遥感特征提取物具体步骤
如何利用遥感数据进行测绘数据的提取
如何利用遥感数据进行测绘数据的提取遥感技术是一种通过卫星、飞机和无人机等远距离获取对象信息的技术手段。
利用遥感数据进行测绘数据的提取,可以为地理信息系统、城市规划、环境监测、农业管理等领域提供准确、高效的数据支持。
本文将探讨如何利用遥感数据进行测绘数据的提取。
一、遥感数据的获取与处理1. 遥感数据的获取方式遥感数据的获取方式包括卫星遥感、航空遥感和无人机遥感等。
卫星遥感是通过卫星对地观测,获取大范围的地表信息;航空遥感是利用航空器对特定区域进行遥感观测,数据分辨率较高;无人机遥感则是利用无人机进行遥感观测,可以获取更高分辨率的数据。
2. 遥感数据的处理流程遥感数据处理流程包括预处理、数据影像处理和数据提取等步骤。
预处理主要包括辐射校正、大气校正和地形校正等,以保证数据的准确性。
数据影像处理主要包括图像增强、图像融合和图像分类等,以提取出感兴趣的对象信息。
数据提取是利用图像处理结果,从中提取出需要的测绘数据,如道路、建筑物、水域等。
二、遥感数据在测绘中的应用1. 遥感数据在地图制作中的应用遥感数据在地图制作中可以提供地表物体的准确位置、形状和属性信息。
通过图像分类和对象提取等技术,可以从遥感数据中提取出各类地物信息,如道路、建筑物、水域等,用于地理信息系统和城市规划等领域。
2. 遥感数据在地形测量中的应用遥感数据可以提供地表高程信息,用于地形测量和三维地图制作。
通过遥感图像的几何纠正和数字高程模型的生成,可以获取地表的高程数据,用于地形分析、地质调查和水资源管理等。
3. 遥感数据在农业测量中的应用遥感数据在农业测量中可以提供农作物的生长状态、受灾情况和产量预测等信息。
通过遥感图像的特征提取和分类,可以监测农作物的种植面积、植被指数和土壤湿度等参数,用于农业管理和精准农业。
三、遥感数据提取测绘信息的方法1. 监督分类法监督分类法是常用的遥感数据提取测绘信息的方法之一。
该方法需要预先准备训练样本,并通过机器学习算法训练分类器,然后应用分类器对整个遥感图像进行分类,提取出感兴趣的测绘信息。
遥感图像处理中的特征提取技术使用教程
遥感图像处理中的特征提取技术使用教程遥感图像处理是一种利用航天器或飞机上的传感器通过接收地球表面反射或辐射的能量进行地球观测与地球表面信息获取的科学技术。
遥感技术广泛应用于农业、林业、地质勘探、环境监测等领域,为了更准确地获取地表信息,特征提取技术成为遥感图像处理中的重要环节。
本文将介绍遥感图像处理中常用的特征提取技术,并提供相应的使用教程。
一、像素级特征提取技术像素级特征提取技术是指从遥感图像中提取单个像素的特征信息。
常用的像素级特征提取技术有灰度级特征提取和颜色特征提取。
1. 灰度级特征提取灰度级特征提取是根据像素的灰度值来判断其特征属性。
常用的灰度级特征包括像素的亮度、纹理、形状等。
其中,像素的亮度可以通过计算灰度直方图或灰度矩来进行提取;纹理特征可以通过灰度共生矩阵、小波变换等方法来提取;形状特征可以通过边缘检测、形态学操作等技术来提取。
2. 颜色特征提取颜色特征提取是根据像素的颜色信息来判断其特征属性。
常用的颜色特征包括色调、饱和度、亮度等。
可以通过计算像素的颜色直方图、颜色矩来提取颜色特征。
二、对象级特征提取技术对象级特征提取技术是指从遥感图像中提取出具有独特形态和位置特征的地物对象。
常用的对象级特征提取技术有基于边缘提取的特征、基于区域分割的特征和基于形状提取的特征等。
1. 基于边缘提取的特征边缘是地物对象与背景之间的边界,通过提取边缘可以获得地物对象的形态信息。
常用的边缘提取算法包括Canny边缘检测算法、Sobel算子、Prewitt算子等。
通过对遥感图像进行边缘提取,可以得到地物对象的轮廓信息。
2. 基于区域分割的特征区域分割是将遥感图像划分为具有相似特征的连续区域的过程。
常用的区域分割算法有基于阈值的分割算法、基于区域增长的分割算法、基于边缘的分割算法等。
通过对遥感图像进行区域分割,可以得到地物对象的集合,并提取出地物对象的各种特征属性。
3. 基于形状提取的特征地物对象具有独特的形状信息,通过提取形状特征可以获得地物对象的几何性质。
遥感数据处理中的特征提取与分类方法
遥感数据处理中的特征提取与分类方法引言遥感技术的发展使得人们能够通过航天器远距离获取地球表面的图像数据,并进行各种分析和应用。
遥感数据处理是指对这些获取到的数据进行预处理、特征提取和分类,以实现对地球表面特定区域的信息提取和解读。
本文将探讨遥感数据处理中的特征提取与分类方法。
一、特征提取方法1. 光谱特征提取光谱特征提取是遥感数据处理中最常用的方法之一。
通过分析地球表面的反射、辐射和发射光谱信息,可以获取不同物体或地物的光谱特征。
这些特征包括反射率、辐射亮度、辐射强度等。
2. 纹理特征提取纹理特征提取是通过分析地物表面纹理的空间分布和统计特性来获取特征信息的方法。
纹理特征包括灰度共生矩阵、方差、平均灰度等。
这些特征可以用于界定地物的边界、形状和空间分布特征。
3. 结构特征提取结构特征提取是通过分析地物的几何形状和排列方式来获取特征信息的方法。
结构特征包括面积、周长、长度、宽度、密度等。
这些特征可以用于判断地物的类型和分类。
二、分类方法1. 监督分类方法监督分类方法是基于已知地物类型的样本数据进行训练和分类的方法。
这种方法需要先收集一定数量的地物样本数据,并标注其类别信息。
然后,通过对样本数据进行统计分析和特征提取,建立分类模型,对未知地物进行分类。
2. 无监督分类方法无监督分类方法是不依赖已知样本数据进行分类的方法。
无监督分类方法主要依靠对地物间的相似性和差异性进行统计分析,通过将地物划分为具有相似特征的类别,实现分类。
3. 半监督分类方法半监督分类方法是监督分类方法和无监督分类方法的结合,充分利用已知样本数据和未知样本数据进行分类。
半监督分类方法首先使用无监督方法对未知样本数据进行聚类,然后使用监督方法对聚类结果进行分类。
结论遥感数据处理中的特征提取与分类方法是实现对地球表面信息提取和解读的关键环节。
光谱特征、纹理特征和结构特征的提取可以有效地表示地物的特点和特征。
