常微分方程与动力学系统
常微分方程的周期解的周期性
常微分方程的周期解的周期性在数学中,常微分方程是研究变量之间的关系以及其对应的导数或微分的方程。
周期解是指在一定周期内重复出现的解。
本文将探讨常微分方程的周期解的周期性。
一、周期解的定义在常微分方程中,如果存在一个解函数y(t),使得对于某个正常数T,对于任意实数t,都有y(t + T) = y(t),则称y(t)为方程的一个周期解,T为周期。
二、周期解的周期性质周期解的周期性质可以通过使用数学推导和分析来证明。
1. 唯一性对于一个给定的常微分方程,它可能存在多个周期解,但是每个周期解都有唯一的周期。
这是由于周期解是满足y(t+T)=y(t)的函数,而如果一个解函数y(t)的周期是T1,另一个解函数y(t)的周期是T2,那么它们的周期可以表示为T1的整数倍和T2的整数倍的最小公倍数。
2. 周期解的稳定性对于某些常微分方程,周期解可能是稳定的,即在微小的扰动下仍保持周期性。
这种稳定性可以通过线性化稳定性分析来判断。
线性化稳定性分析是通过计算方程在周期解附近的雅可比矩阵的特征值来确定稳定性。
3. R的周期解对于某些常微分方程,周期解可能形成一个闭合轨道,称为R的周期解。
这些R的周期解在相空间中构成一个封闭曲线,且整个相空间中的解曲线都将趋向于该封闭曲线。
R的周期解在动力系统中具有重要的应用。
三、例子说明以简单的谐振子作为例子来说明周期解的周期性。
谐振子的运动方程可以用常微分方程来描述:m(d^2y/dt^2) + k(y - y0) = 0,其中m和k 分别是质量和弹性系数,y0是平衡位置。
解这个方程可以得到y(t) = A sin(ωt + φ),其中A是振幅,ω是角频率,φ是相位差。
由于sin函数的周期是2π,因此振动解的周期是T = 2π/ω。
这展示了周期解的周期性质。
四、相关应用周期解的周期性质在动力学系统、电路理论、生物学和物理学等领域都有广泛的应用。
在动力学系统中,周期解的周期性质可以用来描述震荡现象和周期性运动。
柳彬常微分方程
柳彬常微分方程柳彬常微分方程是微积分中的一个重要概念,它描述了一个函数与其导数之间的关系。
在数学中,常微分方程是研究函数在一个或多个变量上的导数与函数自身之间关系的方程。
柳彬常微分方程是由中国数学家柳彬提出的,他在研究微分方程的过程中,发现了一类特殊的微分方程,被称为柳彬常微分方程。
柳彬常微分方程的一般形式可以表示为:dy/dx = f(x, y)其中,x是自变量,y是因变量,f是一个给定的函数。
这个方程的含义是描述y关于x的变化率与x和y本身的函数关系。
柳彬常微分方程是一种一阶微分方程,因为它只包含一个未知函数y的导数。
柳彬常微分方程的解是指满足方程的函数y(x),使得当x取任意值时,方程两边的值相等。
在求解柳彬常微分方程时,可以采用不同的方法,如分离变量法、同解叠加法、常数变易法等。
这些方法通过变换方程的形式,将其转化为易于求解的形式,从而得到方程的解析解。
柳彬常微分方程在科学和工程领域有着广泛的应用。
它可以描述物理系统中的运动、化学反应中的物质转化、电路中的电流变化等。
例如,在物理学中,牛顿第二定律可以用常微分方程来描述物体的运动。
在化学动力学中,反应速率可以用常微分方程来描述。
在电路理论中,电流和电压的关系也可以用常微分方程来表示。
除了柳彬常微分方程外,微积分还涉及到其他类型的微分方程,如二阶微分方程、偏微分方程等。
二阶微分方程描述了函数的二阶导数与函数自身的关系,常用于描述振动、波动等现象。
偏微分方程描述了多个变量上的导数与函数自身之间的关系,常用于描述传热、流体力学等问题。
柳彬常微分方程是微积分中的一个重要概念,它描述了函数的变化率与函数自身的关系。
在科学和工程领域,柳彬常微分方程有着广泛的应用,可以用于描述物理系统的运动、化学反应的物质转化、电路中的电流变化等。
通过求解柳彬常微分方程,可以得到方程的解析解,从而对问题进行进一步分析和研究。
微积分中的微分方程是解决实际问题的重要工具,对于深入理解和应用数学具有重要意义。
非线性振动系统的动力学模拟和分析
非线性振动系统的动力学模拟和分析一、引言非线性振动系统是实际工程中经常遇到的一种振动模式,其动力学行为与线性振动系统有很大不同。
为了解决实际问题,需要对非线性振动系统进行深入研究,进一步分析其动力学行为。
本文将着重介绍非线性振动系统的动力学模拟和分析方法,并结合具体实例进行讲解。
二、基本概念1. 非线性振动系统非线性振动系统是指其运动方程中含有非线性项的振动系统。
其动力学行为与线性振动系统有很大不同,例如出现分岔、混沌等现象。
2. 动力学模拟动力学模拟是通过计算机模拟的方法研究动力学系统的行为。
它可以帮助我们深入理解非线性系统的物理现象,预测系统的行为以及设计系统的参数。
三、非线性振动系统动力学模拟方法1. 常微分方程方法其基本思路是通过建立非线性振动系统的运动方程,并运用数值分析方法进行求解。
假设非线性振动系统的运动方程为:$$\frac{d^2x}{dt^2}+f(x)=0$$其中,$x$为系统的位移,$f(x)$为非线性运动方程,可以将其展开为泰勒级数的形式,如下:$$f(x)=a_1x+a_2x^2+a_3x^3+...$$将运动方程离散化后,可以利用数值分析方法,如欧拉法、隐式欧拉法等,进行求解。
2. 辛普森法辛普森法是一种常用的非线性振动系统动力学模拟方法。
其基本思路是利用曲面的形状来逼近曲线,进而求解非线性振动系统的运动方程。
假设非线性振动系统的运动方程为:$$\frac{d^2x}{dt^2}+f(x)=0$$其中,$x$为系统的位移,$f(x)$为非线性运动方程。
将运动方程离散化后,可以利用辛普森法进行求解。
3. 傅里叶级数方法其基本思路是将一个非线性振动系统的运动方程分解为一系列线性微分方程的和,进而用傅里叶变换的方法求解。
假设非线性振动系统的运动方程为:$$\frac{d^2x}{dt^2}+f(x)=0$$其中,$x$为系统的位移,$f(x)$为非线性运动方程。
将运动方程展开为傅里叶级数的形式后,可以用傅里叶变换求解。
常微分方程在物理学中的应用
常微分方程在物理学中的应用
一般来说,常微分方程(ordinary differential equation,简称ODE)是一个描述动力学和热力学系统的重要数学工具,在物理学中有广泛的应用。
从物理角度来说,常微分方程的作用就是描述物质的变化,因而在物理学中的应用也十分广泛。
首先,常微分方程可以用来描述基本物理学里的现象,如总体角动量定律,牛顿力学定律中的牛顿第二定律,以及史特里克斯定律,都可以用来严格的描述小规模物理场的模型。
同时,也可以用它们描述不同的小规模物理现象,如固体力学中的应力-应变模型,流体力学中的流体静力学,热循环等。
其次,还可以把常微分方程应用于量子力学,可以用来表达量子数的变化和演变,从而更有效地分析各种量子现象。
此外,它还可以用于描述自由量子场中的瞬时光学特性和电磁力学特性,使研究者能够从理论上仿真并比较不同物理现象。
