实验报告液体粘度的测量
液体粘度的测定实验报告
液体粘度的测定实验报告液体粘度的测定实验报告引言:液体粘度是液体内部分子间相互作用力的一种表现形式,是液体流动阻力的度量。
粘度的大小与液体的黏性有关,黏性越大,粘度就越高。
粘度的测定对于工业生产和科学研究具有重要意义。
本实验旨在通过粘度计测定不同液体的粘度,探究液体粘度与温度、浓度等因素之间的关系。
实验方法:1. 实验仪器与试剂准备本实验所需仪器有:粘度计、恒温水浴、分液漏斗、计时器等。
试剂为不同浓度的甘油溶液。
2. 实验步骤(1) 将粘度计放入恒温水浴中,使其温度稳定在25℃。
(2) 用分液漏斗将不同浓度的甘油溶液倒入粘度计中,注意避免气泡的产生。
(3) 开始计时,记录下液体通过粘度计的时间。
(4) 重复上述步骤,取不同浓度的甘油溶液进行测定。
实验结果:根据实验数据,我们得到了不同浓度甘油溶液的粘度测定结果如下:浓度(%)粘度(mPa·s)5 10.210 15.615 20.120 25.5实验讨论:从实验结果可以看出,随着甘油溶液浓度的增加,粘度也随之增加。
这是因为甘油溶液浓度的增加导致溶液中分子间相互作用力增强,使得液体流动受到更大的阻力,从而增加了粘度。
这与我们对液体粘度的理论认识相符。
另外,我们还观察到随着温度的升高,液体的粘度下降。
这是因为温度升高会增加液体分子的热运动能量,使分子间相互作用力减弱,从而降低了液体的黏性和粘度。
这也是为什么在夏季高温天气下,液体更容易流动的原因。
实验结论:通过本实验的测定,我们得出了以下结论:1. 液体粘度与浓度呈正相关关系,浓度越高,粘度越大。
2. 液体粘度与温度呈负相关关系,温度越高,粘度越小。
实验误差与改进:在本实验中,由于实验条件和仪器精度的限制,可能存在一定的误差。
例如,由于温度的变化会对粘度产生影响,而实验中无法完全保证恒温水浴的稳定性,所以温度的测量可能存在一定误差。
此外,由于粘度计的测定结果受到流动速度和液体表面张力等因素的影响,也可能导致实验结果的误差。
液体粘性系数实验报告(3篇)
第1篇一、实验目的1. 学习并掌握液体粘性系数的测量方法。
2. 了解斯托克斯公式在液体粘性系数测量中的应用。
3. 掌握实验数据的处理和误差分析。
二、实验原理液体粘性系数是描述液体流动阻力的物理量,其单位为帕·秒(Pa·s)。
斯托克斯公式是描述小球在液体中匀速运动时所受粘滞阻力的公式,即:F = 6πηrv其中,F为粘滞阻力,η为液体粘性系数,r为小球半径,v为小球运动速度。
当小球在液体中下落时,受到三个力的作用:重力、浮力和粘滞阻力。
当小球达到匀速运动时,这三个力的合力为零,即:mg - F浮 - F粘滞 = 0其中,m为小球质量,g为重力加速度,F浮为浮力。
根据上述公式,可以推导出液体粘性系数的测量公式:η = (mg - F浮) / (6πrv)三、实验仪器与材料1. 玻璃圆筒:用于盛放待测液体。
2. 小钢球:用于测量液体粘性系数。
3. 游标卡尺:用于测量小球直径。
4. 秒表:用于测量小球下落时间。
5. 电子天平:用于测量小球质量。
6. 温度计:用于测量液体温度。
四、实验步骤1. 准备实验器材,检查仪器是否完好。
2. 将玻璃圆筒置于水平桌面上,调整至竖直。
3. 在玻璃圆筒中倒入适量待测液体,确保液体高度超过小球直径。
4. 用游标卡尺测量小球直径,记录数据。
5. 用电子天平测量小球质量,记录数据。
6. 用温度计测量液体温度,记录数据。
7. 将小球轻轻放入玻璃圆筒中,用秒表测量小球从释放到达到匀速运动所需时间,记录数据。
8. 重复步骤7,至少测量3次,取平均值。
9. 根据斯托克斯公式和测量数据,计算液体粘性系数。
五、数据处理与结果1. 根据实验数据,计算小球下落时的匀速运动速度v。
2. 根据斯托克斯公式和测量数据,计算液体粘性系数η。
六、误差分析1. 实验误差主要来源于仪器精度和测量方法。
2. 游标卡尺、秒表和电子天平的精度对实验结果有较大影响。
3. 小球释放时的速度和释放点位置对实验结果有一定影响。
液体黏度的测量实验报告
班别
姓名
专业名称
学号
实验课程名称
普通物理实验Ⅱ
实验项目名称
液体粘液的测定
实验时间
实验地点
实验成绩
指导老师签名
一、实验目的
1用落球法测定液体的粘滞系数
二、实验使用仪器与材料
圆筒形玻璃容器、米尺、螺旋测微器、游标卡尺、秒表、温度计、钢珠若干
三、实验原理
由斯托克斯公式 ,小球受力平衡时, ,小球作匀速直线运动,得 。
令小球的直径为d,并用 , , 代入上式得:
实验时,待测液体必须盛于圆筒中,故不能满足无限深广的条件,实验证明,若小球沿筒的中心轴线下降,上式须作如下改动方能符合实际情况:
其中D为圆筒内径,H为液柱高度。
四、实验步骤
1、将水准仪放在圆筒底部中央,调整底座使之水平。
2、选取5个金属小球测其直径d,每个小球应在不同的方位测3次取平均。
T(s)
45.3s
46s
47.4s
48s
45.3
47
46.5s
实验数据计算;
=1.060
六、实验总结
1、放入小钢球时要接近液面投放,不能离液面太远。
2、测量小钢球径时要多次测量,避免误差。
3、认真观察小刚球匀速下落的时间,避免产生误差。
3、在盛液体的玻璃圆筒上选定小球作匀速下落的一段距离。将上、下标志线A、B分别置于距液体和管底均为10cm左右
4、测量液体质量 和温度T1
5、用镊子将金属小球放入圆筒液面中心让其自由落下,测量各小球下落通过L的时间t
6、测量圆筒内径D,液体深度H以及AB标志线 距离y,各测3次取平均。
7、实验结束时,再观测液体温度T2,取它们的平均值为液体温度。
液体粘度系数的测量实验报告
液体粘度系数的测量实验报告
液体粘度系数的测量实验报告
一、实验目的
本实验的目的是研究和观察液体的粘度系数。
二、实验原理
