第五章 马氏体转变资料.
马氏体转变专业知识讲座
(1)显微组织:
马氏体呈板条状,一束束排 列在原奥氏体晶粒内。对某些钢 因板条不易浸蚀显现出来,而往 往呈块状,所以有时也称为块状 马氏体,又因为这种马氏体旳亚 构造主要为位错,也常称之为位 错型马氏体,这种马氏体是由许
(2)晶体学特征
惯习面为(111)γ ,晶体学 位向关系符合K-S关系。
第五章
马氏体转变
热处理旳定义:热处理是将材料经过特定旳加 热和冷却措施取得所需旳组织和性能旳工艺过 程。
温度
奥氏保温体化 临界温度
热
珠光体转变
加
冷
贝却 氏体转变
马氏体化
时间
马氏体旳定义
(1)马氏体是碳溶于α-Fe中旳过饱和间隙式 固溶体;
(2)马氏体是在冷却过程中所发生旳基本特 征属于马氏体型转变旳转变产物。
不变平面也能够不是相界面,不变平面就为中脊 面。来自三、马氏体转变旳无扩散性
试验测定出母相与新相成份一致 ;
马氏体形成速度极快,一片马氏体在5×105 5×10-7秒内生成;
碳原子在马氏体和奥氏体中旳相对于铁原子保持不 变旳间隙位置 。
四、马氏体转变具有一定旳位向关系和惯习面
马氏体转变时马氏体与奥氏体存在着严格旳晶体学 关系:
(2)晶体学特征
惯习面(225) γ 位向关系为K—S关系
惯习面(259) γ 位向关系为西山关系,能够暴发 形成,马氏体片有明显旳中脊。
(3)亚构造
片状马氏体旳主要亚构造是孪晶,这是片状马氏体 旳主要特征。
孪晶旳间距大约为50Å,一般不扩展到马氏体片旳边 界上,在马氏体片旳边沿则为复杂旳位错组列。
惯习面为(259)γ,位向关系为K-S关系,亚构造 为(112)αˊ孪晶,无位错,无中脊。
马氏体相变
极快,特点:马氏体降温瞬间形核,瞬间长大,可以认为 马氏体转变速度取决于形核率而与长大速度无关。 马氏体转变量取决于冷却所达到的温度,而与时间无关。
2、等温形成马氏体的动力学
特点:马氏体等温形核,瞬间长大,形核需要孕育期,形核率 随过冷度增大而先增后减,转变量随等温时间延长而增加。等 温转变动力学图呈C字形。
各种马氏体的晶体结构、惯习面、亚结构、位向关系汇总表
2、影响马氏体形态及亚结构的因素
化学成分 马氏体形成温度 奥氏体的层错能 奥氏体与马氏体的强度 主要是化学成分和马氏体形成温度
化学成分:片状马氏体的组织形态随合金成分的变化而改变。
对于碳钢: 1)C%<0.3%时, 板条马氏体; 2)0.3%~1.0%时,板条和透镜片状混合的马氏体; 3)C% >1.0%时, 全部为透镜片状马氏体。并且 随着C%增加,残余奥氏体的含量逐渐增加。 合金元素: 1)缩小γ相区,促进板条马氏体。 2)扩大γ相区,促进透镜片状马氏体。
特征5:转变的非恒温性和不完全性
1. 奥氏体以大于某一临界冷却速度的速度冷却到某一温度(马氏 体转变开始温度Ms),不需孕育,转变立即发生,并且以极大 速度进行,但很快停止,不能进行终了。为使转变继续进行, 必须继续降低温度,所以马氏体转变是在不断降温的条件下才 能进行。当温度降到某一温度之下时,马氏体转变已不能进行, 该温度称为马氏体转变终了点即Mf 。 2. 马氏体转变量是温度的函数,与等温时间无关。马氏体的降温 转变称为马氏体转变的非恒温性。由于多数钢的 Mf 在室温以下, 因此钢快冷到室温时仍有部分未转变奥氏体存在,称为残余奥氏 体,记为Ar。有残余奥氏体存在的现象,称为马氏体转变不完全 性。要使残余奥氏体继续转变为马氏体,可采用冷处理。
马氏体的转变
