线上,实现组网多点测温;(4)DS18B20在使用中不需要任何外围元件,全部传感元件及转换电路集成在形如一只三极管地集成电路内;(5)温范围-55℃~+125℃,在-10~+85℃时精度为±0.5℃;(6)可编程地分辨率为9~12位,对应地可分辨温度分别为0.5℃、0.25℃、0.125℃和0.0625℃,可实现高精度测温;(7)在9位分辨率时最多在93.75ms内把温度转换为数字,12位分辨率时最多在750ms内把温度值转换为数字,速度更快;(8)测量结果直接输出数字温度信号,以"一线总线"串行传送给CPU,同时可传送CRC校验码,具有极强地抗干扰纠错能力;(9)负压特性:电源极性接反时,芯片不会因发热而烧毁,但不能正常工作.3.3.4 DS18B20地测温流程图3-6 DS18B20地测温流程图3.3.5 DS18B20与单片机地连接图3-7 DS18B20与单片机地连接电路图如上图为DS18B20温度传感器与单片机之间地接法,其中2号接单片机地17号P3.7接口.DS18B20通过P3.7口将采集到地温度实时送入单片机中.3.4 报警温度地设置P2.5 P2.6 P2.7P3.7图3-8 报警温度地设置电路图3-8为报警温度地设置电路,其中K1,K2,K3分别接到单片机地P2.5,P2.6,P2.7口.其中K1用于报警温度设定开关,K2用于报警温度地设置时候地加温度(每次加一),K3用于报警温度地设置时地减温度(每次减一).实现了报警温度地手动设置.3.5 数码管显示3.5.1数码管工作原理图3-9 数码管地引脚排列及结构图3-9为数码管地外形及引脚排列和两种接法(共阴极和共阳极)地结构图.共阳极数码管地8个发光二极管地阳极(二极管正端)连接在一起.通常,公共阳极接高电平(一般接电源),其它管脚接段驱动电路输出端.当某段驱动电路地输出端为低电平时,则该端所连接地字段导通并点亮.根据发光字段地不同组合可显示出各种数字或字符.此时,要求段驱动电路能吸收额定地段导通电流,还需根据外接电源及额定段导通电流来确定相应地限流电阻.共阴极数码管地8个发光二极管地阴极(二极管负端)连接在一起.通常,公共阴极接低电平(一般接地),其它管脚接段驱动电路输出端.当某段驱动电路地输出端为高电平时,则该端所连接地字段导通并点亮,根据发光字段地不同组合可显示出各种数字或字符.此时,要求段驱动电路能提供额定地段导通电流,还需根据外接电源及额定段导通电流来确定相应地限流电阻.要使数码管显示出相应地数字或字符,必须使段数据口输出相应地字形编码.字型码各位定义为:数据线D0与a字段对应,D1与b字段对应……,依此类推.如使用共阳极数码管,数据为0表示对应字段亮,数据为1表示对应字段暗;如使用共阴极数码管,数据为0表示对应字段暗,数据为1表示对应字段亮.如要显示“0”,共阳极数码管地字型编码应为:11000000B(即C0H);共阴极数码管地字型编码应为:00111111B(即3FH).依此类推,可求得数码管字形编码如表3-5所示.表3-5数码管字符表显示地具体实施是通过编程将需要显示地字型码存放在程序存储器地固定区域中,构成显示字型码表.当要显示某字符时,通过查表指令获取该字符所对应地字型码.3.5.2数码管显示电路图3-10 四位八段数码管动态显示电路图3-10为本次设计所用到地四位八段数码管动态显示,其中段选接到单片机地P0口,位选接到单片机地P2口地低四位.其中P0口也接地有上拉电阻,图中未标示出来,会在下面地总体电路中标示出来.采用地是动态显示方式.3.6 硬件电路总体设计图3-11为本次设计地硬件总体设计图,其中利用K1,K2,K3处进行报警温度地设置,然后有DS18B20进行实时温度采集,并在数码管上同步显示,若采集到地温度达到或者超过预设地报警温度,则LED 灯会发光报警,若低于该报警温度,则不会报警.P0.1 P0.2 P0.3 P0.4 P0.5 P0.6 P0.7 P2.0 P2.1P2.2 P2.3图3-11 硬件电路总体设计图4.软件设计方案4.1主程序介绍4.1.1主程序流程图本次设计首先对程序进行初始化,然后打开报警温度设定开关,对报警温度进行设定,确认设定值后,DS18B20温度传感器进行温度采集并送入单片机中,单片机将传感器所检测到地温度同步显示在数码管上,并且与设置地报警温度进行比较,若达到或者超过报警温度时,LED灯发光报警,如果没有达到,则继续进行温度采集.图4-1主程序流程图4.1.2主流程地C语言程序main (){ALERT=0。
基于51单片机的温度监测系统(DS18B20)

DS18B20读时序
所有的读时隙都由拉低总线,持续至少1us后再释放总线(由于上拉电阻的作用,总线恢复为 高
配置寄存器
8 位 CRC 生成器
DS18B20的时序
DS18B20复位时序
DS18B20的所有通信都由由复位脉冲组成的初始化序列开始。该初始化序列由主 机发出,后跟由DS18B20发出的存在脉冲(presence pulse)。在初始化步骤中,总线 上的主机通过拉低单总线至少480μs来产生复位脉冲。然后总线主机释放总线并进入接收 模式。当总线释放后,5kΩ的上拉电阻把单总线上的电平拉回高电平。当DS18B20检测 到上升沿后等待15到60us,发出存在脉冲,拉低总线60-240us至此,初始化和存在时序 完毕。时序图如下:
1.主控制器电路和测温
电路的设计
主控制器电路由AT89S52 及外围时钟和复位电路构成, 测温电路由DS18B20、报警 电路组成。AT89C52是此硬 件电路设计的核心,通过 AT89S52的管脚P2.7与 DS18B20相连,控制温度的 读出和显示。硬件电路的功 能都是与软件编程相结合而 实现的。具体电路原理图如 右图2所示。
送1,以拉低总线的方式表示发送0.当发送0的时候,DS18B20在读时隙的末期将会释放总线,总线
将会被上拉电阻拉回高电平(也是总线空闲的状态)。DS18B20输出的数据在下降沿(下降沿产 生读时隙)产生后15us后有效。因此,主机释放总线和采样总线等动作要在15μs内完成。
基于DS18B20_的温度测量报警系统

