工业燃气锅炉低氮排放技术路线
燃气锅炉低氮改造方案

3.改造完成后,定期对环保设施进行维护,确保其正常运行。
十、项目总结
本方案旨在通过对燃气锅炉进行低氮改造,实现氮氧化物排放浓度≤30mg/m³,满足国家及地方环保要求。改造过程中,注重安全性、环保性和经济效益,确保改造项目的顺利实施。通过本次改造,将为企业带来长期的环境效益和经济效益,为我国环保事业贡献力量。
6.调试优化:完成改造后,对锅炉进行调试,调整燃烧参数,确保氮氧化物排放浓度达标。
7.验收评估:组织专家对改造效果进行评估,确保各项指标达到预期目标。
八、改造效果评估
1.氮氧化物排放浓度:改造后,氮氧化物排放浓度应≤30mg/m³。
2.燃烧效率:改造后,锅炉燃烧效率提高3%以上。
3.能源消耗:改造后,能源消耗降低5%以上。
2.调整燃烧参数:根据实际运行情况,优化燃烧器结构,提高燃烧效率;
3.增设烟气再循环系统:在锅炉尾部增设烟气再循环风机,将部分烟气引入燃烧器,降低火焰温度;
4.优化控制系统:采用先进的控制策略,实现燃烧过程的实时监控和优化调整,提高锅炉运行稳定性;
5.更新锅炉本体及辅助设备:对锅炉本体进行改造,提高热效率,降低氮氧化物排放。
第2篇
燃气锅炉低氮改造方案
一、前言
为响应我国环保政策,降低大气污染物排放,特别是氮氧化物的排放,本方案针对某地区燃气锅炉进行低氮改造。通过采用先进的低氮燃烧技术和优化锅炉运行参数,旨在实现氮氧化物排放浓度符合国家及地方环保标准,同时提高锅炉的热效率,降低能源消耗。
二、改造目标
1.降低氮氧化物排放浓度,满足国家及地方环保要求。
4.安全性:改造后,锅炉运行安全性提高,故障率降低。
5.经济效益:改造成本在合理范围内,投资回收期≤3年。
燃气锅炉低氮改造方案

燃气锅炉低氮改造方案为了应对环境污染的挑战和改善空气质量,燃气锅炉低氮改造成为了必要的举措。
在本文中,我们将讨论燃气锅炉低氮改造的方案,以期提供有效的解决方案。
一、方案概述燃气锅炉低氮改造的目标是降低氮氧化物(NOx)的排放量。
通过优化燃烧系统和引入额外的氮氧化物控制措施,可以实现降低NOx排放的效果。
具体而言,方案包括以下几个关键步骤:1. 优化燃烧系统:通过更换锅炉燃烧设备,改善燃烧效率,减少NOx的生成。
新一代低氮燃烧器采用先进的燃烧技术,能够更好地控制燃烧反应过程,降低NOx排放。
2. 引入尾气再循环技术:通过将一部分燃烧产生的废气回收再利用,将其混合到新鲜空气中重新参与燃烧,降低燃烧温度,减少NOx的生成。
3. 安装低氮燃烧系统:安装燃气锅炉专用的低氮燃烧系统,包括调节阀、排烟系统等。
这些系统在燃烧过程中能够减少NOx生成的同时,保持燃烧的稳定性和热效率。
二、方案优势1. 环保效益:通过燃气锅炉低氮改造,能够显著减少NOx的排放量,改善空气质量,保护环境。
减少大气污染物的排放对于人类健康和生态平衡都具有积极的影响。
2. 经济效益:低氮改造后的燃气锅炉在燃料利用率和热效率方面表现出色,能够节约能源和运行成本。
长期来看,低氮改造可以为企业带来可观的经济收益。
3. 质量保证:低氮燃烧系统的使用能够确保锅炉稳定运行和燃烧效果的优化。
燃烧过程的控制和调节能够提高锅炉的可靠性和耐久性,延长锅炉的使用寿命。
三、方案实施1. 技术评估:在实施燃气锅炉低氮改造之前,需要进行现有锅炉系统的技术评估。
通过现场勘测和数据分析,确定适合该锅炉的低氮改造方案。
2. 设备选型:根据实际需求和技术评估结果,选择合适的低氮燃烧器和相关设备。
确保设备的质量和性能能够满足要求。
3. 施工安装:根据设计方案,进行施工和设备安装。
确保施工过程中符合安全和质量要求,以及相关环保法规。
4. 调试验收:在施工完成后,进行系统调试和性能测试。
燃气锅炉低氮改造施工方案

燃气锅炉低氮改造施工方案一、背景介绍燃气锅炉是工业和民用领域常见的供暖设备,但其燃烧产生的氮氧化物对环境有害,严重影响空气质量。
为了减少燃气锅炉排放的氮氧化物,提高环保水平,低氮改造成为迫切需求。
二、改造目标燃气锅炉低氮改造的主要目标是降低氮氧化物排放浓度,实现燃烧过程更加充分、高效,最终达到绿色环保标准。
三、方案设计1. 燃烧系统优化通过调整燃烧参数,优化燃气锅炉燃烧系统,使燃烧更加完全,减少氮氧化物的生成。
2. SNCR技术应用选择合适的选择性非催化还原(SNCR)技术,通过喷射尿素溶液的方式,在适当温度下还原氮氧化物,降低排放浓度。
3. 烟气循环利用引入烟气循环利用技术,通过回收部分烟气中的热能,提高热效率,减少排放。
4. 智能控制系统安装智能控制系统,通过监测燃烧参数,实现精准控制,提升燃烧效率,减少氮氧化物排放。
四、施工流程1. 前期准备•制定详细的改造方案和施工计划•确定改造所需材料和设备•安排专业人员进行技术培训2. 施工操作•拆卸原有设备,清理燃烧系统•安装SNCR设备和烟气循环利用装置•调试燃烧系统和控制系统3. 后期验收•对改造后的燃气锅炉进行运行测试•评估排放数据,确保达到低氮排放标准•出具改造工程验收报告五、效果评估对改造后的燃气锅炉进行长期监测,持续跟踪排放数据,确保低氮改造方案的有效实施,达到节能减排的预期效果。
六、结论燃气锅炉低氮改造是一项重要的环保措施,通过科学的方案设计和施工操作,可以有效减少氮氧化物排放,提高燃气锅炉的环保水平,符合可持续发展要求。
【推荐下载】CFB锅炉烟气污染物超低排放技术路线简析

