OSPF虚链路(virtual-link)配置实例 + 详细验证过程
OSPF虚链路在企业网络中应用
OSPF虚链路在企业网络中的应用摘要:ospf路由协议是企业网络中最常用的协议之一,它要求所有的非主干区域必须与主干区域进行连接,并且主干区域必须是连续的。
本文主要利用ospf虚拟链路解决在企业网络中存在的主干区域不连续和非主干区域与主干区域无法连接的问题。
关键词:ospf路由协议;主干区域;虚拟链路中图分类号:tp393.041 ospf介绍开放最短路径优先协议(openshortestpathfirst,ospf)是在企业网络中应用最为广泛的链路状态内部网关路由协议。
由于ospf 路由协议采用分层设计思想使它能够适应大型网络并有较好的可扩展性;另外由于osfp路由协议的收敛速度很快使其广泛应用于各种网络中,并深受大家的青睐。
2 ospf工作原理所有ospf网络都以area0(也称主干区域)开始。
在扩展网络时,可以创建与area0相邻的其它非主干区域。
可以为这些新建的非主干区域分配任何编号,编号最大值为2的32次方。
每个区域中最多可以有50台路由器。
ospf采用分层设计。
area0位于顶层,而其他所有区域位于下一层。
所有的非主干区域都必须直接连接到area0而且只能与area0之间进行数据交换。
area0和非主干区域共同组成ospf自治系统(as)。
某区域内的ospf路由器会向其邻居通告它们的链路状态信息。
路由器使用名为链路状态通告(lsa)的消息通告此状态信息。
将一个区域连接到主干区域的路由器叫区域边界路由器(abr)。
将某个区域连接到另一个路由协议(例如eigrp)或将静态路由重分布到ospf区域的路由器称为自治系统边界路由器(asbr)。
ospf路由协议要求每个自治系统as内必须有一个area0,自治系统as内的其它非主干区域必须与area0进行连接,非主干区域只能和area0交换链路状态通告(lsa)。
非主干区域之间进行数据交换时,首先将信息传递至area0,然后由area0将信息扩散到其它区域。
OSPF虚链路(virtual-link)配置
23.0.0.0/24 is subnetted, 1 subnets
O IA 23.0.0.0 [110/128] via 12.0.0.2, 00:00:13, Serial2/1
interface Serial2/1
ip address 34.0.0.4 255.255.255.0
router ospf 1
log-adjacency-changes
network 34.0.0.0 0.0.0.255 area 4
基本配置完成后,我们在每台路由器上分别来验证一下:
R1#show ip route
1.0.0.0/24 is subnetted, 1 subnets
C 1.1.1.0 is directly connected, Loopback0
23.0.0.0/24 is subnetted, 1 subnets
O IA 23.0.0.0 [110/128] via 12.0.0.2, 00:01:24, Serial2/1
12.0.0.0/24 is subnetted, 1 subnets
C 12.0.0.0 is directly connected, Serial2/1
//注意R1上有关于23.0.0.0的路由条目,是属于IA类型(域间路由)
R2#show ip os nei
Neighbor ID Pri State Dead Time Address Interface
R4#show ip route
34.0.0.0/24 is subnetted, 1 subnets
路由交换技术与实践项目5-OSPF的配置课件.pptx
DR和BDR选举的控制 Router(config-if)#ip ospf priority value
虚链路的配置 Router(config-router)#area area-id virtual-link router-id
THANKS
OSPF Router ID用于唯一标识OSPF路由域内的每台路由器。一个Router ID其实就是一个IP地址。 Router ID通过以下步骤确定。 使用通过OSPF router-id命令配置的Router IDIP地址。 如果路由器未配置router-id,路由器会选择其所有环回口的最高IP地址。 如果路由器未配置router-id和环回口,路由器会选择所有活动物理接口的最高IP地址。
非广播多路访问(Non-Broadcast Multi-Access,NBMA)允许多台设备接入,但是不具备广播功能。当链路层协议是帧中继、ATM和X.25时,OSPF的 默认网络类型是NBMA。在NBMA网络中,也要进行OSPF的DR和BDR选举。 点到多点
没有一种链路层协议会被OSPF默认地认为是点对多点点到多点 (Point-to-Multipoint,P2MP)类型,这种网络类型需要管理员手动配置,这种类型的 网络不进行OSPF的DR和BDR选举。
二、知识梳理
OSPF Router ID
DR和BDR的选举 具有最高OSPF接口优先级的路由器当选为DR。 具有第二高OSPF接口优先级的路由器当选为BDR。 如果OSPF接口优先级相等,则取Router ID最高者作为DR。
DR/BDR选举的时间安排 当多路访问网络中第一台启用了OSPF接口的路由器开始工作时,DR和BDR选举过程随即开始。DR一旦选出,将保持DR
华为路由器OSPF虚链接的配置
华为路由器OSPF 虚链接的配置OSPf 虚链路(虚连接)的配置3.3.3.1ap ∈ai3・3・3・2R3I4.4.4.1GE 0/0/1 area51 I GEOooR44.4.4.2IoopbackO1.1.1.1目的:解决与骨干区域area0非直连区域的路由问题一、配置个端口地址Rl:<Huawei>sy[Huawei]undoinfo-centerenable[Huawei]sysnameRl[Rl]intIO[Rl-LoopBackO]ipaddl.l.l.l24[Rl-LoopBackO]intg0∕0∕0[Rl-GigabitEthernetO∕O∕O]ipadd2.2.2.124[Rl-GigabitEthernetO∕O∕O]quitR2:<Huawei>sy[Huawei]undoinfo-centerenable[Huawei]sysnameR2[R2]intg0∕0∕0[R2-GigabitEthernet0∕0∕0]ipadd2.2.2.224[R2-GigabitEthernetO∕O∕O]intgO/O/1[R2-GigabitEthernetO∕O∕l]ipadd33.3.124[R2-GigabitEthernetO∕O∕l]quitR3:<Huawei><Huawei>system-view[Huawei]undoinfo-centerenable[Huawei]sysnameR3[R3]intgO/O/O[R3-GigabitEthernetO∕O∕O]ipadd3.3.3.2[R3-GigabitEthernet O∕O∕O]intgO/O/1loopback05.5.5.1[R3-GigabitEthernetO∕O∕l]ipadd4.4.4.124[R3-GigabitEthernetO∕O∕l]quitR4:<Huawei>system-view[Huawei]undoinfo-centerenableInfo:Informationcenterisdisabled.[Huawei]sysnameR4[R4]intgO/O/O[R4-GigabitEthernet0∕0∕0]ipadd4.4.4.224[R4-GigabitEthernet0∕0∕0]intIO[R4-LoopBackO]ipadd5.5.5.124[R4-LoopBackO]quit二、配置多区域。
OSPFV2知识要点-Nssa的纯ASBR(不能同时是ABR)向整个OSPF区域注入缺
OSPF V2知识要点OSPF 版本2路由器通过LSA来获悉其他路由器和网络,LSA被扩散到整个网络,它存储在拓扑表(LSDB)中。
区域内的路由器保存该区域中所有链路和路由器的详细信息,但只保存有关其他区域中路由器和链路的摘要信息。
Cisco建议每个区域中的路由器不应超过50~100台。
DR/BDR的选举接口上的优先级、Router-id。