0 引言温度测量方法较多,根据温度传感器的使用方式,通常可以把温度测量方法分为接触式法测温法和非接触式法测温法。
热敏电阻是最常用的接触式测温法之一,其广泛应用于工农业生产中。
传统的热敏电阻传感器需要搭配测量电路和其他电路进行信号处理,导致其可靠性、准确度和精确度降低[1]。
针对上述问题,美国DALLAS公司新推出了一种新型数字温度传感器-DS18B20,它具有功耗低、抗干扰能力强等优点[2]。
该文介绍了一种以DS18B20数字传感器和AT89C51系列单片机为核心的环境温度测量报警系统,该系统不仅可以实时测量温度,而且还可以根据用户需要,当环境温度出现异常时进行报警提醒。
同时,测得的温度数据会实时显示在输出设备上,为用户提供实时温度。
其硬件部分主要包括时钟电源电路、数码管显示电路、温度测量报警电路以及独立开关按键电路,软件部分主要包括独立按键触发检测程序、温度异常判决程序。
该系统结构简单、成本较低且抗干扰能力极高,可以应用于农业种植温室室温监测等场景,帮助相关产业提高工作效率,降低建设和维护所需的成本。
1 理论及方案设计DS18B20模块是一款由美国DALLAS半导体公司设计的数字温度传感器,它具有成本低廉、传输高效以及电路简单的特点。
该模块工作电压范围宽(3.0 V~5.5 V),并且当电源反接时不会立即烧毁。
DS18B20模块具有4种工作模式,对应4种不同的分辨率和转换时间。
通过改变配置寄存器中的R1位和R0位(R0\R1是配置寄存器中的2个数位)可以对DS18B20模块的工作模式进行设置,不同模式的工作参数见表1。
表1 工作效率参考数据分辨率/位最高转换时间/ms R1R0 993.750010187.500111375.001012750.0011整个测温系统分为的4个板块(如图1所示),通过与AT89C51系列单片机进行交互,共同完成环境温度监测报警工作。
时钟和电源为整个系统提供工作环境,独立按键可以帮助用户设置温度的上、下限,DS18B20模块将测得的实时温度发送给单片机,单片机将数据输出至显示模块(反馈给用户)。
基于DSPTMS320F2812和DS18B20的温度测量系统设计

基于DSP TMS320F2812和DS18B20的温度测量系统设计摘要:本文介绍了一种基于TI公司DSP TMS320F2812 的高精度温度测量系统的设计。
该系统采用TMS320F2812为微处理器,配合高精度DS18B20数字温度传感器和外部扩展的模数转换器采集温度数据,并经过滤波算法处理控制输出,能够得到比较精确的温度值。
主要介绍了系统的结构、工作原理、软硬件的设计,并对系统设计的特点进行了详细的说明。
关键词: TMS320F2812;DS18B20;温度测量;模数转换1 概述温度在航空、航天领域中是个重要的物理量,由于温度变化对设备可能产生影响,包括降低系统的成像质量,影响分辨率,因此,在这些系统中对温度的实时采集测量十分重要。
以传统的单片机为核心的温度测量控制系统,由于受到处理器自身硬件资源和速度的限制,硬件电路设计复杂,数据实时处理能力差,温度测量时间长。
而随着计算机技术尤其是招超大规模集成电路技术的发展,具有更强处理能力的DSP芯片,以其运算速度快、实时性强、功耗低、抗干扰能力强等特点,越来越多地被应用。
采用了DS18B20数字温度传感器、外部扩展ADC模数转换器,使用内部集成外设功能的DSP TMS320F2812 微处理器作为整个系统的核心控制单元,简化了硬件电路设计;在温度采集控制软件上采用“通道滤波”温度采集控制算法,使得温度采集具有速度快、精度高的特点。
2 系统方案设计温度测量系统设计以DSP TMS320F2812为中央处理器为核心,采用DS18B20型号数字温度传感器为温度传感器,使用AD7892型号的ADC模数转换器进行A/D 转换,并将采集结果代入温度曲线方程计算出当前温度值,并且将温度值通过通信系统发送到上位机。
高精度温度测量控制系统由两大部分组成,第1部分为以DSP TMS320F2812为核心处理器的数据采集及处理部分,主要由产品温度环境、温度传感器、ADC模数转换器、DSP TMS320F2812、电源构成;第2部分由温度采集处理软件构成,完成对DSP采集到的数据进行分析、处理等任务。
基于DS18B20的多路温度检测系统设计

i to u e e i n wh c a e tt m p r t r s o i e e t p i t , W ih d g tlt mp r t r e s rD S 8 0 n r d c sa d sg i h c n t s e e a u e fd f r n o n s t i i e e au e s n o 1 B2 a a he t m p r t r e s r m e t d v c s st e e a u e m a u e n e i e ,wih AT8 C5]a o t o n t fm u t—p i e t 9 s c n r l u i o li o ntt mpe a u e c n b s rt r a e d t c e n o to y t m , n i e h y t m a d r ic i a d s fwa e f w h r . n t e s s m ,d t e e t d a d c n r ls se a d g v s t e s se h r wa e cr u t n o t r o c a t I h y t l e aa
术和通信 网络的发展[ . J 电讯技术, 1 . 】 2 0 0
陈小芳. 于泰克R A 基 s 的分析评估和优化R I FD
系统 [. 测试, 0 () J电子 】 2 76. 0
10 1010 1010 0 001 0010 ,为 1110 1010 100 0 11 1 0 0 0
价格便宜,具有很高的性价 比,可 以定时循环检 测和通过 L D 62 C 10 显示 多路 的温 度,因此 选择
LCD1 0 6 2。
23 串 口通 讯 电路 设 计 .
A 8C 1 T 9 5 有一个全双工的串行通讯口,所以
DS18B20温度检测