最后,常微分方程可以用来表达物理系统的热力学性质。
比如,可以用常微分方程来表达温度和气压之间的关系,可以用来研究能量在不同状态之间的转换,以及在较大空间尺寸或时间尺寸下的流动。
由此可以对整个热力学系统的动力学特性和内外因素进行理论分析。
总之,常微分方程在物理学中应用非常广泛,它可以严格地描述各种小规模物理场的模型,可以用来研究量子力学和热力学等物理系统的性质,也可以用来应对瞬时光学特性和电磁力学特性,因此在科学研究中,它有着重要的作用。
高等数学中的常微分方程与系统动力学
高等数学中的常微分方程与系统动力学在高等数学的学习中,常微分方程与系统动力学是一个非常重要的分支。
它们不仅在数学领域有着广泛的应用,还在物理学、生物学、经济学等多个学科中发挥着重要的作用。
本文将介绍常微分方程与系统动力学的基本概念和应用。
一、常微分方程的基本概念常微分方程是描述变量之间关系的数学方程,其中变量的导数与变量本身的函数关系被称为常微分方程。
常微分方程的求解可以得到关于变量的具体函数形式,从而可以预测和分析系统的行为。
常微分方程可以分为一阶和高阶两类。
一阶常微分方程只涉及到变量的一阶导数,而高阶常微分方程则涉及到变量的高阶导数。
常见的一阶常微分方程包括线性方程、非线性方程和常系数方程等。
二、常微分方程的应用常微分方程在物理学中有着广泛的应用。
以牛顿第二定律为例,可以将物体的运动状态描述为一个二阶常微分方程。
通过求解这个方程,我们可以得到物体的位置、速度和加速度随时间的变化规律。
在生物学中,常微分方程可以用来描述生物体内的生物化学反应、种群动态等。
通过建立适当的方程模型,可以研究生物体的生长、衰老和疾病传播等问题。
在经济学中,常微分方程可以用来描述经济系统中的供求关系、投资决策等。
通过求解这些方程,可以预测经济的发展趋势,为经济政策的制定提供依据。
三、系统动力学的基本概念系统动力学是一种研究动态系统行为的数学方法。
它通过建立动态系统的数学模型,研究系统的稳定性、周期性和混沌性等特性。
系统动力学的核心概念是状态变量和状态方程。
状态变量是描述系统状态的变量,状态方程是描述状态变量之间关系的方程。
通过求解状态方程,可以得到系统的演化规律。
四、系统动力学的应用系统动力学在管理学、环境科学和社会科学等领域中有着广泛的应用。
以管理学为例,系统动力学可以用来分析企业的运营过程、市场竞争和人力资源管理等。
通过建立适当的模型,可以预测企业的发展趋势,为决策提供支持。
在环境科学中,系统动力学可以用来研究环境系统的演化和变化。
常微分方程中的Lyapunov指数
常微分方程中的Lyapunov指数Lyapunov指数是一种用于研究动力系统稳定性的重要工具。
在常微分方程中,Lyapunov指数可以帮助我们判断一个系统的稳定性,从而可以更好地理解物理现象。
本文将从以下几个方面介绍Lyapunov指数。
一、什么是Lyapunov指数?Lyapunov指数是法国数学家Lyapunov在19世纪末首次引入的一个概念,用于描述动力系统在某一相空间内的稳定性。
Lyapunov指数是一个实数,通常用λ表示,其大小代表了系统的稳定程度。
当λ>0时,系统是不稳定的;当λ<0时,系统是稳定的;当λ=0时,系统处于稳态。
二、如何计算Lyapunov指数?计算Lyapunov指数的方法有很多种,其中最为常用的是Kaplan-Yorke公式。
这种方法需要进行线性化处理,将非线性动力系统转化为线性动力系统。
通常用牛顿迭代法求解微分方程,并对每个时间步长进行雅可比矩阵的计算,从而最终得到系统的Lyapunov指数。
三、Lyapunov指数在物理学中的应用Lyapunov指数在物理学中有着广泛的应用,尤其是在研究混沌现象中。
混沌是指系统发生不可预期的非周期性运动,常常出现在分子动力学、天体力学和流体力学中。
利用Lyapunov指数可以判断混沌现象的发生,从而更好地理解这些物理现象。
四、Lyapunov指数在控制系统中的应用除了在物理学中的应用外,Lyapunov指数还被广泛应用于控制系统中。
在控制系统中,通过计算Lyapunov指数可以判断系统是否稳定,并且可以设计出更好的控制策略。
此外,Lyapunov指数还可以用于描述系统的鲁棒性,即系统对干扰的抵抗能力。
五、Lyapunov指数的局限性尽管Lyapunov指数在控制系统和物理学中有着广泛的应用,但是它也存在一些局限性。
首先,计算Lyapunov指数常常非常复杂,需要耗费大量时间和计算资源。
其次,Lyapunov指数只能用于描述系统局部的稳定性,而不能用于描述全局的稳定性。
常微分方程——精选推荐
《数学模型》课 常微分方程补充 ( 2008 )( 摘自《常微分方程学习辅导与习题解答》朱思铭编 )一. 常微分方程基本概念 ( 摘自 四.§1.2 )二. 常微分方程线性奇点 ( 摘自 四.§6.1.3 )三. 极限环和平面图貌 ( 摘自 四.§6.1.4 )四*. 常微分方程内容提要五*. 常微分方程应用实例索引一. 常 微 分 方 程 基 本 概 念 ( §1.2 )微分方程 联系自变量、未知函数及其导数的关系式.实值微分方程 自变量、未知函数均为实值的微分方程.复值微分方程 未知函数取复值或自变量、未知函数均取复值的微分方程. 常微分方程 只有一个自变量的微分方程.偏微分方程 有两个或两个以上自变量的微分方程.一阶微分方程 微分方程中未知函数的导数最高为一阶.n 阶微分方程 微分方程中未知函数的导数最高为n 阶,一般形式为n n dy d y F x y 0dx dx ,,,, ⎛⎫= ⎪ ⎪⎝⎭(38)线性微分方程 n 阶微分方程(38)的左端为,,,n n dy d y y dx dx的一次有理整式称为线性微分方程.n 阶线性微分方程的一般形式为()()()()n n 11n 1n n n 1d y d y dy a x a x a x f x dx dx dx---++++= (39) 其中(),,(),()1n a x a x f x 为x 的函数.非线性微分方程 不是线性微分方程的微分方程.(显式)解 使微分方程(38)变为恒等式的函数()y x =ϕ称为方程的解. 隐式解 如微分方程(38)的解()y x =ϕ由关系式(,)x y 0Φ=决定,称(,)x y 0Φ=为微分方程(38)的隐式解.通解 n 阶微分方程(38)的含有n 个独立的任意常数,,,12n c c c 的解(,,,,)12n y x c c c ϕ=隐式通解(通积分) 由含有n 个独立的任意常数,,,12n c c c 的关系式(,,,,,)12n x y c c c 0Φ= 决定的n 阶微分方程(38)的解.定解条件 为确定微分方程的一个特定的解需附加的条件.定解问题 求微分方程满足定解条件的解的问题.初值条件 n 阶微分方程(38)的初值条件为当0x x =时,()(),,,n 11n 1000n 1dy d y y y y y dx dx---=== 或写为()()()()(),,,n 11n 1000000n 1dy x d y x y x y y y dx dx---=== 初值问题 当定解条件为初值条件时的定解问题.