• 一、马氏体转变的基本特征 • 1、转变不需要扩散 马氏体转变只有点阵改组而无成份变化,转变时原子 做有规律的整体迁移,每个原子移动的距离不超过一个原 子间距,且原子之间的相对位置不发生变化。 1、一些具有有序结构的合金发生马氏体转变后有序结构不 发生变化; 2 、 Fe-C 合金奥氏体向马氏体转变后, C 原子的间隙位置保 持不变; 3 、马氏体转变可以在相当低的温度范围内进行,且转变 速度极快。例如: Fe-C 、 Fe-Ni 合金,在 -20~-196℃之间一 片马氏体形成的时间约5×10-5─5×10-7 秒
• 2、切变主导型点阵畸变式转变 • 点阵畸变式转变:通过均匀的应变把一种点阵 转变称为另一种点阵。 • 点阵畸变方式有以下几种: • (1)简单切变; • (2)简单膨胀和压缩; • (3)既有膨胀、又有切变 • 马氏体转变以第三种为主。
显然,界面上的原子排列规律既同于马氏体,也同 于奥氏体,这种界面称为共格界面。但不变平面可以是 相界面,也可以不是相界面。
亚结构
亚结构主要是高密度的位错缠结构成的位错胞,位 错密度可高达0.3~0.9×1012/cm2,板条边缘有少量孪 晶。从亚结构对材料性能而言,孪晶不起主要作用。 (2)、片状马氏体 常见于淬火高、中碳钢及高Ni的Fe-Ni合金中,是 铁系合金中出现的另一种典型的马氏体组织。
显微组织
典型的马氏体组织形态见下图所示:
惯习面(225) γ 位向关系为K—S关系 惯习面(259) γ 位向关系为西山关系,可以爆发 形成,马氏体片有明显的中脊。
亚结构
片状马氏体的主要亚结构是孪晶,这是片状马氏 体的重要特征。孪晶的间距大约为50Å,一般不扩展到 马氏体片的边界上,在马氏体片的边缘则为复杂的位 错组列。一般认为,这种位错是沿[111] α ˊ方向呈 点阵状规则排列的螺型位错。片状马氏体内的相变孪 晶 一 般 是 (112)α ˊ 孪 晶 , 也 发 现 (110)α ˊ 孪 晶 和 (112)α ˊ孪晶混生的现象,方向为[11-1]α ˊ。
马氏体转变
马氏体相变的
分子动力学模拟
200,000 Zr atoms 1024-node Intel Paragon XP/S-150
六. 不同材料中的马氏体转变 1. 有色合金 许多有色合金也存在马氏体转变。 马氏体外形基本上仍属条片状,金相形貌与铁基 马氏体有区别。 马氏体亚结构多为层错和孪晶,极少有位错型。
' '
薄板状马氏体
薄片状马氏体
三. 马氏体转变的热力学 1. 相变驱动力
G
T0为相同成分的马氏 体和奥氏体两相热力学 平衡温度,此时
ΔGγ→α′
ΔGγ→α’ = 0
ΔGγ→α’ 称为马氏体相 变驱动力。 Ms T0 Gα′ Gγ T
自由焓——温度曲线
2. 转变温度Ms和Mf 相变驱动力用来提供切变能 量、亚结构畸变能、膨胀应变 能、共格应变能、界面能等, 所以要有足够大相变驱动力。 Ms为马氏体转变起始温度, 是奥氏体和马氏体两相自由能 之差达到相变所需的最小驱动 力(临界驱动力)时的温度。 Mf为马氏体转变终了温度。 T
(3) 其它形貌马氏体 在高碳钢,高镍Fe-Ni-C合金中, 或在应力诱发作用下,会形成蝶 状马氏体。 呈V形柱状,成片出现。 两翼的惯习面为{225}γ,夹角 为136°,结合面为{100}γ。 位向关系为K-S关系。
蝶状马氏体 {100}γ
晶内亚结构为位错,无孪晶。
136°
蝶状马氏体示意图
(155)
(321) 和 (332) 之间
{111} {133} {8,8,11}β {344}β {344}β {100}β