监督分类、无监督分类和半监督分类方法可以根据不同的需求和数据情况进行选择和应用。
遥感图像处理的图像增强和特征提取方法
遥感图像处理的图像增强和特征提取方法遥感图像处理是利用遥感技术获取和处理地球表面信息的一种方法。
在遥感图像处理中,图像增强和特征提取是两个重要的步骤。
本文将探讨遥感图像处理的图像增强和特征提取方法,并介绍其在实际应用中的重要性和挑战。
一、图像增强方法图像增强是通过改善遥感图像的质量和清晰度来提取更多有用信息的过程。
在遥感图像处理中,常用的图像增强方法包括直方图均衡化、滤波和增强算法等。
1. 直方图均衡化直方图均衡化是一种通过调整图像的亮度分布来增强图像对比度的方法。
它通过将图像的亮度值映射到一个更均匀分布的直方图来使图像的细节更加清晰。
直方图均衡化能够有效地提高图像的视觉质量,但在某些情况下可能会导致过度增强和失真。
2. 滤波滤波是一种通过去除图像中的噪声和不必要的细节来改善图像质量的方法。
在遥感图像处理中,常用的滤波方法包括中值滤波、高斯滤波和小波变换等。
这些滤波方法能够有效地降低图像的噪声和模糊度,提高图像的清晰度和边缘保持能力。
3. 增强算法增强算法是一种通过对图像进行像素级别的调整和处理来增强图像质量的方法。
常用的增强算法包括灰度拉伸、对比度增强和边缘增强等。
这些算法能够根据图像的特点和需求来调整图像的亮度、对比度和细节等,从而提高图像的视觉效果和信息提取能力。
二、特征提取方法特征提取是通过从遥感图像中提取和表示有用的信息和模式来分析和识别图像内容的过程。
在遥感图像处理中,常用的特征提取方法包括纹理特征提取、频谱特征提取和形状特征提取等。
1. 纹理特征提取纹理特征提取是一种通过分析图像中的纹理信息来描述和表示图像内容的方法。
常用的纹理特征提取方法包括灰度共生矩阵、小波变换和局部二值模式等。
这些方法能够有效地提取图像中的纹理细节和结构特征,用于图像分类、目标检测和地物识别等应用。
2. 频谱特征提取频谱特征提取是一种通过分析图像的频域信息来描述和表示图像内容的方法。
常用的频谱特征提取方法包括傅里叶变换、小波变换和高斯金字塔等。
遥感影像处理中的特征提取方法和应用
遥感影像处理中的特征提取方法和应用遥感影像是通过无人机、卫星等载体获取的地球表面的影像数据。
特征提取是遥感影像处理中的一项重要任务,旨在从遥感影像中提取出地物的特定特征,以实现对地物的分类、识别和监测等应用。
本文将介绍遥感影像处理中常用的特征提取方法及其应用。
一、特征提取方法1. 基于像素的特征提取方法基于像素的特征提取方法是从单个像素点的信息中提取特征。
常用的方法包括:(1)颜色特征提取:利用遥感影像中的颜色信息进行特征提取。
常用的方法包括二值化、RGB分量、HSV、归一化差异植被指数(NDVI)等。
(2)纹理特征提取:利用遥感影像中的纹理信息进行特征提取。
常用的方法包括灰度共生矩阵(GLCM)、灰度值标准差、平均灰度值等。
(3)形状特征提取:利用遥感影像中的形状信息进行特征提取。
常用的方法包括链码、Hu不变矩、区域面积等。
2. 基于目标的特征提取方法基于目标的特征提取方法是在已知地物目标的前提下,根据地物目标的特定特征进行特征提取。
常用的方法包括:(1)形状特征提取:利用地物目标的形状信息进行特征提取。
常用的方法包括面积、周长、伸长率等。
(2)纹理特征提取:利用地物目标的纹理信息进行特征提取。
常用的方法包括纹理能量、纹理熵、纹理对比度等。
(3)上下文特征提取:利用地物目标的上下文信息进行特征提取。
常用的方法包括边界连接、邻居分析、局部空间关系等。
二、特征提取应用1. 地物分类特征提取在地物分类中起到了关键作用。
通过提取不同地物的特定特征,可以将遥感影像中的地物进行分类,如水体、森林、建筑等。
特征提取方法可以通过训练分类器来实现自动分类。
2. 土地利用监测特征提取可以应用于土地利用监测。
通过提取遥感影像中地物的特定特征,可以实现对土地的类型和变化进行监测,如农田的扩张、森林的退化等,为土地规划和资源管理提供支持。
3. 城市规划特征提取在城市规划中具有重要意义。
通过提取遥感影像中的建筑、道路等特定特征,可以分析城市的发展趋势和扩张方向,为城市规划和交通规划提供数据支持。
遥感图像的特征提取与空间分析方法
遥感图像的特征提取与空间分析方法遥感图像是一种通过卫星、飞机等远距离方式获取地球表面信息的技术。
随着遥感技术的不断进步和应用领域的拓展,遥感图像的特征提取和空间分析方法也成为研究的热点之一。
本文将探讨遥感图像特征提取与空间分析方法的相关内容,包括常用的特征提取方法、特征的分类和应用以及空间分析方法的原理和应用。
一、特征提取方法1. 基于像素的特征提取方法基于像素的特征提取方法是最基础的一种方法,它通过分析每个像素点的亮度、颜色等属性来提取图像特征。
常见的方法有灰度共生矩阵、颜色直方图和纹理特征等。
其中,灰度共生矩阵通过计算像素之间的灰度分布概率来描述图像的纹理特征,颜色直方图通过统计图像中像素的颜色分布情况来提取图像的颜色特征。
2. 基于区域的特征提取方法基于区域的特征提取方法是将图像分割成若干个区域,然后提取每个区域的特征。
常用的方法有边缘检测、聚类分析和形态学处理等。
边缘检测可以提取图像中的边界信息,聚类分析可以将相似的像素点分到同一个区域中,形态学处理可以提取图像中的纹理和形状信息。
二、特征的分类和应用根据特征的性质和应用场景的不同,特征可以分为几何特征、频谱特征和纹理特征等。
几何特征包括面积、周长、形状等,频谱特征包括反射率、辐射度等,纹理特征包括纹理均匀度、纹理方向等。
这些特征在不同领域的应用也有所不同。
1. 土地利用与覆盖变化研究土地利用与覆盖变化研究是遥感图像应用的一个重要领域,它可以通过提取图像的频谱特征和纹理特征来监测和分析土地的利用情况和覆盖变化。
例如,利用遥感图像的反射率特征可以判断农田的健康状况,利用纹理特征可以分析城市建设的扩张情况。
2. 灾害监测与评估灾害监测与评估是遥感图像应用的另一个重要领域,它可以通过提取图像的几何特征和纹理特征来识别和分析灾害的类型和程度。
例如,在地震灾害监测中,可以利用遥感图像的几何特征和纹理特征来评估建筑物的倒塌程度和人员伤亡情况。