[键入文字]CFB 锅炉烟气污染物超低排放技术路线简析循环流化床锅炉(CFB)具有煤质适应性广,污染物排放控制成本低等优势,在我国燃煤电站锅炉中占有较大的比例。
但是随着国家对环境保护的重视,火电站燃煤污染物排放标准不断提高。
1 循环流化床锅炉污染物超低排放技术路线大多数循环流化床锅炉通过炉内低氮燃烧,可将炉膛出口NOx 原始排放浓度控制在200mg/m3 以下,再结合SNCR 脱硝技术,即可实现NOx 的超低排放,这成为循环流化床锅炉NOx 超低排放的首选技术。
由于投资成本极低,炉内脱硫技术通常为循环流化床锅炉首选的脱硫技术。
在炉内脱硫不能满足超低排放要求时,则需在炉外增设二级脱硫。
常见的二级脱硫技术有石灰石-石膏湿法脱硫技术以及半干法CFB-FGD 技术,除尘技术则可根据不同的脱硫技术进行选择。
因此,脱硫技术的选择,成为循环流化床锅炉制定超低排放技术路线的关键。
1.1 启以石灰石-石膏湿法脱硫技术为核心的循环流化床锅炉超低排放技术路线当选择石灰石-石膏湿法脱硫技术时,循环流化床锅炉超低排放技术路线如图 1 所示。
上述超低排放技术路线包括:炉内低氮燃烧+ 炉内脱硫+ SNCR 烟气脱硝+ SCR 烟气脱硝(预留) +FGC(烟气冷却,可选) + 静电除尘器(或电袋除尘器) + 湿法脱硫+ 湿式静电除尘器(或其它高效除尘技术) + FGR(烟气再热,可选)。
相应地,各技术方案中污染物浓度设计如表1 所示。
1.2 以半干法CFB-FGD 技术为核心的循环流化床锅炉超低排放技术路线当选择半干法CFB-FGD 技术时,循环流化床锅炉超低排放技术路线如图2 所示。
1。
燃气锅炉低氮运行技术研究

燃气锅炉低氮运行技术研究摘要:近年来,国家大力推进清洁空气计划,对锅炉大气污染物的排放标准也越来越严格。
为深入贯彻国家生态文明思想,积极践行绿色发展理念,本文对比论证了多种锅炉低氮运行方案的优缺点,结合国内燃气锅炉使用现状,提出了具有普遍适用性的指导意见。
关键词:燃气锅炉;低氮运行技术;控制方案1必要性分析2016年12月25日全国人大审议通过了《中华人民共和国环境保护税法》,并于2018年1月1日实施。
相关部门根据我国实际情况,制定了十三五节能减排目标,出台了一系列支持节能减排的政策和措施。
全国各地纷纷对大气污染物的排放标准进行修订,特别是大幅提高了锅炉氮氧化物(NO X)的排放限制,其严厉程度达到甚至超过了发达国家锅炉烟气排放标准。
实行低氮燃烧器改造,可以满足国家对于清洁生产、节能减排的政策需要,也可以对环境起到保护作用。
2NO X的定义氮氧化物是由氮、氧两种元素组成的化合物。
常见的氮氧化物有五氧化二氮(N2O5)、二氧化氮(NO2,红棕色)、一氧化氮(NO,无色)、一氧化二氮(N2O)等,其中除五氧化二氮常态下呈固体外,其他氮氧化物常态下都呈气态。
作为空气污染物的氮氧化物(NO X)常指NO和NO2,NO占总体积的90%左右,NO2占5%-10%。
3NOX的危害氮氧化物吸入人体可刺激肺部,使人较难抵抗感冒之类的呼吸系统疾病,呼吸系统有问题的人士如哮喘病患者,会较易受二氧化氮影响。
氮氧化物不仅是形成光化学烟雾和酸雨的一个重要原因,也是破坏大气臭氧层、造成温室效应的主要污染物之一。
随着近年来我国经济快速发展,氮氧化物的排放量也在逐年增加,降低氮氧化物的排放对生态环境及经济社会具有现实意义。
4NOX的生成机理化石燃料燃烧中,根据NO X的产生机理可将其分成3种类型:热力型NO X、快速型NO X和燃料型NO X。
(1)热力型NO X:燃料在炉膛内燃烧时,空气中的N2在高温下与O2发生反应产生NO X。
燃煤锅炉烟气超低排放技术路线

台增压风机送入一次风道作为一次风使用,降低一次风量;2、提高
二次风风口实现梯级燃烧,加大二次风比。经改造后床温下降,炉膛 上部温度上升,在不喷氨的情况下可降低NOx至200mg/Nm3,非催化氨 法脱硝(SNCR)喷枪设在炉膛出口,配合低氮燃烧脱硝可降低NOx至 <150mg/Nm3 ,运行费用较单独使用非催化氨法脱硝(SNCR) 明显下 降,锅炉效率无明显变化。 • 将3电场除尘器均改为布袋除尘,可达到<30mg/Nm3排放量,但仍 不能达到2017年<20mg/Nm3排放标准,同时石膏雨现象有待治理。
电除尘器前端设置烟气换热器,使进入电除尘器的烟温从通常的120℃-160℃的低温状态下降 到85℃-100℃(通常在酸露点以下)的低低温状态 组成:烟气换热器 + 电除尘器 调温后 90-100℃
换 热 面 换热面
低低温电除尘结构布置
烟气温度一般在80℃~90℃,低于酸露点温度。 降低烟尘比电阻 达到5电场除尘性能,10-30mg/Nm3; 减小烟气体积,引风机减小能耗。 SO3附着于飞灰表面,大大降低飞灰的比电阻。烟气中SO3浓度大幅度 降低,可减少SO3排放。 对热交换器下游的设备不仅没有腐蚀作用,还有保护作用。
燃煤污染物超低排放技术
•
所谓燃煤污染物超低排放技术,是指通过先进的综合治理技术,使燃煤
装置的污染物排放达到燃气装置的排放水平。其意义在于从根本上解决燃煤
污染问题和能源--环境矛盾瓶颈,打开煤炭能源利用的枷锁,对大气环境质 量改善和经济社会发展至关重要。自2017年1月1日开始执行如下标准:
燃煤电站标准
SCR
>90
用催化剂,310-410 ℃ 温喷氨
可靠,无二次污染 2、运行费用低
燃气锅炉低氮改造标准、方案及费用