2. 无机材料 1963年Wolten根据ZrO2中正方相t→单斜相m的转 变具有变温、无扩散及热滞的特征,将这种转变称 为马氏体转变,ZrO2中的t→m相变还表现出表面浮 凸及相变可逆的特点。 在无机和有机化合物、矿物质、陶瓷以及水泥的 一些晶态化合物中也有切变型转变。如压电材料 PbTiO3、BaTiO3、及K(Ta、Nb)O3等钙钛氧化物高 温顺电性立方相→低温铁电性正方相的转变;高温 超导体YBaCu2O7-x高温顺电相→超导立方相的转变 均为马氏体转变。
热处理原理及工艺马氏体贝氏体转变
二、马氏体的韧性
(1) 通常C%<0.4%时 M具有较高的韧性,碳含 量越低,韧性越高; C%>0.4%时,M的韧性 很低,变得硬而脆,即使 经低温回火韧性仍不高。
(2)除C%外,M的韧性与其亚结构有着密切的关系,在 相同的屈服极限的条件下,位错型M的韧性比孪晶M的韧 性高很多。
总结 马氏体的强度主要决定于马氏体的碳含量及组织结构
热处理原理及工艺
(9)
第五章 马氏体转变
§5-6 马氏体的性能
淬火得到马氏体是强化钢制工件的重要手段。 淬成马氏体后,虽然还要进行回火,但回火后所得的性 能在很大程度上仍决定于淬火所得的马氏体的性能。 对工模具,重要是硬度和耐磨性,对结构件,需要硬度、 强度与塑性、韧性的配合。
一、马氏体的硬度与强度 马氏体的硬度与屈服强度之间有很好的线性对应关系,
(包括自回火时的时效强化), 马氏体的韧性主要取决于马氏体的亚结构,低碳的位错 型马氏体具有相当高的强度和良好的韧性,高碳的孪晶马 氏体具有高的强度,但是韧性很差。
三、马氏体相变塑性
• 金属及合金在相变过程中屈服强度显著下降,塑性显著增
加,这种现象称为相变塑性。
•马氏体的相变塑性:钢在马 氏体转变时也会产生相变塑性 现象,称为马氏体的相变塑性。 • Fe-15Cr-15Ni合金在不同温 度下进行拉伸,在Ms~Md温 度,延伸率有了明显升高,这 是形变诱发马氏体相变,马氏 Fe-15Cr-15Ni合金在的相变诱发塑性 体形成又诱发塑性所致。
四、马氏体的物理性能
1、比容 M组织的比容较大,M形成时比容的增大,造成钢淬
② 当C%超过0.4%后,由于碳原子靠得太近,相邻碳原 子所造成的应力场相互重迭,以致抵消而降低了强化 效应。
第五节马氏体转变
板条状M----低碳{111}、中碳{225} 片状M-------中高碳{225}、高碳{259}
惯习面与M形状的关系
4.转变的非恒温性和不完全性
Ms点以下形成M----在连续冷却条件下
未获100%M,有残余奥氏体存在—AR 冷处理—针对高碳钢、高碳合金钢和
某些中碳合金钢的Mf点低于室温,将 此类钢继续深冷至零下温度的操作。
重点: 1.马氏体转变的主要特点; 2.马氏体的组织形态; 3.马氏体的热力学分析; 4.马氏体的力学性能 难点: 1.马氏体转变的特点; 2.影响马氏体转变的因素。
§5-1马氏体相变的主要特征
一、马氏体的晶体结构
AM 无扩散型相变 只有点阵重构而无成分变化
C在-Fe中的过饱和固溶体
M或´
1.晶体结构----体心正方点阵
2.奥氏体的层错能
层错能低—利滑移—产生位错—板条M
层错能高—不利滑移—产生孪晶—片M
证明:①18-8型钢不锈钢,其A层错能较低,在液氮中淬火—板条M
②Fe-33Ni合金,层错能高,淬火后其孪晶区扩大
3.A和M的强度
Ms点处 s206MPa 低—{111} 板条M s206MPa {259} 片M
2.马氏体的反常正方度----M正方度与碳含量的关系不符合上式
1)无序分布,c/a
反常低正方度 碳原子在M中有序化转变
2)c原子几乎都处于同一组空隙位置(完全有序化):
T回升至室温无序转变c/a
二、马氏体转变的特点 1.切变共格和表面浮凸现象