三、空间分析方法空间分析方法是对遥感图像进行空间变化和空间关系分析的一种方法。
遥感图像处理中的特征提取方法
遥感图像处理中的特征提取方法遥感图像处理指的是利用遥感技术获取的遥感图像进行分析、处理和去除噪声等操作,以提取出有效的信息和特征。
而特征提取是遥感图像处理的一项重要技术,在遥感图像处理中应用广泛。
本文将介绍遥感图像处理中的特征提取方法及其应用。
一、直方图均衡化直方图是表示一幅图像中像素强度分布的曲线,直方图均衡化是一种图像增强的技术。
在遥感图像处理中,直方图均衡化可以用来增强图像的对比度,同时突出图像中的特征,从而提高图像的可视化效果。
二、形态学处理形态学处理是对图像进行形状和结构分析的一种方法。
形态学处理在遥感图像处理中的应用主要是为了提取图像中的特征信息。
形态学处理包括膨胀、腐蚀、开运算、闭运算等操作,可以去除噪声、填充空洞和提取图像中的特征等。
三、边缘检测边缘检测是从图像中提取边缘的一种技术。
边缘可以表示图像中物体的边界,通过对边缘进行分析,可以提取出图像中的结构信息和几何信息。
边缘检测在遥感图像处理中应用广泛,可以用来提取河流、道路、建筑物等具有线状结构的特征。
四、频域分析频域分析是将图像从空域转换到频域,从而分析图像的频率特征。
频域分析包括傅里叶变换、小波变换等方法。
在遥感图像处理中,频域分析可以用来提取图像中的纹理特征和波形特征,例如提取森林、草地、水体等的纹理特征。
五、特征提取算法特征提取算法是对图像进行分析和处理,以提取出具有代表性的特征信息。
特征提取算法包括直方图分析、特征值分析、主成分分析等方法。
这些方法可以从图像中提取出具有代表性的特征信息,例如提取岛屿、湖泊、山脉等的特征信息。
综上所述,特征提取是遥感图像处理中的一项重要技术。
通过直方图均衡化、形态学处理、边缘检测、频域分析和特征提取算法等方法,可以提取出图像中的特征信息,从而达到分析、处理和识别等目的。
在未来,随着遥感技术的不断发展和应用,特征提取技术也会不断升级和优化,进一步提高遥感图像处理的效率和精度。
如何应用遥感技术进行地物提取
如何应用遥感技术进行地物提取遥感技术是一种利用卫星、飞机等遥感器获取地球表面信息的技术。
通过遥感技术,大部分地物特征可以在远距离就能被有效观测和检测。
遥感技术在环境监测、农业、城市规划等领域发挥着重要作用。
其中,地物提取是遥感技术应用的一个重要方向,本文将讨论如何应用遥感技术进行地物提取。
一、遥感数据的获取在开始进行地物提取之前,我们首先需要获取遥感数据。
目前,卫星遥感数据已经很容易获取,而且可免费使用。
例如美国宇航局的Landsat系列卫星和欧空局的Sentinel系列卫星都提供高质量的遥感数据。
此外,还有一些商业卫星公司提供各种类型的遥感数据,用户可以根据需求选择适合的数据。
二、图像预处理在进行地物提取之前,我们需要对遥感图像进行预处理,以提高后续分析的精度。
预处理的步骤包括辐射校正、大气校正、几何校正等。
辐射校正主要是将图像中的数字值转换为物理辐射度,以便进行接下来的分析。
大气校正是消除由大气介质引起的图像变暗和颜色偏差。
几何校正主要是校正图像的空间位置和方向,以确保不同卫星图像的一致性。
三、特征提取特征提取是地物提取的核心过程。
通过遥感图像,我们可以提取各种地物特征,例如颜色、纹理、形状等。
这些特征可以用于区分不同的地物类型。
对于特定的地物类型,我们可以选择适合的特征集合。
例如,对于农作物,颜色和纹理特征可能更加重要,而对于建筑物,形状特征可能更有意义。
四、分类算法地物提取的一种常用方法是利用分类算法对具有不同特征的像元进行分类。
分类是指根据一定的规则将遥感图像中的像元分为不同的类别。
常用的分类算法包括最大似然分类、支持向量机等。
这些算法通过对已知类别的样本进行训练,建立了分类模型,然后利用该模型对未知样本进行分类。
分类的结果可以表示为一个分类图像,其中每个像元都被标记为相应的类别。
五、后处理分类算法得到的分类图像通常存在一定的误差。
为了减小误差,我们需要进行后处理。
后处理的目标是消除分类图像中的小孔洞、小区域以及边界上的噪声。
遥感图像分析中的特征提取方法研究
遥感图像分析中的特征提取方法研究遥感图像是使用遥感技术获取的地球表面的图像数据,具有广泛的应用领域,如农业、环境监测、城市规划等。
在遥感图像分析中,特征提取是一项关键的任务,它可以帮助我们理解和解释图像中的信息,从而支持后续的分类、目标检测和变化检测等任务。
本文将介绍遥感图像分析中常用的特征提取方法,并对其进行研究和探讨。
一、基于像素的特征提取方法1. 光谱特征提取光谱特征提取是遥感图像分析中最常用的方法之一。
它利用不同波段的反射率或辐射率来描述地物的光谱特征。
常用的光谱特征包括光谱指数(如归一化差异植被指数、土壤调节植被指数)、光谱编码特征和光谱形状特征等。
这些特征可以用来反映地物的生理状态、土壤类型以及地表覆盖情况。
2. 纹理特征提取纹理特征描述图像中的纹理结构,它可以用来区分不同地物之间的差异。
常用的纹理特征提取方法包括协方差矩阵、格雷共生矩阵和小波变换等。
这些方法可以用来量化图像中的纹理信息,并提取与地物类别相关的纹理特征。
3. 形状特征提取形状特征描述地物在空间中的形状和几何属性。
常用的形状特征包括面积、周长、形状指数和紧凑度等。
这些特征可以用来区分不同类别的地物,如水体、建筑物和森林等。
二、基于目标的特征提取方法1. 目标边界特征提取目标边界特征是指提取目标轮廓或边界的特征。
这些特征可以用来分析目标的形状、大小和结构等属性。
常用的目标边界特征提取方法包括边缘检测、边界跟踪和边界描述等。
2. 目标纹理特征提取目标纹理特征提取是指提取目标表面的纹理特征。
它可以用来分析目标的表面纹理结构和纹理特征。
常用的目标纹理特征提取方法包括灰度共生矩阵、小波变换和纹理过滤器等。
三、基于空间信息的特征提取方法1. 空间相对关系特征提取空间相对关系特征描述地物之间的位置关系。
常用的空间相对关系特征包括距离、角度和邻域关系等。
这些特征可以用来分析地物之间的空间布局和空间关系。
2. 空间结构特征提取空间结构特征描述地物在空间上的结构和组织。