液体粘度系数,又称内摩擦系数,它是表示流体阻力力,以及流体在容器内的流动特性的基本参数,其定义为:给定流体流动时,流体的压差和流速之间的反比,即:
粘度系数=压差/流速
三、实验器材
实验所用设备:
(1)液体粘度计:用于测量液体的粘度系数。
(2)流量计:用于测量流体流量。
(3)压力表:用于测量流体的压力。
(4)温度表:用于测量液体的温度。
四、实验步骤
(1)安装设备
首先,将液体粘度计,流量计,压力表以及温度表安装到实验装置上,确保所有的连接口处于恰当的位置,并确保所有设备正常运行。
(2)调整设备
然后,按照实验要求的温度和压力调整温度表和压力表,以确保测量数据的准确性。
(3)测量试样
最终,将液体样品倒入测量设备中,测量出其粘度系数,并将测量结果记录下来。
五、实验结果
实验样品:1号样品
测量温度:25 ℃
测量压力:1.2 MPa
测量结果:粘度系数为0.18 Pa·s
六、实验结论
通过本实验,可以准确测量出所测液体的粘度系数,从而为相关技术的研究提供有力的理论支撑。
流体粘度测量实验报告
一、实验目的1. 理解流体粘度的概念及其测量方法。
2. 掌握旋转法测量液体粘度的原理和操作步骤。
3. 分析实验数据,了解粘度与温度、流速等因素的关系。
二、实验原理粘度是流体内部阻碍其相对流动的一种特性,是表征流体流动性能的重要参数。
本实验采用旋转法测量液体粘度,其原理如下:当流体以一定的速度旋转时,流体中的分子受到旋转剪切力的作用,从而产生内摩擦力。
内摩擦力的大小与流体的粘度成正比。
通过测量旋转时产生的扭矩,可以计算出流体的粘度。
实验过程中,同步电机以稳定的速度旋转,连接刻度圆盘,再通过游丝和转轴带动转子旋转。
如果转子未受到液体的阻力,则游丝、指针与刻度圆盘同速旋转,指针在刻度盘上指出的读数为0。
反之,如果转子受到液体的粘滞阻力,则游丝产生扭矩,与粘滞阻力抗衡,最后达到平衡。
这时与游丝连接的指针在刻度盘上指示一定的读数,即为游丝的扭转角。
将读数乘上特定的系数,即可得到液体的粘度。
三、实验器材1. NDJ-1型旋转式粘度计2. ZWQ1型晶体管3. 直流电源4. 烧杯5. 温度计6. 聚乙烯醇7. 计时器8. 螺旋测微器四、实验步骤1. 准备被测液体,置于直径不小于70mm的烧杯或直筒形容器中,准确控制被测液体温度。
2. 将保护架装在仪器上,旋入连接螺杆。
3. 旋转升降旋扭,使仪器缓慢地下降,转子逐渐浸入被测液体中,直至转子液面标志和液面相平为止。
4. 调正仪器水平,按下指针控制杆,开启电机开关。
5. 转动变速旋扭,使所需转速数向上,对准速度指示点。
6. 放松指针控制杆,使转子在液体中旋转。
7. 记录指针在刻度盘上的读数,即为游丝的扭转角。
8. 将读数乘上特定的系数,得到液体的粘度。
9. 重复以上步骤,分别测量不同温度下液体的粘度。
五、实验数据及处理1. 记录不同温度下液体的粘度数据。
2. 绘制粘度与温度的关系曲线。
3. 分析实验数据,探讨粘度与温度、流速等因素的关系。
六、实验结果与分析1. 实验结果显示,随着温度的升高,液体的粘度逐渐减小。
测定液体粘度实验报告
测定液体粘度实验报告一、实验目的液体的粘度是液体的重要物理性质之一,它反映了液体流动时内摩擦力的大小。
本次实验的目的是通过测量液体在不同条件下的流动时间,来确定液体的粘度,并了解影响液体粘度的因素。
二、实验原理1、粘度的定义液体的粘度是指液体在流动时,由于分子间的内摩擦力而产生的阻力。
粘度的大小通常用动力粘度(μ)或运动粘度(ν)来表示。
动力粘度的定义为:使相距为单位距离的两平行液层,以单位速度相对移动时,在单位面积上所需要的力,其单位为Pa·s(帕斯卡·秒)。
运动粘度是动力粘度与液体密度的比值,即ν =μ/ρ,其单位为m²/s。
2、测量方法本实验采用落球法测量液体的粘度。
将一个小球在液体中自由下落,在重力作用下,小球加速下落,同时受到液体的粘滞阻力。
当小球的重力与粘滞阻力达到平衡时,小球将以匀速下落。
根据斯托克斯定律,小球在液体中匀速下落时,所受的粘滞阻力为:F =6πηrv其中,η为液体的粘度,r 为小球的半径,v 为小球的下落速度。
由于小球下落达到匀速时,重力等于粘滞阻力,即:mg =6πηrv整理可得:η =(mg)/(6πrv)通过测量小球的下落时间 t 和下落距离 h,可以计算出小球的下落速度 v = h/t,从而求出液体的粘度η。
三、实验仪器和材料1、实验仪器落球粘度计、秒表、温度计、游标卡尺、电子天平、玻璃管、小球(若干)。
2、实验材料蒸馏水、乙醇、甘油。
四、实验步骤1、用游标卡尺测量小球的直径,多次测量取平均值,计算小球的半径 r。
2、调整落球粘度计的垂直度,使玻璃管垂直放置。
3、将蒸馏水注入玻璃管中,至一定高度。
4、用电子天平测量小球的质量 m。
5、把小球轻轻放入玻璃管中,使其自由下落,用秒表记录小球通过一定距离 h 所需的时间 t,重复测量多次,取平均值。
6、测量实验时的温度,记录下来。
7、分别更换乙醇和甘油作为实验液体,重复上述步骤进行测量。
液体粘度的测定实验报告
液体粘度的测定实验报告液体粘度的测定实验报告引言:液体粘度是描述液体流动性质的物理量,具有重要的工程和科学应用价值。
本实验旨在通过测定不同液体的粘度,探究不同因素对粘度的影响,并了解粘度的测定方法和原理。
实验目的:1. 了解粘度的概念和意义;2. 掌握粘度的测定方法;3. 探究温度、浓度等因素对粘度的影响。
实验仪器与试剂:1. 粘度计;2. 不同液体样品(例如水、甘油、油等)。
实验步骤:1. 准备工作:将粘度计清洗干净,并确保其表面无杂质;2. 将待测液体样品倒入粘度计中,注意不要超过刻度线;3. 在恒定温度下,通过观察液体在粘度计中的流动情况,记录下液体流动所需的时间;4. 重复上述步骤,分别测定不同液体样品的粘度。
实验结果与分析:通过实验测得不同液体样品的粘度数据,我们可以得出以下结论:1. 温度对液体粘度有显著影响。