①与M相交的表面,一边凹陷,一边突起,牵动相邻A也呈倾突现象; ②刻划一条直线,马氏体形成后变成一条折线 说明: ①马氏体转变以切变的方式实现; ②M和A的界面为共格界面
第五章 马氏体转变
第五章马氏体转变马氏体转变——当采用很快的冷却速度时(如水冷),奥氏体迅速过冷至不能进行扩散分解的低温M S点以下,此时得到的组织称为马氏体。
在转变过程中,铁原子和碳原子均不能扩散,因此其是一种非扩散型相变。
§5.1 马氏体转变的主要特征§5.2 钢中马氏体转变的晶体学§5.3 马氏体的组织形态及影响因素 §5.4 马氏体转变的热力学§5.5 马氏体转变动力学§5.6 马氏体的力学性能§5.1 马氏体转变的主要特征一、马氏体转变的非恒温性二、马氏体转变的共格性和表面浮凸现象三、马氏体转变的无扩散性四、具有特定的位向关系和惯习面五、马氏体转变的可逆性六、马氏体的亚结构一、马氏体转变的非恒温性马氏体转变开始点(M s)——必须将母相奥氏体以大于临界冷却速度的冷速过冷至某一温度以下才能发生马氏体转变,该转变温度即为M s。
马氏体转变终了点(M f)——当冷却至M s以下某一温度时,马氏体转变便不再继续进行,这个温度即为M f。
奥氏体被过冷至Ms点以下任一温度时,不需经过孕育,转变立即开始,且以极大速度进行,但转变很快停住,不能进行到终了。
为使转变能继续进行,必须降低温度,即马氏体转变是在不断降温的马氏体转变量是温度的函数,而与等温时间无关。
图5-2 马氏体转变量与温度的关系马氏体转变的非恒氏体二、马氏体转变的共格性和表面浮凸现象图5-3 钢因马氏体转变而产生的表面浮凸。
图5-4 马氏体浮凸示意图图5-5 马氏体和奥氏体切变共格交界面示意图马氏体与奥氏体之间界面上的原子既属于马氏体,又属于奥氏体,是共有的;并且整个相界面是互相牵制的,这种界面称之为“切变共格”界面。
三、马氏体转变的无扩散性马氏体转变的无扩散性:马氏体转变时只有点阵的改组而无成分的改变。
马氏体的成分与原奥氏体的成分完全一致,且碳原子在马氏体与奥氏体中相对于铁原子保持不变的间隙位置。
热处理原理之马氏体转变
马氏体转变过程中,存在熵变,熵变与热力学第二定律有关。
马氏体转变的相变驱动力与热力学关系
温度
温度是影响马氏体转变的重要因素之一 ,温度的升高或降低会影响马氏体的形 成和转变。
VS
应力
应力也是影响马氏体转变的因素之一,应 力可以促进或抑制马氏体的形成和转变。
马氏体转变过程中的热效应与热力学关系
马氏体转变的种类与形态
板条状马氏体
01
02
03
定义
板条状马氏体是一种具有 板条状结构的马氏体,通 常在低合金钢和不锈钢中 形成。
形态
板条状马氏体由许多平行 排列的板条组成,每个板 条内部具有单一的马氏体 相。
特点
板条状马氏体具有较高的 强度和硬度,同时具有良 好的韧性。
片状马氏体
定义
片状马氏体是一种具有片 状结构的马氏体,通常在 高速钢和高温合金中形成 。
这种转变主要在钢、钛、锆等金属及 其合金中发生,常温下不发生马氏体 转变。
马氏体转变的特点
01
马氏体转变具有明显的滞后效应,转变速度与温度 和时间有关。
02
转变过程中伴随着体积的收缩或膨胀,并伴随着能 量的吸收或释放。
03
马氏体转变过程中晶体结构发生改变,但化学成分 基本保持不变。
马氏体转变的应用
06
相关文献与进一步阅读建议
主要参考文献列表
01
张玉庭. (2004). 热处理工艺学. 科学出版社.
02
王晓军, 王心悦. (2018). 材料热处理技术原理与应用. 机械 工业出版社.
03
周志敏, 纪松. (2019). 热处理实用技术与应用实例. 化学工 业出版社.