如何进行遥感图像的特征提取与目标检测
如何进行遥感图像的特征提取与目标检测遥感图像是一种通过航天技术获取的地球或其他天体上的图像,它能提供大量的地理信息和环境数据。
然而,由于遥感图像具有高维复杂性和丰富的信息量,解读和利用这些图像是一项具有挑战性的任务。
在本文中,我将介绍如何进行遥感图像的特征提取与目标检测,以便更好地理解和利用遥感图像的信息。
一、遥感图像的特征提取特征提取是从原始数据中选择和提取出与特定任务相关的信息的过程。
对于遥感图像,我们可以通过以下几种方法进行特征提取。
1. 颜色特征提取遥感图像中的颜色信息具有重要的地理、环境和地物属性。
通过使用颜色直方图、颜色矩和颜色空间变换等方法,可以从遥感图像中提取出丰富的颜色特征。
这些颜色特征可以用于分类、目标检测和地物识别等应用。
2. 纹理特征提取纹理是遥感图像中地物表面的经典特征之一。
通过灰度共生矩阵、局部二值模式和小波变换等方法,可以提取出遥感图像中地物的纹理信息。
这些纹理特征可以用于地物分类、目标检测和地貌分析等任务。
3. 形状特征提取遥感图像中的地物形状信息也具有重要的地理和环境属性。
通过使用边缘检测、形态学操作和轮廓描述等方法,可以提取出遥感图像中地物的形状特征。
这些形状特征可以用于地物识别、目标检测和地貌分析等应用。
二、遥感图像的目标检测目标检测是通过分析遥感图像,自动或半自动地识别和定位其中的目标。
遥感图像的目标检测是遥感技术的重要应用之一,它可以用于农业监测、城市规划和环境监测等领域。
1. 基于区域的目标检测方法基于区域的目标检测方法是一种常用的遥感图像目标检测方法。
该方法先通过图像分割将图像分成多个区域,然后通过计算每个区域的特征向量,利用机器学习算法进行分类和目标检测。
常用的图像分割算法包括基于阈值、基于区域增长和基于图割等方法。
2. 基于卷积神经网络的目标检测方法随着深度学习的兴起,卷积神经网络在遥感图像的目标检测中得到了广泛应用。
通过训练深度卷积神经网络,可以实现对遥感图像中的目标进行准确识别和定位。
如何进行高分辨率遥感影像处理和特征提取—操作指南
如何进行高分辨率遥感影像处理和特征提取—操作指南随着遥感技术的不断发展,高分辨率遥感影像的获取和处理已经成为现代地理信息科学和遥感应用的重要组成部分。
本文将介绍如何进行高分辨率遥感影像处理和特征提取,并提供一些实用的操作指南。
一、数据获取与预处理在进行高分辨率遥感影像处理和特征提取之前,我们首先需要获取合适的遥感数据。
这可以通过卫星或无人机获取。
对于特定的研究领域或项目需求,选择合适的遥感影像数据非常重要。
常见的高分辨率遥感影像数据包括Landsat、Sentinel、QuickBird等。
一旦获取到了所需的影像数据,我们就可以进行预处理来优化数据质量。
预处理的步骤包括去除影像中的云和阴影、大气校正、辐射校正等操作。
二、影像增强与分割高分辨率遥感影像通常包含大量的信息,但这些信息往往被掩盖在噪声和杂散信息中。
因此,在特征提取之前,我们需要对影像进行增强和分割,以凸显目标特征。
影像增强可以通过直方图均衡化和滤波等技术实现。
而影像分割则将影像划分为一组连续的区域,以便更好地提取各个区域的特征。
这些区域可以通过基于像素的分割算法或基于区域的分割算法来获取。
三、特征提取与分类特征提取是高分辨率遥感影像处理的关键步骤。
提取准确的特征可以为后续的分类和分析提供重要的基础。
常用的特征包括形状、纹理、光谱和空间特征等。
形状特征可以通过计算目标的各类几何特征来获取,如周长、面积、紧凑性等。
纹理特征可以通过灰度共生矩阵和小波变换等方法进行提取。
光谱特征则利用影像的不同波段之间的差异来表达目标的光谱信息。
空间特征则关注目标之间的相对位置和空间关系。
提取到的特征常常需要进行分类和识别。
分类是将影像中的不同目标分配到指定类别的过程。
常用的分类算法包括马尔可夫随机场、支持向量机和人工神经网络等。
这些算法可以利用一些已知类别的样本数据进行训练,然后将训练得到的模型应用到未知数据中。
这样,我们就可以实现对影像中各个目标进行自动识别和分类的工作。
如何进行遥感图像的特征提取与目标识别
如何进行遥感图像的特征提取与目标识别遥感图像是一种通过遥感技术获取的地球表面的图像数据,具有广泛的应用价值。
然而,由于遥感图像的数据量庞大且复杂,直接使用原始图像进行分析和处理会面临诸多挑战。
因此,对遥感图像进行特征提取和目标识别成为了遥感图像处理的核心问题。
本文将探讨如何进行遥感图像的特征提取与目标识别,并通过实例进行说明。
一、理解遥感图像的特征提取特征提取是将图像中的信息转化为可供计算机进一步处理的数值或符号特征的过程。
在遥感图像中,特征提取是通过对图像的处理和分析,提取出具有代表性和区分度的图像特征,以便进行后续的目标识别和分类。
在遥感图像中的特征可以包括空间特征、频谱特征、纹理特征等。
其中,空间特征指的是图像中目标的几何形状、大小和分布等信息;频谱特征则是指图像中目标在不同波段上的反射或辐射强度的分布信息;而纹理特征则是指图像中目标的纹理信息,如纹理的粗糙度、方向等。
二、常用的遥感图像特征提取方法1. 基于像素的特征提取方法基于像素的特征提取方法是将图像中的每一个像素点作为一个单独的特征,并将其通过某种算法转化为能够反映目标信息的数值特征。
这种方法简单直观,适用于需要考虑目标每个像素点的信息的任务,如边缘检测、目标分割等。
2. 基于区域的特征提取方法基于区域的特征提取方法将图像中的像素点组织成一个一个的区域,并对每个区域提取特征。
这种方法考虑了目标的上下文信息,能够更好地反映目标的几何形状和分布情况。
常用的基于区域的特征提取方法包括基于区域的纹理特征、形状特征等。
3. 基于深度学习的特征提取方法随着深度学习的发展,基于深度学习的特征提取方法也逐渐应用于遥感图像处理中。
深度学习通过构建多个隐藏层的神经网络模型,能够自动学习和提取图像中的特征。
这种方法不需要手工设计特征提取算法,具有非常强的表达能力和适应性。
三、遥感图像目标识别的方法在进行了特征提取之后,接下来的任务就是对图像中的目标进行识别。
遥感影像特征提取的原理