特解 满足定解问题的解.积分曲线 一阶微分方程(,)dy f x y dx= (47) 的解()y x ϕ=在Oxy 平面上表示为一条曲线,称为微分方程(47)的积分曲线.曲线上的点的斜率dy dx值为(,)f x y . 向量场 一阶微分方程(47)的右端函数(,)f x y 定义为在Oxy 平面某区域D 上过各点的小线段(线素)的斜率方向,称域D 为方程(47)所定义的向量场(方向场,线素场).通过向量场可以判断微分方程的解的走向.等倾斜线 向量场中方向相同的曲线(,)f x y k =称为等倾斜线或等斜线. 微分方程组 n 阶微分方程()()(,,',,)n n 1z g t z x z -=可通过变换(),',,n 112n y z y z y z -===化为一阶方程组(,,,),,,,i i 1n dy f t y y i 12n dt ==或写成向量形式(,)=dy f t y dt其中n y D R ∈⊂.驻定微分方程组 微分方程组右端不含自变量t 的方程组()dy f y dt= (50) 动力系统 对n 维空间某区域n D R ⊂的D 到D 的含参数t 的同胚映射(变换) ()t y Φ,如满足恒同性()0y y Φ=和可加性()(())121221t t t t t t y y y ΦΦΦΦΦ+==.则称映射()t y Φ为D 上的动力系统.微分方程所定义的动力系统 由驻定微分方程组过n y D R ∈⊂的解(,)t y ϕ可定义动力系统()(,)t y t y ϕΦ=称为微分方程所定义的动力系统.相空间 不含自变量,仅由未知函数组成的空间.轨线 微分方程的解在相空间中的轨迹,即积分曲线在相空间中的投影.驻定微分方程的解在相空间中的轨线互不相交.奇点(平衡解、驻定解) 驻定微分方程组(50)右端函数()f y 的满足()f y 0=的解y y *=称为方程组的平衡解或驻定解,是方程组在相空间中的奇点.垂直、平行等倾斜线 平面一阶驻定微分方程组(,)(,)dx f x y dt dy g x y dt⎧=⎪⎪⎨⎪=⎪⎩ 等价于一阶微分方程(,),((,))(,)dy f x y g x y 0dx g x y =≠ 或 (,),((,))(,)dx g x y f x y 0dy f x y =≠ 在相平面Oxy 上的等倾斜线(,)(,)f x y k g x y =中,k 0=即(,)f x y 0=时的曲线为垂直等倾斜线;k =∞即(,)g x y 0=时的曲线为平行等倾斜线.垂直、平行等倾斜线的交点为奇点.二. 常 微 分 方 程 线 性 奇 点 ( §6.1.3 )平面驻定微分方程组(,)(,)dx X x y dt dy Y x y dt⎧=⎪⎪⎨⎪=⎪⎩ (1) 其中,X Y 对,x y 有连续偏导数.方程组(1)的解(),()x x t y y t ==在欧几里得空间Otxy 表示为一曲线,称为积分曲线.,x y 平面Oxy 称为相平面,积分曲线在相平面上的投影称为轨线.满足(,),(,)X x y 0Y x y 0==的常数,x x y y **==为方程组(1)的解,称为驻定解(常数解),相平面Oxy 上的点(,)x y **称为方程组的奇点.通过线性变换可将方程组(1)的奇点移至Oxy 的原点上,再取其线性项则得方程组(1)的线性近似方程组dx ax by dt dy cx dy dt⎧=+⎪⎪⎨⎪=+⎪⎩ (2) 线性方程组(2)的特征方程为a b 0c d λλ-=- 即,(),2p q 0p a d q ad bc λλ++==-+=- (3)可以通过方程组的系数即特征方程的根表示相平面Oxy 上奇点(原点)附近的轨线图貌,即奇点的类型:(1) q 0≠ (a) q 0< 有两不同符号实根,奇点为鞍点(b1) ,,2q 0p 4q 0p 0>-<> 有两负实根,奇点为稳定结点(b2) ,,2q 0p 4q 0p 0>-<< 有两正实根,奇点为不稳定结点(c1) ,,2q 0p 4q 0p 0>-=> 有一重负实根,奇点为稳定退化或奇结点 (c2) ,,2q 0p 4q 0p 0>-=<有一重正实根,奇点为不稳定退化或奇结点 (d1) ,,2q 0p 4q 0p 0>->>有一对负实部共轭复根,奇点为稳定焦点 (d2) ,,2q 0p 4q 0p 0>-><有一对正实部共轭复根,奇点为不稳定焦点 (e) ,q 0p 0>= 有一对(零实部)共轭虚根,奇点为中心(2) q 0= (a1) p 0> 有单零根和负实根,过奇点有稳定奇线(a2) p 0< 有单零根和正实根,过奇点有不稳定奇线(b) p 0= 有重零根,过奇点有奇线, 奇线上下有不同走向平行轨线(c) a b c d 0==== 奇点充满全平面三. 极 限 环 和 平 面 图 貌 ( §6.1.4 )(1) 极限环 考虑平面驻定微分方程组(,)(,)dx X x y dt dy Y x y dt⎧=⎪⎪⎨⎪=⎪⎩ (1) 其中,X Y 在相平面的某区域G 内有一阶连续偏导数.方程组(1)在相平面上孤立的周期解(闭轨线),且附近的轨线均趋于(离开)该闭轨线时,称此闭轨线为稳定(不稳定)极限环,如附近的轨线一边趋于另一边离开该闭轨线时,则称此闭轨线为半稳定极限环.环域定理 如果G 内存在有界的环形闭域D ,在其内不含方程组(1)的奇点,而(1)的经过D 上的点的解(轨线)(),()x x t y y t ==当0t t ≥(或0t t ≤)时不离开域D .则或者解本身是周期解(闭轨线),或者解正向(或负向)趋于D 内的某一周期解(闭轨线).如果G内存在单连通区域D*,在其内函数X Yx y∂∂+∂∂不变号且在D*内的任何子域内不恒为零.则方程组(1)在域D*内不存在任何周期解(闭轨线),更不存在任何极限环.在相平面分析中除奇点和极限环两种特殊轨线外,还有一种从奇点到奇点的轨线,这类轨线称为分界线.如果一条分界线与一个奇点构成一个环,则称为同宿环(轨).如果一条分界线两端是不同奇点,则分界线称为异宿轨.当多条分界线与多个奇点构成一个环时则称此环为异宿环.(2) Lienerd 方程 ()()22d x dx f x g x 0dt dt++= (2) 记()(),()x 0dx F x f x dx y F x dt==+⎰,方程(2)可化为方程组 (),()dx dy y F x g x dt dt=-=- (3) 定理 假设 (a) (),()f x g x 对一切x 连续,()g x 满足局部利普希茨条件; (b) ()f x 为偶函数,(),()f 00g x <为奇函数,当x 0≠时()xg x 0>; (c) 当x →±∞时(),()F x F x →±∞有唯一正零点x a =,且当x a ≥时()F x 单调增加.则方程(2)有唯一周期解,即方程组(3)有一个稳定极限环.