相关书籍推荐
马氏体转变
马氏体转变马氏体转变的发展过程早在战国时代人们已经知道用淬火(即将钢加热到高温后淬入水或油中急冷) 的方法可以提高钢的硬度,经过淬火的钢制宝剑可以“削铁如泥”。
十九世纪末期,人们才知道钢在“加热和冷却”过程中内部相组成发生了变化,从而引起了钢的性能的变化。
为了纪念在这一发展过程中做出杰出贡献的德国冶金学家Adolph Martens 法国著名的冶金学家Osmond 建议将钢经淬火所得高硬度相称为“马氏体”并因此将得到马氏体相的转变过程称为马氏体转变。
Martensite M—马氏体十九世纪末到二十世纪初主要局限于研究钢中的马氏体转变及转变所得产物—马氏体。
二十世纪三十年代,人们用X 射线结构分析的方法测得钢中马氏体是碳溶于α-Fe 而形成的过饱和固溶体,马氏体中的固溶碳即原奥氏体中的固溶碳,因此,曾一度认为“所谓马氏体即碳在α—Fe 中的过饱和固溶”。
曾经有人认为“马氏体转变与其它转变不同,是一个由快冷造成的内应力场所引起的切变过程”。
四十年代前后,在Fe—Ni 、Fe—Mn 合金以及许多有色金属及合金中也发现了马氏体转变。
不仅观察到冷却过程中发生的马氏体转变;同时也观察到了在加热过程中所发生的马氏体转变。
由于这一新的发现,人们不得不把马氏体的定义修定为:“在冷却过程中所发生马氏体转变所得产物统称为马氏体”。
近年来,由于实验技术的进一步发展,使人们对马氏体的结构以及马转变的特征又有了进一步的了解,对许多现象的认识也有了很大的进步,并因此而推动了热处理新工艺及新材料的发展,其中最为脍炙人口的是在热弹性马氏体基础上发展起来的形状记忆合金。
1.奥氏体是碳溶解在γ-Fe中的间隙固溶体,它是γ-Fe的面心立方结构,其溶碳能力较大。
2.马氏体是碳溶于α-Fe的过饱和的固溶体,是奥氏体通过无扩散型相变转变成的亚稳定相,是母相奥氏体快速冷却时形成的新相,为体心四方结构,其溶碳能力较小。
3.马氏体相变:从奥氏体到马氏体的转变,为无扩散型相变。
材料科学与工程专业金属热处理原理及工艺马氏体转变精选全文
温度 (℃)
800 700 600 500
400 300 200 100
0
共析碳钢C曲线分析
稳定的奥氏体区
过 冷 奥 氏
+
产
A A向产物 转变终止线
产 物 区
体 区 A向产
物
Ms 物转变开始线
区
M+AR Mf
A1 A1~550℃;高温转变区; 扩散型转变;P 转变区。
550~230℃;中温转变 区;半扩散型转变;
A
M (α’ ) 成分不变
fcc
体心正方 结构变化
由于碳的过饱和作用,使α – Fe晶格由体心立方变成体心正 方晶格。致使马氏体具有体心正方晶格(a = b ≠c)
c
—C原子
—Fe原子
a
金属热处理原理及工艺 , SMSE,CUMT 本章首页 上一页 下一页 返 回
碳择优分布在c轴方向上的八面体间隙位置。这使得c 轴伸长,a轴缩短,晶体结构变为体心正方。
5.2 马氏体的组织形态
一. 马氏体形态 板条,片状,蝴蝶状、薄板状及薄片状 1、板条马氏体
金属热处理原理及工艺 , SMSE,CUMT 本章首页 上一页 下一页 返 回
组织单元:群—束—板条 取向关系:K-S, 惯习面:{111}
马氏体群
马氏体束
光镜下
马氏体群:同惯习面,形态上呈平行排列的板条集团 马氏体束:同惯习面,同取向(晶面平行关系)的板条集团 马氏体板条:马氏体的最基本单元,窄而细长。
5、ε马氏体 点阵结构: 密排六方(其它马氏体均为体心立方或体心正 方点阵结构)
特征:薄片状 亚结构:高密度层错