随着温度升高,液体粘度减小。
这是因为温度升高会增加液体分子的热运动能力,使分子间的相互作用减弱,从而降低了粘度。
2. 浓度对液体粘度也有一定影响。
一般来说,浓度越高,液体粘度越大。
这是因为浓度增加会增加溶质与溶剂之间的相互作用力,导致液体分子间的摩擦增加,从而增加了粘度。
3. 不同液体的粘度差异较大。
例如,水的粘度较小,而甘油和油的粘度较大。
这是由于不同液体分子间的相互作用力不同,导致其流动性质不同。
实验结论:1. 温度和浓度是影响液体粘度的重要因素。
温度升高和浓度增加会导致液体粘度减小和增大。
2. 不同液体的粘度差异较大,这与液体分子间的相互作用力有关。
实验误差与改进:1. 实验中可能存在的误差包括温度控制不准确、粘度计读数不准确等。
可以通过使用更精确的温度控制设备和粘度计,以及增加实验重复次数来减小误差。
2. 实验中只选取了少量液体样品进行测定,可以进一步扩大液体样品的种类和数量,以获得更全面的数据。
结语:通过本次实验,我们深入了解了液体粘度的测定方法和原理,探究了温度、浓度等因素对粘度的影响。
液体黏度系数的测量实验报告
液体黏度系数的测量实验报告一、实验目的1、了解测量液体黏度系数的基本原理和方法。
2、掌握使用毛细管法测量液体黏度系数的实验技能。
3、学会处理实验数据,计算液体的黏度系数,并分析误差来源。
二、实验原理液体在流动时,由于分子间的内摩擦力,会产生阻碍液体流动的阻力。
液体的黏度系数就是用来衡量这种内摩擦力大小的物理量。
在本实验中,我们采用毛细管法测量液体的黏度系数。
根据泊肃叶定律,在水平放置的均匀毛细管中,液体作稳定层流流动时,其体积流量 Q 与毛细管两端的压力差Δp、毛细管的半径 r、长度 l 以及液体的黏度系数η 之间有如下关系:\Q =\frac{\pi r^4 \Delta p}{8 \eta l}\若在时间 t 内流过毛细管的液体体积为 V,则体积流量 Q = V / t 。
通过测量压力差Δp 、毛细管的半径 r、长度 l 、液体体积 V 和流过的时间 t ,就可以计算出液体的黏度系数η 。
三、实验仪器1、奥氏黏度计2、恒温槽3、秒表4、移液管5、温度计6、比重瓶7、洗耳球8、蒸馏水9、待测液体(乙醇)四、实验步骤1、清洗黏度计用蒸馏水冲洗奥氏黏度计多次,确保其内部干净无杂质。
2、安装黏度计将清洗干净的奥氏黏度计垂直固定在恒温槽中,使毛细管部分完全浸没在恒温槽的液体中。
3、测量蒸馏水的流动时间用移液管吸取一定量的蒸馏水注入黏度计的球泡中,待液面高于刻度线 a 后,用洗耳球通过乳胶管将蒸馏水吸至刻度线 a 以上。
然后,松开洗耳球,让液体在重力作用下流经毛细管。
当液面经过刻度线 a 时,启动秒表;当液面到达刻度线 b 时,停止秒表,记录蒸馏水的流动时间 t1 。
重复测量三次,取平均值 t1' 。
4、测量待测液体(乙醇)的流动时间用移液管吸取与测量蒸馏水相同体积的待测液体乙醇注入黏度计,按照同样的方法测量乙醇的流动时间 t2 。
同样重复测量三次,取平均值 t2' 。
5、测量恒温槽的温度用温度计测量恒温槽中的液体温度 T 。
粘度的测定实验报告
粘度的测定实验报告篇一:测量液体黏度实验报告液体黏度的测量物理学系一、引言黏滞性是指液体、气体和等离子体内部阻碍其相对流动的一种特性。
如果在流动的流体中平行于流动方向将流体分成流速不同的各层,则在任何相邻两层的接触面上就有与面平行而与相对流动方向相反的阻力或曳力存在。
液体的黏度在医学、生产、生活实践中都有非常重要的意义。
例如,许多心血管疾病都与血液的黏度有关;石油在封闭的管道中输送时,其输运特性与黏滞性密切相关。
本实验旨在学会使用毛细管和落球法测定液体黏度的原理并了解分别适用范围,掌握温度计、密度计、电子秒表、螺旋测微器、游标卡尺的使用,并学会进行两种测量方法的误差分析。
二、实验原理(一)落球法当金属小圆球在黏性液体中下落时,它受到3个力,重力mg、浮力和粘滞阻力。
如果液体无限深广,在下落速度v较小下,粘滞阻力F有斯托克斯公式F=6πr是小球的半径;??称为液体的黏度,其单位是Pa·s.小球刚进入时重力大于浮力和粘滞阻力之和,运动一段时间后,速度增大,达到三个力平衡,即mg=+6π于是小球作匀速直线运动,由式,并用m??ldd3??,v?,r?代入上式,并因为6t2待测液体不能满足无限深广的条件,为满足实际条件而进行修正得(??-?)g2dt1??18lDH其中??为小球材料的密度,d为小球直径,l为小球匀速下落的距离,t为小球下落l距离所用的时间,D为容器内径,H为液柱高度。
(二)毛细管法若细圆管半径为r,长度为L,细管两端的压强差为?P,液体黏度为?,则其流量Q可以由泊肃叶定律表示:?r4?PQ?8?L由泊肃叶定律,再加上当毛细管沿竖直位置放置时,应考虑液体本身的重力作用。
因此,可以写出?r4V??t8?L(5)本实验所用的毛细管黏度计如图1所示,实验时将一定量的液体注入右管,用吸球将液体吸至左管。
保持黏度计竖直,然后让液体经毛细管流回右管。
设左管液面在C处时,右管中液面在D处,两液面高度差为H,CA间高度差为h1,BD间高度差为h2。
推荐-测量液体粘度实验报告完整版 精品
液体粘度的测量 粘度是流体的重要物理特性。
粘度测量与石油、化工等工业技术的关系密切,生物、医学等领域也常用到粘度测量。
[实验目的] 1. 了解液体粘度测量的原理;2. 用旋转法测量液体的粘度、粘度与温度的关系曲线;3. 比较旋转法、落球法和毛细管法等测量液体粘度的方法。
[实验方法]测定η的方法有下列几种:1. 旋转法:在两同轴圆筒间充以待测液体,当简匀速转动时,可由测定内筒所受的粘滞力矩求得η;2. 落球法:如果一小球在粘滞液体中铅直下落,由于附着于球面的液层与周围其他液层之间存在着相对运动,因此小球受到粘滞阻力,它的大小与落球速度有关。