燃气锅炉低氮改造是我国工业锅炉行业发展的一个新发展方向,为了减少燃气锅炉废气中的氮排放,许多用户选择进行低氮改造。
本篇文章就为您简单介绍一下燃气锅炉低氮改造的标准、技术方案和费用。
一、燃气锅炉低氮改造的标准由于国家对于各地的锅炉低氮改造没有统一的标准,导致各地施行的低氮改造标准不同,大致分为30mg/m3和50 mg/m3两种。
1、京津冀地区,西安、太原、成都、长沙等几个省会城市:30mg/m3;2、江浙沪皖等南方地区,山西、河南,济南:50mg/m3。
为了避免因二次低氮改造造成不必要的浪费,建议不管当地是否出台政策,新上锅炉或者低氮改造锅炉都按照30mg/m3标准进行。
二、燃气锅炉低氮改造方案:燃气锅炉低氮改造主要通过配置低氮燃烧器和加大锅炉的炉膛尺寸来实现。
为了帮助企业节约成本,配置合适的低氮燃烧器分级燃烧技术+烟气内循环技术可以实现低氮改造,将其排放量控制在小于30mg/m³。
目前燃气锅炉的低氮改造方案有以下两种:1、FGR技术,即自身再循环燃烧器,对于天燃气锅炉来说目前主流成熟低氮排放技术就是分级燃烧加烟气再循环法。
采用FGR低氮燃烧技术,针对使用锅炉进行改造升级,采用超低氮燃烧机,将新进炉的冷空气过量系数降到尽可能低的水平,最终达到减少排烟热损失,降低排烟NOx含量的节能减排效果。
FGR低氮燃烧技术是一种利用助燃空气的压头,把部分燃烧烟气吸回,进入燃烧器,与空气混合燃烧。
由于烟气再循环,燃烧烟气的热容量大,燃烧温度降低,NOx减少。
另一种自身再循环燃烧器是把部分烟气直接在燃烧器内进入再循环,并加入燃烧过程,此种燃烧器有抑制氧化氮和节能双重效果。
2、全预混燃烧,全预混燃烧也可实现低氮排放,但是运行中问题较多,经常出现金属编制燃烧网堵塞导致燃烧问题,无法长期稳定运行,北京质监局已作出安全风险提示(见下图)三、燃气锅炉改造费用在各大生产性企业中,2吨、4吨、6吨、10吨、15吨、20吨燃气锅炉是比较常见的几种类型了,这些燃气锅炉的低氮改造费用往往受低氮燃烧器的选择影响较大。
燃气、燃油锅炉低氮治理技术

燃气、燃油锅炉低氮治理技术燃气锅炉由于天然气的理化特性导致其主要的污染物为氮氧化物。
目前主要通过改进燃烧技术来降低燃烧过程中NOx的生成与排放,其主要途径有:降低燃料周围的氧浓度,减小炉内过剩空气系数,降低炉内空气总量,或减小一次风量及挥发分燃尽前燃料与二次风的混和,降低着火区段的氧浓度;在氧浓度较低的条件下,维持足够的停留时间,抑制燃料中的氮生成NOx,同时还原分解已生成的NOx;在空气过剩的条件下,降低燃烧温度,减少热力型NOx的生成。
低氮燃烧技术一般可使NOx的排放量降低30%~60%。
01丨低氮燃烧器技术NOx生成机理简要总结如下:1.热力型NOx(ThermalNOx),在高温烟气(大于1400℃后)显著增加,N元素来源于空气中的N2;2.快速型NOx(Promp),N元素来源于助燃气体中的N2,生成量主要受氧气浓度和燃料与氧气化学当量比影响;3.燃料型NOx(FuelNOx),N元素来源于燃料中的氮成分,其生成主要受燃料中的氮成分和助燃气体中的氧气浓度影响。
下图综合展示了NOx的来源于决定因素,低氮燃气燃烧器的技术原理则围绕着以下的核心理念不断地发展和演变。
△三种类型NOx的生成源及主要影响因素如上图所示,NOx的生成主要由烟气温度和氧气浓度决定。
因此,当前工业中的燃气低氮燃烧技术的一个重要控制方式就是降低气体燃料燃烧过程中的烟气温度。
降低烟气温度的核心指导原则:(1)在时间将热量释放的峰值降低,降低化学反应速率、延长反应时间;(2)在空间上将热量分散在更广阔的空间。
针对以上指导原则,在燃气燃烧器的设计及布置方案中有若干具体的实施措施:(1)燃料分级:有烟气内循环、燃气和空气高速差配合等类型;(2)空气分级:有燃烧器喷嘴的空气分级和炉膛空间上的空气分级;(3)烟气再循环:有传统烟气再循环和O2/CO2烟气再循环。
燃料分级,即燃料分成若干股注入较大的燃烧空间中进行燃烧,释放的热量被较大空间内的烟气吸收,从而使烟气的温度得到降低,该技术也称为“火焰分割”。
锅炉低氮改造工程技术方案

锅炉低氮改造工程技术方案一、项目背景随着环境保护意识的增强和国家对环保政策的不断加强,对于工业企业的污染排放标准也在不断提高。
而作为工业生产过程中使用最为广泛的设备之一,锅炉在大气污染治理中扮演着重要的角色。
然而,由于传统锅炉在燃烧过程中排放的氮氧化物(NOx)含量较高,偏离了环保政策的要求,因此,对锅炉进行低氮改造已成为当前工业企业中亟需解决的问题。
本项目旨在对现有的锅炉进行低氮改造,减少氮氧化物的排放,提高锅炉的燃烧效率,并符合环保政策的要求,为企业的可持续发展提供保障。
二、目标与要求1. 降低氮氧化物排放浓度,符合国家环保标准;2. 提高锅炉的燃烧效率,降低能耗;3. 减少二氧化硫和其他有害气体的排放;4. 保持锅炉原有的工作稳定性和安全性;5. 降低改造成本,提高经济效益。
三、技术方案1. 锅炉低氮燃烧技术低氮燃烧技术是当前锅炉低氮改造的主要手段之一。
通过对锅炉燃烧系统进行调整和优化,减少氮氧化物的生成和排放。
具体包括以下几个方面:(1)调整燃烧风量和分布通过对锅炉的燃烧风量和分布进行调整,使之更加均匀,减少局部高温区域的形成,降低氮氧化物的生成。
(2)优化燃烧控制系统采用先进的燃烧控制系统,实时监测和控制燃烧过程中的氧气浓度和燃烧温度,确保燃烧过程的稳定性和完全燃烧,从而减少氮氧化物的生成。
(3)选用低氮燃烧器低氮燃烧器采用了特殊的设计结构和燃烧技术,通过与燃烧空气的充分混合,降低燃烧温度,减少氮氧化物的生成。
2. 尾气再循环技术尾气再循环技术是一种有效的锅炉低氮改造手段,通过将一部分燃烧产生的废气再循环混入燃料和空气中,减少燃烧温度,降低氮氧化物的生成。
具体操作包括:(1)收集尾气利用除尘设备和废气处理系统,将部分燃烧产生的废气收集起来。
(2)混合再循环将收集到的废气与燃料和空气进行混合再循环,降低燃烧温度,减少氮氧化物的生成。
3. 碱吸收脱硫技术除了降低氮氧化物排放,对于锅炉中二氧化硫和其他有害气体的排放也需要进行控制。
燃气锅炉低氮改造施工方案