原因:奥氏体的层错能较低形成 (书中P96页图4.24)
热处理原理及工艺马氏体贝氏体转变教学课件PPT
h
15
相变诱发塑性应用
加压淬火 应变诱发塑性钢 (TRIP钢)
条件:Md > 20>Ms. 室温变形,形变诱发M。M转变诱发塑性 性能:高强度高塑性
h
16
四、马氏体的物理性能
1、比容 M组织的比容较大,M形成时比容的增大,造成钢淬
火时产生较大的组织应力,从而促进M显微裂纹的扩展。 2、磁性
数量的位错。
h
35
(四)粒状贝氏体 低碳和中碳合金钢中以一定的速度连续冷却后获得的,
如正火、热轧后的空冷、焊缝的热影响区中等。 后来的研究发现等温也可以形成,形成温度稍高于上贝氏
体的形成温度。
粒状贝氏体组织是由F和富 碳的A组成。F呈块状(由F针 片组成),而富碳的A呈条状 在F基体上呈不连续分布。F 的C%很低,接近平衡状态, 而A的C%很高。
1、形成温度范围 一般在350 ℃ ~Ms之间的低温区。
2、组织形态 两相组织,由α相与碳化物组成。 下贝氏体电镜照片
α相的立体形态呈片状,光镜下呈针状,与片状M相
似。形核部位大多在A晶界上,也有位于A晶内。 碳化物为Cem或ε-碳化物,碳化物呈细片状或颗粒状, 排列成行,约以55°~60°角度与下贝氏体的长轴相交, 并且仅分布在F片内部。 钢的化学成份、A晶粒度和均匀化程度对下贝氏体的组织形 态影响较小。
加,这种现象称为相变塑性。
•马氏体的相变塑性:钢在马 氏体转变时也会产生相变塑性 现象,称为马氏体的相变塑性。 • Fe-15Cr-15Ni合金在不同温 度下进行拉伸,在Ms~Md温 度,延伸率有了明显升高,这 是形变诱发马氏体相变,马氏 Fe-15Cr-15Ni合金在的相变诱发塑性 体形成又诱发塑性所致。
h
13
金属材料热处理原理 第五章 马氏体转变
二、马氏体转变的主要特点 1. 切变共格和表面浮凸现象
钢因马氏体转变而产生的表面浮凸
马氏体形成时引起的表面倾动
马氏体是以切变方式形成的,马氏体与奥氏体 之间界面上的原子既属于马氏体,又属于奥氏体, 是共有的;并且整个相界面是互相牵制的,这种界 面称之为“切变共格”界面。
马氏体和奥氏体切变共格交界面示意图
4. 马氏体转变是在一个温度范围内完成的
马氏体转变量与温度的关系
Ms—马氏体转变开始温度;Mf—马氏体转变终了点; A、B—残留奥氏体。
5. 马氏体转变的可逆性
在某些铁合金中,奥氏体冷却转 变为马氏体,重新加热时,已形成的 马氏体又可以逆马氏体转变为奥氏体, 这就是马氏体转变的可逆性。一般将 马氏体直接向奥氏体转变称为逆转变。 逆转变开始点用As表示,逆转变终了 点用Af表示。通常As温度比Ms温度高。
2. 马氏体转变的无扩散性
马氏体转变的无扩散性有以下实验证据:
(1) 碳钢中马氏体转变前后碳的浓度没有 变化,奥氏体和马氏体的成分一致,仅发生晶 格改组:
γ-Fe(C) → α-Fe(C)
面心立方 体心正方
(2) 马氏体转变可以在相当低的温度范围 内进行,并且转变速度极快。
3. 具有一定的位向关系和惯习面
西山关系示意图
③ G-T关系
{111}γ∥{110}α′ 差1°;<110>γ∥<111>α′ 差2°。
(2) 惯习面
马氏体转变时,新相总是在母相的某个晶面族上 形成,这种晶面称为惯习面。在相变过程中从宏观上 看,惯习面是不发生转动和不畸变的平面,用它在母 相中的晶面指数来表示。
钢中马氏体的惯习面随碳含量及形成温度不同而 异,常见的有三种:(1) 含碳量小于0.6%时,为{111}γ; (2) 含碳量在0.6%~1.4%之间时,为{225}γ;(3) 含碳 量高于1.4%时,为{259}γ。随马氏体形成温度下降, 惯习面有向高指数变化的趋势。