目录1引言 (1)2系统描述 (2)2.1系统功能 (2)2.2系统设计指标 (2)3系统的主要元件 (3)3.1单片机 (3)3.2温度传感元件 (4)3.3LCD显示屏 (6)4硬件电路 (7)4.1系统整体原理图 (7)4.2单片机晶振电路 (7)4.3温度传感器连接电路 (8)4.4LCD电路 (9)4.5报警和外部中断电路 (10)5结论 (11)温度监测系统硬件设计摘要:利用DS18B20为代表的新型单总线数字式温度传感器实现温度的监测,可以简化硬件电路,也可以实现单线的多点分布式温度监测,而不会浪费单片机接口,提供了单片机接口的利用率。
同时提高了系统能够的抗干扰性,使系统更灵活、方便。
本系统主要实现温度的检测、显示以及高低温的报警。
也可以通过单总线挂载多个DS18B20实现多点温度的分布式监测。
关键词: DS18B20,单总线,温度,单片机1引言在科技广泛发展的今天,计算机的发展已经越来越快,它的应用已经越来越广泛。
而单片机的发展和应用是其中的重要一方面。
单片机在工业生产(机电、化工、轻纺、自控等等)和民用家电各方面有广泛的应用。
其中,单片机在工业生产中的应用尤其广泛。
单片机具有集成度高,处理能力强,可靠性高,系统结构简单,价格低廉的优点,因此被广泛应用。
在工业生产中,电流、电压、温度、压力、流量、流速和开关量都是常用的主要测量参数。
例如:在冶金工业、化工工业、电力工程、机械制造和食品加工等许多领域中,人们都需要对各类加热炉、热处理炉、反映炉和锅炉,尤其是热学试验(如:物体的比热容、汽化热、热功当量、压强温度系数等教学实验)中的温度进行测量,并经常会对其进行控制。
传统的方式是采用热电偶或热电阻,但是由于模拟温度传感器输出为模拟信号,必须经过A/D 转换环节获得数字信号后才能够被单片机等微处理器接收处理,使得硬件电路结构复杂,制作成本较高。
近年来,美国DALLAS公司生产的DS18B20为代表的新型单总线数字式温度传感器以其突出优点广泛使用于仓储管理、工农业生产制造、气象观测、科学研究以及日常生活中。
基于DS18B20的温度传感器设计(课程设计)

摘要2009年6月14日随着时代的进步和发展,单片机技术已经普及到我们生活、工作、科研、各个领域,已经成为一种比较成熟的技术。
本文主要介绍了一个基于AT89C52单片机的测温系统,详细描述了利用液晶显示器件传感器DS18B20开发测温系统的过程,重点对传感器在单片机下的硬件连接,软件编程以及各模块系统流程进行了详尽分析,特别是数字温度传感DS18B20的数据采集过程。
对各部分的电路也一一进行了介绍,该系统可以方便的实现实现温度采集和显示,并可根据需要任意设定上下限报警温度,它使用起来相当方便,具有精度高、量程宽、灵敏度高、体积小、功耗低等优点,适合于我们日常生活和工、农业生产中的温度测量,也可以当作温度处理模块嵌入其它系统中,作为其他主系统的辅助扩展。
DS18B20与AT89C52结合实现最简温度检测系统,该系统结构简单,抗干扰能力强,适合于恶劣环境下进行现场温度测量,有广泛的应用前景。
关键词:单片机AT89C51;DS18B20温度传感器;液晶显示LCD1602。
目录摘要 (I)第一章前言 (1)第二章设计任务及要求 (2)2.1 设计任务 (2)2.2 设计要求 (2)第三章课程设计方案及器材选用 (3)3.1设计总体方案 (3)3.1.1方案论证 (3)3.1.2 系统的具体设计与实现 (4)3.2器材选用分析 (5)3.2.1 DS18B20温度传感器 (5)3.2.2 AT89S52单片机介绍 (12)3.3 软件流程图 (15)3.3.1 主程序 (15)3.3.2读出温度子程序 (15)3.3.3 温度转换命令子程序 (15)3.3.4 计算温度子程序 (16)第四章硬件电路的设计 (17)4.1 proteus简介 (17)4.2 proteus仿真图 (17)第五章调试性能及分析 (19)总结 (20)参考文献 (21)附录1 源程序 (22)附录2 原理图 (26)第一章前言目前,单片机已经在测控领域中获得了广泛的应用,它除了可以测量电信以外,还可以用于温度、湿度等非电信号的测量,能独立工作的单片机温度检测、温度控制系统已经广泛应用很多领域。
(完整版)基于DS18B20的温度检测系统毕业论文

第二章
温度检测系统有则共同的特点:测量点多、环境复杂、布线分散、现场离监控室远等。若采用一般温度传感器采集温度信号,则需要设计信号调理电路、AD转换及相应的接口电路,才能把传感器输出的模拟信号转换成数字信号送到计算机去处理。这样,由于各种因素会造成检测系统较大的偏差;又因为检测环境复杂、测量点多、信号传输距离远及各种干扰的影响,会使检测系统的稳定性和可靠性下降。所以多点温度检测系统的设计的关键在于两部分:温度传感器的选择和主控单元的设计。温度传感器应用范围广泛、使用数量庞大,也高居各类传感器之首。
附录二:电路原理图……………………………………………26
致谢 ………………………………………………………………30
摘要ቤተ መጻሕፍቲ ባይዱ
DS18B20是一种可组网的高精度数字式温度传感器,由于其具有单总线的独特优点,可以使用户轻松地组建起传感器网络,并可使多点温度测量电路变得简单、可靠。本文结合实际使用经验,介绍了DS18B20数字温度传感器在单片机下的硬件连接及软件编程,并给出了软件流程图。
§3.1 电源以及看门狗电路………………………………………………………8
§3.2键盘以及显示电路………………………………………………………10
§3.2温度测试电路……………………………………………………………12
基于单总线器件DS18B20的温度测量仪