燃气锅炉低氮改造施工方案一、项目概述随着环境意识的增强以及对大气污染的严格控制,燃气锅炉低氮改造成为燃气锅炉必要的技术更新。
本方案将对一台燃气锅炉进行低氮改造,以减少氮氧化物的排放,达到环保要求。
二、项目目标1.实现燃气锅炉氮氧化物排放量低于国家相关标准要求;2.保持燃气锅炉的稳定运行和高效能利用。
三、改造方法1.优化燃烧系统:采用低氮燃烧器进行替换,同时配备烟气再循环装置,降低燃烧温度和燃烧产物中的氮氧化物含量;2.安装SNCR脱硝装置:通过在燃烧过程中加入适量的尿素溶液,并在高温区域进行还原反应,以降低氮氧化物的生成;3.优化燃烧控制系统:通过改善燃烧过程的监控和调节,确保燃烧的稳定性和高效性。
四、施工步骤1.准备工作:a.完成必要的设计方案和施工图纸;b.购买和准备改造所需的设备和材料;c.对施工场地进行准备,确保安全和顺利进行施工。
2.换装低氮燃烧器:a.关停燃气锅炉并进行必要的清洗和检修;b.拆除原有燃烧器及相关管道设备;c.安装新的低氮燃烧器,并与燃气管道连接;d.安装烟气再循环装置,并与相关管道、风机等连接。
3.安装SNCR脱硝装置:a.在燃气锅炉高温区域进行SNCR脱硝装置的安装;b.连接脱硝装置与尿素溶液供应系统,并进行测试与调试。
4.改造燃烧控制系统:a.升级或更换原有燃烧控制系统,确保其能够实现低氮燃烧的要求;b.进行系统的测试与调试,确保其稳定运行。
5.系统联调与调试:a.对整个系统进行联调,确保各部件协调运行;b.优化系统参数,达到低氮排放和高效能利用的最佳状态。
6.安全检查和运行试验:a.进行改造系统的安全检查,确保设备和管道的安全运行;b.启动燃气锅炉进行运行试验,测试改造效果和性能。
五、施工周期根据燃气锅炉的具体型号和规模,施工周期一般为1-2个月(含设计和调试时间)。
六、投资估算具体投资估算需根据燃气锅炉的具体情况进行评估,涉及到燃烧器、烟气回收装置、SNCR脱硝装置、控制系统等设备的购买和安装成本。
全预混冷凝低氮燃气锅炉 低氮原理

全预混冷凝低氮燃气锅炉实现低氮排放的原理主要包括以下几个方面:
1. 全预混燃烧技术:
- 在全预混燃烧模式下,燃气与空气在进入燃烧室之前就预先按照精确的比例混合,形成理想的燃烧气体混合物。
这种精确匹配的空燃比(燃气与空气的比例)有助于实现近乎完全的燃烧,减少了未燃烧燃气的排放。
2. 低温燃烧:
- 冷凝技术使得燃烧温度相对较低,高温会促使氮气与氧气反应生成氮氧化物(NOx),低温燃烧可以有效抑制这一过程,从而降低NOx的生成。
3. 金属纤维燃烧器:
- 高效的金属纤维燃烧器能够提供更均匀的火焰分布,使得燃烧更为充分,同时也能有效控制燃烧区域的温度,防止局部高温区产生大量NOx。
4. 分层燃烧和二次风量调节:
- 通过精细调控燃烧器的燃气和空气供给,实现分
层燃烧,降低燃烧中心温度,同时合理引入二次风,以进一步稀释燃烧区的氧气浓度,减少NOx的生成。
5. 热效率提高与余热回收:
- 冷凝式锅炉能够回收烟气中的潜热,从而提高整体热效率,而燃烧效率的提高意味着同等热负荷下消耗的燃气减少,间接降低了由于燃烧过程产生的NOx 总量。
综合上述技术,全预混冷凝低氮燃气锅炉在保障高效供热的同时,显著降低了氮氧化物的排放,符合当今对环境保护和清洁能源利用的要求。
安全管理之中小型燃气锅炉低氮排放的几种解决方案

安全管理之中小型燃气锅炉低氮排放的几种解决方案
一、引言
为了保障环境质量和人民健康,国家近年来出台了一系列的环
保政策,尤其是对于大气污染问题的关注度越来越高。
燃气锅炉是
一种常见的供暖设备,然而传统的燃气锅炉在使用过程中会产生大
量的氮氧化物等有害物质,会对环境和人体健康造成危害。
因此,
如何在现有的燃气锅炉上实现低氮排放,成为现阶段燃气锅炉企业
亟需解决的问题。
本文将尝试从技术、政策等方面,探讨中小型燃
气锅炉低氮排放的几种解决方案。
二、低氮排放技术
1、 SNCR法
SNCR法全称为选择性非催化还原技术,是一种氮氧化物(NOx)的减排技术。
该技术通过喷射尿素或氨水等还原剂到燃烧系统中,
使NOx还原成N2和H2O,从而达到减少NOx排放的目的。
该技术的
优点在于设备简单、运行成本低,缺点在于SNCR的NOx减排效果比
较受燃烧温度、燃料性质等因素的影响。
2、 SCR法
SCR法全称为选择性催化还原技术,是一种NOx减排技术。
该
技术通过喷射氨水到燃烧系统中,将NOx还原成无害氮气和水。
该
技术需要通过催化剂来实现还原过程,并需要对运行条件进行精细
控制。
由于该技术不受燃料和燃烧温度的影响,因此可以在各种条
件下实现低氮排放。
缺点在于设备投资和运行维护成本比较高。
关于开展燃气锅炉低氮改造的意见

