遥感图像信息提取分析
遥感图像分析的基本原理与方法

遥感图像分析的基本原理与方法遥感图像分析是一种通过获取和解释地球表面的图像数据来研究地理现象和环境变化的方法。
它利用遥感技术获取的图像数据进行数据处理和分析,以揭示地球的表面特征、变化和趋势。
本文将介绍遥感图像分析的基本原理和方法,并探讨其在地质、环境和农业等领域的应用。
一、遥感图像分析的基本原理遥感图像分析依赖于传感器获取的电磁辐射数据。
电磁辐射是能量在电磁波形式下传播的过程,其波长范围从长波到短波,包括可见光、红外线和微波等。
传感器可以通过不同波段的响应来获取不同的辐射数据,从而得到不同频谱范围内的图像数据。
在遥感图像中,每个像素代表一块地表区域的平均辐射量。
图像数据可以由数字矩阵表示,其中每个像素的灰度值或颜色值表示该区域的辐射强度或反射率。
通过对这些数据进行处理和分析,可以获得地表特征的信息。
二、遥感图像分析的方法1. 预处理遥感图像预处理是为了去除图像中的噪声、增强特征和调整图像的对比度等。
常见的预处理步骤包括去噪、辐射校正、大气校正和几何校正等。
这些步骤可以提高图像质量并准确反映地表特征。
2. 特征提取特征提取是指从遥感图像中提取有用的地物信息。
可以根据图像的灰度、色彩、纹理和形状等特征来区分不同的地物类型。
常用的特征提取方法包括直方图均衡化、主成分分析、变化检测和物体识别等。
3. 分类与识别遥感图像分类是将图像中的像素按照其地物类型划分为不同的类别。
分类可以基于监督或无监督方法进行。
其中,监督分类依赖于训练样本和分类器,而无监督分类则是通过数据的统计分布和聚类分析进行分类。
4. 变化检测变化检测是利用多期遥感图像比较分析同一地区在不同时间的变化情况。
通过对像素之间的差异进行检测和分析,可以揭示地表的变化趋势和时空模式。
变化检测在环境监测、城市规划和资源管理等领域具有重要应用价值。
三、遥感图像分析的应用1. 地质勘探遥感图像分析可以帮助地质学家在不同尺度上研究地球表面的地质结构和岩矿成分。
遥感图像处理中的特征提取技术使用教程

遥感图像处理中的特征提取技术使用教程遥感图像处理是一种利用航天器或飞机上的传感器通过接收地球表面反射或辐射的能量进行地球观测与地球表面信息获取的科学技术。
遥感技术广泛应用于农业、林业、地质勘探、环境监测等领域,为了更准确地获取地表信息,特征提取技术成为遥感图像处理中的重要环节。
本文将介绍遥感图像处理中常用的特征提取技术,并提供相应的使用教程。
一、像素级特征提取技术像素级特征提取技术是指从遥感图像中提取单个像素的特征信息。
常用的像素级特征提取技术有灰度级特征提取和颜色特征提取。
1. 灰度级特征提取灰度级特征提取是根据像素的灰度值来判断其特征属性。
常用的灰度级特征包括像素的亮度、纹理、形状等。
其中,像素的亮度可以通过计算灰度直方图或灰度矩来进行提取;纹理特征可以通过灰度共生矩阵、小波变换等方法来提取;形状特征可以通过边缘检测、形态学操作等技术来提取。
2. 颜色特征提取颜色特征提取是根据像素的颜色信息来判断其特征属性。
常用的颜色特征包括色调、饱和度、亮度等。
可以通过计算像素的颜色直方图、颜色矩来提取颜色特征。
二、对象级特征提取技术对象级特征提取技术是指从遥感图像中提取出具有独特形态和位置特征的地物对象。
常用的对象级特征提取技术有基于边缘提取的特征、基于区域分割的特征和基于形状提取的特征等。
1. 基于边缘提取的特征边缘是地物对象与背景之间的边界,通过提取边缘可以获得地物对象的形态信息。
常用的边缘提取算法包括Canny边缘检测算法、Sobel算子、Prewitt算子等。
通过对遥感图像进行边缘提取,可以得到地物对象的轮廓信息。
2. 基于区域分割的特征区域分割是将遥感图像划分为具有相似特征的连续区域的过程。