(3) 平面图貌 对平面驻定方程组(1),在相平面上曲线(,),(,)X x y 0Y x y 0==分别表示轨线的垂直等倾斜线和水平等倾斜线.可利用垂直等倾斜线和水平等倾斜线划分出相平面上的不同区域,每一区域内轨线的,x y 方向的右、左及上、下走向是一致的,有(+,+)、(+,-)、(-,+)、(-,-)四种走向,其中括号内第一个+表向上、-表向下,第二个+表向右、-表向左.应用等倾斜线方法可画出方程组(1)的平面轨线图貌.可以用等倾斜线方法分析两种群模型(1)(1)dx rx ax by dt dy sy cx dy dt⎧=--⎪⎪⎨⎪=--⎪⎩ (6.53)其中r a 、和s d 、均为正常数. 而00b 、c >>时为竞争系统, 00b ><、c 或00b 、c <>时为被捕食-捕食系统, 00b 、c <<时则为共生系统.(4) 对一般的两种群竞争系统(,)(,)dx M x y x dt dy N x y y dt⎧=⎪⎪⎨⎪=⎪⎩ (4) 其中x 与y 的相对增长率M 与N 都是非负变量x y 、的连续函数,有连续一阶偏导数,且一种群增长时另一种群的增长率下降,即00M N y x∂∂<<∂∂、而任一种群过多时两种群都不能增长,故存在常数0K >,当x K ≥或y K ≥时(,)0M x y ≤且(,)0N x y ≤.还设只有一种群时,它将按极限增长,即存在常数00a b ><、使得(,0)0;(,0)0;(0,)0;(0,)0.x a M x x a M x y b N y y b N y <>><<>><当时时当时时在上述条件下,可以通过分析相平面上等倾斜线曲线(,)0M x y =和(,)0N x y =的形状及它们之间的关系. 有定理 两种群竞争一般模型(4)的每一条轨线,当t ∞时都趋于有限个平衡点之一.四. 常 微 分 方 程 内 容 提 要第一章 绪论§1.1.1 常微分方程模型1. RLC 电路 包含电阻R 、电感L 、电容C 及电源的电路称RLC 为电路. 电流I 经过电阻R 、电感L 、电容C 的电压降分别为R I 、dI L dt 和QC, Q 为电量,E 、()e t 为电源电压,dQI dt=.应用基尔霍夫(Kirchhoff)第二定律(在闭合回路中,所有支路上的电压的代数和等于零)可列出RLC 为电路的微分方程:dI R E I dt L L+= 221()d I R dI I de t L dt LC L dt dt++= 初始条件为00()I t I =.2. 数学摆 数学摆是系于一根长度为l 的线上而质量为m 的质点M ,在重力的作用下,它在垂直于地面的平面上沿圆周运动. 摆与铅垂线所成的角为ϕ,M 沿圆周的切向速度为v ,d v l dtϕ=.摆的运动方程为22d gsin 0l dtϕϕ+= 微小振动(ϕ较小时,可用ϕ代替sin ϕ):22d g0l dtϕϕ+= 存在阻力时(阻力系数为μ):22d d g 0m dt l dtϕμϕϕ++= 有强迫力()F t 时:()22d d g 1F t m dt l ml dtϕμϕϕ++= 摆的初始状态:当0t =时00,d dtϕϕϕω== 0ϕ代表摆的初始位置,0ω代表摆的初始角速度.3. 人口模型 Malthus 模型:基本假设是:在人口自然增长的过程中,净相对增长率(单位时间内人口的净增长数与人口总数()N t 之比)是常数,记此常数为r (生命系数)dNrN dt= Logistic 模型:荷兰生物学家Verhulst 引入常数m N (环境最大容纳量)用来表示自然资源和环境条件所能容纳的最大人口数,并假设净相对增长率为m N r 1N ⎛⎫- ⎪⎝⎭,即净相对增长率随()N t 的增加而减少,当()m N t N →时,净增长率0→.m dN N r 1N dt N ⎛⎫=- ⎪⎝⎭ 初始条件为0t t =时()0N t N =4. 传染病模型 假设传染病传播其间其地区总人数n 不变.开始时病人数为0x ,在时刻t 的健康人数为()y t , 病人数为()x t ,k 为传染系数. SI 模型:易感染者(Susceptible),已感染者(Infective), 00(),()dxkx n x x x dt =-= SIS 模型:治愈率为μ时,其平均传染期为1μ,接触数为kσμ=,0()()()(),(0)dx t ky t x t x t x x dtμ=-=SIR 模型:病人治愈后不会再被感染,移出者(Removed). 治愈率l ,0000dxkxy lx x x dtdy kxy y y n x dt ⎧=-=⎪⎪⎨⎪=-==-⎪⎩,(),()5. 两生物种群生态模型 甲、乙两种群的数量分别记为,x y . Volterra 模型:分竞争、共生、捕食与被捕食等类型()()dxx a bx cy dtdyy d ex fy dt⎧=++⎪⎪⎨⎪=++⎪⎩一般两种群竞争系统:(,)M x y 与(,)N x y 为相对于x 与y 的增长率(,)(,)dxM x y x dtdy N x y y dt⎧=⎪⎪⎨⎪=⎪⎩ 6. Lorenz 方程()dxa y x dt dycx y xz dt dzxy bz dt⎧=-⎪⎪⎪=--⎨⎪⎪=-⎪⎩气象学家Lorenz 由大气对流现象模型简化,10,8/3,28a b c ===为参数. 被称为混沌(chaos)现象第一例.*7. 化学动力学模型 化学反应体系,内部包含三种化学成分,A B 和.,x A B 是反映物,x 为中间产物,,,A B x 分别代表A 类、B 类和x 类的分子数.Schlogt 单分子化学动力学模型:体系的状态仅由单个变量x 来表征323210dxk x k Ax k x k B dt=-+-+ 双分子化学动力学模型:有两个中间变量,1223dxk Ax k xy dtdyk xy k y dt⎧=-⎪⎪⎨⎪=-⎪⎩三分子化学动力学模型:开放的体系中进行着一系列化学反应,22(1)dxA B x x y dt dyBx x y dt⎧=-++⎪⎪⎨⎪=-⎪⎩*8. 力学系统中的常微分方程模型 有完整约束的力学系统,可以通过引进广义坐标12(,,)n ϕϕϕ 解除约束, 用一个拉格朗日函数1(,)i L q q 刻画系统, 归结为拉格朗日方程0i i d L Ldt qq ∂∂-=∂∂ .引进广义速度12(,,)n v v v =ν ,用广义动量Lp q∂=∂ 代表广义速度v ,再通过拉格朗日变换(,)(,)H q p q p L q q =- ,便得到等价于拉格朗日方程的哈密顿正则方程dq H dt pdp H dt q ∂⎧=⎪∂⎪⎨∂⎪=-⎪∂⎩或 dx Hdt y dy H dt x∂⎧=-⎪∂⎪⎨∂⎪=⎪∂⎩§1.2 常微分方程基本概念微分方程 联系自变量、未知函数及其导数的关系式. 实值微分方程 自变量、未知函数均为实值的微分方程.复值微分方程 未知函数取复值或自变量、未知函数均取复值的微分方程. 常微分方程 只有一个自变量的微分方程.偏微分方程 有两个或两个以上自变量的微分方程. 