燃气锅炉低氮改造是一项重要的环保举措,对减少大气污染和改善空气质量具有重要意义。
目前,我国在大气污染治理方面取得了显著成效,但在一些重点地区和行业,燃煤、燃油锅炉仍然是重要的大气污染源。
开展燃气锅炉低氮改造具有重要的现实意义和深远的战略意义。
一、燃气锅炉低氮改造的重要性1. 大气污染治理的重要任务。
燃气锅炉低氮改造是治理大气污染的重要技术手段之一,可以有效降低燃气锅炉排放的氮氧化物(NOx)浓度,减少大气污染物的排放。
2. 改善空气质量。
燃气锅炉低氮改造可以减少燃烧过程中产生的有害气体,提高大气环境质量,改善人民裙众的生活环境。
3. 节能减排,促进可持续发展。
燃气锅炉低氮改造可以提高燃烧效率,减少资源消耗和能源浪费,有利于节能减排,促进经济可持续发展。
二、燃气锅炉低氮改造的技术途径1. 燃烧技术改进。
通过优化燃气锅炉的燃烧系统,采用先进的燃烧技术和低氮燃烧技术,降低燃烧过程中产生的NOx排放。
2. 烟气脱硝技术应用。
采用烟气脱硝技术对燃气锅炉的烟气进行处理,降低燃气锅炉烟气中的NOx排放浓度。
3. 智能控制系统的应用。
应用智能控制系统对燃气锅炉进行精确控制和调节,提高燃烧效率,降低NOx排放。
三、开展燃气锅炉低氮改造的建议1. 强化政策引导。
政府部门应出台更加明确和有力的政策措施,鼓励和引导企业和单位开展燃气锅炉低氮改造工作,加大对低氮锅炉技术的扶持力度。
2. 加强科技研发支持。
加大对低氮燃烧技术和烟气脱硝技术的科研投入力度,支持优秀科研团队开展低氮技术研究和应用推广工作。
3. 完善技术标准和规范。
建立健全燃气锅炉低氮改造的相关技术标准和规范,加强监督检查和技术指导,确保低氮改造工程的质量和效果。
4. 拓展宣传教育力度。
加强对燃气锅炉低氮改造政策和技术的宣传和推广工作,提高社会公众和相关行业的认识和参与度。
四、燃气锅炉低氮改造的推动与实施1. 政府主导,企业积极响应。
政府部门应该发挥引导和促进作用,推动企业和单位加大对燃气锅炉低氮改造的投入和力度。
中小型燃气锅炉低氮排放的几种解决方案

If I succeeded today, I must have put all my hard work together yesterday.勤学乐施天天向上(页眉可删)中小型燃气锅炉低氮排放的几种解决方案一、低氮燃烧的必要性减少NOx排放是改善环境空气质量的需要近年来的监测数据表明,典型特征污染物PM2.5出现较大超标比例和区域性长时间严重超标情况,改善环境空气质量面临巨大挑战。
国内外研究和治理经验表明,控制区域性PM2.5污染是一项难度非常大的系统工程,必须在综合分析基础上,提出有针对性的控制对策,才能有效缓解区域PM2.5污染。
PM2.5包括一次排放和二次生成粒子两部分,以北京为例,二次粒子比例较高,特别是重污染时段PM2.5中二次粒子比例较常规时段明显增加。
有观测数据表明,重污染发生时PM2.5与NOx的环境质量浓度变化呈现强相关、同步变化的特征。
NOx是PM2.5的重要前体物,在形成过程中有两个作用:一是反应生成的NO3-是二次粒子的重要化学组分;二是通过光解链式反应生成O3-,增加大气氧化性,提供将SOx、NOx氧化生成SO42-和NO3-的氧化剂。
美国加州利用CAMQ模型模拟削减一次排放的NOx对PM2.5的影响,结果是每减少1吨NOx排放可减少约0.13吨PM2.5。
北京最新研究结果表明,二次粒子是目前PM2.5的主要贡献者,且比2000年有明显上升,主要成分为水溶性离子(占53%)、地壳元素(占22%)、有机质(占20%)和元素碳(占3%),其他未知元素约占2% ,且NO3-/SO42-比例关系呈现增加趋势。
水溶性离子中以SO42-、 NO3-和NH4+为主,三者之和(SNA)占PM2.5的比例平均近50%,SNA的浓度贡献是造成PM2.5污染的主要原因。
因此,减少NOx排放是改善空气环境质量的重要任务之一。
二、低氮燃烧机理及技术研究1、甲烷-空气燃烧过程氮化学基本原理燃烧理论将NOx的生成分为热力型NOx(Thermal NOx)、快速型NOx(Prompt NOx)和燃料型NOx(Fuel NOx)。
中小型燃气锅炉低氮排放的几种解决方案