常用的区域分割算法有基于阈值的分割算法、基于区域增长的分割算法、基于边缘的分割算法等。
通过对遥感图像进行区域分割,可以得到地物对象的集合,并提取出地物对象的各种特征属性。
3. 基于形状提取的特征地物对象具有独特的形状信息,通过提取形状特征可以获得地物对象的几何性质。
遥感图像处理与分析算法综述

遥感图像处理与分析算法综述随着遥感技术的发展,遥感图像处理与分析算法在各个领域中得到了广泛的应用。
遥感图像处理与分析算法是指通过对遥感图像进行数字处理和分析,来提取和解释图像中的信息。
本文将综述一些常见的遥感图像处理与分析算法,包括图像增强、分类与分割等。
一、图像增强图像增强是指通过一系列的操作,提高图像的质量和可视化效果。
常见的图像增强算法包括直方图均衡化、滤波和增强函数等。
直方图均衡化是一种常用的图像增强方法,它通过对图像的直方图进行变换,来增加图像的对比度。
该方法通过将图像的像素值映射到一个新的分布上,从而改变图像的亮度分布。
滤波是另一种常见的图像增强方法,通过在图像的空域或频域中对像素进行处理,来减少噪声和增强图像细节。
常见的滤波算法包括高通滤波和低通滤波等。
高通滤波可以增强图像的边缘和细节,而低通滤波则能够平滑图像并去除噪声。
增强函数是一种通过对图像的像素值进行非线性映射,来增强图像的方法。
常见的增强函数包括对数变换、幂次变换和伽马变换等。
对数变换可以扩展暗部像素的动态范围,而幂次变换则能够增强图像的对比度。
二、分类与分割分类与分割是遥感图像处理与分析的重要内容,它们能够将图像中的不同对象进行区分和提取。
常见的分类与分割算法包括聚类分析、最大似然分类和支持向量机等。
聚类分析是一种通过将像素划分到不同的类别中,来实现图像分类和分割的方法。
常见的聚类分析算法包括K均值聚类和自适应聚类等。
K均值聚类将图像像素划分为K个簇,每个簇代表一个类别,而自适应聚类则能够根据像素的分布进行不同权重的划分。
最大似然分类是一种基于概率统计的图像分类方法,它通过计算像素在每个类别中的概率,并选择概率最大的类别作为最终的分类结果。
最大似然分类算法能够准确地对图像中的不同对象进行分类,并且具有较强的鲁棒性。
支持向量机是一种通过构建一个最优决策边界,来实现图像分类和分割的方法。
支持向量机利用训练样本,通过最大化分类边界与样本之间的距离,来找到一个最优的分类超平面。
遥感影像处理中的特征提取方法和应用

遥感影像处理中的特征提取方法和应用遥感影像是通过无人机、卫星等载体获取的地球表面的影像数据。
特征提取是遥感影像处理中的一项重要任务,旨在从遥感影像中提取出地物的特定特征,以实现对地物的分类、识别和监测等应用。
本文将介绍遥感影像处理中常用的特征提取方法及其应用。
一、特征提取方法1. 基于像素的特征提取方法基于像素的特征提取方法是从单个像素点的信息中提取特征。
常用的方法包括:(1)颜色特征提取:利用遥感影像中的颜色信息进行特征提取。
常用的方法包括二值化、RGB分量、HSV、归一化差异植被指数(NDVI)等。
(2)纹理特征提取:利用遥感影像中的纹理信息进行特征提取。
常用的方法包括灰度共生矩阵(GLCM)、灰度值标准差、平均灰度值等。
(3)形状特征提取:利用遥感影像中的形状信息进行特征提取。
常用的方法包括链码、Hu不变矩、区域面积等。
2. 基于目标的特征提取方法基于目标的特征提取方法是在已知地物目标的前提下,根据地物目标的特定特征进行特征提取。
常用的方法包括:(1)形状特征提取:利用地物目标的形状信息进行特征提取。
常用的方法包括面积、周长、伸长率等。
(2)纹理特征提取:利用地物目标的纹理信息进行特征提取。
常用的方法包括纹理能量、纹理熵、纹理对比度等。
(3)上下文特征提取:利用地物目标的上下文信息进行特征提取。