遥感影像特征提取的原理遥感影像特征提取是指从遥感影像中提取出用于描述地物信息的特征,以便进行地物分类、目标检测、地图制图等应用。
特征提取是遥感图像处理的关键步骤之一,其原理涉及数学、物理以及图像处理等领域。
遥感影像特征提取的原理可以归纳为以下几个步骤:1. 数据预处理:遥感影像通常受到大气、地表反射、周围环境等因素的干扰,因此在进行特征提取之前,需要对影像数据进行预处理。
预处理的步骤包括辐射校正、大气校正、几何校正等,以提高影像数据的质量和准确性。
2. 特征选择:在特征提取之前,需要进行特征选择,即从遥感影像中选择与所需任务相关的特征。
常用的特征包括光谱特征、纹理特征、形状特征、结构特征等。
选择合适的特征可以提高分类精度和检测效果。
3. 特征提取:在选择了适当的特征后,可以通过数学和图像处理方法对遥感影像进行特征提取。
常用的特征提取方法包括灰度共生矩阵(GLCM)、主成分分析(PCA)、小波变换、粗糙集理论等。
这些方法可以从不同维度提取地物的光谱、几何、纹理等特征。
4. 特征降维:由于遥感影像数据维度较高,特征维数过多会导致计算复杂性增加,同时可能存在冗余和噪声信息。
为了简化计算和提高分类效果,需要对特征进行降维处理。
常用的降维方法包括主成分分析(PCA)、线性判别分析(LDA)等。
5. 分类和识别:在特征提取与降维后,可以使用机器学习、模式识别等方法对影像进行分类和识别。
常用的分类方法包括支持向量机(SVM)、随机森林(RF)、人工神经网络(ANN)等。
这些方法可以通过训练样本对特征进行分类,实现对地物的自动识别和分类。
总之,遥感影像特征提取的原理是通过对遥感影像进行数据预处理,选择适当的特征,并使用数学和图像处理方法进行特征提取和降维,最终通过分类和识别方法实现对地物信息的提取和分析。
这一过程需要综合运用遥感、数学、物理和图像处理等多个学科的知识,以提高遥感影像处理的效果和应用的准确性。
遥感影像处理中的地物提取与测绘技巧详细步骤
遥感影像处理中的地物提取与测绘技巧详细步骤引言:随着科技的不断进步与创新,遥感成像技术得到了广泛应用,尤其在地物提取与测绘领域。
地物提取是指通过对遥感影像进行处理与分析,从中提取出感兴趣的地物信息,为测绘、规划和资源管理等领域提供重要依据。
本文将详细探讨遥感影像处理中的地物提取与测绘技巧的步骤,旨在为相关从业人员提供参考和借鉴。
一、遥感影像数据准备在进行地物提取与测绘之前,首先需要收集与选取合适的遥感影像数据。
合适的遥感影像数据应具备高分辨率、全色、多光谱等特点,以确保能够捕捉到需要提取的地物信息。
常用的遥感影像数据包括航空遥感图像、卫星遥感图像等,选取合适的影像数据将为后续的处理提供可靠的基础。
二、影像预处理与增强在进行地物提取与测绘之前,影像预处理与增强是必要的步骤。
首先,对遥感影像进行大气校正,以去除由大气等因素引起的干扰。
其次,进行辐射校正,消除因影像捕捉设备差异而导致的亮度差异。
最后,进行影像增强,以突出地物特征,方便后续地物提取工作。
三、地物提取算法选择地物提取算法是地物提取与测绘的核心,不同的地物提取算法适用于不同的地物类型和研究对象。
常用的地物提取算法包括阈值法、层次分割法、纹理分析法和机器学习算法等。
选择合适的地物提取算法需要根据研究需求和实际情况进行综合评估,以确保提取结果准确可靠。
四、影像分类与分割在进行地物提取之前,需要对遥感影像进行分类与分割,将不同的地物类型进行划分。
常用的分类与分割方法包括基于光谱信息的像素级分类、基于纹理信息的目标级分类以及基于形状信息的对象级分类等。
通过分类与分割,能够提高地物提取的精度和可靠性。
五、地物提取与测绘地物提取与测绘是整个过程的重点和核心。
通过选择合适的算法和工具,对经过预处理与增强的遥感影像进行地物提取与测绘。
地物提取与测绘的步骤包括特征提取、特征选择、训练模型和测试验证等。
在进行模型训练和验证时,需要注意选择合适的训练样本和测试样本,并进行交叉验证和误差分析,以提高提取结果的准确性和可靠性。
如何使用遥感图像进行测绘数据提取与分析
如何使用遥感图像进行测绘数据提取与分析遥感技术是一种通过航空或卫星遥感平台获取地球表面信息的技术,目前已被广泛应用于各个领域,包括测绘与地理信息系统。
利用遥感图像进行测绘数据提取与分析,不仅能够提高工作的效率和精度,而且可以获取更多难以通过传统测量方法获得的信息。
本文将介绍一些常见的遥感图像处理方法和技巧,帮助读者更好地进行测绘数据提取与分析。
一、图像预处理在进行遥感图像处理前,首先需要进行图像预处理,以消除噪声和改善图像质量。
常见的图像预处理方法包括图像辐射校正、大气校正和几何校正等。
图像辐射校正主要是校正图像的亮度和对比度,以确保不同图像之间的一致性。
大气校正是通过校正大气光对图像的影响,提高图像的可解译性。
几何校正则是将图像的像素坐标转换为地理坐标,以便后续分析和测量。
二、特征提取特征提取是使用遥感图像进行测绘数据提取与分析的重要步骤,通过提取图像中的特征信息,可以获取地物的位置、形状和属性等。
常见的特征提取方法包括阈值分割、边缘检测和目标识别等。
阈值分割是通过设定一个合适的亮度或色彩阈值,将图像分割为不同的区域,以提取感兴趣的特定地物。
边缘检测是通过检测图像中的边缘信息,提取地物的形状和轮廓。
目标识别则是通过比较图像中的特征和先验知识,确定图像中的目标类型。
三、分类与识别分类与识别是基于图像的测绘数据提取与分析的重要环节。
通过将图像中的像素或对象归类为不同的地物类型,可以构建地物分类图或进行目标识别。
常见的分类与识别方法包括监督分类和非监督分类。
监督分类是通过提供一些具有标签的样本数据,训练分类器来自动分类图像中的地物。
非监督分类则是根据图像的统计特性,自动将图像中的像素或对象进行聚类,得到不同地物类型的分布图。
四、数据融合与分析数据融合与分析可以将不同类型的遥感数据进行集成,以获取更全面和准确的测绘信息。
常见的数据融合方法包括多源数据融合和多尺度数据融合。
多源数据融合是将来自不同传感器或平台的遥感数据进行融合,以提高数据的空间和光谱分辨率。
测绘技术遥感图像分类中的特征提取方法与算法
测绘技术遥感图像分类中的特征提取方法与算法近年来,随着遥感技术的不断发展和应用的广泛化,遥感图像分类成为了测绘技术中的一个重要研究领域。