一阶微分方程 微分方程中未知函数的导数最高为一阶.n 阶微分方程 微分方程中未知函数的导数最高为n 阶,一般形式为n n dy d y F x y 0dx dx ,,,, ⎛⎫= ⎪ ⎪⎝⎭(38) 线性微分方程 n 阶微分方程(38)的左端为,,,n n dy d yy dx dx 的一次有理整式称为线性微分方程.n 阶线性微分方程的一般形式为()()()()n n 11n 1n n n 1d y d y dya x a x a x f x dx dx dx---++++= (39)其中(),,(),()1n a x a x f x 为x 的函数.非线性微分方程 不是线性微分方程的微分方程.(显式)解 使微分方程(38)变为恒等式的函数()y x =ϕ称为方程的解. 隐式解 如微分方程(38)的解()y x =ϕ由关系式(,)x y 0Φ=决定,称(,)x y 0Φ=为微分方程(38)的隐式解.通解 n 阶微分方程(38)的含有n 个独立的任意常数,,,12n c c c 的解(,,,,)12n y x c c c ϕ=隐式通解(通积分) 由含有n 个独立的任意常数,,,12n c c c 的关系式(,,,,,)12n x y c c c 0Φ= 决定的n 阶微分方程(38)的解.定解条件 为确定微分方程的一个特定的解需附加的条件. 定解问题 求微分方程满足定解条件的解的问题. 初值条件 n 阶微分方程(38)的初值条件为当0x x =时,()(),,,n 11n 1000n 1dy d y y y y y dx dx---=== 或写为()()()()(),,,n 11n 1000000n 1dy x d y x y x y y y dx dx ---=== 初值问题 当定解条件为初值条件时的定解问题. 特解 满足定解问题的解. 积分曲线 一阶微分方程(,)dyf x y dx= (47) 的解()y x ϕ=在Oxy 平面上表示为一条曲线,称为微分方程(47)的积分曲线.曲线上的点的斜率dydx值为(,)f x y . 向量场 一阶微分方程(47)的右端函数(,)f x y 定义为在Oxy 平面某区域D 上过各点的小线段(线素)的斜率方向,称域D 为方程(47)所定义的向量场(方向场,线素场).通过向量场可以判断微分方程的解的走向.等倾斜线 向量场中方向相同的曲线(,)f x y k =称为等倾斜线或等斜线. 微分方程组 n 阶微分方程()()(,,',,)n n 1z g t z x z -=可通过变换(),',,n 112n y z y z y z -===化为一阶方程组(,,,),,,,ii 1n dy f t y y i 12n dt==或写成向量形式(,)=dyf t y dt其中n y D R ∈⊂.驻定微分方程组 微分方程组右端不含自变量t 的方程组()dyf y dt = (50) 动力系统 对n 维空间某区域n D R ⊂的D 到D 的含参数t 的同胚映射(变换)()t y Φ,如满足恒同性()0y yΦ=和可加性()(())121221t t t t t t y y y ΦΦΦΦΦ+==.则称映射()t y Φ为D 上的动力系统.微分方程所定义的动力系统 由驻定微分方程组过n y D R ∈⊂的解(,)t y ϕ可定义动力系统()(,)t y t y ϕΦ=称为微分方程所定义的动力系统.相空间 不含自变量,仅由未知函数组成的空间.轨线 微分方程的解在相空间中的轨迹,即积分曲线在相空间中的投影.驻定微分方程的解在相空间中的轨线互不相交.奇点(平衡解、驻定解) 驻定微分方程组(50)右端函数()f y 的满足()f y 0=的解y y *=称为方程组的平衡解或驻定解,是方程组在相空间中的奇点.垂直、平行等倾斜线 平面一阶驻定微分方程组(,)(,)dxf x y dtdy g x y dt⎧=⎪⎪⎨⎪=⎪⎩ 等价于一阶微分方程(,),((,))(,)dy f x y g x y 0dx g x y =≠ 或 (,),((,))(,)dx g x y f x y 0dy f x y =≠ 在相平面Oxy 上的等倾斜线(,)(,)f x y k g x y =中,k 0=即(,)f x y 0=时的曲线为垂直等倾斜线;k =∞即(,)g x y 0=时的曲线为平行等倾斜线.垂直、平行等倾斜线的交点为奇点.雅可比矩阵 n 个变元,,,12n x x x 的m 个函数(,,,),,,,i i 12n y f x x x i 12m ==的雅可比矩阵定义为(,,,)(,,,)111n 12m 12n m m 1n y y xx D y y y D x x x y y x x ∂∂⎡⎤⎢⎥∂∂⎢⎥=⎢⎥⎢⎥∂∂⎢⎥⎢⎥∂∂⎣⎦雅可比行列式 n 个变元的n 个函数的雅可比矩阵对应的行列式. 函数相关、函数无关 设函数(,,,)(,,,)i i 12n y f x x x i 12m == 及其一阶偏导数在某区域n D R ⊂上连续.如果D 内,,,12m f f f 中的一个函数能表成其余函数的函数,则称它们函数相关;如果它们在D 内任何点的邻域均不是函数相关,则称它们函数无关.如果雅可比矩阵在D 内任何点的秩均小于m ,则,,,12m f f f 函数相关;如其秩均等于m ,则,,,12m f f f 函数无关.当n m =时雅可比行列式不等于零为函数无关.第二章 一阶微分方程的初等解法§2.1 变量分离方程与变量变换 (1) 变量分离方程 ()()dyf xg y dx= 解法:(),()()()dydyf x dx f x dx Cg y g y ==+⎰⎰(2) 齐次方程dy y g dx x ⎛⎫= ⎪⎝⎭解法:变量变换 ,ydy du u x u x dx dx ==+,方程化为变量分离方程()du g u udx x-=(3) 分式线性方程111222a x b y c dy dx a x b y c ++=++ 或 111222a x b y c dy f dx a x b y c ⎛⎫++= ⎪++⎝⎭解法:(ⅰ) 120c c == 情形: 1122ya b dy y x g y dx x a b x+⎛⎫== ⎪⎝⎭+ 属齐次方程. (ⅱ)1122a b k a b == 情形:令22u a x b y =+,方程化为221222()()()k a x b y c dy f u dx a x b y c ++==++ 22()dua b f u dx=+ 属变量分离方程. (ⅲ) 一般情形:先解联立代数方程11122200a x b y c a x b y c ++=⎧⎨++=⎩ 得解 x y αβ=⎧⎨=⎩ 再作代换 X x Y y αβ=-⎧⎨=-⎩ ,则将原方程化为齐次方程 dY Y g dX X ⎛⎫= ⎪⎝⎭§2.2 线性方程与常数变易法 (1) 一阶齐线性方程()dyP x y dx= 用变量分离方法得通解 ()P x dx y ce ⎰= (2) 常数变易法 对一阶非齐线性方程 ()()dyP x y Q x dx=+ 假设有形式解()()P x dxy c x e ⎰= 代入方程化简得 ()()()P x dxc x Q x e dx c -⎰=+⎰ 原方程的通解为()()()P x dxP x dx y e Q x e dx c -⎛⎫⎰⎰=+ ⎪⎝⎭⎰ (3) 伯努利方程()()n dyP x y Q x y dx=+ 变量变换 1n z y -= 化为线性方程求解(1)()(1)()dzn P x z n Q x dx=-+-§2.3 恰当方程与积分因子(1) 恰当方程 将一阶微分方程写成对称形式 (,)(,)0M x y dx N x y dy += 如方程右端恰可表为某函数(,)u x y 的全微分:(,)(,)(,)M x y dx N x y dy du x y +≡ 则称方程为恰当方程.