Ospf的进程号OSPF 进程号只起本地标识作用,而无其他意义,类似于WINDOWS任务管理器中的进程号Router-id 的选取:1,路由器选取它所有的Loopback接口上最高的IP地址2,如果没有配置IP地址的Loopback接口,那么将选取它所有的物理接口上最高的IP 地址,注意是所有物理接口,子接口不参与选取在CISCO路由器上,即使作为Router-id 的物理接口DOWN掉了或被删除了,OSPF也会继续使用原来的物理接口做为Router-id ,所以使用loopback接口的好处仅在于更好的控制router-id正常情况下,在同一个区域内,OSPF database是完全一模一样的(包括顺序,内容)OSPF中重分布其它路由协议时,如果要修改重分布的内容,必须no掉重打,不支持覆盖功能。
Area 0.0.1.2= Area 258 ( 0.0.1.2 = 256+2 )OSPF区域特征:减少路由条目;将区域内拓扑变化的影响限制在本地;将LSA扩散限制在区域内;要求采取层次网络设计。
LSA刷新时间:为确保数据库的准确性,OSPF每隔30分钟对每条LSA记录扩散一次。
Router ID:用于标识路由器、通告路由器、确认主从关系、选举DR用等。
什么时候更改RID必须清除OSPF进程?RID是在OSPF域中用于标识自己的身份ID,所以在邻居关系还没形成之前更改RID 是不需要清除OSPF进程的。
当新加入一台设备到MA网络中时,该设备会将自己的DR和BDR的地址设为0.0.0.0 设置等待计时器为40秒,(超时后宣告自己为DR)如果一个网络中的所有路由器都不具有选举DR的资格,那么网络中的所有路由器都不会相互建立邻接,停留在TWO-W AY状态ABR/ASBR:ABR:ABR是连接多个区域的路由器,并且有一端在区域0上,而且至少有一端在其它区域上。
OSPF虚链路
使用虚链路将不连续的区域0连接起 来
例:两家运行OSPF的公司合并了,但没有 将它们的骨干区域连接起来的链路,这导 致区域0不是连续的。在两个ABR之间建立 了一条逻辑链路(虚链路),它穿越一个非骨 干区域—区域1。虚链路两端的路由器都是 骨干区域的一部分,并充当ABR。
使用虚链路将区域连接到骨干区域
例:在OSPF网络中新增了一个非骨干区域,但 它没有到OSPF区域0的直接连接。在这里,新增 了区域20,创建了一条跨越区域10的虚链路,从 而在区域20和骨干区域0之间提供了一条逻辑路 径。OSPF数据库将ABR1和ABR2之间的虚链路 视为直连链路。为提高稳定性,将环回接口的IP 地址用做了路由器ID,而虚链路是使用这些环回 接口地址创建的。
在虚链路两端的路由器中,都必须配置虚 链路。在命令area area-id virtual-link 中, 必须指定远端路由器的路由器ID。 必须指定远端路由器的路由器 。 要获悉远端路由器的路由器ID, 要获悉远端路由器的路由器 ,可在远端 路由器上执行命令show ip ospf、show ip 路由器上执行命令 、 ospf interface或show ip protocols 或
show ip ospf virtual-links用于查看OSPF虚 链路的运行情况
OSPF虚链路
OSPF采用由两层组成的分层结构,因此如 果有多个区域,则其中一个必须为区域0, 即骨干区域;其他所有区域都与区域0直接 相连,且区域0必须是连续的。OSPF要求 所有非骨干区域都将路由通告给骨干,以 便将这些路由通告到以将不连续的区域0连 接起来,还可将区域通过中转区域连接到 区域0。 应只在出现故障后使用OSPF虚链路功能来 OSPF 提供临时连接或备用连接,而不应将其作 为一种主要的骨干设计功能。 虚链路是OSPF开放标准的组成部分,从 10.0版起,Cisco IOS软件就支持虚链路。
OSPF实验及解析
OSPF实验及解析:实现OSPF网络实验报告一、实验名称:实现OSPF网络二、实验条件:1、配置路由器运行OSPF协议。
2、拓扑图如(三)所示。
3、要求192.168.1.0/24、192.168.2.0/24为area 1配置为完全末梢区域;192.168.3.0/24为area 0;192.168.4.0/24、192.168.5.0为area 2,配置为NSSA 区域。
路由器D的F0/1端口的辅助IP地址和路由器E运行RIP-V2。
实现OSPF区域的路由器可以和RIP路由器互相学习到网络路径。
三、实验拓扑实现OSPF网络.jpg四、实验步骤及操作:1、路由器A的配置:RouterA(config)#int loopback 0RouterA(config-if)#ip add 172.16.0.1 255.255.255.255 RouterA(config-if)#exitRouterA(config)#int f0/0RouterA(config-if)#ip add 192.168.1.1 255.255.255.0 RouterA(config-if)#no shutRouterA(config-if)#exitRouterA(config)#int f0/1RouterA(config-if)#ip add 192.168.2.1 255.255.255.0 RouterA(config-if)#no shutRouterA(config-if)#exitRouterA(config)#router ospf 10RouterA(config-router)#network 192.168.1.0 0.0.0.255 area 1 RouterA(config-router)#network 192.168.2.0 0.0.0.255 area 1 RouterA(config-router)#area 1 stubRouterA#show ip ospf databaseRouterA#show ip ospf border-router2、路由器B的配置:RouterB(config)#int loopback 0RouterB(config-if)#ip add 172.16.0.2 255.255.255.255 RouterB(config-if)#exitRouterB(config)#int f0/0RouterB(config-if)#ip add 192.168.2.2 255.255.255.0 RouterB(config-if)#no shutRouterB(config-if)#exitRouterB(config)#int f0/1RouterB(config-if)#ip add 192.168.3.1 255.255.255.0 RouterB(config-if)#no shutRouterB(config-if)#exitRouterB(config)#router ospf 10RouterB(config-router)#network 192.168.2.0 0.0.0.255 area 1 RouterB(config-router)#network 192.168.3.0 0.0.0.255 area 0 RouterB(config-router)#area 1 stub no-summary注:设置某区域为完全末梢区域的条件:1、设置内部路由器的区域为末梢区域2、在区域边界路有器上设置该区域为末梢区域且不进行路由汇总3、路由器C的配置:RouterC(config)#int loopback 0RouterC(config-if)#ip add 172.16.0.3 255.255.255.255 RouterC(config-if)#exitRouterC(config)#int f0/0RouterC(config-if)#ip add 192.168.3.2 255.255.255.0RouterC(config-if)#no shutRouterC(config-if)#exitRouterC(config)#int f0/1RouterC(config-if)#ip add 192.168.4.1 255.255.255.0RouterC(config-if)#no shutRouterC(config-if)#exitRouterC(config)#router ospf 10RouterC(config-router)#network 192.168.3.0 0.0.0.255 area 0 