常用的方法包括边界连接、邻居分析、局部空间关系等。
二、特征提取应用1. 地物分类特征提取在地物分类中起到了关键作用。
通过提取不同地物的特定特征,可以将遥感影像中的地物进行分类,如水体、森林、建筑等。
特征提取方法可以通过训练分类器来实现自动分类。
2. 土地利用监测特征提取可以应用于土地利用监测。
通过提取遥感影像中地物的特定特征,可以实现对土地的类型和变化进行监测,如农田的扩张、森林的退化等,为土地规划和资源管理提供支持。
3. 城市规划特征提取在城市规划中具有重要意义。
通过提取遥感影像中的建筑、道路等特定特征,可以分析城市的发展趋势和扩张方向,为城市规划和交通规划提供数据支持。
遥感图像的特征提取与空间分析方法

遥感图像的特征提取与空间分析方法遥感图像是一种通过卫星、飞机等远距离方式获取地球表面信息的技术。
随着遥感技术的不断进步和应用领域的拓展,遥感图像的特征提取和空间分析方法也成为研究的热点之一。
本文将探讨遥感图像特征提取与空间分析方法的相关内容,包括常用的特征提取方法、特征的分类和应用以及空间分析方法的原理和应用。
一、特征提取方法1. 基于像素的特征提取方法基于像素的特征提取方法是最基础的一种方法,它通过分析每个像素点的亮度、颜色等属性来提取图像特征。
常见的方法有灰度共生矩阵、颜色直方图和纹理特征等。
其中,灰度共生矩阵通过计算像素之间的灰度分布概率来描述图像的纹理特征,颜色直方图通过统计图像中像素的颜色分布情况来提取图像的颜色特征。
2. 基于区域的特征提取方法基于区域的特征提取方法是将图像分割成若干个区域,然后提取每个区域的特征。
常用的方法有边缘检测、聚类分析和形态学处理等。
边缘检测可以提取图像中的边界信息,聚类分析可以将相似的像素点分到同一个区域中,形态学处理可以提取图像中的纹理和形状信息。
二、特征的分类和应用根据特征的性质和应用场景的不同,特征可以分为几何特征、频谱特征和纹理特征等。
几何特征包括面积、周长、形状等,频谱特征包括反射率、辐射度等,纹理特征包括纹理均匀度、纹理方向等。
这些特征在不同领域的应用也有所不同。
1. 土地利用与覆盖变化研究土地利用与覆盖变化研究是遥感图像应用的一个重要领域,它可以通过提取图像的频谱特征和纹理特征来监测和分析土地的利用情况和覆盖变化。
例如,利用遥感图像的反射率特征可以判断农田的健康状况,利用纹理特征可以分析城市建设的扩张情况。
2. 灾害监测与评估灾害监测与评估是遥感图像应用的另一个重要领域,它可以通过提取图像的几何特征和纹理特征来识别和分析灾害的类型和程度。
例如,在地震灾害监测中,可以利用遥感图像的几何特征和纹理特征来评估建筑物的倒塌程度和人员伤亡情况。
三、空间分析方法空间分析方法是对遥感图像进行空间变化和空间关系分析的一种方法。
如何使用遥感图像进行测绘分析

如何使用遥感图像进行测绘分析遥感图像是通过航空器、卫星等远距离传感器获取的地球表面信息图像,具有广泛的应用领域,如气候研究、资源勘探和环境保护等。
其中,遥感图像在测绘分析方面起到了重要的作用。
本文将探讨如何使用遥感图像进行测绘分析,包括数据获取、图像处理和特征提取等方面。
一、数据获取在进行遥感测绘分析之前,首先需要获取相关的遥感图像数据。
常见的数据来源包括地面测绘、卫星遥感和航拍测绘等。
地面测绘是通过专业测绘仪器进行实地测量,获取地理坐标等数据。
卫星遥感则是利用遥感卫星获取的卫星图像,可覆盖大范围地理区域。
航拍测绘则是通过飞机等航空器拍摄图像,适用于较小范围的地区。
二、图像处理获取到遥感图像数据后,需要进行图像处理,以提取有用的信息进行测绘分析。
常用的图像处理技术包括影像融合、噪声滤波和几何校正等。
影像融合是将多个不同传感器获取的遥感图像融合在一起,增强图像的空间分辨率和光谱信息。