恰当方程的通解为 (,)u x y c =.方程为恰当方程的充分必要条件为M Ny x∂∂=∂∂ ,此时有 (,)(,)(,)u M x y dx N x y M x y dx dy y ⎡⎤∂=+-⎢⎥∂⎣⎦⎰⎰⎰(2) 分项组合全微分方法 将恰当方程的各项分项组合成全微分形式 简单二元函数的全微分: 2(),y d x x d y xy d x x d y d x yd y y ⎛⎫-+== ⎪⎝⎭2,ln ydx xdyy ydx xdyx d d x xy y x ⎛⎫-+-⎛⎫== ⎪ ⎪⎝⎭⎝⎭ 22221,ln2ydx xdy y ydx xdy x yd arctg d x x yx y x y ⎛⎫---⎛⎫== ⎪ ⎪++-⎝⎭⎝⎭(3) 积分因子 如存在连续可微函数(,)x y μ,使得Mdx Ndy du μμ+=则称(,)x y μ为方程0Mdx Ndy +=的积分因子.同一方程可以有不同的积分因子.μ为积分因子的充分必要条件:()()M N y x μμ∂∂=∂∂即M N N M x y y x μμμ⎛⎫∂∂∂∂-=- ⎪∂∂∂∂⎝⎭(4) 单变量积分因子()()x y μμ、 ()x μμ=形式的积分因子的充分必要条件:()M Ny xx Nψ∂∂-∂∂=,此时积分因子为()()x dx x e ψμ⎰=. 同样,()y μμ=形式的积分因子的充分必要条件: ()M Ny xx Mϕ∂∂-∂∂=-,此时积分因子为()()y dyy e ϕμ⎰=.§2.4 一阶隐方程与参数表示一阶隐微分方程形式为 (,,')0F x y y =.(1) (,')y f x y = 令'y p = 对(,')y f x y =取x 微分得f f dp p x p dx∂∂=+∂∂,视为,x p 的一阶微分方程解之,解为(,)p x c ϕ=时原解为(,(,))y f x x c ϕ=;解为(,)x p c ψ=时原解为 (,)((,),)x p c y f p c p ψψ=⎧⎨=⎩. (2) (,')x f y y = 令'y p = 对(,')x f y y =取y 微分得1f f dp p y p dy∂∂=+∂∂,视为,y p 的一阶微分方程解之,解为(,)p y c ϕ=时原解为(,(,))x f y y c ϕ=;解为(,)y p c ψ=时原解为 (,(,))(,)x f y p c y p c ψψ=⎧⎨=⎩. (3) (,')0F x y = 令'y p =,方程化为(,)0F x p =,代表(,)x p 平面上的一条曲线.如有参数解()()x t y t ϕψ=⎧⎨=⎩,则原方程的通解为 ()()'()x t y t t dt c ϕψϕ=⎧⎪⎨=+⎪⎩⎰. (4) (,')0F y y = 令'y p =,方程化为(,)0F y p =,代表(,)y p 平面上的一条曲线.如有参数解()()x t y t ϕψ=⎧⎨=⎩,则原方程的通解为 '()()()t x dt c t y t ϕψψ⎧=+⎪⎨⎪=⎩⎰.第三章 一阶微分方程的解的存在定理§3.1 解的存在唯一性定理与逐步逼近法(1) 微分方程00(,),,dy f x y R x x a y y b dx =-≤-≤: 称(,)f x y 在R 上关于y 满足利普希茨条件,如存在常数0L >满足121222(,)(,),(,)(,)f x y f x y L y y x y x y R -≤-∈、L 称为利普希茨常数.当(,)f x y 在R 上f y∂∂存在且连续,则(,)f x y 在R 上关于y 满足利普希茨条件. 存在唯一性定理1 如(,)f x y 在R 上连续且关于y 满足利普希茨条件,则方程(,),dy f x y dx=在区间0x x h -≤上存在唯一解00(),()y x x y ϕϕ==,其中 (,)min ,,max (,)x y R b h a M f x y M ∈⎛⎫== ⎪⎝⎭(2) 隐方程 (,,')0F x y y =存在唯一性定理 2 如(,,')F x y y 在'000(,,)x y y 的某邻域中对(,,')x y y 连续且存在连续偏导数,同时''000000(,,)0,(,,)0'F x y y F x y y y ∂=≠∂.则方程(,,')0F x y y =存在唯一解'0000(),(),'()y x x y x y ϕϕϕ===.(3) 逐步迫近法 微分方程(,)dy f x y dx=等价于积分方程00(,)x x y y f x y dx =+⎰ 取00()x y ϕ=,定义001()(,()),1,2,x n n x x y f x x dx n ϕϕ-=+=⎰ 可证明lim ()()n n x x ϕϕ→∞=的()y x ϕ=满足积分方程.通过逐步迫近法可证明解的存在唯一性.先证积分方程与微分方程等价(命题1);后用数学归纳法证定义的()n x ϕ存在且连续(命题2);再证()n x ϕ在区间一致收敛(命题3);于是()x ϕ是积分方程连续解(命题4);最后,用反证法证解唯一(命题5).(4) 近似计算 逐步迫近法中第n 次近似解()n x ϕ和真解()x ϕ有误差估计式1()()(1)!n n n ML x x h n ϕϕ+-≤+ 可以通过控制h 和n 使上不等式右端误差值足够小,而得到满足误差估计的近似解()n x ϕ.§3.2 解的延拓(1) 局部利普希茨条件 对域称函数(,)f x y 在某区域G 内每一点有以其为中心的完全被含于G 内的闭矩形R 存在,在R 上(,)f x y 关于y 满足利普希茨条件,则称(,)f x y 在G 内满足局部利普希茨条件.(2) 延拓定理 如(,)f x y 在某有界区域G 内连续且关于y 满足局部利普希茨条件,则方程(,)dy f x y dx=的通过G 内任何一点00(,)x y 的解()y x ϕ=可以延拓,直到点(,())x x ϕ任意接近区域G 的边界.(3) 饱和解 方程(,)dy f x y dx=的解()y x ϕ=的定义区间为x αβ<<,且当0x α→+或0x β→-时(,())x x ϕ趋于G 的边界,则称解()y x ϕ=为饱和解.