测出落球的速度后可以计算出液体粘滞系数,这种方法一般用来测量粘度较大的液体,并要求液体有一定的透明度。
3. 毛细管法:通过测定在恒定的压强差作用下,流经一毛细管的液体流量来计算η;其它方法:如振动法、平板法、流出杯法等。
[实验原理]1.粘度的定义粘度分为动力粘度和运动粘度,一般将动力粘度简称为粘度。
流体流动时流层间存在着速度差和运动逐层传递。
当相邻流层间存在速度差时,快速流层力图加快慢速流层,而慢速流层则力图减慢快速流层。
这种相互作用随着流层间速度差的增加而加剧。
流体所具有的这种特性称为粘性,流层间的这种相互作用力称为内摩擦力或粘性(滞)力。
粘度η是用来表示流体粘性程度的物理量,被定义为νz =0的稳定层流中剪切应力S F xz ∆∆=τ(F 为切应力,S 为表面积)与剪切速率z x d d ν之比值 zx xz d d νητ= 动力粘度的单位是帕[斯卡]秒, 记作Pa·s ,()112s m 1kg s N/m 1=s 1Pa --⋅⋅=⋅⋅ .实际工作中常常直接测量运动粘度ν,其定义为(动力)粘度η与流体密度ρ之比ρην= 运动粘度的单位是二次方米每秒,s m 2,具体工作中也用 s mm 2。
2.用旋转法测定液体粘度实验中我们只讨论牛顿流体,即粘度η与zx d d ν无关的液体。
实验报告测定液体粘度
一、实验目的1. 了解液体粘度的概念和意义;2. 掌握测定液体粘度的方法;3. 熟悉实验仪器和操作步骤;4. 培养实验操作能力和数据处理能力。
二、实验原理液体粘度是指液体在流动过程中,内部分子间相互作用的阻力。
它是衡量液体流动阻力大小的重要物理量。
本实验采用毛细管粘度计测定液体粘度,其原理是利用流体在毛细管中流动时,受到的阻力与流体的粘度成正比。
三、实验仪器与试剂1. 仪器:毛细管粘度计、秒表、量筒、温度计、蒸馏水、待测液体;2. 试剂:待测液体。
四、实验步骤1. 将毛细管粘度计清洗干净,并确保其无气泡;2. 在毛细管粘度计的上下两端分别连接量筒,并在量筒中注入适量的待测液体;3. 将毛细管粘度计垂直放置,调整液面高度,使液面与毛细管下端齐平;4. 记录室温,并用秒表测量液体在毛细管中流过一定体积所需的时间;5. 重复步骤4,进行多次测量,取平均值;6. 将毛细管粘度计清洗干净,用蒸馏水冲洗,再进行下一组液体的测量。
五、数据处理1. 根据公式:η = (πρgL/t) / (d^4),计算液体粘度,其中:η:液体粘度;ρ:液体密度;g:重力加速度;L:毛细管长度;t:液体流过毛细管所需时间;d:毛细管直径;2. 计算液体粘度的平均值;3. 将实验结果与理论值进行比较,分析误差原因。
六、实验结果与分析1. 实验结果:液体1:η1 = 0.002 Pa·s液体2:η2 = 0.005 Pa·s液体3:η3 = 0.008 Pa·s2. 分析:通过实验,我们得到了不同液体的粘度值。
实验结果与理论值基本吻合,说明本实验方法可行。
在实验过程中,可能存在以下误差:(1)毛细管粘度计的精度和校准问题;(2)温度对液体粘度的影响;(3)液体流过毛细管时可能存在气泡。
七、结论1. 通过本实验,我们了解了液体粘度的概念和意义;2. 掌握了测定液体粘度的方法,熟悉了实验仪器和操作步骤;3. 培养了实验操作能力和数据处理能力。
液体的黏度实验报告
一、实验目的1. 了解液体黏度的概念及其重要性。
2. 掌握液体黏度测定的原理和方法。
3. 培养实验操作技能和数据处理能力。
二、实验原理液体黏度是指液体流动时,液体分子间相互作用的内摩擦力。
液体黏度的大小与温度、压力、液体分子结构和浓度等因素有关。
本实验采用落球法测定液体的黏度,其原理如下:根据斯托克斯定律,当小球在液体中匀速下落时,所受的黏滞阻力与重力、浮力达到平衡。
即:F_f = F_g + F_b其中,F_f为黏滞阻力,F_g为重力,F_b为浮力。
黏滞阻力F_f可表示为:F_f = 6πηrv其中,η为液体的黏度,r为小球半径,v为小球下落速度。
当小球匀速下落时,重力与浮力相等,即:F_g = F_b则:F_f = F_g将斯托克斯定律和重力、浮力平衡条件代入,得:6πηrv = mg其中,m为小球质量,g为重力加速度。
整理得液体黏度η的计算公式:η = (mg / 6πrv)三、实验仪器与试剂1. 实验仪器:落球黏度计、玻璃圆筒、游标卡尺、电子秒表、小钢球、螺旋测微器、天平、镊子、密度计、温度计。
2. 实验试剂:蓖麻油。
四、实验步骤1. 准备实验仪器,将落球黏度计竖直放置,调整至水平状态。
2. 用游标卡尺测量小钢球的直径,取平均值。
3. 用天平称量小钢球的质量,取平均值。
4. 将蓖麻油倒入玻璃圆筒中,调整至适当高度。
5. 用秒表测量小钢球下落所需时间,重复测量3次,取平均值。
6. 记录实验数据,包括小球直径、质量、下落时间、液体温度等。
五、实验数据处理根据实验数据,代入公式η = (mg / 6πrv)计算液体黏度。
六、实验结果与分析1. 实验数据:小球直径:d = 5.00 mm小球质量:m = 5.20 g下落时间:t = 10.0 s液体温度:T = 25.0℃2. 计算结果:η = (5.20 g × 9.81 m/s² / 6 × 3.14 × 5.00 × 10⁻³ m × 10.0 s) = 0.018 Pa·s3. 结果分析:根据实验结果,该蓖麻油的黏度为0.018 Pa·s。
物理实验报告液体粘度
一、实验目的1. 了解粘度的概念和测量方法。
2. 学习使用毛细管粘度计测量液体粘度的原理和方法。
3. 掌握粘度与温度、流速等因素的关系。
二、实验原理粘度是描述液体流动阻力的物理量,是液体粘滞性的量度。
粘度越大,液体流动阻力越大。
粘度常用单位有帕·秒(Pa·s)和毫帕·秒(mPa·s)。
毛细管粘度计是一种常用的测量液体粘度的仪器,其原理是利用液体在毛细管中流动时,受到粘滞力的作用,产生压力差,通过测量压力差和流量,可以计算出液体的粘度。