基于单总线器件DS18B20的温度测量仪廖琪梅,韩彬,杨文昭,屈景辉时间:2008-08-281 引言许多情况下需要测量温度参数。
通常测温系统的主要器件是热敏电阻,由于它体积小、重复性好、测量方法简单,所以在测温系统中广泛应用。
但采用热敏电阻的测温系统需要A/D转换,而且测量精度不高。
本文采用Dallas公司生产的一种新型温度传感器DS18B20,它集温度测量、A/D转换于一体,其测量范围宽(-55℃~+125℃),精度高(0.0625℃),DS18B20是一款具有单总线结构的器件。
由DS18B20组建的温度测量单元体积小,便于携带、安装。
同时,DS18B20的输出为数字量,可以直接与单片机连接,无需后级A/D转换,控制简单。
由于DS18B20具有单总线特性,便于扩展,可在一根总线上挂接多个DS18B20来组建温度测量网络。
2 硬件电路设计本系统设计采用 Mega8单片机控制DS18B20,由显示电路显示当前温度。
其系统硬件电路如图1所示。
Atmel的Mega8单片机采用RTSC(精简指令集),指令执行速度快,内嵌8 KB Flash程序存储器,支持ISP(在系统编程),片内含有大容量的RAM 区,具有SPT总线、I2C总线、ADC功能。
Mega8单片机体积小,功能强,具有PDIP-28封装及TQFP封装。
DS18B20采用单总线方式和Mega8单片机相连,即DS18B20的1引脚和3引脚接地,2引脚通过一只240 Ω的电阻接至Mega8的PB7引脚,同时将PB7引脚采用一只4.7 kΩ的电阻上拉至VCC。
单总线即只用一根信号线,既供电,又传输数据,而且数据传输是双向的,单总线具有"线与"功能,连接方便,便于扩展。
由于DS18B20采用 CMOS技术,耗电量很小,从总线上"偷"一点电保存到DS18B20内的电容中就可供给器件工作。
串联240 Ω电阻的目的是防止有缺陷的程序损坏DS18B20,如果没有正确地采用OC(集电极开路)或OD(漏极开路)结构驱动DS18B20,而是选择推挽方式,DS18B20可能被烧坏。
基于ds18b20的温度计设计代码

基于DS18B20的温度计设计代码一、介绍DS18B20温度计DS18B20是一种数字温度传感器,由美国达拉斯半导体公司生产。
它采用单总线通信协议,并可以通过单总线接口进行多级串联。
DS18B20具有精度高、稳定性好、响应速度快等特点,因此在各种温度测量应用中被广泛使用。
二、DS18B20温度计设计代码在使用DS18B20温度传感器时,我们通常需要编写相应的代码来读取传感器的数据并进行温度计算。
以下是基于Arduino评台的DS18B20温度计设计代码:```c#include <OneWire.h>#include <DallasTemperature.h>#define ONE_WIRE_BUS 2 // 设置DS18B20数据线连接的Arduino 引脚OneWire oneWire(ONE_WIRE_BUS);DallasTemperature sensors(&oneWire);void setup() {Serial.begin(9600);sensors.begin();}void loop() {sensors.requestTemperatures(); // 发送获取温度命令float temperatureC = sensors.getTempCByIndex(0); // 获取温度值(摄氏度)float temperatureF = sensors.toFahrenheit(temperatureC); // 转换为华氏度Serial.print("Temperature: ");Serial.print(temperatureC);Serial.print("°C / ");Serial.print(temperatureF);Serial.println("°F");delay(1000); // 延时1s}```以上代码使用了OneWire库和DallasTemperature库来实现对DS18B20的温度测量。
基于DS18B20的温度报警器设计

基于DS18B20的温度报警器设计温度报警器是一种用于监测环境温度并在温度超过设定阈值时发出警报的设备。
基于DS18B20的温度报警器设计可以通过连接DS18B20数字温度传感器和微控制器来实现。
以下是一个基于DS18B20的温度报警器设计的详细描述。
1.硬件设计:-DS18B20温度传感器:DS18B20是一款数字温度传感器,其具有高精度、数字输出、单线传输等特点。
它可以直接与微控制器连接,并通过单线总线协议进行通信。
将其中一根引脚连接到微控制器的GPIO引脚上,并使用上拉电阻将其拉高,以实现简单的单线通信。
- 微控制器:选择一款适合的微控制器,例如Arduino、Raspberry Pi等。
微控制器应该具有足够的GPIO引脚用于连接其他外设,并具备相应的数据处理能力。
-报警器:可以选择蜂鸣器、发光二极管(LED)或其他适合的报警器作为报警设备。
这些设备应具有较大的声光输出,以便及时警示。
2.软件设计:-初始化:在程序中初始化设备的GPIO引脚,并设置它们的输入输出方式。
同时,初始化DS18B20传感器,启动单线总线通信。
-温度读取:通过发送相应的命令,从DS18B20传感器读取当前的温度值。
DS18B20的温度数据以二进制形式存储,并使用一定的协议进行传输。
通过解析二进制数据,并进行适当的计算,可以获得温度值。
-温度比较:将读取到的温度值与设定的阈值进行比较。
如果温度超过阈值,则触发报警。
-报警控制:当温度超过设定阈值时,触发报警器的开启。
该过程涉及控制报警设备的GPIO引脚,使其输出足够的声音或亮度,以引起用户的注意。
-报警复位:当温度降低到设定阈值以下时,关闭报警器。
通过控制报警设备的GPIO引脚,将其输出设置为低电平,以停止声音或亮度。
3.报警策略:-阈值设置:根据具体应用的需求,设定适当的温度阈值。
根据环境和使用要求,选择报警温度和报警时刻。
可以通过软件界面或外部调节器调整阈值。
-报警反馈:为了确保用户能够及时获得报警信息,可以通过增加报警设备的数量或设置报警通知的方式来提高报警反馈。
基于51单片机的DS18B20温度检测_设计报告