遥感图像分类是指通过对遥感图像的解析和处理,将其划分为不同的地物类别。
这对于土地利用规划、资源管理和环境保护等方面具有重要的意义。
在遥感图像分类中,特征提取是一个关键的步骤,它能够帮助我们理解和描述地物的特点,从而实现准确的分类。
特征提取是指通过对遥感图像进行数学分析和计算,提取出能够代表地物的特性的数值。
在测绘技术中,常用的特征包括纹理特征、光谱特征和形状特征等。
其中,纹理特征是指地物表面的纹理分布,通过分析纹理可以得到地物的结构信息。
光谱特征是指地物在遥感图像上的光谱反射率,通过分析不同波段上的光谱特征可以区分不同地物类别。
而形状特征是指地物的形状和大小,通过分析地物的边界和面积可以得到地物的形状信息。
在特征提取的过程中,常用的方法包括灰度共生矩阵法、主成分分析法和小波变换法等。
灰度共生矩阵法是一种常用的纹理特征提取方法,它通过计算图像中像素间的灰度差异,得到对应的共生矩阵,进而得到纹理特征。
主成分分析法是一种常用的光谱特征提取方法,它通过对遥感图像进行主成分分析,将原始的高维数据降维到一个低维空间,从而提取出能够代表光谱特征的主成分。
小波变换法是一种常用的形状特征提取方法,它通过对遥感图像进行小波变换,分析不同尺度上的小波系数,进而得到地物的边界和形状信息。
此外,近年来,深度学习技术在遥感图像分类中的特征提取中得到了广泛的应用。
深度学习是一种基于人工神经网络的机器学习方法,它通过多层神经网络进行特征学习和分类。
深度学习技术具有极强的自动化特征提取能力,能够从大量的数据中自动学习和提取地物的特征。
在遥感图像分类中,深度学习技术已经取得了很多的突破性进展,广泛应用于地物分类、土地覆盖变化检测和目标提取等方面。
综上所述,特征提取是测绘技术遥感图像分类中的一个关键环节。
遥感数据处理中的特征提取方法与应用技巧
遥感数据处理中的特征提取方法与应用技巧遥感技术是指通过高空或高速传感器获取地球表面信息的一种手段。
它通过光电传感器、雷达传感器等设备获取的数据,经过一系列的处理和分析,可以提取出地球表面的特征信息。
特征提取是遥感数据处理的重要环节,本文将介绍几种常用的特征提取方法和应用技巧。
一、图像预处理在进行特征提取之前,首先需要对遥感图像进行预处理。
预处理的目的是去除图像中的噪声和干扰,使图像更加清晰,提高特征提取的精度和准确性。
常见的预处理方法有去噪、边缘增强和图像增强等。
去噪是指去除图像中的噪声信号,常用的方法有平滑滤波、中值滤波和小波滤波等。
平滑滤波是通过邻域平均值或加权平均值来替代噪声像素值,中值滤波则是通过邻域像素的中值来替代噪声像素值,小波滤波则是通过小波变换的方法来滤除噪声。
边缘增强是用于增强图像中的边缘信息,以提高特征提取的效果。
常用的边缘增强方法有Sobel算子、Canny算子和Laplacian算子等。
这些算子可以从图像中提取出边缘信息,使得特征提取更加准确。
图像增强是通过增加图像的对比度和亮度来使图像更加清晰。
常用的方法有直方图均衡化和伽马校正等。
直方图均衡化是通过对图像的直方图进行变换,使得图像的灰度级在整个灰度范围内均匀分布,从而增加图像的对比度。
伽马校正是通过对图像的像素值进行幂次变换,从而调整图像的亮度。
二、特征提取方法特征提取是指从图像中提取出具有代表性的特征信息,以反映地物或目标的性质和特征。
常用的特征提取方法有灰度共生矩阵法、纹理特征提取法和形状特征提取法等。
灰度共生矩阵法是一种常用的纹理特征提取方法,它通过计算图像中像素之间的灰度值差异来反映图像的纹理信息。
该方法通过构建灰度共生矩阵,计算出不同方向上的纹理特征,如对比度、相关性和能量等。
这些特征可以用于地物分类、目标检测和图像匹配等应用。
纹理特征提取法是一种常用的特征提取方法,它通过提取图像中的纹理信息来表征地物或目标的特征。
如何进行遥感图像的特征提取与分类
如何进行遥感图像的特征提取与分类遥感图像是通过航空或卫星等远距离感知装置获取的地表信息图像。
利用遥感技术可以获取大范围的地理信息,广泛应用于农业、城市规划、环境监测等领域。
而遥感图像的特征提取与分类则是处理遥感图像的重要环节,它能够帮助我们更好地理解和利用遥感图像。
一、遥感图像的特征提取特征提取是将原始遥感图像转化为能够描述地物类别的数学特征的过程。
在遥感图像中,不同地物或者地物类别往往具有不同的光谱、纹理、形状等特征。
因此,通过提取这些特征,我们可以对地物进行分类与分析。
1.光谱特征提取光谱特征是指反映地物物理性质的光谱波段数据。
通过选择不同的波段组合,我们可以提取出反映植被、水体、建筑物等地物特性的光谱特征。
常用的方法有主成分分析(PCA)、最大似然分类(MLC)等。
2.纹理特征提取纹理特征描述了图像中像素间的空间关系。
在遥感图像中,纹理特征可以用于区分不同地物的纹理复杂程度。
例如,植被具有较为均匀的纹理,而建筑物则较为具有几何纹理。
常用的纹理特征提取方法有灰度共生矩阵法(GLCM)、局部二值模式法(LBP)等。
3.形状特征提取形状特征是指地物在图像中的几何形状信息。
通过提取地物的形状特征,可以识别出地物的边界和形状。
例如,对于建筑物来说,我们可以通过提取其形状特征来判断其是直角形、圆形还是其他形状。
常用的形状特征提取方法有边缘检测算子、Hough变换等。
二、遥感图像的分类分类是将遥感图像中的像素划分到不同地物类别中的过程。
通过分类,我们可以获取遥感图像中不同地物的分布情况,进而进行地物的监测与分析。
1.监督分类监督分类是指使用人工定义的训练样本对遥感图像进行分类。
首先,我们需要准备一些具有代表性的训练样本,这些样本包含不同地物类别的图像区域。
然后,通过计算遥感图像与这些训练样本之间的差异,可以得到分类决策函数,进而对整幅遥感图像进行分类。
2.非监督分类非监督分类是指根据遥感图像中像素值的统计特征,自动将其划分到不同的类别中。
遥感数据获取与处理的基本流程与技巧
遥感数据获取与处理的基本流程与技巧遥感技术是通过获取并分析从卫星、飞机或无人机等遥远距离采集的数据,从而获取有关地球表面特征和变化的信息。