RouterC(config-router)#network 192.168.4.0 0.0.0.255 area 2 RouterC(config-router)#area 2 nssa no-summary4、路由器D的配置:RouterD(config)#int loopback 0RouterD(config-if)#ip add 172.16.0.4 255.255.255.255 RouterD(config-if)#exitRouterD(config)#int f0/0RouterD(config-if)#ip add 192.168.4.2 255.255.255.0RouterD(config-if)#no shutRouterD(config-if)#exitRouterD(config)#int f0/1RouterD(config-if)#ip add 192.168.5.1 255.255.255.0RouterD(config-if)#ip add 192.168.6.1 255.255.255.0 secondary RouterD(config-if)#no shutRouterD(config-if)#exitRouterD(config)#router ospf 10RouterD(config-router)#network 192.168.4.0 0.0.0.255 area 2 RouterD(config-router)#network 192.168.5.0 0.0.0.255 area 2 RouterD(config-router)#area 2 nssaRouterD(config-router)#redistribute rip metric 2 metric-type 1 RouterD(config-if)#exitRouterD(config)#router ripRouterD(config-router)#version 2RouterD(config-router)#network 192.168.6.0RouterD(config-router)#redistribute ospf 10 metric 25、路由器E的配置:RouterE(config)#int f0/0RouterE(config-if)#ip add 192.168.6.2 255.255.255.0RouterE(config-if)#no shutRouterE(config-if)#exitRouterE(config)#int f0/1RouterE(config-if)#ip add 192.168.7.1 255.255.255.0RouterE(config-if)#exitRouterE(config)#router ripRouterE(config-router)#version 2RouterE(config-router)#network 192.168.6.0RouterE(config-router)#network 192.168.7.0注:设置某区域为非完全末梢区域的条件:1、设置内部路由器的区域为非完全末梢区域2、在区域边界路有器上设置该区域为非完全末梢区域且不进行路由汇总6、PC工作站的设置:Pc1的设置:IP=192.168.1.10 Netmask=255.255.255.0Pc2的设置:IP=192.168.7.10 Netmask=255.255.255.0五、实验结果及分析在pc1上:Ping+192.168.7.10(通讯正常)在pc2上:Ping+192.168.1.10(通讯正常)由此证明配置成功注一:各Lsa的查看命令1、查看数据库中的所有路由器的Lsa的命令:show ip ospf database router2、查看数据库中的网络Lsa的命令:show ip ospf database network3、查看数据库中的网络汇总Lsa的命令:show ip ospf database summary4、查看数据库中的ASBR汇总Lsa的命令:show ip ospf database asbr-summary5、查看数据库中的自主系统外部Lsa的命令:show ip ospf database external6、查看数据库中的Nssa外部Lsa的命令:show ip ospf database nssa-external【实验环境】BENET公司总部位于北京,在上海和广州拥有分公司,现希望把三个地方的办公网络用OSPF连接起来,希望你为他们实现这个办公网络的搭建!【实验目的】按照现有拓扑图的规划,配置多区域的OSPF在他的上面配置末梢区域(Stub Area)和完全末梢区域(Totally Stublly Area)以及知道为什么要换分多区域的原因?【实验拓扑】【实验步骤】网络拓扑图的具体布线:Router1 S0/0 <----> Router2 S0/0Router2 S1/0 <----> Router3 S0/0Router3 E1/0 <----> Router4 E0/0第一步:配置路由器的回环地址和接口的IP地址;(1) 、配置Router1的回环地址和接口的IP地址;(2)、配置Router2的回环地址和接口的IP地址;(注意:在Router2上配置回环地址是根据情况而定的;Router2是属于Area2是属于骨干区域,但同时它也是一个ABR路由器;所以要配置两个接口的IP地址;因为R2是区域边界系统路由器(ABR)所以在它上面要配置两个接口的IP地址)!(3)、配置Router3的回环地址和接口的IP地址(他和Router2一样是一个ABR路由器又是Area0所以要配置两个接口的IP地址;而回环地址就在这里不在做具体的介绍了;因为R3是区域边界路由器(ABR)所以在它上面要配置两个接口的IP地址)(4)、配置Router4的回环地址和接口的IP地址;(他和Router2一样是一个ABR路由器又是Area0所以要配置两个接口的IP地址;而回环地址就在这里不在做具体的介绍了)第二步:启动OSPF的进程,并配置他们的区域末梢区域(Stub Area)和完全末梢区域(Totally Stubby Area)(1)、在Router1上配置OSPF进程以及宣告他所在的末梢区域(Stub Area)(注意:宣告OSPF的进程和宣告RIP的进程的配置是不一样的,在配置OSPF时他的进程号时本地路由器的进程号,他是来标识一台路由器的多个OSPF的进程的;)末梢区域(Stub Area )他是一个不允许自治系统外部LSA通告在其内进行泛洪的区域。
「陪我一起练」—华为数通eNSP模拟实验17:ospf认证
「陪我一起练」—华为数通eNSP模拟实验17:ospf认证刚刚通过了头条的科技领域创作者,很是开心,本来以为这样的兴趣认证可以加V的,原来只是在后面加了一行字而已,看来我还是太年轻了!~继续继续,没有认证的网络是不安全的,ospf协议也一样,今天我们就一起来看看如何进行ospf认证吧。
一、拓扑结构与上节拓扑一样,其实可以不用这么复杂,我只是懒得改而已!进行ospf认证,骨干区域采用区域认证,常规区域采取接口认证方式。
二、业务配置上节的配置保持不变,下面只帖出新增加(高亮)的认证命令。
R1路由器ospf区域(area0)认证认证方式md5,cipher为密文显示,密码为fight。
R2路由器ospf区域(area0)认证认证方式与R1路由器相同。
R2路由器ospf接口(area1)认证认证方式simple(明文),密码为addoil。
R3路由器ospf接口(area1)认证与R2路由器认证方式及密码相同。
请注意虚链路相当于是骨干区域area 0的延伸,那么骨干区域做了认证,延伸部分的虚链路也需要参与认证,R3作为虚链路的端点,同样配置区域认证。
虚链路area 0区域认证与R1和R2路由器认证方式及密码相同。
Area 2区域不做认证,R4路由器不需要配置。
以上命令即实现了ospf的认证功能。
三、配置验证配置验证也是比较简单检查相同区域内是否均配置了认证、邻居关系知否建立、是否学习到路由等。
还可以使用dis ospf brief命令,查看加密方式。
四、实验结论Ospf认证主要有两种区域认证和接口认证。
Ospf认证方式不建议采用simple(明文)方式,此方式认证密码会以明文的方式包含于ospf报文中,很不安全,推荐使用md5方式。
上图是我配置好之后做的抓包,在报文中明显能够看到认证密码为“addoil”。