课程名称:微机原理课程设计题目:温度检测课程设计随着时代的进步和发展,单片机技术已经普及到我们生活,工作,科研,各个领域,已经成为一种比较成熟的技术,本文将介绍一种基于单片机控制的温度检测仪。
本设计使用简便,功能丰富。
可以实现温度采集,温度报警,重设上下限温度值等功能。
在现代化的工业生产中,需要对周围环境的温度进行检测和控制。
本设计对温控报警问题展开思考,设计一个能根据需求设置低温到高温进行报警并通过数码管显示的系统。
该系统使用STC89C51单片机,同时运用单线数字温度传感器DS18B20,四位共阴数码管显示,按键控制等模块可实现温度的检测与设置。
课题经过实验验证达到设计要求,具有一定的使用价值和推广价值。
本作品使用四位共阴数码管显示,可以清晰地显示当前的报警温度,一定程度避免使用者使用时出错,安全可靠,可使用于各种食品储存室,植物养殖所等地方,实用性很高。
关键字:温度报警器 STC89C51单片机数码管 DS18B20一、课程设计目的和要求 (1)1.1 设计目的 (1)1.2 设计要求 (1)二、总体设计方案 (1)三、硬件设计 (2)3.1 DS18B20传感器 (2)3.2 STC89C51功能介绍 (6)3.3 时钟电路 (8)3.4 复位电路 (8)3.5 LED显示系统电路 (9)3.6 按键控制电路 (11)3.7 蜂鸣器电路 (11)3.8 总体电路设计 (12)四、软件设计 (14)4.1 keil软件 (14)4.2 系统主程序设计 (14)4.3 系统子程序设计 (15)五、仿真与实现 (18)5.1 PROTEUS仿真软件 (18)5.2 STC-ISP程序烧录软件 (19)5.3 使用说明 (20)六、总结 (21)一、课程设计目的和要求1.1 设计目的熟悉典型51单片机,加深对51单片机课程的全面认识和掌握,对51单片机及其接口的应用作进一步的了解,掌握基于51单片机的系统设计的一般流程、方法和技巧,为我们解决工程实际问题打下坚实的基础。
基于单片机和DS18B20的数字温度计

温度测量在物理实验、医疗卫生、食品生产等领域,尤其在热学试验中,有特别重要的意义。
随着人们生活水平的不断提高,,人们对温度计的要求越来越高,传统的温度计功能单一、精度低,要为现代人工作、科研、生活、提供更好的更方便的设施就需要从单片机技术入手,一切向着数字化控制,智能化控制方向发展。
数字温度计(Digital Thermometer)简称D温度是许多监控系统中的一个重要参数。
TM,它是采用数字化测量技术,把连续的温度值转换成不连续、离散的数字形式并加以显示的仪表。
采用单片机控制的数字温度计,由于精度高、可扩展性强、集成方便、抗干扰能力强,得到了广泛的应用。
本设计以单片机和温度传感器为核心,设计数字温度计。
实现对温度的采集、监视和报警。
在温度采集的实现中,使用了AT89C51单片机和温度传感器DS18B20,温度监视部分利用动态驱动技术,以单片机驱动4位LED数码管。
温度测量范围-55℃~+125℃,通过按键设置上下限报警温度,并用4位共阳极LED数码管以串口传送数据,实现温度显示,能准确达到设计要求。
正文还介绍了AT89C51和集成温度传感器DS18B20。
1 设计的意义及主要功能 (3)1.1 意义 (3)1.2 主要功能 (3)2 总体方案设计 (4)2.1 方案比较 (4)2.2 方案论证 (5)2.3 方案选择 (5)3 硬件电路设计 (6)3.1 元器件的选择 (6)3.2 电路原理图 (6)3.3 特殊元器件的介绍 (6)3.3.1 AT89C51介绍 (6)3.3.2 DS18B20介绍 (9)4 总结 (13)5 参考文献 (13)附录 (14)1 设计的意义及主要功能1.1 意义随着人们生活水平的不断提高,数字化无疑是人们追求的目标之一,它所给人带来的方便也是不可否定的,其中数字温度计就是一个典型的例子,一切向着数字化控制,智能化控制方向发展。
数字温度计与传统的温度计相比,具有读数方便,测温范围广,测温准确,其输出温度采用数字显示,主要用于对测温比较准确的场所,或科研实验室使用。
基于DS18B20的温度采集系统设计

2012 ~ 2013 学年第2 学期《单片机原理与应用》课程设计报告题目:基于DS18B20的温度采集系统设计专业: 自动化班级:电气工程系2013年5月3日任务书课题名称基于DS18B20的温度采集系统设计指导教师(职称)林开司摘要通过系统的分析和总结 ,得出温室大气温度信号的采集传感器件所需的测量程小 ,精确度不高 ,抗干扰性较强 ,经济性较好的结论。
并以此为依据 ,选用 DS18B20数字温度传感器为温度采集器件 ,进行了温度采集系统的硬件和软件设计 ,实现了采集系统分布式采集温度信号的功能。
同时 ,通过串行总线完成了采集系统与上位计算机的连接 ,实现了采集系统的网络化监控功能。
关键词温度采集;DS18B20温度传感器;仿真;单片机基于DS18B20的温度采集系统设计目录摘要 (I)第一章 DS18B20温度传感器 (1)1.1DS18B20的工作原理 (1)1.2DS18B20的使用方法 (3)第二章单片机AT89C51 (6)2.1AT89C51简介 (6)2.2AT89C51功能 (6)2.3AT89C51引脚 (6)第三章系统硬件电路设计 (9)3.1测温控制电路原理图 (9)3.2上电复位电路 (9)3.3时钟电路 (9)3.4数码管显示电路 (10)3.5温度报警电路 (11)第四章程序设计 (12)4.1DS18B20复位检测子程序流程图 (12)4.2温度转换子程序图 (12)4.3写DS18B20子程序图 (12)5.4读DS18B20子程序图 (13)4.5温度计算子程序图 (14)第五章调试与仿真 (14)第六章结论与体会 (16)参考文献 (17)附录: (18)答辩记录及评分表 (21)第一章 DS18B20温度传感器1.1 DS18B20的工作原理DS18B20的读写时序和测温原理与DS1820相同,只是得到的温度值的位数因分辨率不同而不同,且温度转换时的延时时间由2s 减为750ms。
基于51单片机DS18B20温度采集器详解