遥感数据的获取和处理流程至关重要,它对于解决环境问题、农业发展和城市规划等领域都具有极大的应用价值。
本文将介绍遥感数据获取与处理的基本流程与技巧。
一、遥感数据获取1. 数据源选择在进行遥感数据获取之前,我们首先需要选择合适的数据源。
常见的数据源包括卫星遥感数据、航空遥感数据和无人机遥感数据。
根据具体需求,我们可以选择高空分辨率的卫星影像数据,或者借助无人机获取更详细的区域影像数据。
2. 数据获取与下载数据获取的方式多种多样,可以通过官方网站或专业平台下载数据,也可以借助开放源数据或商业数据进行获取。
无论选择哪种方式,都需要注意数据的有效性和准确性。
3. 数据预处理获取到的遥感数据往往需要进行预处理,以去除噪音和不必要的信息,同时还需要进行大气校正、几何校正和辐射校正等处理步骤,以确保数据的质量和准确性。
二、遥感数据处理1. 影像处理遥感影像是遥感数据的重要组成部分,对于不同的应用需求,我们可以通过一系列的影像处理步骤来获取所需的信息。
常见的影像处理方法包括影像融合、图像增强、目标提取和分类等。
2. 特征提取通过遥感数据,我们可以获取到地表不同特征的信息,如植被覆盖、土地利用和水域分布等。
在进行特征提取时,我们可以运用不同的算法和工具,如主成分分析和分类器等,以提取出所需的特征信息。
3. 数据分析与应用在获取到处理后的遥感数据之后,我们可以进行多种数据分析和应用,如环境监测、资源调查和灾害评估等。
通过对遥感数据的分析,我们可以更好地了解地球表面的变化和特征,从而提供有针对性的解决方案。
三、遥感数据处理的技巧1. 选择适当的处理方法在进行遥感数据处理时,我们需要根据具体的应用需求选择合适的处理方法。
不同的处理方法对于不同的数据类型和问题具有不同的适用性,因此在选择处理方法时需要谨慎,充分考虑数据的特点和要求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1遥感影像通过亮度值或像元值的高低差异(反映地物的光谱信息)及空间变化(反映地物的空间信息)来表示不同地物的差异,这是区分不同影像地物的物理基础。
目前影像都是基于数字,影像信息的提取方法的发展历程可分为如图1所示,目前这四类方法共存。
图1 影像信息提取发展阶段非监督分类步骤监督分类步骤2三大分类方法的对比利用传统的遥感影像分类方法, 如监督分类或非监督分类, 易造成分类精度降低, 空间数据大量冗余以及资源的浪费,面向对象的分类方法正是为了处理这些问题而出现, 面向对象的分类方法是一种智能化的自动影像分析方法,它的分析单元不再是单个像素,而是由若干个像素组成的像素群,即目标对象。
面向对象的方法利用遥感影像结构信息和光谱信息, 并建立这些特征之间的层次关系的基础上, 对影像进行分类。
面向对象分类方法的关键在于图像分割, 而图像分割方法多种多样, 如何选择科学合理的图像分割方法十分重要,实验证明多尺度图像分割方法综合了图像的光谱!形状!结构!纹理!相关布局等信息, 是目前较为理想的图像分割方法。
(采用面向对象分类的方法,可使用专业遥感图像分类软件eCognition4.0)3面向对象的分类方法面向对象的技术流程图3Envi_ENVI FX简介全名叫“面向对象空间特征提取模块—Feature Extraction”,基于影像空间以及影像光谱特征,即面向对象,从高分辨率全色或者多光谱数据中提取信息,该模块可以提取各种特征地物如车辆、建筑、道路、桥、河流、湖泊以及田地等。
该模块可以在操作过程中随时预览影像分割效果。
该项技术对于高光谱数据有很好的处理效果,对全色数据一样适用。
对于高分辨率全色数据,这种基于目标的提取方法能更好的提取各种具有特征类型的地物。
一个目标物体是一个关于大小、光谱以及纹理(亮度、颜色等)的感兴趣区域。
应用于:1】从影像中尤其是大幅影像中查找和提取特征2】添加新的矢量层到地理数据库3】输出用于分析的分类影像4】替代手工数字化过程ENVI FX的操作可分为两个部分:发现对象(Find Object)和特征提取(Extract features),如图所示FX操作流程示意图(红色字体为可选项)具体实现步骤:1)准备工作:有选择的对数据做一些预处理工作空间分辨率的调整-如果您的数据空间分辨率非常高,覆盖范围非常大,而提取的特征地物面积较大(如云、大片林地等)。
可以降低分辨率,提供精度和运算速度。
可利用ENVI主界面->Basic Tool->Resize Data工具实现。
光谱分辨率的调整-如果您处理的是高光谱数据,可以将不用的波段除去。
可利用ENVI主界面->Basic Tool->layer stacking工具实现。
多源数据组合-当您有其他辅助数据时候,可以将这些数据和待处理数据组合成新的多波段数据文件,这些辅助数据可以是DEM, lidar 影像, 和SAR 影像。
当计算对象属性时候,会生成这些辅助数据的属性信息,可以提高信息提取精度。
可利用ENVI主界面->Basic Tool->layer stacking工具实现。
空间滤波-如果您的数据包含一些噪声,可以选择ENVI的滤波功能做一些预处理2)发现对象:(一)打开数据:在ENVI Zoom中打开Processing > Feature Extraction。
如下图所示,Base Image 必须要选择,辅助数据(Ancillary Data)和掩膜文件(Mask File)是可选。
这里选择ENVI自带数据envidata\feature_extraction \ qb_colorado,它是0.6米的快鸟数据(二)影像分割:FX根据临近像素亮度、纹理、颜色等对影像进行分割,它使用了一种基于边缘的分割算法,这种算法计算很快,并且只需一个输入参数,就能产生多尺度分割结果。
通过不同尺度上边界的差异控制,从而产生从细到粗的多尺度分割。
选择高尺度影像分割将会分出很少的图斑,选择一个低尺度影像分割将会分割出更多的图斑,分割效果的好坏一定程度决定了分类效果的精确度,我们可以通过预览分割效果,选择一个理想的分割阀值,尽可能好地分割出边缘特征。
图影像分割阈值设定调整滑块阀值对影像进行分割,这里设定阈值为30,点击Next按钮,这时候FX生成一个Region Means 影像自动加载图层列表中,并在窗口中显示,它是分割后的结果,每一块被填充上该块影像的平均光谱值。