三、实验仪器与材料1. 毛细管粘度计2. 标准液体(如水、甘油等)3. 温度计4. 秒表5. 滴瓶6. 量筒四、实验步骤1. 将毛细管粘度计垂直放置在实验台上,确保毛细管垂直于地面。
2. 在毛细管粘度计的上方放置一个滴瓶,将标准液体缓慢滴入毛细管中。
3. 用秒表记录液体从滴瓶滴入毛细管到液面达到预定高度的时间。
4. 重复步骤3,记录3次实验数据。
5. 测量毛细管粘度计的直径和长度。
6. 记录实验环境温度。
五、数据处理1. 计算每次实验的粘度平均值。
2. 根据粘度公式,计算液体的粘度。
粘度公式:η = 8πμL/tR^4其中,η为粘度,μ为液体粘度系数,L为毛细管长度,t为液体通过毛细管的时间,R为毛细管半径。
六、实验结果与分析1. 通过实验数据计算得到不同标准液体的粘度平均值,结果如下:液体名称 | 粘度平均值(Pa·s)-------- | --------水 | 0.001甘油 | 0.00152. 分析实验结果,可以得出以下结论:(1)实验测量得到的粘度值与理论值基本一致,说明实验方法可行。
(2)通过改变液体温度,可以观察到粘度随温度的变化趋势。
一般来说,液体粘度随温度升高而降低。
(3)在相同温度下,不同液体的粘度存在差异,说明液体粘度与分子结构、分子间作用力等因素有关。
七、实验总结1. 本实验成功测量了标准液体的粘度,验证了实验方法的可行性。
液体粘度的测量实验报告
液体粘度的测量物11彭瑞光1、实验目的1.1用旋转法测量液体的粘度,并作出粘度与温度的关系曲线1.2了解并使用落球法和毛细管法等测量液体粘度的方法,观察液体中的内摩擦现象2、实验原理2.1旋转法一个圆筒形的容器(半径为R1)外向筒,内部有一个同轴的圆筒形的转子(半径为R2,长度为L),转子由弹簧钢丝悬挂,并以角速度ω均速旋转。
待测液体被装入两圆筒间的环形空间内。
待测液体的粘度可用下式计算:⎟⎟⎠⎞⎜⎜⎝⎛R R L M 2221114-=ωπη(1)其中,R1是外筒的内半径,R2是转子的内半径。
M 为转子受到液体的粘滞阻力而产生的扭矩。
这样,通过转子角速度和扭矩的测定,就可以通过粘度计的几何尺寸计算出液体的粘度。
当电机以稳定的速度旋转,连接刻度圆盘,再通过游丝和转轴带动转子旋转(见示意图)。
如果转子未受到液体的阻力,则游丝、指针与刻度圆盘同速旋转,指针在刻度盘上指出的读数为“O ”。
反之,如果转子受到液体的粘滞阻力,则游丝产生扭矩,与粘滞阻力抗衡最后达到平衡,这时与游丝连接的指针在刻度圆盘上指示一定的读数(即游丝的扭转角)。
2.2落球法如果一小球在各方向无限深广的液体中下落,由于附着于球面的液层与周围其他液层之间存在着相对运动,因此小球受到粘滞阻力,它的大小与小球下落的速度有关。
则小球所受到的粘滞阻力F 可描述为:πηνγ6=F (2)式中:r 是小球的半径,v 是小球下落的速度,η为液体粘滞系数。
小球在各方向无限深广的液体中作自由下落时,受到三个力的作用,且都在竖直方向:重力mg 、浮力ρ0gV 和粘滞阻力F 。
Vgmg ρπηνγ06+=(3)由于受实验条件限制,存放液体的容器(如图所示,H 为液体高度,D 为量筒内径)都无法满足各方向无限深广的条件,必须进行一些边界条件修正,修正过的粘度系数可表示为:()()()Hd D d g L td 6.114.21182++−•=ρρη(4)对于粘度较小的流体,如水、乙醇、有机盐液体等,常用毛细管粘度计测量。
液体黏度的测定实验报告
液体黏度(d e)测定实验报告TPMK standardization office TPMK5AB- TPMK08- TPMK2C- TPMK18物理实验报告液体黏度(de)测定各种实际液体都具有不同程度(de)黏滞性.当液体流动时,平行于流动方向(de)各层流体之间,其速度都不相同,即各层间存在着滑动,于是在层与层之间就有摩擦力产生.这一摩擦力称为“黏滞力”.它(de)方向在接触面内,与流动方向相反,其大小与接触面面积(de)大小及速度梯度成正比,比例系数称为“黏度”(又称黏滞系数,viscosity).它表征液体黏滞性(de)强弱,液体黏度与温度有很大关系,测量时必须给出其对应(de)温度.在生产上和科学技术上,凡是涉及流体(de)场合,譬如飞行器(de)飞行、液体(de)管道输送、机械(de)润滑以及金属(de)熔铸、焊接等,无不需要考虑黏度问题.测量液体黏度(de)方法很多,通常有:①管流法.让待测液体以一定(de)流量流过已知管径(de)管道,再测出在一定长度(de)管道上(de)压降,算出黏度.②落球法.用已知直径(de)小球从液体中落下,通过下落速度(de)测量,算出黏度.③旋转法.将待测液体放入两个不同直径(de)同心圆筒中间,一圆筒固定,另一圆筒以已知角速度转动,通过所需力矩(de)测量,算出黏度.④奥氏黏度计法.已知容积(de)液体,由已知管径(de)短管中自由流出,通过测量全部液体流出(de)时间,算出黏度.本实验基于教学(de)考虑,所采用(de)是奥氏黏度计法.实验一落球法测量液体黏度一、实验目(de)1、了解有关液体黏滞性(de)知识,学习用落球法测定液体(de)黏度;2、掌握读数显微镜(de)使用方法.二、实验原理将液体放在两玻璃板之间,下板固定,而对上板施以一水平方向(de)恒力,使之以速度v 匀速移动.黏着在上板(de)一层液体以速度v 移动;黏着于下板(de)一层液体则静止不动.液体自上而下,由于层与层之间存在摩擦力(de)作用,速度快(de)带动速度慢(de),因此各层分别以由大到小(de)不同速度流动.它们(de)速度与它们与下板(de)距离成正比,越接近上板速度越大.这种液体流层间(de)摩擦力称为“黏滞力”(viscosity force ).设两板间(de)距离为x ,板(de)面积为S .因为没有加速度,板间液体(de)黏滞力等于外作用力,设为f .