一核心器件的基本构成及特性1.1 AT89S51功能特性89C51是INTEL公司MCS-51系列单片机中基本的产品,它采用INTEL公司可靠的CHMOS工艺技术制造的高性能8位单片机,属于标准的MCS-51的HCMOS产品。
它结合了HMOS的高速和高密度技术及CHMOS的低功耗特征,它基于标准的MCS-51单片机体系结构和指令系统,属于80C51基础型单片机版本,集成了时钟输出和向上或向下计数器等更多的功能。
89C51内置8位中央处理单元、256字节内部数据存储器RAM、8k片内程序存储器(ROM)32个双向输入/输出(I/O)口、3个16位定时/计数器和5个两级中断结构,一个全双工串行通信口,片内时钟振荡电路。
此外,89C51还可工作于低功耗模式,可通过两种软件选择空闲和掉电模式。
在空闲模式下冻结CPU 而RAM定时器、串行口和中断系统维持其功能。
掉电模式下,保存RAM数据,时钟振荡停止,同时停止芯片内其它功能。
89C51有PDIP(40pin)和PLCC(44pin)两种封装形式。
1.2 AT89S51管脚介绍AT89C51单片机是把那些作为控制应用所必需的基本内容都集成在一个尺寸有限的集成电路芯片上。
如果按功能划分,它由如下功能部件组成,即微处理器(CPU)、数据存储器(RAM)、程序存储器(ROM)、并行I/O口(4个8位I/O口)、串行口、定时器/计数器、中断系统及特殊功能寄存器。
它们都是通过片内单一总线连接而成,其基本结构依旧是微处理器(CPU)加上外围芯片的传统结构模式。
但对各种功能部件的控制是采用特殊功能寄存器的集中控制方式,以实现不同的功能。
AT89C51单片机如图所示。
1.1.1引脚功能介绍Vcc(40引脚):接+5V电源。
Vss(20引脚):接地。
XTAL1(19引脚):片内振荡器反相放大器和时钟发生器电路的输入端。
XTAL2(18引脚):片内震荡器反相放大器的输出端。
RST:复位引脚,高电平有效。
温湿度测量系统--基于单片机和温度传感器DS18B20、HS1101是电容式空气湿度传感器

摘要此温湿度测量系统是基于单线式温度传感器DS18B20、电容式湿度传感器单片机STC89C52 对温度湿度分别测量并通过液晶显示屏1602经行显示。
温度传感器DS18B20是单线式,体积超小,硬件开消超低,抗干扰能力强,精度高,附加功能强的理想单片机温度传感器,可实时根据指令给出温度数据,可读性高。
HS1101是电容式空气湿度传感器,在不同的湿度环境下呈现出不同的电容值,0%~100%RH湿度范围内,电容从162PF变化到200PF,误差误差为2%RH。
可见其精度非常高,为了反映出其电容的变化,本系统采用555多谐震荡电路产生不同的频率,用于检测湿度。
单片机采集到两个传感器给出的数据进行处理与计算,得出当前的温度与湿度并送给液晶屏显示。
本系统具有可读性高,稳定性高,反应速度快,测量值准确的特点。
关键词:温湿度测量系统精度高速度快体积小Abstract: The temperature and humidity measurement system is based on singleline type temperature sensor DS18B20, capacitive moisture sensorSCM STC89C52 for temperature humidity measurement and respectively by LCD display. The line 1602 Temperature sensor DS18B20 is singleline type, volume super-small, hardware KaiXiao ultra-low, strong anti-jamming capability, high precision, additional features strong ideal single-chip microcomputer temperature sensor, real-time temperature data, depending on the directive given readable. HS1101 is capacitive sensor, air humidity in different humidity presents different capacitance, 0% ~ 100% RH humidity, within the scope of capacitance change to 200PF, from 162PF error for 2% RH error. e can see its precision is very high, in order to reflect the capacitance change, the system USES the 555 more harmonic concussion circuits produce different frequency, which is used to detect humidity. SCM acquisition to two sensor gives data processing and calculated, the current temperature and humidity and give the display on the LCD panel. This system has a readable, high stability, reaction speed, measured values exact characteristic.Keywords: temperature and humidity measurement system high precision speed small volume目录1.设计要求 (3)2. 方案设计及论证 (3)2.1 总体方案设计 (3)2.2系统主要单元的选择与论证 (3)2.2.1单片机控制模块的选择论证 (3)2.2.2温度湿度检测模块的选择与论证 (3)2.2.3显示模块的选择与论证 (3)2.3 系统组成 (4)3. 理论分析及计算 (4)3.1 (4)3.2..........................................................................................错误!未定义书签。
基于51单片机的DS18B20温度显示

基于51单片机的DS18B20温度显示本讲内容:了解温度传感器DS18B20的使用,并通过一个例程展示温度传感器DS18B20测温过程。
DS18B20简介:DS18B20 是单线数字温度传感器,即“一线器件”,其具有独特的优点:(1)采用单总线的接口方式与微处理器连接时仅需要一条口线即可实现微处理器与 DS18B20 的双向通讯。
单总线具有经济性好,抗干扰能力强,适合于恶劣环境的现场温度测量,使用方便等优点,使用户可轻松地组建传感器网络。
(2)测量温度范围宽,测量精度高。
DS18B20 的测量范围为-55 ℃ ~+ 125 ℃;在 -10~+ 85°C 范围内,精度为± 0.5°C 。
(3)多点组网功能多个 DS18B20 并联在惟一的单线上,实现多点测温。
DS18B20的存储器由一个高速暂存RAM 和一个非易失性、电可擦除(E2)RAM 组成。
配置寄存器:出场设置默认R0、R1为11。
也就是12位分辨率,也就是1位代表0.0625摄氏度。
DS18B20经转换所得的温度值以二字节补码形式存放在高速暂存存储器的第0和第1个字节。
所以当我们只想简单的读取温度值的时候,只用读取暂存器中的第0和第1个字节就可以了。
简单的读取温度值的步骤如下: 1:跳过ROM 操作 2:发送温度转换命令 3:跳过ROM 操作 4:发送读取温度命令 5:读取温度值 DS18B20接口电路图:DS18B20的初始化:主机首先发出一个480-960微秒的低电平脉冲,然后释放总线变为高电平,并在随后的480微秒时间内对总线进行检测,如果有低电平出现说明总线上有器件已做出应答。
若无低电平出现一直都是高电平说明总线上无器件应答。
做为从器件的DS18B20在一上电后就一直在检测总线上是否有480-960微秒的低电平出现,如果有,在总线转为高电平后等待15-60微秒后将总线电平拉低60-240微秒做出响应存在脉冲,告诉主机本器件已做好准备。
基于DS18B20的温度控制系统的设计