第5章-马氏体相变
马氏体相变无扩散的原因:
C原子在-Fe中形成的过饱和固溶体,体心正方结 构,正方度随碳含量增加而线性增大。
Fe-C合金中,A和M中碳原子相对铁原子的间隙位 置没变。
Fe-C合金中,在-20~-195ºC之间,每片M的形成 时间约为:0.5~510-7s。
转变结果:降低了系统能量,形成低温亚稳定相。 形成条件:冷却速度大到能避免扩散型相变,所有
逆相变:加热时马 氏体向奥氏体的相 变。 As:马氏体逆转变 开始点,马氏体和 奥氏体两相自由能 差达到相变所需最 小驱动力值时的温 度。
六、亚结构
相变伴生极高密度的晶体缺陷:孪晶(高碳 M )、位错(低碳M )、层错。
马氏体相变的判据:
1、相变以切变共格方式进行 2、相变的无扩散性 3、相变伴生极高密度的晶体缺陷:孪晶、位错、
➢钢中常见的合金元素只 有Al、Co使Ms点升高, 其余均使Ms点降低。 ➢合金元素对Ms点的影 响主要取决于它们对平
衡温度的影响以及对奥
氏体的强化作用。
➢凡是剧烈降低To温度及 强化奥氏体的元素均剧
烈地降低Ms点。
2、形变与应力的影响
在Md~Ms之间进行塑性变
形时会诱发马氏体相变,在
Ms ~ Mf之间进行塑性变形
Ms点:奥氏体和马氏体两 相自由能差达到相变所需 最小驱动力值时的温度。
To一定时, Ms点越低, 相变所需的驱动力越大。
G= S(T0-MS) As点:马氏体和奥氏体两相
自由能差达到逆相变所需 最小驱动力值时的温度。
G = S(AS-T0)
To、 Ms、 As与合金成分的
关系如图。 Ad
马氏体晶粒长大到一定尺寸就不再长大,随温度降 低,马氏体继续形核、长大。
马氏体转变
§ 1—4 马氏体转变钢经奥氏体化后,快速冷却,抑制其扩散性分解,在较低温度下发生的转变,为马氏体转变。
马氏体转变是钢件热处理强化的主要手段之一。
因此,马氏体转变理论的研究与热处理实践有着十分密切的关系。
早在战国时期,人们已经知道可以用淬火,即将钢加热到高温后淬入水或油中急冷的方法提高钢的硬度。
经过淬火的钢制宝剑可以“销铁如泥” 。
但是在当时,对于淬火能提高钢的硬度的本质还不清楚。
直到十九世纪未期,人们才知道,钢在加热与冷却过程中,内部相组成发生了变化,因而引起了钢的性能的改变。
为了纪念在这一发展过程中作出杰出贡献的德国冶金学家Adolph Marte ns (阿道夫,马顿斯),法国著名的冶金学家Osmo nd (奥斯门德)建议将钢经淬火所得高硬度相称为马氏体,并因此而将得到马氏体相的转变过程称为马氏体转变。
马氏体的英文名称为-Martensite,常用M表示。
由于钢在生产上得到了最广泛的应用以及马氏体转变最先在钢的淬火过程中发展,因此,在十九世纪未,二十世纪初对马氏体的研究,主要局限于研究钢中的马氏体转变及转变所得的马氏体。
二十世纪三十年代,人们用X射线结构分析方法测得钢中马氏体是C溶于a -Fe而形成的过饱和固溶体。
马氏体中的固溶碳即原奥氏体中的固溶碳。
因此,曾一度认为所谓马氏体即碳在中a -Fe 的过饱和间隙固溶体。
对于马氏体转变的研究,初期着重于了解马氏体转变与钢中其它转变的不同点,正是由于观察到了一系列不同于其它转变的特点,曾经有人认为马氏体转变与其它转变不同,是一个由快冷造成的内应力场所引起的切变过程。
四十年代后,在Fe-Ni、Fe-Mn 合金以及许多有色金属及合金中也发现了马氏体转变。
不仅观察到了冷却过程中发生的马氏体转变,还观察到了加热过程中所发生的马氏体转变。