当G 是无界区域时,方程(,)dy f x y dx=的解可能无界,αβ、亦可以是∞∞-、+. (4) 如(,)f x y 在整个x y 平面上定义、连续和有界,且存在关于y 的连续偏导数,则方程(,)dy f x y dx=的任一解均可延拓到区间x -∞<<+∞.§3.3 解对初值的连续性和可微性定理(1) 解对初值的对称性定理 设方程(,)dy f x y dx =的满足初值条件00()y x y =的解是唯一的,记为00(,,)y x x y ϕ=,则(,)x y 与00(,)x y 对称,即有00(,,)y x x y ϕ=.(2) 解对初值的连续依赖定理 如(,)f x y 在域G 内连续且关于y 满足局部利普希茨条件,0000(,),(,,)x y G y x x y ϕ∈=是方程(,)dy f x y dx=的满足初值条件00()y x y =的解,在区间a x b ≤≤上有定义(0a x b ≤≤),则对任0ε>,有(,,)a b δδε=,使得当2220000()()x x y y δ-+-≤时方程(,)dy f x y dx=的满足条件00()y x y =的解00(,,)y x x y ϕ=在区间a x b ≤≤上也有定义,且0000(,,)(,,),x x y x x y a x b ϕϕε-<≤≤解对初值的连续性定理 如(,)f x y 在域G 内连续且关于y 满足局部利普希茨条件,则方程(,)dy f x y dx=的解00(,,)y x x y ϕ=作为00,,x x y 的函数在它的存在范围内是连续的. (3) 解对初值的可微性定理 如(,)f x y 和f y ∂∂在域G 内连续,则方程(,)dy f x y dx =的解00(,,)y x x y ϕ=作为00,,x x y 的函数在它的存在范围内是连续可微的.(4) 含参数微分方程(,,)dy f x y dxλ=,用G λ表示域:(,),G x y G λαλβ∈<<: 如(,,)f x y λ在域G λ内连续且关于y 满足局部利普希茨条件,当其利普希茨常数L 与λ无关时称为G λ内一致地关于y 满足局部利普希茨条件.含参数方程的解对初值和参数的连续依赖定理 如(,,)f x y λ在域G λ内连续且在G λ内一致地关于y 满足局部利普希茨条件,000000(,,),(,,,)x y G y x x y λλϕλ∈=是方程(,,)dy f x y dxλ=的通过点000(,,)x y G λλ∈的解,在区间a x b ≤≤上有定义(0a x b ≤≤),则对任0ε>,有(,,,,)a b δδεαβ=,使得当2222000000()()()x x y y λλδ-+-+-≤时方程(,,)dy f x y dxλ=的通过点000(,,)x y Gλλ∈的解000(,,,)y x x y ϕλ=,在区间a x b ≤≤上也有定义,且 000000(,,,)(,,,),x x y x x y a x b ϕλϕλε-<≤≤含参数方程的解对初值的连续性定理 如(,,)f x y λ在域G λ内连续且在G λ内一致地关于y 满足局部利普希茨条件,则方程(,,)dy f x y dxλ=的解000(,,,)y x x y ϕλ=作为000,,,x x y λ的函数在它的存在范围内是连续的.§3.4* 奇解(1) 包络 对单参数曲线族(,,)0x y c Φ=其中c 是参数, Φ是x y c 、、的连续可微函数. 曲线族的包络曲线指它本身在曲线族中,但过包络曲线的每一点有曲线族中向一条曲线在该点与其相切.(2)c -判别曲线 曲线族0Φ=的包络存在于下两方程'(,,)0(,,)0c x y c x y c Φ=⎧⎪⎨Φ=⎪⎩ 消去c 而得的曲线中,称为c -判别曲线.c -判别曲线需通过实际检验才能确定是否是曲线族的包络.(2) 奇解 奇解是微分方程的解,但其解曲线上每一点处唯一性不成立. 奇解定理 一阶微分方程的通解的包络如存在,则它是奇解.反之亦然.(3) 隐微分方程,,0dy F x y dx ⎛⎫= ⎪⎝⎭的奇解,被包含在方程组 '(,,)0(,,)0pF x y p F x y p =⎧⎪⎨=⎪⎩ 消去p 而得的曲线 (称为p -判别曲线) 中.需通过实际检验才能确定是否是奇解.(4) 克莱罗方程 (),dy y xp f p p dx=+= (()f p 连续可微) 的通解是一直线族()y cx f c =+.此直线族的包络为方程的奇解.可用c -判别曲线求其包络(奇解).§3.5 数值解(1)求微分方程的初值问题00(,),()dy f x y y x y dx == (3.39)的解y y x =(),从初值条件00y x y ()=出发,按照一定的步长h ,依某种方法逐步计算微分方程解y x ()的值n n y y x ()=,这里0h x x n h =+⋅.这样求出的解称为数值解.用一种方法,其局部截断误差为步长h 的1()p O h +时称此方法有p 阶精度.(2) 欧拉公式(1阶精度): 10(,),n n n n n y y h f x y x x n h +=+⋅=+⋅ 改进的欧拉方法(2阶精度): 11112(,),((,)(,))n n n n n n n n n n h y y h f x y y y f x y f x y ++++=+⋅=++ (3) r 段(阶)龙格-库塔方法:11rn n i i i y y h k λ+==+∑112(,),,,j j n j n js s s k f x d h y h k j r β-==++=∑二阶龙格-库塔公式(2阶精度):2r =, 1221222111,,22d d d λλβ=-== 四阶龙格-库塔公式(4阶精度):4r =112341213243(22)6(,)(,)22(,)22(,)i i i i i i i i i i h y y k k k k k f x y h h k f x y k h h k f x y k k f x h y hk +⎧=++++⎪⎪=⎪⎪⎪=++⎨⎪⎪=++⎪⎪=++⎪⎩(4) 相容性:当0h →时平均斜率趋近真正斜率.局部截断误差为p 阶时相容称为p 阶相容.收敛性:当0h →时计算公式收敛于精确解.整体误差()n n n e y x y =-(在整个区间0[,]n x x ).p 阶收敛:如存在正数M ,其整体误差p n e Mh ≤.定理 不计舍入误差时,p 阶相容的方法一定是p 阶收敛的.(5) 刚性问题:微分方程组的初值问题中方程组的解的各分量值存在数量级的差别.微分方程组线性近似部分其特征值实部的绝对值中最大与最小之比称为刚性比.刚性比很大的刚性问题其数值方法与常规数值方法有所不同.