而md5加密方式的密码是无法破解的。
请区分认证方式和密码显示方式是不同的概念。
一旦骨干区域(area 0)开启了区域认证,虚链路的端点设备也同样要开启area 0的区域认证,否则虚链路无法建立。
OSPF三种安全认证方式
ZZ—GDUFS
ip ospf authentication-key password
(2) 指定身份验证方式,进进程:
area area-id authentication
(B) 密文 MD5 认证 (1)设置要使用的密钥 ID 和密钥,进接口:
ip ospf message-digest-key key-id md5 password
(2)声明虚链路验证方式,进进程做:
area area-id virtual-link router-id authentication
(B) 密文 MD5 认证 (1) 设置虚链路及密钥,进进程做:
area area-id virtual-link router-id message-digest-key key-id md5 password
OSPF 安全认证
(三种认证方式+简单实例)
OSPF 安全认证 2 种认证方法:明文,密文 3 种认证范围:链路认证,区域认证,虚链路认证
链路(Link)认证 区域(Area)认证 虚链路(virtual-link)认证
密钥 接口(interface) 接口(interface) 进程(router ospf process-id)
声明 接口(interface) 进程(router ospf process-id) 进程(router ospf process-id)
OSPF虚拟链路技术分析与应用
基本原理OSPF协议简介及特点OSPF是Open Shortest Path First(即“开放最短路由优先协议”)的缩写。
它是IETF (Internet Engineering Task Force)组织开发的一个基于链路状态的自治系统内部路由协议(IGP),用于在单一自治系统(Autonomous system,AS)内决策路由。
在IP 网络上,它通过收集和传递自治系统的链路状态来动态地发现并传播路由。
当前OSPF 协议使用的是第二版,最新的RFC 是2328。
为了弥补距离矢量协议的局限性和缺点从而发展出链路状态协议,OSPF 链路状态协议有以下优点:适应范围—— OSPF支持各种规模的网络,最多可支持几百台路由器。
最佳路径——OSPF是基于带宽来选择路径。
快速收敛——如果网络的拓扑结构发生变化,OSPF立即发送更新报文,使这一变化在自治系统中同步。
无自环——由于OSPF 通过收集到的链路状态用最短路径树算法计算路由,故从算法本身保证了不会生成自环路由。
子网掩码——由于OSPF 在描述路由时携带网段的掩码信息,所以OSPF 协议不受自然掩码的限制,对VLSM 和CIDR 提供很好的支持。
区域划分——OSPF 协议允许自治系统的网络被划分成区域来管理,区域间传送的路由信息被进一步抽象,从而减少了占用网络的带宽。
等值路由——OSPF 支持到同一目的地址的多条等值路由。
路由分级——OSPF 使用4 类不同的路由,按优先顺序来说分别是:区域内路由、区域间路由、第一类外部路由、第二类外部路由。
支持验证——它支持基于接口的报文验证以保证路由计算的安全性。
组播发送——OSPF在有组播发送能力的链路层上以组播地址发送协议报文,即达到了广播的作用,又最大程度的减少了对其他网络设备的干扰。
虚连接由于网络的拓扑结构复杂,有时无法满足每个区域必须和骨干区域直接相连的要求,如图1所示。
为解决此问题,OSPF 提出了虚连接的概念。
OSPF课件
路由器配置举例
1).show ip route 查看路由表 2).show ip ospf neighbors 查看邻居关系 3)、show ip ospf interface 查看接口相关指令 4)、show ip ospf database 查看生成链路状态数据库
1、骨干区域 2、标准区域 3、末节区域 4、完全末节区域 5、次末节区域
OSPF的两种认证方式
1、简单口令认证
2、MD5认证
启用区域认证方式: Router(config-router)#area area-number authention [message-digest]
设置口令: Router(config-router)#ip ospf authencation Router(config-router)#ip ospf messag-digest-key keyid MD5 key
在区域模式下配置OSPF
R1 R1(confIg)#router ospf 1 R1(config)#int f0/0 R1(config-if )#ip address 172.16.138.4 255.255.255.0 R2(config-if )# ip ospf authentication R1(config-if )#ip ospf authention-key 123 R2 (config)#int f0/0 R2(config-if )# ip address 172.16.128.5 255.255.240.0 R2(config-if )# ip ospf authentication R2(config-if )# ip ospf authentication-key 123
七队一连三班 王清垚
ospf配置实验报告
ospf配置实验报告OSPF 配置实验报告一、实验目的本次实验的主要目的是深入理解和掌握开放式最短路径优先(Open Shortest Path First,OSPF)协议的工作原理,并通过实际配置和测试,熟练掌握 OSPF 在网络中的应用。
二、实验环境1、网络拓扑结构本次实验使用了如下图所示的网络拓扑结构:此处插入网络拓扑图该拓扑包括了三台路由器 R1、R2 和 R3,以及若干台连接在路由器上的终端设备。
2、设备及软件使用的路由器型号为_____,配置终端软件为_____。
三、实验原理OSPF 是一种链路状态路由协议,它通过收集网络中各个路由器的链路状态信息,构建出整个网络的拓扑结构,并基于此计算出最短路径。
OSPF 工作过程主要包括以下几个步骤:1、发现邻居:路由器通过发送Hello 报文来发现和维护邻居关系。
2、交换链路状态信息:邻居路由器之间交换链路状态通告(LSA),以描述网络拓扑和链路状态。
3、计算路由:根据收到的 LSA,路由器使用迪杰斯特拉算法计算出到各个目的地的最短路径,并生成路由表。
四、实验步骤1、基本配置为每台路由器配置接口 IP 地址。
启用 OSPF 进程,并指定区域号。
配置路由器的 Router ID。
以 R1 为例,配置命令如下:```interface GigabitEthernet0/0ip address 19216811 2552552550interface GigabitEthernet0/1ip address 19216821 2552552550router ospf 1routerid 1111network 19216810 000255 area 0network 19216820 000255 area 0```2、配置 OSPF 区域将网络划分为不同的区域,以减少路由信息的传播范围和复杂度。
配置区域类型,如骨干区域(Area 0)和非骨干区域。
虚链路(Virtual Link)
4.1.5 虚链路(Virtual Link)以下两种情况需要使用到虚链路:1. 通过一个非骨干区域连接到一个骨干区域。
2. 通过一个非骨干区域连接一个分段的骨干区域两边的部分区域。
虚链接是一个逻辑的隧道(Tunnel),配置虚链接的一些规则:1. 虚链接必须配置在2个ABR之间。
2. 虚链接所经过的区域叫Transit Area,它必须拥有完整的路由信息。
3. Transit Area不能是Stub Area。
4. 尽可能的避免使用虚链接,它增加了网络的复杂程度和加大了排错的难度。
4.2路由规划拓扑图4.3 IP地址规划标识网络中的一个节点。
IP 地址空间的分配,要与网络层次结构相适应,既要有效地利用地址空间,又要体现出网络的可扩展性和灵活性,同时能满足路由协议的要求,提高路由算法的效率,加快路由变化的收敛速度。