噪声滤波则用于去除图像中的噪声,提高图像的质量和可用性。
几何校正是将图像与地理坐标系统进行配准,确保图像的几何精度符合要求。
三、特征提取在图像处理的基础上,需要进行特征提取,以获取地物、地貌等目标物体的信息。
常用的特征提取方法包括目标识别和地物分类等。
目标识别是根据事先设定的目标特征,自动识别和提取图像中的目标物体。
地物分类则是根据地物的特征向量,将图像中的像素点分到不同的地物类别中。
这些特征提取方法可以帮助我们了解地表的特征分布,进行土地利用、土地覆盖等测绘分析。
四、应用案例遥感图像在测绘分析中有着广泛的应用。
以城市规划与建设为例,遥感图像可以提供城市用地分布、道路网络和建筑物分布等信息。
通过对遥感图像进行特征提取和分析,可以评估城市用地的利用率,优化交通规划和道路网络布局,为城市建设提供科学的决策依据。
此外,在环境保护方面,遥感图像可用于植被覆盖的监测、湿地的保护等。
通过对遥感图像的分析,可以及时发现并监测极地冰川的变化,进而预测气候变化并采取相应措施。
遥感解译基本步骤

遥感解译基本步骤遥感解译是从遥感图像中提取信息、进行分析和识别的过程。
以下是遥感解译的基本步骤:1. 图像获取和准备:获取高质量的遥感图像是解译的第一步。
选择合适的传感器、波段和分辨率以满足研究需求。
确保图像在获取时没有大气、云层或其他干扰。
2. 图像校正:对图像进行几何和辐射校正,以纠正由于传感器和大气扰动引起的形变和亮度差异。
校正后的图像有助于准确的定量分析和解译。
3. 选择合适的波段:根据研究目的选择图像中的合适波段。
不同波段可以提供不同的信息,例如红外波段用于植被健康状况的评估。
4. 增强图像:对图像进行增强,以提高特定信息的可视化效果。
常见的增强方法包括直方图均衡、对比度拉伸和色彩增强。
5. 制定解译目标:确定解译的目标和研究问题,例如土地覆盖类型、植被健康状况、水体分布等。
这有助于有针对性地选择解译方法和工具。
6. 进行初步解译:对图像进行初步的目视解译,标识可能的地物、特征和变化。
使用专业软件工具,如遥感图像解译系统,辅助进行初步解译。
7. 执行监督或非监督分类:利用监督或非监督分类方法,将图像像元分配到不同的类别中。
监督分类需要事先准备训练样本,而非监督分类则是根据图像自身的统计特征进行分类。
8. 验证和精度评估:对解译结果进行验证,比较实地调查或其他高分辨率数据,评估解译的准确性和可靠性。
这有助于确定解译结果的可信度。
9. 后处理和整合:对分类结果进行后处理,填充空洞、平滑边界等,以提高分类的一致性。
将解译结果与其他地理信息数据整合,生成完整的信息产品。
10. 结果分析和报告:分析解译结果,生成地图或报告,以满足特定的研究目标。
结果的解读需要结合地理背景和专业知识。
这些步骤的具体执行可能会因研究目的、地域特点和数据类型而有所不同,但这些基本步骤提供了一个通用的遥感解译流程。
如何进行遥感图像的影像处理与信息提取

如何进行遥感图像的影像处理与信息提取遥感技术在许多领域中发挥着重要作用,包括农业、环境研究、资源管理等。
遥感图像的影像处理和信息提取是实现遥感应用的关键步骤之一。
本文将探讨如何进行遥感图像的影像处理与信息提取,帮助读者更好地理解和应用这一技术。
一、遥感图像的基本概念和分类在深入讨论遥感图像的影像处理和信息提取之前,我们先来了解一下遥感图像的基本概念和分类。
遥感图像是通过卫星、飞机等遥感平台获取的地球表面的图像,它包含了丰富的地物信息。
根据不同传感器的工作原理和波段范围,遥感图像可以分为光学图像、雷达图像等不同类型。
二、遥感图像的预处理遥感图像在获取后需要进行一系列的预处理,以消除噪声、增强图像质量,为后续的影像处理和信息提取做准备。