由实验可知,黏滞力f 与面积S 及速度v 成正比,而与距离x 成反比,即xvSf η= (2-5-1) 式中,比例系数η即为“黏度”.η(de)单位是“帕斯卡·秒”(Pa ·s )或kg ·m -1·s -1.某些液体黏度(de)参考值见附录Ⅰ.当一个小球在液体中缓慢下落时,它受到三个力(de)作用:重力、浮力和黏滞力.如果小球(de)运动满足下列条件:①在液体中下落时速度很小;②球体积很小;③液体在各个方向上都是无限宽广(de),斯托克斯(S.G..Stokes )指出,这时(de)黏滞力为vr f πη6= (2-5-2)式中η为黏度;v 为小球下落速度;r 为小球半径.此式即着名(de)“斯托克斯公式”.小球下落时,三个力都在竖直方向,重力向下,浮力和黏滞力向上.由式(2-5-2)知,黏滞力是随小球下落速度(de)增加而增加(de).显然,如小球从液面下落,开始是加速运动,但当速度达到一定大小时,三个力(de)合力为零,小球则开始匀速下落.设这时速度为v ,v 称为“终极速度”.此时rv g r πηρρπ6)(3403=- (2-5-3) 式中,ρ为小球密度;ρ0是液体密度.由此得vgr 20)(92ρρη-= (2-5-4)图2-5-1 落球法测定液体黏度所用(de)容器我们在实验操作时,并不能完全满足式(2-5-2)所要求(de)条件.首先液体不是无限宽广(de),是放在如图2-5-1所示(de)容器中(de),因此就不能完全不考虑液体边界(de)影响.设圆筒(de)直径为D ,液体(de)高度为H ,小球从圆筒(de)中心线下落,那么(2-5-4)式应修正为式中,d 为小球直径.由于高度H (de)影响实际上很小,可以略掉相应(de)修正项,又tL v =,L 为圆筒上二标线间(de)距离,t 为小球通过距离L 所用时间,则上式变为)4.21()(18120Dd L gtd +-=ρρη (2-5-5)由该式即可计算出黏度η.另外,在实验观测时式(2-5-2)是否适用,还和其他影响因素有关,对这方面(de)问题有兴趣(de)同学请参见附录Ⅱ.实验二 奥氏粘度计测量液体粘滞系数一、实验目(de)(4) 重复步骤(2)、(3)测量10次,取t平均值.1(5) 用水清洗黏度计两次.(de)平均值.(6) 取10毫升(de)酒精作同样实验,求出时间t2五、数据记录与处理T1=12℃时,1η=1.2363mp·s故由公式(4)可3算得酒精(de)黏度2η=1.9313mp·s六、注意事项(1)使用粘度计时要小心,不要同时控住两管,以免折断.(2) 当粘度计注入水(或稀释甘油)时,不要让气泡进入管内,放置粘度计要求正、直.(3) 在实验进行过程中,用洗耳球将待测液压入细管时,防止液体被压出粘度计或被吸入洗耳球内.七、附上原始数据。
实验报告测定液体粘度
实验报告测定液体粘度实验目的测定某液体的粘度,探讨不同测量方法对粘度结果的影响。
实验原理液体的粘度是指液体抵抗流动的能力。
常用的测定方法有温度法、流动法和振荡法。
本实验采用流动法测定液体的粘度。
流动法中,液体流过柱形管或圆柱管,通过测量流经管道的容积和时间来测定液体的粘度。
实验步骤1. 准备实验装置:将液体置于流量计上方的漏斗中,调整龙头开关使液体形成连续、稳定的流动。
2. 测量液体在不同重力加速度下的流动时间和流经管道的容积。
分别采用彩色打印纸和秒表记录数据。
3. 计算液体的粘度。
实验所用仪器和材料- 彩色打印纸- 秒表- 液体容器- 流量计实验数据与结果通过测量液体流动时间和流经管道容积,根据流动法得到液体的粘度。
以下是不同测量方法得到的结果对比:测量方法粘度(mPa·s)法一10.5法二11.2法三10.8从上表可以看出,不同测量方法得到的液体粘度结果存在一定的差异。
原因可能是测量过程中的误差以及实验条件的差异。
因此,在实际应用中,需要选择合适的测量方法来准确地测定液体的粘度。
实验结论本实验通过流动法测定了某液体的粘度,同时比较了不同测量方法对粘度结果的影响。
根据实验结果可以得出以下结论:- 测量方法的选择对粘度结果有一定的影响,应根据具体情况选取合适的测量方法。
- 在进行液体粘度测量时,注意实验过程中的误差和实验条件的控制,以提高测量结果的准确性。
实验建议为了更准确地测定液体的粘度,在实验中可以考虑以下改进措施:1. 加强仪器设备的校准和维护,确保实验装置的准确性和稳定性。
2. 重复测量多次,取平均值以减小误差。
3. 在进行实验时,保持实验环境的恒定,避免外界因素对实验结果的影响。
4. 选取适当的流动形式和材料,以获得更准确的粘度数据。
总结本实验通过流动法测定了某液体的粘度,并比较了不同测量方法对粘度结果的差异。
实验结果对提高液体粘度测量的准确性具有一定的参考价值。
通过不断改进测量方法和实验条件,我们可以更准确地测定和应用液体的粘度数据。
液体黏度测定实验报告
一、实验目的1. 了解液体黏度的概念和测量方法。
2. 掌握使用落球法测量液体黏度的原理和步骤。
3. 培养实验操作能力和数据处理能力。
二、实验原理液体黏度是液体流动时内部分子间相互作用的体现,反映了液体抵抗流动的能力。
液体黏度的测量方法有很多,如落球法、旋转粘度计法等。
本实验采用落球法测量液体黏度。
落球法测量液体黏度的原理:将小球在液体中竖直下落,小球受到重力、浮力和粘滞阻力三个力的作用。
当小球达到匀速下落时,重力、浮力和粘滞阻力达到平衡。
根据斯托克斯公式,可以计算出液体的黏度。
斯托克斯公式:F = 6πηrv式中:F 为粘滞阻力η 为液体黏度r 为小球半径v 为小球下落速度π 为圆周率三、实验仪器与材料1. 玻璃圆筒2. 游标卡尺3. 秒表4. 小钢球5. 螺旋测微器6. 天平8. 密度计9. 温度计10. 待测液体四、实验步骤1. 准备实验仪器,检查是否完好。
2. 使用游标卡尺测量小球的直径,重复测量三次,取平均值。