我们根据以下几个原则来分配IP 地址:唯一性:一个IP 网络中不能有两个主机采用相同的IP 地址简单性:地址分配应简单易于管理,降低网络扩展的复杂性,简化路由表的款项连续性:连续地址在层次结构网络中易于进行路由总结(RouteSummarization),大大缩减路由表,提高路由算法的效率可扩展性:地址分配在每一层次上都要留有余量,在网络规模扩展时能保证地址总结所需的连续性灵活性:地址分配应具有灵活性,可借助可变长子网掩码技术(VLSM Variable-Length Subnet Mask),以满足多种路由策略的优化,充分利用地址空间。
部门网段子网掩码网关地址广播地址VLAN总部市场部10.1.1.0 255.255.255.0 10.1.1.1 10.1.1.255 2 财务部10.1.2.0 255.255.255.0 10.1.2.1 10.1.2.255 3 营销部10.1.3.0 255.255.255.0 10.1.3.1 10.1.3.255 4 人事部10.1.4.0 255.255.255.0 10.1.4.1 10.1.4.255 5 科研部10.1.5.0 255.255.255.0 10.1.5.1 10.1.5.255 6 行政部10.1.6.0 255.255.255.0 10.1.6.1 10.1.6.255 7部门网段子网掩码子网网段网关地址广播地址保留地址VLAN市场部10.10.0.0 255.255.255.224 10.10.0.0/27 10.10.0.1 10.10.0.31 6个 2 财务部10.10.0.0 255.255.255.248 10.10.0.96/29 10.10.0.97 10.10.0.103 1个 3营销部10.10.0.0 255.255.255.224 10.10.0.32/27 10.10.0.33 10.10.0.63 10个 4 分部人事部10.10.0.0 255.255.255.240 10.10.0.64/28 10.10.0.65 10.10.0.79 4个 5 科研部10.10.0.0 255.255.255.240 10.10.0.80/28 10.10.0.81 10.10.0.95 4个 6 行政部10.10.0.0 255.255.255.248 10.10.0.104/29 10.10.0.105 10.10.0.111 1个7第五章网络安全解决方案5.1 网络边界安全威胁分析与非安全网络的互联面临的安全问题与网络内部的安全是不同的,主要的原因是攻击人是不可控的,攻击是不可溯源的,也没有办法去“封杀”,一般来说网络边界上的安全问题主要有下面几个方面:1、信息泄密:网络上的资源是可以共享的,但没有授权的人得到了他不该得到的资源,信息就泄露了。
思科路由器OSPF协议实验
实验需求如上图,本实验结合真实案例,用来检验学员对OSPF协议的掌握情况R5为A公司总部网关,R2和R4分别是一号楼和二号楼的核心交换机,这里用路由器模拟,R1和R3分别为一号楼和二号楼的分发层交换机,这里也是用路由器模拟,每一栋楼是一个ospf区域,包含着诺干个vlan,核心交换机和网关之间是骨干区域。
R6是A公司分公司网关,和总部通过帧中继互联,R7是分部核心交换机,分部的ospf是区域3,因为分部业务扩展,合并了B公司(R8,R9),B公司原来是ospf区域4。
1.根据上图,搭建好拓扑,ISP用一台路由器模拟,服务器和PC机全部采用回环口模拟2.配置好帧中继环境,要求帧中继不能动态获取映射,也不能静态配置映射,配置好IP地址,测试直连PING通3.依据上图,配置好OSPF协议,验证邻居建立4.确保整个内网全网可达5.确保骨干区域邻居建立高安全性6.尽量减小网关的路由表条目7.R1,R3,R9性能不足,尽量减少其路由表条目实验步骤1、对各路由器配置IP地址2、将R10模拟为帧中继R10#conf tR10(config)#frame-relay swiR10(config)#frame-relay switchingR10(config)#int s0/0R10(config-if)#no shutR10(config-if)#encapsulation frame-relayR10(config-if)#frame-relay intf-type dceR10(config-if)#clock rate 64000R10(config-if)#frame-relay route 506 int s0/1 605R10(config-if)#int s0/1R10(config-if)#encapsulation frame-relayR10(config-if)#frame-relay intf-type dceR10(config-if)#clock rate 64000R10(config-if)#frame-relay route 605 int s0/0 506R10(config-if)#exit在R5的s2/0,及R6的s1/0做相应的帧中继封装R5(config)#int s2/0R5(config-if)#encapsulation frame-relayR5(config-if)#frame-relay intf-type dteR5(config-if)#exitR6(config)#int s1/0R6(config-if)#encapsulation frame-relayR6(config-if)#frame-relay intf-type dteR6(config-if)#exit3、配置OSPF协议,并验证邻居建立R1(config)#router ospf 1R1(config-router)#router-idR1(config-router)#router-id 1.1.1.1R1(config-router)#net 172.16.3.1 0.0.0.0 a 1R1(config-router)#exit其他路由器的配置命令类似在R10帧中继线路上,R5的接口s2/0与R6接口s1/0的OSPF类型为非广播因此不能产生Hello包以建立OSPF邻居。
6、OSPF虚链路的原理和配置
OSPF虚链路的原理和配置一、原理概述通常情况下,一个OSPF网路的每个非骨干区域都必须与骨干区域通过ABR路由器直接连接,非骨干区域之间的通信都需要通过骨干区域进行中转。
但是在现实中,可能会因为各种限制条件,导致非骨干区域和骨干区域无法相连接,在这种情况下,可以使用OSPF虚链路(Virtual Link)来实现非骨干区域和骨干区域在逻辑上的直接相连。
OSPF协议还要求骨干区域是必须唯一且连续,然而,由于发生故障等原因,骨干区域可能出现被分割的情况。
此时,同样可以使用虚链路来实现物理上被分割的骨干区域能够逻辑上相连。
虚链路在网络中会穿越其他区域,因此可能会带来安全隐患,所以通常都会对虚链路进行认证功能的配置。
虚链路认证其实是OSPF接口认证的一种,支持MD5、HMAC-MD5、明文以及Keychain等特性。
二、案例实验实验拓扑图1所示,实验编址如表1所示。
本实验模拟一个企业网络场景,全网运行OSPF,路由器R1、R2为公司总部路由器,R3是新建公司的接入路由器,R4为分公司下面的分支机构的接入路由器。
由于网络升级尚未完成,所以目前的区域划分是:R1与R2之间链路位于区域0,R3与R1、R3与R2之间的链路位于区域1,R3与R4之间的链路位于区域2.网络需求:使用虚链路技术,使得分支机构所属的区域2可以访问总部网络,且优先使用路径R4→R3→R1,并且R4→R3→R2路径作为备份。
同时总部路由器R1和R2之间的通信需要采用R1→R3→R2路径作为冗余备份。
另外为了网络安全,对于使用的虚链路进行认证功能的配置。
实验拓扑图1关于网络拓扑基本配置和OSPF网络的搭建,这里就不在详细叙述了,我们从虚链路的搭建开始介绍。
1、使用虚链路使区域2和区域0建立逻辑链接配置虚链路使得区域2和区域0在逻辑上相互连接,此时区域1将作为区域2和区域0之间的传输区域。
虚链路配置操作将在连接区域2和区域1的R3上,及连接区域0和区域1的ABR的路由器R1上。
ospf配置实验报告
ospf配置实验报告OSPF配置实验报告一、实验目的本实验旨在通过配置OSPF(开放最短路径优先)协议,实现网络中路由器之间的动态路由选择,并验证其可行性和有效性。
二、实验环境本实验使用了三台路由器,分别命名为R1、R2和R3。
它们之间通过以太网连接,并配置了各自的IP地址。
三、实验步骤1. 配置IP地址在每台路由器上分别配置IP地址。