中小型燃气锅炉低氮排放的几种解决方案背景介绍随着环保意识的提升和国家对环保的要求不断加强,越来越多的企业开始注重燃气锅炉的低氮排放问题。
燃气锅炉是一种常见的加热设备,它的使用会产生大量的一氧化氮等有害气体,对环境和人类健康产生不良影响,因此,控制燃气锅炉的氮氧化物排放,已经成为企业实现可持续发展、提高社会形象的重要举措。
解决方案中小型燃气锅炉低氮排放的解决方案主要有以下几种:1. SNCR技术SNCR(Selective Non-Catalytic Reduction)是一种选择性非催化还原技术,它采用化学还原的方法来减少锅炉的氮氧化物排放。
在SNCR 技术中,加入一定量的脱硫脱硝剂,通过调节还原剂的投加量和投加位置等参数,使脱硝剂与NOx等有害气体发生化学反应,分解成N2和H2O等无害气体,并将它们排放到大气中。
SNCR技术具有投资成本低、占地面积小、安装维护便利等优点,相对于SCR技术,它更适用于中小型燃气锅炉的改造。
2. SCR技术SCR(Selective Catalytic Reduction)是一种选择性催化还原技术,它与SNCR技术的不同在于,它需要使用催化剂来促进还原剂与NOx等有害气体发生反应,降低锅炉的氮氧化物排放。
在SCR技术中,将还原剂(如NH3或尿素等)和空气通过催化剂层,使其与NOx等有害气体发生化学反应,分解成N2和H2O等无害气体,从而减少了对环境的污染。
相对于SNCR技术,SCR技术具有更高的去除效率,但是投资成本和运行维护难度都较高,适用于大型燃气锅炉的升级改造。
3. 水膜燃烧技术水膜燃烧技术是一种通过水喷淋将加热表面降温的方法,它通过降低燃烧室温度,减少氮氧化物的产生。
水膜燃烧技术的原理是,在燃料和空气的混合区域喷洒一定量的水,将燃气表面的温度降低,从而影响NOx的生成和排放。
水膜燃烧技术具有运行稳定、操作简单、无需使用催化剂等优点,但是需要增加水的输送和处理系统,造成了一定的水资源浪费。
谈燃气锅炉尾气中NOx低排放技术措施

谈燃气锅炉尾气中NOx低排放技术措施摘要:国家对保护环境愈加重视,在对锅炉尾气产生的污染物治理中,关于对尾气中的SO2与烟尘的治理开始的比较早并且治理已经有一定的成效。
但是,对尾气中NOx的治理起步较晚,其对环境造成的污染治理刻不容缓。
基于此,本文主要对燃气锅炉尾气中NOx低排放技术进行了简单的探讨,以供相关人员参考。
关键词:燃气锅炉;NOx;低排放引言随着我国各地区燃气锅炉NOx排放标准出台,将有大量的燃气锅炉进行低NOx燃烧改造,而且锅炉煤改气的进程也会加快,锅炉配置低NOx燃烧器已成为发展的趋势,燃气锅炉低NOx燃烧器将有很大的市场需求。
目前,在燃气低NOx燃烧技术研究方面,一些专家进行了燃气热水器低NOx燃烧技术和燃气商用灶低NOx燃烧技术的研究,对于燃气锅炉低NOx燃烧技术的研究还不多,我国燃气锅炉低NOx燃烧技术尚不成熟,还有待进一步研究。
在政策环境和市场环境的背景下,如何降低NOx排放并且达到烟气中质量浓度低于30mg/m3的指标,是急需解决的技术问题。
1、燃气锅炉燃烧过程中NOx生成的过程NOx有很多种,但在燃烧过程中产生的NOx几乎是NO和NO2,通常把NO和NO2统称为NOx。
天然矿物燃料(天然气、煤炭、石油)燃烧过程中生成的NOx主要是NO,体积分数约占90%左右,其余为NO2。
燃烧生成的NO排入大气后氧化成NO2,故大气中NOx以NO2为主。
由于燃烧过程中生成的NOx主要是NO,因此,研究燃烧过程中NOx生成的途径主要研究是NO的生成途径。
在燃烧过程中NO的生成途径分为3种:热力型、快速型、燃料型。
热力型NO是燃烧用空气中的氮气N2在高温下(1500K以上)氧化而生成的。
快速型NO是烃类燃料在过剩空气系数小于1条件下,即燃料过浓时燃烧产生的。
燃料型NO是燃料中含氮化合物在燃烧过程中氧化而生成的。
在天然气中,由于无含氮化合物,因此,燃烧时不产生燃料型NO;快速型NO生成量一般比热力型NO生成量小一个数量级。
燃气锅炉低氮改造方案

燃气锅炉低氮改造方案燃气锅炉在现代工业生产中起着至关重要的作用,它们向我们提供了大量的热能,支撑着城市的发展和人们的生活。
然而,随着环境保护的重要性日益凸显,燃气锅炉的排放问题成为了我们亟待解决的难题。
为了实现可持续发展,低氮改造方案是一个有效的途径。
燃气锅炉在燃烧的过程中会产生氮氧化物(NOx)等有害气体,对大气环境和人体健康造成严重危害。
因此,为了控制和减少污染物排放,低氮燃烧技术成为了改造燃气锅炉的首选方案。
低氮改造主要包括燃烧调整、烟气再循环和燃烧器改造等措施。
首先,通过燃烧调整,可以优化燃烧过程,降低燃料的燃烧温度,控制氮气的氧化反应,从而减少NOx的生成。
其次,烟气再循环技术可以通过将烟气进行部分回收再循环,从而降低燃烧温度,减少生成NOx的机会。
最后,燃烧器改造技术可以采用分级燃烧、富氧燃烧和预混合燃烧等方法,提高燃烧效率,减少污染物排放。
燃烧调整是低氮改造中的基础工作。
我们可以通过优化燃烧参数、适当调整燃烧器结构和改进燃烧方式来降低燃料在锅炉中的燃烧温度。
此外,我们还可以针对不同燃料的特点进行调整,选择合适的燃烧方式,从而减少NOx的产生。
燃烧调整不仅可以降低NOx的排放浓度,还可以提高燃烧效率,降低能源消耗,实现节能减排目标。
烟气再循环是一项有效的低氮改造措施。
通过将部分烟气回收再循环到锅炉燃烧室,可以有效地降低燃烧温度,减少NOx的生成。
烟气再循环技术不仅可以减少污染物的排放,还可以提高燃烧效率,增加锅炉的额定功率。
同时,由于烟气再循环后,锅炉燃烧室内氧气浓度下降,可以减缓燃烧过程,降低燃烧噪声,提高环境舒适度。
燃烧器改造是低氮改造的核心技术。
我们可以采用分级燃烧技术来调整燃烧过程,使燃料在燃烧器中得到充分混合和燃烧,降低燃烧温度,减少NOx的生成。
此外,富氧燃烧技术可以通过提供充足的氧气,优化燃烧过程,从而减少污染物的排放。
预混合燃烧技术则可以将燃料和空气充分混合,形成均匀的燃烧气体,减少局部高温燃烧,降低NOx的生成。
安全管理之中小型燃气锅炉低氮排放的几种解决方案