统。
2 . 2温度采集电路的设计 该 系统采用半导体温度传感器作为敏感元件。 传感器我们采 用
图 3 键 控 单 元 硬 件 电路
了D S 1 8 B 2 0 单 总线可编程温度传 感器, 来 实现对温度 的采集 和转 换, 直接输 出数字量 , 可以直接 和单 片机进行通讯 , 大大简化 了电路
的复 杂度 。D S 1 8 B 2 0应 用广泛 ,性能 可 以满 足题 目的设 计要 求 。 D S 1 8 B 2 0的与单片机的接 口连接电路图如图 2 所示 。
稳定 的设定值 ( 在一定温 度误差范 围内) 。 2 . I 单 片 机 的选 择
图2 D S 1 8 B 2 0的与 单 片 机 的 接 口连 接 电 路 图
P r ¨
单 片机 采用 A T 8 9 C 5 1 作为 本控 制系统 的核心 器件 , A T 8 9 C 5 1 基本型单片机由 C P U系统( 8 位C P U 、 时钟电路、 总线控制) 、 存储系 统 ( 4 K B的程序 存 储器 、 i 2 8 B的数 据存 储 器 、特 殊 功 能寄 存 器 S F R ) 、 I / O 口( 4 个并行 I / O 口) 其他单元 ( 2 个1 6 位定时 / 计数 器 、 1
其测温电路的实现是依靠单片机软件 的编程实现 的。 当
D S I 8 B 2 0 接收到温度转换命令后 , 开始启动转换 。转换 完成后 的温 度值 就以 1 6 位带符号扩展的二进制补码形式存储在高速暂存存储 器的 0 , 1 字节 。单 片机可通 过单线接 口 读 到该 数据 , 读 取时低位在 前, 高位在后 , 数据格式以0 .0 6 2 5 ℃/ L S B 形式表示, D S I 8 B 2 0 完 成温度转换后 , 就把测得的温度值( r r ) 与设定值f fH ) 做 比较 , 若T > T H 或T < T L , 则将 该器件内的告警标志置位 , 并对主机发 出的报警搜索 图 4显 示单元的硬件 电路图 命令做出响应。 调节 、测试则是将独立三键以简单 的硬件 电路与软件程序结合 , 看 2 . 3 键控单元电路的设计 是否能实现其在程序设计 中的按键功能 。如图 3 所示 。 键控单元 电路是以独立 的三键方式实现对 系统 温度 的设 定与
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于DS18B20的智能温度检测系统电子系统综合设计题目基于DS18B20的智能温度检测系统学号姓名所属系机械工程学院专业电子信息工程班级10级电信本一班指导教师摘要DS18B20是一种可组网的高精度数字式温度传感器,由于其具有单总线的独特优点,可以使用户轻松地组建起传感器网络,并可使多点温度测量电路变得简单、可靠。
本文结合实际使用经验,介绍了DS18B20数字温度传感器在单片机下的硬件连接及软件编程,并给出了软件流程图。
在此次设计中,我们采用LED显示温度,实现并焊接制作一个具有多种I/O接口的综合性功能电路,温度的测量值要精确到小数点的后1位,并采用单片机编程的方式使其使用方便、精度高。
另外还通过protues软件对设计的数字钟进行了有效的仿真,使得设计的电子产品更具有实用性,该系统可应用于仓库测温、楼宇空调控制和生产过程监控等领域。
关键字:温度测量;LED;数字温度传感器;单片机AbstractAs a kind of high-accuracy digital net temperature sensor,DS18 B20 can be used building a sensor net easily. It can also make the net simple and reliable with it's special 1-wire interfa ce .This paper introduces the application of DS18B20 with singl e chip processor.The system is constituted by two parts the temperature measure d part and displayed part. The temperature measured part has a RS232 interface. It used AT89C51 of ATMEL company and DS18B20 of DALLAS company .The displayed part uses PC .Th is system is applied in such domains as warehouse detecting te mperature;air-conditioner controlling system in building and su pervisory productive process etc.Key words:temperature measure;LED;digital thermometer;si ngle chip processor目录摘要 (2)Abstract (3)1绪论 (5)2整体方案设计 (5)2.1 STC89C51单片机基础 (5)2.2 DS18B20的基本性质 (6)3智能温度检测系统的硬件设计 (8)3.1 LED电路 (8)3.2 STC89C51单片机电路 (9)3.3 DS18B20电路 (12)4智能温度检测系统的软件设计 (15)4.1 系统软件设计流程图 (15)4.2 智能温度检测系统的源程序代码 (17)4.3 只能温度检测系统的原理图 (24)5系统硬件仿真 (24)5.1 硬件仿真的介绍 (24)5.2仿真结果现象描述 (25)6总结 (26)参考文献 (27)1 绪论在工、农业生产和日常生活中,对温度的测量及控制占据着极其重要地位。
消防电气的非破坏性温度检测,电力电讯设备之过热故障预知检测,空调系统的温度检测,各类运输工具之组件的过热检测,保全与监视系统之应用,医疗与健诊的温度测试,化工、机械…等设备温度过热检测。
温度检测系统应用十分广阔。
温度检测系统有则共同的特点:测量点多、环境复杂、布线分散、现场离监控室远等。
若采用一般温度传感器采集温度信号,则需要设计信号调理电路、A/D 转换及相应的接口电路,才能把传感器输出的模拟信号转换成数字信号送到计算机去处理。