以R1为例,进入路由器的配置模式,输入以下命令:```R1(config)# interface ethernet0/0R1(config-if)# ip address 192.168.1.1 255.255.255.0R1(config-if)# no shutdown```同样地,对于R2和R3,分别配置IP地址为192.168.1.2和192.168.1.3。
2. 配置OSPF协议在每台路由器上配置OSPF协议,使其能够互相通信。
以R1为例,进入路由器的配置模式,输入以下命令:```R1(config)# router ospf 1R1(config-router)# network 192.168.1.0 0.0.0.255 area 0```同样地,对于R2和R3,分别配置区域号为0,网络地址为192.168.1.0/24。
3. 验证配置结果在每台路由器上查看OSPF邻居关系是否建立成功。
以R1为例,输入以下命令:```R1# show ip ospf neighbor```如果OSPF邻居关系建立成功,将显示R2和R3的IP地址。
4. 测试路由选择在R1上配置一个路由器接口的故障,模拟网络中的链路故障。
以R1为例,进入路由器的配置模式,输入以下命令:```R1(config)# interface ethernet0/0R1(config-if)# shutdown```此时,R1与R2之间的链路将被切断。
在R2上查看路由表,输入以下命令:```R2# show ip route```可以看到R2的路由表中已经没有R1的网络地址。
一个基于OSPF虚链路、路由聚合与路由引入的典型实例
第 l 卷 第 4期 5
20 0 7年 O 7月
河南 机 电 高等 专 科 学 校 学 报
J u n l f n n Me h n a a d E eti l n i e r g C l g o r a o He a c a i l n lcr a E gn ei ol e c c n e
VoI 5 № . .1 4
J l. 0 7 uy 2 0
一
个 基 于 OS F虚 链 路 、 由聚合 与路 由引入 的典 型 实例 P 路
魏 勇 , 开新 , 明珠 赵 邵
( 南机 电高 等 专科 学校 计 算 机 科 学 与技 术 系. 南 新 乡 4 3 0 ) 河 河 5 0 2 摘 要 : 绍 了 OS F协议 中 区域 划 分 、 介 P 虚链 路 、 由聚 合与路 由引 入技 术 的概 念 和 S 怍 原 理 . 给 出 了一个 实例 , 路 - 并 综 合运 用 这 几 种 技 术 . 现 了一个 多协 议 . 区总希 望提 高数 据传
保 存 该 区 域 内 网 络 的 拓 扑 结 构 , 样 , 由器 的 路 输 的效 率 , 这 路 而路 由转发 速率 是数 据传 输 效率 的一 个重 通过 减 小 路 由表 的 大 小 , 以提 高 数 据 的转 可 由表 将 大 大减 小 。划 分 区域 后 , 非 所 有 的 区域 都 要 因素 , 并 是平 等关 系 , 中 , 一 个 特 殊 的 区域 一 一 干 区 发速率 . 其 有 骨 而通过 路 由聚合技 术 可 以大大 减小 路 由表 的
关键 词 : P OS F协 议 ; 链 路 ; 由聚合 ; 由引入 ; 干 区域 虚 路 路 骨 中 图分 类 号 : 3 9 2 TP 0 . 文献 标 识 码 : A 文 章 编号 : 0 82 9 ( 0 7 O 一 。 4 O 1 0 —0 3 2 0 ) 4 。 l 一2
实验6 配置OSPF虚链路
实验6 配置OSPF虚链路一、实验拓扑图,如图1.1所示:图1.1 OSPF虚链路实验拓扑图二、路由器初始配置:1.R1上的初始配置R1(config-line)#int s2/1R1(config-if)#ip add 12.0.0.1 255.255.255.0R1(config-if)#no shR1(config-if)#int lo 0R1(config-if)#ip add 1.1.1.1 255.255.255.0R1(config-if)#router os 1R1(config-router)#router-id 1.1.1.1R1(config-router)#net 1.1.1.1 0.0.0.0 a 0R1(config-router)#net 12.0.0.1 0.0.0.0 a 02.R2上的初始配置:R2(config-line)#int s2/1R2(config-if)#ip add 12.0.0.2 255.255.255.0R2(config-if)#no shR2(config-if)#int s2/2R2(config-if)#ip add 23.0.0.2 255.255.255.0R2(config-if)#no shR2(config-if)#int lo 0R2(config-if)#ip add 2.2.2.2 255.255.255.0R2(config-if)#router os 1R2(config-router)#router-id 2.2.2.2R2(config-router)#net 2.2.2.2 0.0.0.0 a 0R2(config-router)#net 12.0.0.2 0.0.0.0 a 0R2(config-router)#net 23.0.0.2 0.0.0.0 a 13.R3上的初始配置:R3(config-line)#int s2/1R3(config-if)#ip add 23.0.0.3 255.255.255.0R3(config-if)#no shR3(config-if)#int s2/2R3(config-if)#ip add 34.0.0.3 255.255.255.0R3(config-if)#no shR3(config-if)#int lo 0R3(config-if)#ip add 3.3.3.3 255.255.255.0R3(config-if)#router os 1R3(config-router)#router-id 3.3.3.3R3(config-router)#net 3.3.3.3 0.0.0.0 a 0R3(config-router)#net 23.0.0.3 0.0.0.0 a 1R3(config-router)#net 34.0.0.3 0.0.0.0 a 04.R4上的初始配置:R4(config-line)#int s2/1R4(config-if)#ip add 34.0.0.4 255.255.255.0R4(config-if)#no shR4(config-if)#int lo 0R4(config-if)#ip add 4.4.4.4 255.255.255.0R4(config-if)#router os 1R4(config-router)#router-id 4.4.4.4R4(config-router)#net 4.4.4.4 0.0.0.0 a 0R4(config-router)#net 34.0.0.4 0.0.0.0 a 05.在R1上查看路由表信息R1(config-router)#do sh ip routCodes: C - connected, S - static, R - RIP, M - mobile, B - BGPD - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter areaN1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2E1 - OSPF external type 1, E2 - OSPF external type 2i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2ia - IS-IS inter area, * - candidate default, U - per-user static routeo - ODR, P - periodic downloaded static routeGateway of last resort is not set1.0.0.0/24 is subnetted, 1 subnetsC 1.1.1.0 is directly connected, Loopback02.0.0.0/32 is subnetted, 1 subnetsO 2.2.2.2 [110/65] via 12.0.0.2, 00:06:09, Serial2/123.0.0.0/24 is subnetted, 1 subnetsO IA 23.0.0.0 [110/128] via 12.0.0.2, 00:06:09, Serial2/112.0.0.0/24 is subnetted, 1 subnetsC 12.0.0.0 is directly connected, Serial2/1以上输出表明,R1不能获知分割开的Area 0的路由信息,需要将Area 0 连在一起。