常见的预处理步骤包括辐射校正、大气校正、几何校正等。
辐射校正用于消除图像中的辐射噪声,保证图像的准确性和一致性。
大气校正则是为了消除大气对图像的影响,使得图像能够真实地反映地表特征。
几何校正则是校正图像的几何形状和位置,使其与现实地物保持一致。
三、遥感图像的影像处理影像处理是指对遥感图像进行一系列的处理操作,以增强图像的特征、提取信息或获得更高层次的图像产品。
常见的遥感图像影像处理方法包括图像增强、图像分类和图像融合等。
图像增强主要是通过增加图像的对比度、调整亮度等方式,使地物特征更加明显。
图像分类则是将遥感图像中的像素划分为不同的类别,用于分析地物类型和覆盖状况。
图像融合则是将多个遥感图像进行融合,以获取更全面和准确的地物信息。
四、遥感图像的信息提取信息提取是指从遥感图像中提取具有特定含义和应用价值的信息。
常见的信息提取任务包括地表覆盖分类、目标检测、变化检测等。
地表覆盖分类是将遥感图像中的地物按照不同的类别进行分类,如森林、湖泊、城市等。
目标检测则是在遥感图像中寻找特定目标,并进行识别和定位。
变化检测是对不同时间获取的遥感图像进行比较,找出地物变化的区域和变化趋势。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3、基于专家知识的决策树分类
ENVI/IDL
3.1 专家知识的决策树分类基本原理
根据光谱特征、空间关系和其他上下文关系归类像元
陡坡上的植被 缓坡上的植被
+
+ +
DEM
Road Map Zoning Coverage Landcover Classification
+
高山植被
公园用地
ENVI/IDL
NDVI小于或等于0.3,波段4值小于20
ENVI/IDL
3.4 规则描述——表达式与变量
表达式 基本运算符 三角函数 部分可用函数 +、-、*、/ Sin、cos、tan asin、acos、 atan Sinh、cosh、 tanh…. slope aspect ndvi Tascap pc mnf lpc 其他符号 指数(^)、exp 对数alog 平方根(sqrt)、 绝对值(adb) …… Stdev Mean Min、max 变量 作用 计算坡度 计算坡向 计算归一化植被 指数 穗帽变换 主成分分析 最小噪声变换 局部主成分分析 标准差 平均值 最大、最小值
• 遥感影像通过亮度值或像元值的高低差异(反映
地物的光谱信息)及空间变化(反映地物的空间 信息)来表示不同地物的差异,这是区分不同影 像地物的物理基础。
• 遥感影像分类就是利用计算机通过对遥感影像中
各类地物的光谱信息和空间信息进行分析,选择 特征,将图像中每个像元按照某种规则或算法划 分为不同的类别,然后获得遥感影像中与实际地 物的对应信息,从而实现遥感影像的分类,即信 息提取。
ENVI/IDL
2.3 监督分类流程说明——分类后处理
• 分类后处理包括很多过程,都是些可选项,包括
更改类别颜色、分类统计分析、小斑点处理(分 类后处理)、栅矢转换等操作
ENVI/IDL
监督分类练习(一)
• 数据源 - 练习数据\1-监督分类\1-监督分类(Classic) • 分类
- 类别定义 - 样本选择 - 分类器选择
ENVI/IDL
2.2 监督分类基本流程
类别定义/特征判别 样本选择
分类器选择 影像分类 分类后处理
平行六面体 最小距离 马氏距离 最大似然 波谱角 二进制编码 光谱信息散度 神经网络 支持向量机分类 模糊分类
结果验证
ENVI/IDL
2.3 监督分类流程说明——类别定义/特征判断
• 根据分类目的、影像数据自身的特征和分类区收
3.2 专家知识的决策树分类基本步骤
知识(规则)定义
规则输入
决策树运行