安全管理之中小型燃气锅炉低氮排放的几种解决方案随着环保政策越来越严格,对于燃气锅炉的低氮排放要求也越来越高。
尤其是对于中小型燃气锅炉,由于生产设备和资金等限制,低氮改造的难度也相对较大。
本文将从几个解决方案的角度,讨论中小型燃气锅炉低氮排放的实现方法。
一、燃烧器换装燃烧器是决定燃气锅炉燃烧效率和废气排放的关键部件之一。
普通的燃烧器易产生较高的氮氧化物排放,因此适当换装低氮燃烧器是其中一个非常有效的方式。
低氮燃烧器主要有翼流式、内混式、喷射式等种类。
将这些燃烧器安装在中小型燃气锅炉上,可大幅降低氮氧化物的排放浓度,并提高燃烧效率和节能效果。
其中,翼流式燃烧器和喷射式燃烧器的低氮改造难度相对较小,推荐使用。
二、添加还原剂添加还原剂是一种通用的低氮技术,能够一定程度上降低燃气锅炉的氮氧化物排放。
添加还原剂的方式主要有两种:一是利用颗粒还原剂,在燃烧器前的供氧腔内投放,让还原剂与燃料进行充分反应,减少氮氧化物的生成;二是气态还原剂,在烟气末端通过特殊的喷雾系统喷入,与NOx进行化学反应,达到降低排放的效果。
添加还原剂的优点是使用简单、成本较低。
但缺点也不少,如对还原剂的要求较高,不同的燃料组合下还原剂的添加量也不同,而且还原剂的添加方式和投放位置也可能受制于锅炉的结构和操作安全等因素。
三、空气喷射预混合技术空气喷射预混合技术是通过将空气、燃料和蒸汽在预混合管中进行混合反应,使混合气与一定量的高温氮气(发生NOx生成的关键物质)在预混合管内反击并燃烧,进而在烟气排放时降低NOx排放浓度的一种技术。
与前两种方法相比,空气喷射预混合技术在低氮改造上达到了更好的效果,降低氮氧化物排放幅度可达20%~30%以上。
同时,其还能增加热效率和炉膛稳定性、降低光和声污染等优点。
但缺点也是比较明显,如初期安装和调试成本高、使用寿命短等问题。
综合来看,针对中小型燃气锅炉进行低氮排放的最佳方案仍需结合实际情况进行定制。
无论是换装燃烧器、添加还原剂还是采用预混合技术,都需要设备制造商、技术工程师甚至政府有关部门共同参与,充分研究锅炉的特点、氮氧化物排放的成因、技术方案的可行性、风险和成本等多方面的因素,以实现低氮排放标准的达标和质量、效益和环保三者的平衡。
燃气工业锅炉NOX排放控制技术