OSPF高级配置
int loop 1
ip ad 192.168.4.1 255.255.255.0
ip os 1 area 3
exit
router ospf 1
router-id4.4.4.4
area 1 virtual-link1.1.1.1
end
5)分析
不知道割接是啥意思!
6)验证
基本全网互通
实验名称:第九章OSPF高级配置
实验要求的环境:
硬件环境:cisco
软件环境:
需要的软件工具、软件安装包:小凡
实验目的:
1)会将静态路由、RIP路由重发布到OSPF区域
2)会配置地址汇总
3)会配置虚链路
4)会配置NSSA区域、会配置Stub区域
实验一:OSPF网络的设计与配置
实验二:OSPF网络的割接与配置
实验一:OSPF网络的设计与配置
实验步骤:
实验拓扑图:
1)R1配置
en
conf t
hos r1
int fa0/0
ip ad10.0.0.5 255.255.255.252
ip os 1 area 1
no sh
int fa1/0
ip ad10.0.0.2 255.255.255.252
ip os 1 area 0
ip os 1 area 3
int loop 1
ip ad 192.168.3.1 255.255.255.0
ip os 1 area 3
exit
router ospf 1
router-id3.3.3.3
area 2 virtual-link2.2.2.2
end
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
OSPF虚链路(virtual-link)配置实例 + 详细验证过程这个配置将验证一个OSPF虚电路(Virtual-Link)的过程,重点在观察虚链路连接的临时网络与正常区域间路由有何区别。
上图中区域4(area 4)没有和area 0直接相连。
在R2与R3之间配置了一条虚链路。
// R1 //int lo0ip ad 1.1.1.1 255.255.255.0int e0ip ad 192.1.1.1 255.255.255.0router os 1network 192.1.1.0 0.0.0.255 area 0// R2 //int lo0ip ad 2.2.2.2 255.255.255.0int e0ip ad 192.1.1.2 255.255.255.0int e1ip ad 193.1.1.2 255.255.255.0router os 1network 192.1.1.0 0.0.0.255 area 0 network 193.1.1.0 0.0.0.255 area 1// R3 //int lo0ip ad 3.3.3.3 255.255.255.0int e1ip ad 193.1.1.3 255.255.255.0int e0ip ad 194.1.1.3 255.255.255.0router os 1network 193.1.1.0 0.0.0.255 area 1 network 194.1.1.0 0.0.0.255 area 4// R4 //int lo0ip ad 4.4.4.4 255.255.255.0int e0ip ad 194.1.1.4 255.255.255.0router os 1network 194.1.1.0 0.0.0.255 area 4基本配置完成后,我们在每台路由器上分别来验证一下:r1#sh ip os neiNeighbor ID Pri State Dead Time Address Interface 2.2.2.2 1 FULL/BDR 00:00:33 192.1.1.2 Ethernet0/0 r1#r1#sh ip ro1.0.0.0/24 is subnetted, 1 subnetsC 1.1.1.0 is directly connected, Loopback0O IA 193.1.1.0/24 [110/20] via 192.1.1.2, 00:00:19, Ethernet0/0C 192.1.1.0/24 is directly connected, Ethernet0/0//注意R1上有关于193.1.1.0的路由条目,是属于IA类型(域间路由)r2#sh ip os neiNeighbor ID Pri State Dead Time Address Interface 1.1.1.1 1 FULL/DR 00:00:35 192.1.1.1 Ethernet0/0 3.3.3.3 1 FULL/BDR 00:00:35 193.1.1.3 Ethernet1/0 r2#r2#r2#sh ip ro2.0.0.0/24 is subnetted, 1 subnetsC 2.2.2.0 is directly connected, Loopback0C 193.1.1.0/24 is directly connected, Ethernet1/0C 192.1.1.0/24 is directly connected, Ethernet0/0r3#sh ip os neiNeighbor ID Pri State Dead Time Address Interface 2.2.2.2 1 FULL/DR 00:00:32 193.1.1.2 Ethernet1/0 4.4.4.4 1 FULL/DR 00:00:34 194.1.1.4 Ethernet0/0 r3#sh ip ro3.0.0.0/24 is subnetted, 1 subnetsC 3.3.3.0 is directly connected, Loopback0C 193.1.1.0/24 is directly connected, Ethernet1/0O IA 192.1.1.0/24 [110/20] via 193.1.1.2, 00:02:49, Ethernet1/0C 194.1.1.0/24 is directly connected, Ethernet0/0//注意R3中有关于192.1.1.0的路由是属于IA类型(域间路由)r4#sh ip os neiNeighbor ID Pri State Dead Time Address Interface 3.3.3.3 1 FULL/BDR 00:00:33 194.1.1.3 Ethernet0/0 r4#sh ip ro4.0.0.0/24 is subnetted, 1 subnetsC 4.4.4.0 is directly connected, Loopback0C 194.1.1.0/24 is directly connected, Ethernet0/0//R4上没有关于AREA 0内的任何路由信息我们下面在R2、R3上添加Virtual-link的配置:R2:router os 1area 1 virtual-link 3.3.3.3R3:router os 1area 1 virtual-link 2.2.2.2对比之前的路由信息,看有何区别:r1#sh ip ro1.0.0.0/24 is subnetted, 1 subnetsC 1.1.1.0 is directly connected, Loopback0O IA 193.1.1.0/24 [110/20] via 192.1.1.2, 00:00:01, Ethernet0/0C 192.1.1.0/24 is directly connected, Ethernet0/0O IA 194.1.1.0/24 [110/30] via 192.1.1.2, 