分类后处理
ENVI/IDL
3.3 规则定义
• 规则获取:经验总结和样本总结 • 规则描述
- 类1:NDVI大于0.3,坡度大于或者等于20度 - 类2:NDVI大于0.3,坡度小于20度,阴坡 - 类3:NDVI大于0.3,坡度小于20度,阳坡 - 类4:NDVI小于或等于0.3,波段4值大于或等于20 - 类5:
ENVI/IDL
1.2 遥感信息提取方法概述
基于专家知识 的决策树分类
面向对象特征 自动提取
地物识别与 地表反演
基于光谱计算 机自动分类
变化检测
人工解译
地形信息提取
ENVI/IDL
1.3 遥感信息提取方法——适用范围
方法 说明
人工解译
基于光谱的计算机分类
适用定性信息的提取,也就是在图像上通过肉 眼能分辨的信息
对于中低分辨率的多光谱影像效果明显(小于 10米) 随着高分辨率影像的出现而发展起来的 定量信息提取,需要模型的支持,数据源有一 定要求 多时相影像支持 需要立体像对的支持
ENVI/IDL
基于专家知识的决策树分类 需要多源数据支持 面向对象分类方法 地物识别与地表反演 变化监测VI/IDL
2.1 监督分类定义
• 又称训练分类法,用被确认类别的样本像元去识
别其他未知类别像元的过程。
- 在分类之前通过目视判读和野外调查,对遥感图像
上某些样区中影像地物的类别属性有了先验知识, 对每一种类别选取一定数量的训练样本 - 计算机计算每种训练样区的统计或其他信息,同时 用这些种子类别对判决函数进行训练,使其符合于 对各种子类别分类的要求 - 用训练好的判决函数去对其他待分数据进行分类。 使每个像元和训练样本作比较,按不同的规则将其 划分到和其最相似的样本类,以此完成对整个图像 的分类
ENVI/IDL
2.3 监督分类流程说明——分类器选择
• 据分类的复杂度、精度需求等确定哪一种分类器 • 目前ENVI的监督分类可分为基于传统统计分析学
的,包括平行六面体、最小距离、马氏距离、最 大似然,基于神经网络的,基于模式识别,包括 支持向量机、模糊分类等,针对高光谱有波谱角 (SAM),光谱信息散度,二进制编码
• 分类后处理
- 小斑快处理 - 栅矢转换
• 精度验证
ENVI/IDL
监督分类练习(二)
• 数据源 - 练习数据\1-监督分类\2-火烧迹地提\BurnALI_subset.dat” • 分类
- 类别定义 - 样本选择 - 分类器选择
• 分类后处理
- 小斑快处理 - 栅矢转换
• 精度验证
ENVI/IDL
遥感图像信息提取
ENVI/IDL
主要内容
• 1、遥感信息提取技术概述 • 2、监督分类 • 3、基于专家知识的决策树分类
• 4、面向对象分类
• 5、地物识别和定量反演 • 6、动态监测 • 7、立体像对DEM提取
ENVI/IDL
1、遥感信息提取方法概述
ENVI/IDL
1.1 影像信息提取技术基础
集的信息确定分类系统;
• 对影像进行特征判断,评价图像质量,决定是否
需要进行影像增强等预处理。
• 这个过程主要是一个目视查看的过程,为后面样
本的选择打下基础。
ENVI/IDL
2.3 监督分类流程说明——样本选择
• 样本选择是非常重要的过程,直接影响分类精度
• 在样本选择过程中,有很多辅助方法
- 可以显示不同的假彩色合成窗口,也可以进行主成
分分析后进行假彩色合成,由于去除了波段间的相 关性,不同地物区分的更加明显;还可以借助 Google Earth辅助解译
• 各个样本类型之间的可分离性要好
- 用Jeffries-Matusita,
Transformed Divergence 参数表示,这两个参数的值在0~2.0之间,大于1.9 说明样本之间可分离性好,属于合格样本;小于 1.8,需要重新选择样本;小于1,考虑将两类样本 合成一类样本