新观察到的马氏体转变的特征和钢中马氏体转变的特征相似,基于这一新的发现,人们不得不把马氏体的定义修正为:凡相变的基本特征属于马氏体型的产物统称为马氏体。
第五章马氏体转变ppt课件
采用PP管及配件:根据给水设计图配 置好PP管及配 件,用 管件在 管材垂 直角切 断管材 ,边剪 边旋转 ,以保 证切口 面的圆 度,保 持熔接 部位干 净无污 物
5.1.2
马氏体的晶体结构
1 钢中马氏体晶体结构特点 C 在α-Fe 中的过饱和固溶体。 ——亚稳;单相 C 位置:扁八面体间隙, R间隙0.19Å,RC 0.77 Å ——晶格畸变较严重
采用PP管及配件:根据给水设计图配 置好PP管及配 件,用 管件在 管材垂 直角切 断管材 ,边剪 边旋转 ,以保 证切口 面的圆 度,保 持熔接 部位干 净无污 物
(2)反常轴比现象:
实际中马氏体 的晶体结构除与 C 含量有关 外,还与 C 原子位置的变化有关,在某些条件 下可能出现反常轴比现象:
采用PP管及配件:根据给水设计图配 置好PP管及配 件,用 管件在 管材垂 直角切 断管材 ,边剪 边旋转 ,以保 证切口 面的圆 度,保 持熔接 部位干 净无污 物
共析碳钢 CCT曲线A1
Ms
Mf Vc
奥氏体化的钢,以>Vc的速度冷却时, 过冷奥氏体冷却到Ms温度以下,转变为马 氏体,这种操作叫淬火。马氏体是强化钢材 的重要组织。
与K-S关系
比较 差1 ° 差2 °
采用PP管及配件:根据给水设计图配 置好PP管及配 件,用 管件在 管材垂 直角切 断管材 ,边剪 边旋转 ,以保 证切口 面的圆 度,保 持熔接 部位干 净无污 物
(
011
)
'
(111 )
10 1 , 11 1 '
(
011
)
'
(111 )
10 1 , 11 1 '
采用PP管及配件:根据给水设计图配 置好PP管及配 件,用 管件在 管材垂 直角切 断管材 ,边剪 边旋转 ,以保 证切口 面的圆 度,保 持熔接 部位干 净无污 物
《马氏体转变 》课件
形状记忆合金
利用马氏体转变实现材料的形状 记忆和超弹性特性。
马氏体转变的挑战
1 不均匀性
2 疲劳行为
金属中马氏体的分布不均 匀,形成缺陷和应力集中。
马氏体转变会影响材料的 疲劳行为和寿命。
3 加工性
马氏体转变会导致材料的 形变和变形困难。
结论和要点
1 马氏体转变是金属中 2 马氏体形成受晶体排 3 马氏体转变包括自发
《马氏体转变》PPT课件
马氏体转变是金属中发生的一种相变过程,对材料的性能和结构具有重要影 响。本课件将介绍马氏体转变的定义、形成、类型、影响因素,以及应用、 挑战、结论和要点。
什么是马氏体转变?
1 定义
马氏体转变指的是金属在冷却或加热过程中,从一种晶体结构转变为另一种晶体结构的 过程。
马氏体在金属中的形成
的相变过程。
列、变形和条件的影
转变、应力诱导转变
响。
和相变时效。
4 合金成分、冷却速率和应力状态是
马氏体转变的影响因素。
5 马氏体转变在材料工程和实际应用
中具有重要意义。
马氏体转变的影响因素
合金成分
• 改变马氏体转变温度和 转变形式。
冷却速率
• 影响晶体的尺寸和形状。
应力状态
• 可以诱导或抑制马氏体 转变。
实例展示:马氏体转变的应用
马太效应
在合金中形成大颗粒马氏体,提 高金属材料的强度和韧性。
马氏体不锈钢
通过控制马氏体转变,获得具有 高强度和耐腐蚀性能的不锈钢。
1 晶体排列
马氏体形成受金属原子排列的变形和具体条件,如温度、压力和合金化元素的存在,对马氏体形成有重要作用。
马氏体转变的类型
自发转变