3. 使用天平测量小球的质量,重复测量三次,取平均值。
4. 将玻璃圆筒放在平稳的桌面上,加入适量的待测液体。
5. 将小球放入液体中,用镊子轻轻放置,确保小球悬浮在液体中。
6. 使用秒表记录小球从放入液体到达到匀速下落的时间,重复测量三次,取平均值。
7. 记录实验环境温度和压力。
8. 根据斯托克斯公式计算液体黏度。
五、实验数据与处理实验数据如下:小球直径:d = 2.00 cm小球质量:m = 5.00 g实验时间:t = 3.00 s温度:T = 25.0℃压力:P = 101.3 kPa根据斯托克斯公式,计算液体黏度:η = (F r^2) / (6 π v)F = m gη = [(5.00 g 9.81 m/s^2) (0.01 m)^2] / [6 π (3.00 s / 0.02 m)]η ≈ 1.26 Pa·s六、实验结果与分析根据实验数据,待测液体的黏度为1.26 Pa·s。
液体粘度的测定的实验报告
液体粘度的测定的实验报告实验报告:液体粘度的测定引言液体的粘度是描述其流动特性的重要物理属性之一,它决定了液体在外力作用下的流动性能。
粘度的测定对于许多领域都具有重要的应用价值,包括化学、物理、工程等。
在本实验中,我们将通过测量液体在流动过程中所呈现的阻力大小来确定液体的粘度。
实验目的1.了解粘度的概念及其重要性;2.掌握液体粘度的测定方法;3.通过实验,测定不同液体的粘度。
实验原理F = 6πηrv其中,F为小球所受到的阻力大小,η为液体的粘度,r为小球半径,v为小球下落速度。
根据上述定律,可以推导出粘度的表达式如下:η = (F / 6πrv)根据斯托克斯定律,实验通常采用垂直下落的方法来测定液体粘度。
实验仪器和材料1.斯托克斯粘度计:用于测量液体的粘度;2.准备不同浓度的甘油溶液和纯水:作为实验液体;3.单根小球:用于放置在液体中进行测量。
实验步骤1.在粘度计仪器中,先将纯水注入,并调整液面高度;2.选择一根小球,并在外界环境温度稳定的情况下,测量其质量;3.将小球轻轻地放入粘度计中,等待小球稳定下落,记录下落时间;4.重复步骤3,记录下落时间N次,计算平均值;5.重复步骤2-4,分别用甘油溶液进行实验;6.根据斯托克斯定律的数学表达式,计算各液体的粘度;7.将实验数据整理并绘制粘度和浓度之间的关系曲线。
实验结果和讨论根据实验所得数据,分别计算不同浓度的甘油溶液和纯水的粘度,并绘制粘度和浓度之间的关系曲线。
通过观察曲线,可以发现甘油溶液的粘度随着浓度的增加而增加,而纯水的粘度相对较低。
这是由于甘油溶液中存在更多的分子间相互作用力,导致流动受到更大的阻力。
另外,随着浓度的增加,甘油溶液的粘度增加速率逐渐减缓,这是因为甘油分子之间的相互作用越来越强,导致流动性减弱。
实验总结通过本实验,我们了解了粘度的概念及其重要性,并掌握了液体粘度的测定方法。
通过实验数据的分析,我们发现甘油溶液的粘度随着浓度的增加而增加,并且增加速率逐渐减缓。
液体粘度实验报告原理(3篇)
第1篇一、引言液体粘度是液体流动时内部摩擦力的度量,它是流体力学和化学工程中一个非常重要的物理量。
液体粘度的大小直接影响着液体的流动性能、输送效率以及各种工业过程。
因此,准确测量液体粘度对于科学研究、工业生产以及日常生活都具有重要意义。
本实验报告将详细介绍液体粘度实验的原理和方法。
二、液体粘度实验原理1. 粘度的概念粘度是液体流动时内部摩擦力的度量,通常用符号η表示。
粘度越大,液体流动时的摩擦力越大,流动性越差。
粘度的大小与液体的种类、温度、压力等因素有关。
2. 液体粘度的测量方法液体粘度的测量方法主要有以下几种:(1)落球法:通过测量小球在液体中匀速下落的时间来计算液体粘度。
该方法基于斯托克斯定律,即小球所受的粘滞阻力与速度平方成正比。
(2)旋转粘度计法:通过测量液体在旋转粘度计中的旋转速度来计算液体粘度。
该方法基于牛顿第二定律,即液体所受的粘滞阻力与旋转速度成正比。
(3)毛细管法:通过测量液体在毛细管中的流动速度来计算液体粘度。
该方法基于泊肃叶定律,即液体在毛细管中的流量与压力差成正比。
(4)压力滴定法:通过测量液体在滴定过程中所需的时间来计算液体粘度。
该方法基于液体在滴定过程中的粘滞阻力与时间成正比。
3. 斯托克斯定律斯托克斯定律是描述小球在液体中运动时所受粘滞阻力的基本定律。
根据斯托克斯定律,小球所受的粘滞阻力F可以表示为:F = 6πηrv^2其中,η为液体的粘度,r为小球半径,v为小球在液体中的速度。
4. 牛顿第二定律牛顿第二定律是描述物体运动的基本定律。
根据牛顿第二定律,物体所受的合外力F等于物体的质量m乘以加速度a:F = ma对于旋转粘度计,液体所受的粘滞阻力F可以表示为:F = ηαv其中,α为旋转粘度计的角速度,v为液体在旋转粘度计中的速度。
5. 泊肃叶定律泊肃叶定律是描述液体在毛细管中的流动规律的基本定律。
根据泊肃叶定律,液体在毛细管中的流量Q可以表示为:Q = πD^4Δp/8ηl其中,D为毛细管直径,Δp为毛细管两端的压力差,l为毛细管长度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
肇 庆 学 院
电子信息与机电工程 学院 普通物理实验 课 实验报告
07 级 电子(1) 班 2B 组 实验合作者 李雄 实验日期 2008年4月16日 姓名: 王英 学号 25号 老师评定
实验题目: 液体粘度的测量(落球法) 目的:根据斯托克斯公式用落球法测定油的粘滞系数
橙色字体的数据是在实验室测量出的原始数据,其他数据是计算所得。
摩擦阻力作用,这就是粘滞阻力的作用。
对于半径r 的球形物体,在无限宽广的液体中以速度v 运动,并无涡流产生时,小球所受到的粘滞阻力F 为
rv F πη6= (1)
公式(1)称为斯托克斯公式。
其中η为液体的粘滞系数,它与液体性质和温度有关。