燃气工业锅炉NOX排放控制技术随着环境保护意识的不断提高,燃气工业锅炉的NOX排放管制越来越受到关注。
NOX是指氮氧化物,是一种在工业生产、交通运输和能源消耗过程中产生的气体污染物。
燃气工业锅炉是NOX主要的排放源之一,因此研究和控制燃气工业锅炉NOX排放技术,对环境保护至关重要。
目前,燃气工业锅炉NOX排放控制技术有以下几种类型:一、低氮燃烧技术低氮燃烧技术包括低氮燃烧器、燃气预混合燃烧技术,还有与之相关的控制策略。
燃气工业锅炉使用低氮燃烧技术可以大幅度减少NOX排放,但低氮燃烧技术的实施成本较高,需要对锅炉进行改造,安装新的部件和设备。
此外,低氮燃烧技术对燃烧器的设计和调试也提出了更高的要求。
二、再循环烟气脱氮技术再循环烟气脱氮技术是通过在燃烧过程中再循环部分烟气,将NOX转化为N2和H2O等无害气体。
再循环烟气脱氮技术不仅可以有效地控制NOX排放,而且可以提高燃烧效率,节约能源。
但是,再循环烟气脱氮技术实施的复杂度较高,需要较高的技术和装备。
三、选择性催化还原(SCR)技术SCR技术是一种通过催化反应将NOX转化为N2和H2O等无害气体的方法。
该技术可以减少NOX的排放,并且可以在广泛的工况下实施,具有较高的稳定性。
但是,SCR技术的成本较高,需要特殊的触媒和设备,也需要对锅炉和烟气进行改造。
四、非致焚处理技术非致焚处理技术是一种将NOX排放转化为其他物质的技术,可以将NOX转化为天然气、硝酸等物质。
非致焚处理技术可以减少NOX的排放,同时还可以产生有用的化学物质,对雾霾治理和废气综合利用等方面具有重要意义。
总结来看,燃气工业锅炉NOX排放控制技术有多种方式,每种技术都有其优缺点和适用范围。
在实际应用中,需要综合考虑锅炉的类型、使用环境、经济效益等因素,选择合适的技术进行处理。
最后需要注意的是,燃气工业锅炉NOX排放控制技术的应用需要尊重生态环境,并合理处理好各种利益关系,从而实现人类与自然共存、和谐发展的目标。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
工业燃气锅炉低氮排放技术路线
新的锅炉大气污染物排放标准以氮氧化物控制为重点,提升了氮氧化物的排放要求,现有燃油、燃气锅炉需要进行低氮改造,改造路径有:燃烧前:使用优质燃料,减少燃料中的含氮量;(推荐)。
燃烧中:使用低氮燃烧技术,控制燃烧温度、氧量与时间,主要方法包括纯氧燃烧,控温技术(空气分级、燃料分级、分散燃烧、烟气内循环、烟气外循环、空冷、水冷等);(推荐)。
燃烧后:在烟气排放后增加处理装置,如尾部烟气脱硝技术(SNCR,SCR),AO干法脱硫脱硝协同技术,生物质藻类捕获技术等。
氮氧化物怎么来?
锅炉是利用燃料化学能或其他能源的热能,把水或其他工质加热到一定参数的热能转换设备。
锅炉的分类有很多,根据工质、燃料、出口介质、本体结构、水循环、额定压力、出厂形式等等,在《锅炉大气污染物排放标准》中,以燃料分类:燃油锅炉、燃气锅炉和燃煤锅炉划分。
锅炉的主要污染物包括颗粒物、二氧化硫、氮氧化物、一氧化碳等。
其中N Ox(氮氧化物)是造成城市中雾霾与臭氧的污染物中最重要的元凶之一,氮氧化物包括NO,NO2,N2O、N2O3,N2O4,N2O5等,但在燃烧过程中生成的氮
氧化物,几乎全是NO和NO2。
煤炭、天然气、重油等天然矿物燃料在燃烧过程生成的氮氧化物中,NO占90%左右,其余为NO2。
锅炉污染排放中,氮氧化物污染产生的方式有三种:燃料型、热力型和快速型。
燃料型NOx:生物质及煤等燃料本身含有氮元素,而这些氮元素在燃烧的过程中会从燃料中析出,在锅炉内经过一系列的氧化反应,生成NOx。
由于天燃气中基本不含固定氮,在燃烧天然气的锅炉中,燃料型NOx可忽略不计。
去除燃料型NOx可以采用炉内脱硝,或者尾气脱硝方式解决。
热力型NOx:热力型NOx是燃烧时空气中的氮(N2)和氧(O2)在高温下生成氮氧化物。
影响热力型NOx的最主要因素是燃烧温度,从氮(N2)和氧(O2)的反应式中可以看出一些端倪:
平衡常数Kp是生成物(NO)与反应物(N2与O2)的浓度(方程式系数幂次方)乘积比,Kp数值越大,则代表在其他条件不变的情况下,NO的生成量越高。
当温度低于1000K时(约700摄氏度),Kp值非常小,NO在很低的浓度下,等式就已经达到了平衡,就算增加氮气与氧气的浓度,或者增加空气与燃料的停留时间,NO的增加也非常有限,随温度升高氮氧化物迅速增加,温度在1500℃附近变化时,温度增100℃,反应速度将增6~7倍。
过剩的空气/氧气浓度:氧气浓度越高,NOx的生成量就越大;以及空气与燃料的混合时间:停留时间越长,NOx的生成量就越大。
这两点也是热力型NOx 产生的影响因素。
快速型NOx:在碳氢化合物燃烧时会分解出大量的CH,CH2,CH3和C2等离子团,它们会破坏燃烧空气中N2分子的键而反应生成HCN,CN等,然后再被氧化成NOx,在三种途径中,快速型NOx所占比例不到5%。
这是一张氮氧化物产生浓度、炉膛温度以及对应产生类型的关系图,燃料型与快速型产生量会随温度逐步增加,受温度影响不大,而热力型NOx在温度超过1400摄氏度左右时,其产生量急剧上升,受温度影响剧烈。
氮氧化物怎么减?
上面介绍了氮氧化物的产生原理,氮氧化物减排,其实也是从产生原理出发,控制氮氧化物产生的条件,例如:改变燃料种类、控制燃烧温度、控制氧含量等,总的来说企业可以通过以下几种方式实现:
燃烧前:使用优质燃料,减少燃料中的含氮量;
燃烧中:使用低氮燃烧技术,控制燃烧温度、氧量与时间,主要方法包括纯氧燃烧,控温技术(空气分级、燃料分级、分散燃烧、烟气内循环、烟气外循环、空冷、水冷等);
燃烧后:在烟气排放后增加处理装置,如尾部烟气脱硝技术(SNCR,SCR),A O干法脱硫脱硝协同技术,生物质藻类捕获技术等。
低氮燃烧改造技术:
1分级燃烧+烟气外部再循环(FGR)
从锅炉尾部烟室、烟道引部分烟气回流入燃烧器,与助燃空气掺混,再次参与燃烧,从而降低燃烧过程中的N2与O2浓度,并且烟气中已经产生的NOx 会对再燃烧时NOx产生有一定的抑制作用,完成改造后,在CO达标,氧气浓度约为3.5%时,最终达到NOx排放30~50mg/Nm3。
但此类安装需假装外循环烟道,燃烧器也需要考虑耐温。
2分级燃烧+烟气内部再循环(FIR)
燃烧器喷口混合燃料气射流形成的文丘里现象,使燃烧头部出现负压区,从而直接吸入炉膛内烟气,形成炉膛内部烟气再循环,吸入烟气同时也吸入部分助燃空气,在燃烧器喷口前部与燃料部分预混合,部分预混合保证了燃烧不会出现回火。
虽然采用的是部分预混合以及烟气循环量控制精度不如烟气外部循环,但采用两种技术的结合,确保了燃烧的低氮排放要求。
这种技术对炉膛尺寸要求较高,改造项目中一般不适用。
3表面燃烧
由燃烧器实现燃料在燃烧反应之前,与助燃空气进行预混合,燃料喷出后,在燃烧头前部表面燃烧盘上快速燃烧,可以加快O2与燃料的燃烧反应速度,从而降低高温时NOx的生成量,同时遏制O与N的反应。
表面燃烧有以下几个缺点:气体燃料与助燃气体预混,危险性较高;为防止回火和降低调整混合率难度,燃烧器需附加其他技措设计,从而对燃烧器使用寿命有所影响;表面燃烧网有一定的使用寿命,需要较多的运行维护(过滤器清洗,金属纤维网检查维护)维护费用会增加。
末端治理(烟气脱硝技术)
1选择性催化还原法(SCR ):在高温烟气(300-425°C,
低温催化200°C以上)通过催化剂时喷入氨,将烟气中的NOx还原为N2 2非选择性催化还原法(SNCR):在高温烟气(870~1100°C)中喷入氨水或尿素液。
燃气锅炉排放烟气温度一般在150至250°C,不能满足SCR和SNCR对烟气温度的要求,需增加热源使热烟气升温后才可使用,使得投入和运行成本都比较高。
3重金属催化还原法:需要在一定温度要求(大于250°C)的烟道内安装,但工业和采暖锅炉负荷波动大,温度不稳定影响脱硝效果。
4臭氧氧化-吸收脱硝法:使用臭氧将NO和NO2氧化为极易溶的N2O5,通过湿式洗涤转化为HNO3。
由于对温度没有要求,易于控制,处理后排放烟气干净,是工业或采暖锅炉最为适合。
对于上海燃油燃气锅炉的推荐治理方法有:
中小燃油锅炉升级改造,鼓励实施“油改气”,“油改电”,没有条件的实施低氮燃烧改造;
中小燃气锅炉实施低氮燃烧改造;
企业在改造中要充分考虑效率影响、容量影响、油改气或油改电的综合解决方案、合同能源管理模式、融资问题、燃气公司及电力公司配合问题与相关政策,结合自身的实际情况对各种技术进行优劣判断,在改造的过程中一定要选择合适的,并不是价格高的就普遍适用,贯彻“一炉一方案”的理念,完成锅炉改造。