00:00:01, Ethernet0/0//多了一条194网段的路由,类型IA(区域间)r2#sh ip ro2.0.0.0/24 is subnetted, 1 subnetsC 2.2.2.0 is directly connected, Loopback0C 193.1.1.0/24 is directly connected, Ethernet1/0C 192.1.1.0/24 is directly connected, Ethernet0/0O IA 194.1.1.0/24 [110/20] via 193.1.1.3, 00:00:06, Ethernet1/0//多了一条194网段路由,类型为IA(区域间)r3#sh ip ro3.0.0.0/24 is subnetted, 1 subnetsC 3.3.3.0 is directly connected, Loopback0C 193.1.1.0/24 is directly connected, Ethernet1/0O 192.1.1.0/24 [110/20] via 193.1.1.2, 00:02:56, Ethernet1/0C 194.1.1.0/24 is directly connected, Ethernet0/0//R3的192路由原本为IA类型(区域间),现在转为O类型(区域内),说明R3认为自已与192网段是直连的。
虚链路相当于将R3直接连接了AREA 0 与 AREA 4区域r4#sh ip ro4.0.0.0/24 is subnetted, 1 subnetsC 4.4.4.0 is directly connected, Loopback0O IA 193.1.1.0/24 [110/20] via 194.1.1.3, 00:03:40, Ethernet0/0O IA 192.1.1.0/24 [110/30] via 194.1.1.3, 00:03:25, Ethernet0/0C 194.1.1.0/24 is directly connected, Ethernet0/0//R4上192路由类型IA(区域间)最后我们将虚链路效果再与正常连接方式进行一下比对,如下图:验证如下:r1#sh ip ro1.0.0.0/24 is subnetted, 1 subnetsC 1.1.1.0 is directly connected, Loopback0O IA 193.1.1.0/24 [110/20] via 192.1.1.2, 00:00:41, Ethernet0/0 C 192.1.1.0/24 is directly connected, Ethernet0/0C 192.2.2.0/24 is directly connected, Ethernet1/0O IA 194.1.1.0/24 [110/20] via 192.2.2.4, 00:00:39, Ethernet1/0r2#sh ip ro2.0.0.0/24 is subnetted, 1 subnetsC 2.2.2.0 is directly connected, Loopback0C 193.1.1.0/24 is directly connected, Ethernet1/0C 192.1.1.0/24 is directly connected, Ethernet0/0O 192.2.2.0/24 [110/20] via 192.1.1.1, 00:01:04, Ethernet0/0 O IA 194.1.1.0/24 [110/30] via 192.1.1.1, 00:00:03, Ethernet0/0 r2#r3#sh ip ro3.0.0.0/24 is subnetted, 1 subnetsC 3.3.3.0 is directly connected, Loopback0C 193.1.1.0/24 is directly connected, Ethernet1/0O IA 192.1.1.0/24 [110/20] via 193.1.1.2, 00:01:31, Ethernet1/0 O IA 192.2.2.0/24 [110/30] via 193.1.1.2, 00:01:15, Ethernet1/0 O IA 194.1.1.0/24 [110/40] via 193.1.1.2, 00:00:15, Ethernet1/0r4#sh ip ro4.0.0.0/24 is subnetted, 1 subnetsC 4.4.4.0 is directly connected, Loopback0O IA 193.1.1.0/24 [110/30] via 192.2.2.1, 00:00:39, Ethernet1/0 O 192.1.1.0/24 [110/20] via 192.2.2.1, 00:01:37, Ethernet1/0 C 192.2.2.0/24 is directly connected, Ethernet1/0C 194.1.1.0/24 is directly connected, Ethernet0/0r5#sh ip ro5.0.0.0/24 is subnetted, 1 subnetsC 5.5.5.0 is directly connected, Loopback0O IA 193.1.1.0/24 [110/40] via 194.1.1.4, 00:00:52, Ethernet0/0O IA 192.1.1.0/24 [110/30] via 194.1.1.4, 00:00:52, Ethernet0/0O IA 192.2.2.0/24 [110/20] via 194.1.1.4, 00:00:52, Ethernet0/0C 194.1.1.0/24 is directly connected, Ethernet0/0如果上述方式还不容易理解,你也可以将virtual-link可以想象成:将R2与R3合并成一台路由器,如下图:r1#sh ip ro1.0.0.0/24 is subnetted, 1 subnetsC 1.1.1.0 is directly connected, Loopback0O IA 193.1.1.0/24 [110/20] via 192.1.1.2, 00:00:57, Ethernet0/0 C 192.1.1.0/24 is directly connected, Ethernet0/0O IA 194.1.1.0/24 [110/74] via 192.1.1.2, 00:00:24, Ethernet0/0r2#sh ip ro2.0.0.0/24 is subnetted, 1 subnetsC 2.2.2.0 is directly connected, Loopback0C 193.1.1.0/24 is directly connected, Ethernet1/0C 192.1.1.0/24 is directly connected, Ethernet0/0C 194.1.1.0/24 is directly connected, Serial2/0r3#sh ip ro3.0.0.0/24 is subnetted, 1 subnetsC 3.3.3.0 is directly connected, Loopback0C 193.1.1.0/24 is directly connected, Ethernet1/0O IA 192.1.1.0/24 [110/20] via 193.1.1.2, 00:01:06, Ethernet1/0 O IA 194.1.1.0/24 [110/74] via 193.1.1.2, 00:00:37, Ethernet1/0r4#sh ip ro4.0.0.0/24 is subnetted, 1 subnetsC 4.4.4.0 is directly connected, Loopback0O IA 193.1.1.0/24 [110/74] via 194.1.1.2, 00:00:17, Serial2/0O IA 192.1.1.0/24 [110/74] via 194.1.1.2, 00:00:17, Serial2/0C 194.1.1.0/24 is directly connected, Serial2/0。