接着进行下一步操作。
注:按钮是用来选择分割波段的,默认为Base Image所有波段(三)合并分块:影像分割时,由于阈值过低,一些特征会被错分,一个特征也有可能被分成很多部分。
我们可以通过合并来解决这些问题。
FX利用了 Full Lambda-Schedule算法。
这一步是可选项,如果不需要可以直接跳过。
设定一定阈值,点Next进入下一步。
(四)分块精炼:FX提供了一种阈值法(Thresholding)进一步精炼分块的方法。
对于具有高对比度背景的特征非常有效(例如,明亮的飞机对黑暗的停机坪)。
可以将精炼结果生成掩膜图层(Mask),按钮可以修改基于哪个波段。
这里我们就直接选择No Thresholding(default),点击Next进入下一步操作。
(五)计算对象属性:计算4个类别的属性:光谱、空间、纹理、自定义(颜色空间和波段比)。
其中“颜色空间”选择三个RGB波段转换为HSI颜色空间,“波段比”选择两个波段用于计算波段比(常用红色和近红外波段)。
各个属性的详细描述参考ENVI/IDL提供的Feature_Extraction_Module.pdf文档。
这里我们按照默认全选择,Color Space 选择RGB,Band Ratio选择红色和近红外波段,点击Next按钮进行下一步操作。
目前,已经完成了发现对象的操作过程,接下来是特征的提取。
3)特征提取:有三种特征提取方法供选择,分别是监督分类、规则分类和直接矢量输出。
图a特征提取方法选择(一)输出矢量:选择Export Vectors,进入下图界面,选择保存路径,属性信息也可选择输出。
输出完成会出来一个报表。
不关闭FX浮动面板,在ENVI Zoom中将得到的矢量特征加载显示。
点击Previous 按钮,回到图a界面。
(二)监督分类: 在图a界面中选择Classify by selection examples,图b选择样本:在ENVI Zoom中,切换到Select方式,双击Feature_1,打开一个类别的属性,如下图所示,修改显示颜色、名称等信息。
在分割图上选择一些样本,为了方便样本的选择,可以在ENVI Zoom的图层管理中将原图移到最上层,选择一定数量的样本,如果错选样本,可以在这个样本上点击左键删除。
一个类别的样本选择完成之后,新增类别,用同样的方法修改类别属性和选择样本。
在选择样本的过程中,可以随时预览结果。
可以把样本保存为xml文件以备下次使用。
设置样本属性:在图b中,切换到Attributes选项。
默认是所有的属性都被选择,可以根据提取的实际地物特性选择一定的属性。
这里我们按照默认全部选择。
选择分类方法:在图b中,切换到Algorithm选项。
FX提供了两种分类方法:K邻近法(K Nearest Neighbor)和支持向量机(Support Vector Machine ,SVM),如下图所示这里我们选择K邻近法,K参数设置为5,点击下一步,输出结果。
输出结果:特征提取结果可以以两种格式输出,矢量和图像。
矢量可以是所有分类以单个文件输出或者每一个类别分别输出;图像可以把分类结果和规则结果分布输出。
这里我们选择单个文件以及属性数据一块输出,分类图像和规则图像一块输出。
点击Next按钮完成输出,同时可以看到整个操作的参数和结果统计报表。
分类结果和统计报表(三)规则分类:在图a界面中选择Classify by creating rules,点击Next,到图c规则分类界面。
每一个分类有若干个规则(Rule)组成,每一个规则有若干个属性表达式来描述。
规则与规则直接是与的关系,属性表达式之间是并的关系。
同一类地物可以由不同规则来描述,比如水体,水体可以是人工池塘、湖泊、河流,也可以是自然湖泊、河流等,描述规则就不一样,需要多条规则来描述。
每条规则又有若干个属性来描述,如下是对水的一个描述:面积大于500像素延长线小于0.5 NDVI小于0.3对道路的描述:延长线大于0.9 紧密度小于0.3 标准差小于20图c这里以提取居住房屋为例来说明规则分类的操作过程。
首先分析影像中容易跟居住房屋错分的地物有:道路、森林、草地以及房屋旁边的水泥地。
双击Feature_1图标,修改好类别的相应属性。
1)第一条属性描述,划分植被覆盖和非覆盖区,双击rule ,打开对象属性选择面板,如图所示。
选择Customized->bandratio。
FX会根据选择的波段情况技术波段比值,比如这里在属性计算步骤中选择的Ratio Band是红色和近红外波段,所以此时计算的是NDVI。
把Show Attribute Image勾上,可以看到计算的结果,通过ENVI Zoom工具查看各个分割块对应的值。
点击Next按钮,或者双击bandratio,进入bandratio属性设置对话框,如图所示通过拖动滑条或者手动输入确定阈值。
Fuzzy Tolerance是设置模糊分类阈值,值越大,其他分割块归属这一类的可能性就越大。
归类函数有线性和S-type两种。
这里设置模糊分类阈值为默认的5,归属类别为S-type,值的范围为0~0.3,勾选Show Rule Confidence Image可以预览规则图像。
点击Ok完成此条属性描述。
2)第二条属性描述,去除道路影响,居住房屋和道路的最大区别是房屋是近似矩形,我们可以设置Rect_fit属性。
点击按钮或者双击rule ,选择Spatial->rect_fit。
设置值的范围是0.5~1,其他参数为默认值。
同样的方法设置Spatial->Area: Fuzzy Tolerance=0,90<Area<1100,Spatial->elongation(延长): elongation<3。
3)第三条属性描述,去除水泥地影响,水泥地反射率比较高,居住房屋反射率较低,所以我们可以设置波段的象元值。
Spectral->avgband_2: avgband_2<50。
最终的rule1规则和预览图如图所示居住房屋规则与效果图类似的思路可以提取道路、林地、草地等分类,这里就不一一例举。
最终结果的输出方式和监督分类一样。