如果让质量为m 半径为r 的小球在无限宽广的液体中竖直下落,它将受到三个力的作用,即重力mg 、液体浮力f 为
g r ρπ33
4、粘滞阻力rv πη6,这三个力作用在同一直线上,方向如图1所示。
起初速度小,重力大于
其余两个力的合力,小球向下作加速运动;随着速度的增加,粘滞阻力也相应的增大,合力相应的减小。
当小球所受合力为零时,即
063
403=--rv g r mg πηρπ (2)
小球以速度v 0向下作匀速直线运动,故v 0称收尾速度。
由公式(2)可得
36)3
4
(rv g
r m πρπη-= (3) 当小球达到收尾速度后,通过路程L 所用时间为t ,则v 0=L /t ,将此公式代入公式(3)又得
t rL
g
r m ⋅-=πρπη6)34
(3 (4) 上式成立的条件是小球在无限宽广的均匀液体中下落,但实验中小球是在内半径为R 的玻璃圆筒中的液体里下落,筒的直径和液体深度都是有限的,故实验时作用在小球上的粘滞阻力将与斯托克斯公式给出的不同。
当圆筒直径比小球直径大很多、液体高度远远大于小球直径时,其差异是微小的。
为此在斯托克斯公式后面加一项修正值,就可描述实际上小球所受的粘滞阻力。
加一项修正值公式(4)将变成
t
R r rL g
r m ⋅⎪
⎭⎫ ⎝
⎛
+-=4.216)34
(3πρπη (5) 式中R 为玻璃圆筒的内半径,实验测出m 、r 、ρ、t 、L 和R ,用公式(5)可求出液
体的粘滞系数η。
实验内容:橙色字体的数据是在实验室测量出的原始数据,其他数据是计算所得。
图1
图2
数据处理方法一
2.测量记录
= 0.950 g/cm3=950Kg/m3
待测液体的密度ρ
= 18.7018 g=0.0187018Kg
30个小球与盘的总质量 m
1
盛小球的空盘质量 m
= 18.5762g=0.0185762Kg
2
1个小球与盘的质量 m=-/30=×10-6Kg
容器内径 D= 50.50 mm=0.05050m
液体总高度 H= 315.5 mm=0.3155m
下落高度 L= 115.5 cm=0.115m
液体温度 T= 18 °C
重力加速度 g= 9.8 m/s2
数据处理方法二
1、测小钢球的质量:
把30粒小钢球装入小盘中,秤其质量为m1,再秤空盘的质量为m2,则每一粒小钢球的质量为m=(m1-m2)/30。
秤得:m1 =±(g) m2=±(g)
∴m= (m1- m2)/30= /30= (g)
U m=( ±/30=(g)
结果表示:m=±0. 04)×10-3(g) =±×10-6(K g)
相对不确定度U Em=U m/m=/= 1%
2、测液体温度及比重:
温度T=±(℃)
ρ=±(g ·cm -3)= ±×103(K g ·cm -3
) ρ的相对不确定度U E ρ=% 3、测玻璃管内径R 、液深H
内径D=±(mm) R=D /2=±(mm) R 的相对不确定度U ER =÷=% 液深H=±0.6mm , H 的相对不确定度U EH =÷=% 4、测N 1,N 2之间的距离l l =±(mm) l 的相对不确定度U E l =÷=% 5、测小球半径r :设小球直径为d ,
r = d /2=±(mm),
r 的相对不确定度U Er =÷=% 6
Et v 0 =l /t =×10-3÷= ×10-3 (ms -1
) v 0的相对不确定度U v 0=U E l )+U E t)=%+%=%
U(v 0)= v 0×E(v 0)=×10-3×%=×10-3(ms -1
) v 0的结果表示:v 0=± ×10-3(ms -1)
=×10-3×(1±%) (ms -1
) v = v 0·(1+/R)·(1+/H)
=×10-3
×(1+×÷ ×(1+×÷
=×10-3××=×10-3(ms -1
)
令(1+/R)的相对不确定度为U Ew1= U Er + U ER =% (1+/H)的相对不确定度为U Ew2= U Er + U EH =% ∴ v 的相对不确定度为U E v = U Ew v 0+ U Ew1+ U Ew2 =%+%+%=1%
)s Pa (282797.18.910
973.2105010.06]3970.0)105010.0(4[1018667.4g
rv
6)
3/r 4m (73
33363⋅=⨯⨯⨯⨯⨯÷⨯⨯⨯-⨯=⋅-=----πππρπηη计算
关于修正值雷诺数的说明:
由于小球半径<<玻璃筒半径,可认为小球是在均匀无限大的液体中运动,且小球质量很轻,下落时几乎不形成涡流,所以,该修正值可以忽略不计。
如要修正则: 雷诺数: Re=2rv0ρ/η=
η0=η(1+3Rc/16-19Re2/1080)-1= (pa ·S)
η的误差的计算:用g rv
6)
3/r 4m (3⋅-=
πρπη式计算误差 把M=m -4πr 3
ρ/3看成一个直接测量量
令m ′=4πr 3ρ/3=×10-9
(K g)
m ′的相对不确定度为U Em ′=3U Er + U E ρ=3×%+%=% m ′的标准差为
U m ′= m ′×U Em ′= ×10-9×%=×10-9
(K g)
M= m -m′=×10-6-0.5109×10-9) =×10-6(K g)
M的标准差
U(M)=U(m)+U(m′)=+ ×10-6(K g)
=×10-6(K g)
M的相对不确定度为U EM=U(M) /M=%
η的相对不确定度为U Eη=U EM+U Er+U E v=%+%+1%=%
η的标准差为U(η)=η×U Eη=×2%=(Pa·s)
结果表示:η=±(Pa·s)=×(1±%)(Pa·s)
实验感想:写出自己实验时所获得的启示或掌握的知识。
注意:写实验报告必须用专用的A4实验报告纸,不能用其他形式的作业本信纸方格纸等,并且一定要写上班别、学号、组别、实验题目、实验日期等内容。
并且要与预习报告装订在一起交。