这样,由于各种因素会造成检测系统较大的偏差;又因为检测环境复杂、测量点多、信号传输距离远及各种干扰的影响,会使检测系统的稳定性和可靠性下降。
所以多点温度检测系统的设计的关键在于两部分:温度传感器的选择和主控单元的设计。
温度传感器应用范围广泛、使用数量少,方便测量。
DS18B20数字温度传感器接线方便,封装成后可应用于多种场合,如管道式,螺纹式,磁铁吸附式,不锈钢封装式,型号多种多样,有LTM8877,LTM8874等等。
主要根据应用场合的不同而改变其外观。
封装后的DS18B20可用于电缆沟测温,高炉水循环测温,锅炉测温,机房测温,农业大棚测温,洁净室测温,弹药库测温等各种非极限温度场合。
耐磨耐碰,体积小,使用方便,封装形式多样,适用于各种狭小空间设备数字测温和控制领域。
2整体方案设计2.1 STC89C51单片机基础(1)增强型1T 流水线/精简指令集结构8051 CPU(2)工作电压:3.4V-5.5V (5V单片机)/ 2.0V-3.8V (3V 单片机(3)工作频率范围:0 -35 MHz,相当于普通8051 的0~420MHz.实际工作频率可达48MHz.(4)用户应用程序空间12K / 10K / 8K / 6K / 4K / 2K字节(5)片上集成512 字节RAM(6)通用I/O 口(27/23个),复位后为:准双向口/ 弱上拉(普通8051 传统I/O 口)可设置成四种模式:准双向口/ 弱上拉,推挽/ 强上拉,仅为输入/高阻,开漏每个I/O 口驱动能力均可达到20mA,但整个芯片最大不得超过55mA(7)ISP(在系统可编程)/IAP(在应用可编程),无需专用编程器可通过串口(P3.0/P3.1)直接下载用户程序,数秒即可完成一片(8)EEPROM 功能(9)看门狗(10)内部集成MAX810 专用复位电路(外部晶体20M 以下时,可省外部复位电路)(11)时钟源:外部高精度晶体/ 时钟,内部R/C 振荡器。
用户在下载用户程序时,可选择是使用内部R/C 振荡器还是外部晶体/ 时钟。
常温下内部R/C 振荡器频率为:5.2MHz ~6.8MHz。
精度要求不高时,可选择使用内部时钟,因为有温漂,请选4MHz ~8MHz(12)有2个16 位定时器/ 计数器(13)外部中断2 路,下降沿中断或低电平触发中断,Power Down 模式可由外部中断低电平触发中断方式唤醒(14)PWM( 4 路)/ P C A(可编程计数器阵列),也可用来再实现4个定时器或4个外部中断(上升沿中断/ 下降沿中断均可支持)(15)STC89Cc516AD具有ADC功能。
10 位精度ADC,共8 路(16)通用异步串行口(UART)(17)SPI同步通信口,主模式/ 从模式(18)工作温度范围:0 -75℃/ -40 -+85℃(19)封装:PDIP-28,SOP-28,PDIP-20,SOP-20,PLCC-32,TSSOP-20(超小封状,定货)2.2 DS18B20的基本性质1、DS18B20性能特点①采用单总线专用技术,既可通过串行口线,也可通过其它I/O口线与微机接口,无须经过其它变换电路,直接输出被测温度值(9位二进制数,含符号位)②测温范围为-55℃-+125℃,测量分辨率为0.0625℃③内含64位经过激光修正的只读存储器ROM,④适配各种单片机或系统机,⑤用户可分别设定各路温度的上、下限,⑥内含寄生电源。
2、DS18B20内部结构DS18B20内部结构主要由四部分组成:64位光刻ROM,温度传感器,非挥发的温度报警触发器TH和TL,高速暂存器。
DS18B20的管脚排列如图1所示。
64位光刻ROM是出厂前被光刻好的,它可以看作是该DS18B20的地址序列号。
不同的器件地址序列号不同。
图 1 DS18B20引脚分布图8位产品系列号48位产品序号8位CRC编码DS18B20高速暂存器共9个存存单元0 温度低字节以16位补码形式存放4、5 保留字节1、2 1 温度高字节 6 计数器余值 2 TH/用户字节1 存放温度上限7 计数器/℃ 3 HL/用户字节2 存放温度下限8 CRC以12位转化为例说明温度高低字节存放形式及计算:12位转化后得到的12位数据,存储在18B20的两个高低两个8位的RAM中,二进制中的前面5位是符号位。
如果测得的温度大于0,这5位为0,只要将测到的数值乘于0.0625即可得到实际温度;如果温度小于0,这5位为1,测到的数值需要取反加1再乘于0.0625才能得到实际温度。
高8位S S S S S 26 25 24 低8位23 22 21 20 2-1 2-2 2-3 2-43、DS18B20控制方法在硬件上,DS18B20与单片机的连接有两种方法,一种是Vcc接外部电源,GND 接地,I/O与单片机的I/O线相连;另一种是用寄生电源供电,此时UDD、GND接地,I/O接单片机I/O。
无论是内部寄生电源还是外部供电,I/O口线要接5KΩ左右的上拉电阻。
DS18B20有六条控制命令,44H 启动DS18B20进行温度转换读暂存器BEH 读暂存器9个字节内容写暂存器4EH 将数据写入暂存器的TH、TL字节复制暂存器48H 把暂存器的TH、TL字节写到E2RAM中重新调E2RAM B8H 把E2RAM中的TH、TL字节写到暂存器读电源供电方式B4H 启动DS18B20发送电源供电方式的信号CPU5、CPU对DS18B20的访问流程先对DS18B20初始化,再进行ROM操作命令,最后才能对存储器操作,数据操作。
DS18B20每一步操作都要遵循严格的工作时序和通信协议。
如主机控制DS18B20完成温度转换这一过程,根据DS18B20的通讯协议,须经三个步骤:每一次读写之前都要对DS18B20进行复位,复位成功后发送一条ROM指令,最后发送RAM指令,这样才能对DS18B20进行预定的操作。
6、系统组成由DS18B20构成的智能温度测量装置由三部分组成:DS18B20温度传感器、89C2051、显示模块。
产品的主要技术指标:①测量范围:-55℃-+125℃,②测量精度:0.5℃,③反应时间≤500ms。
3 智能温度检测系统的硬件设计3.1 LED电路在电子技术中,由LED数码管显示0~9的数是常用的显示技术。
数码管显示时,可用LCD(液晶),也可用LED数码管显示0~9的数。
这里利用PIC16F84A单片机控制的数码管LED显示电路,如下图所示。
下图是4位LED数码管显示电路,也可以扩展成更多的位或减少到一位数的显示。