第四章 高阶微分方程§4.1 线性微分方程的一般理论(1) 基本概念 n 阶非次齐线性微分方程(非齐线性方程)1111()()()()n n n n n n d x d x dx a t a t a t x f t dt dt dt---++++= (1) 当非齐次线性方程(1)中函数()0f t ≡时称为n 阶齐次线性微分方程(齐线性方程)1111()()()0n n n n n n d x d x dx a t a t a t x dt dt dt---++++= (2) 伏朗斯基行列式(函数()(1,,)i x t i k = 在区间a t b ≤≤可微1k -次)12'''1212(1)(1)(1)12()()()()()()()[(),(),,()]()()()k k k k k k k x t x t x t x t x t x t W t W x t x t x t x t x t x t ---==线性相关:对定义在区间a t b ≤≤上的函数()(1,,)i x t i k = ,如存在不全为零的常数(1,,)i c i k = ,使得在整个区间a t b ≤≤上恒成立1122()()()0k k c x t c x t c x t +++≡ ,不是线性相关的函数()(1,,)i x t i k = 称为在所给区间上线性无关. 基本解组(基解组) n 阶齐次线性方程(2)的一组n 个线性无关解.(2) 齐次线性方程基本性质:(a) 存在唯一性 设()(1,,)i a t i k = 区间a t b ≤≤上连续,则对任0[,]t a b ∈及任意初值(1)(1)000,,,n x x x - ,方程(1) 存在唯一解()x t ϕ=定义于区间a t b ≤≤上,且满足初始条件1(1)(1)0000001()()(),,,n n n d t d t t x x x dt dtϕϕϕ---=== . 注意 00()()k k k k t t d t d t dt dt ϕϕ==. (b) 叠加原理 对方程(2)的k 个解12(),(),,()k x t x t x t 的线性组合1122()()()k k c x t c x t c x t +++也是方程(2)的解.其中12,,,k c c c 为任意常数.(c) 定理 若函数12(),(),,()n x t x t x t 在区间a t b ≤≤上线性相关或无关,则在区间a t b ≤≤上它们的伏朗斯基行列式()0W t ≡或恒不为零.(d) 齐次线性方程(2)的基本解组的伏朗斯基行列式恒不为零.(e) 通解结构 设12(),(),,()n x t x t x t 是齐次线性方程(2)的一个基本解组.则齐次线性方程(2)的通解可表为1122()()()n n x c x t c x t c x t =+++ (3)其中12,,,k c c c 为任意常数.通解包括了齐次线性方程(2)的所有解.(3)非齐次线性方程基本性质:(a) 存在唯一性 设()(1,,)i a t i k = 和()f t 区间a t b ≤≤上连续,则对任0[,]t a b ∈及任意初值(1)(1)000,,,n x x x - ,方程(1) 存在唯一解()x t ϕ=定义于区间a t b ≤≤上,且满足初始条件1(1)(1)0000001()()(),,,n n n d t d t t x x x dt dtϕϕϕ---=== . (b) 如(),()x t x t 分别为n 阶线性方程(1),(2)的解,则()()x t x t +也是方程(1)的解.如12(),()x t x t 均为方程(1)的解,则12()()x t x t -是方程(2)的解.(c) 通解结构 设12(),(),,()n x t x t x t 是齐次线性方程(2)的一个基本解组.()x t 是方程(1)的某一解(特解).则非齐次线性方程(1)的通解可表为1122()()()()n n x c x t c x t c x t x t =++++其中12,,,k c c c 为任意常数.反之,对方程(1)的所有解,必存在常数12,,,k c c c ,表为上述形式.(d) 常数变易法 当已知方程(2)的一个基本解组12(),(),,()n x t x t x t 时,可用常数变易法求得方程(1)的解11()()()n ni i i i i i x x t x t t dt γϕ===+∑∑⎰其中()i t ϕ为由n 次微分通解式(3)得到的n 个方程。
动力学常微分方程的时间积分方法 pdf
动力学常微分方程的时间积分方法 pdf动力学常微分方程是解析物理系统中运动状态的重要工具。
时间积分方法是一种将这些微分方程数值解离散化的方法。
这篇文章将介绍动力学常微分方程的时间积分方法,包括以下几个步骤。
第一步是将微分方程离散化。
在时间积分方法中,时间被划分成许多步骤。
在每个时间步骤中,微分方程被离散化为一组代数方程。
这些代数方程描述了系统在该时间步骤内的状态。
第二步是选择时间步骤的大小。
时间步骤的大小取决于所研究的系统的特点。
如果系统的运动比较慢,时间步骤可以更大一些。
但是,如果系统的运动非常迅速,则需要使用更小的时间步骤。
选择正确的时间步骤大小对于数值解的准确性至关重要。
第三步是选择时间积分方法。
有许多时间积分方法可供选择。
其中一些最常用的方法是欧拉法,改进的欧拉法,四阶基于龙格-库塔(RK4)的积分方法。
每个方法的特点不同,所以需要根据所研究的系统的特点选择正确的方法。
第四步是求解代数方程。
一旦时间步骤和时间积分方法被选择,就需要求解代数方程。
这些方程通常由线性代数方法求解,如矩阵乘法,高斯消元法,雅可比迭代法等。
第五步是重复整个过程。
通过选择不同的时间步骤大小和时间积分方法,可以比较不同的数值解。
根据这些解可以得出结论,并确定所研究的系统的特征。
综上所述,动力学常微分方程的时间积分方法是解析物理系统的一种有力工具。
理解这个过程的每个步骤非常重要,以充分利用该方法来研究物理系统的运动状态。
动力学系统中的常微分方程解析
动力学系统中的常微分方程解析动力学系统是研究物理、化学、生物等领域现象演化规律的重要数学工具。
经典动力学中研究的主要是质点、刚体等宏观物体的运动规律,而现代动力学中越来越多地采用微观物理结构和量子力学的相关理论来描述系统的动力学特性,具有更广泛的应用和理论研究空间。
常微分方程是动力学系统的数学基础,因为动力学系统的演化本质上是一个随时间变化的状态,而常微分方程便是描述状态随时间变化的工具。
解析方法是求解常微分方程的重要方法之一,它是指根据初值条件和解析式,通过代数运算、函数分析等方法求得方程的解析解。
解析方法通常适用于简单的、具有特殊结构的微分方程,可以得到具有精度和可解释性的解析结果,对于动力学系统的分析和计算有较大的优势。
常微分方程的解析方法分为分离变量、一阶齐次、一阶非齐次、二阶齐次、二阶非齐次等几类。
其中,分离变量法是最常用的一种,它适用于可以将常微分方程化为形如dy/dx=f(x)g(y)的形式,并通过变量分离和函数积分得到解析解的方程。
例如,简谐振动可以用二阶齐次常微分方程描述,它可以通过代数方法化为一阶形式,再使用分离变量的方法求得解析解。
一阶齐次方程是形如dy/dx = f(y)/g(x)的常微分方程,其中f(y)和g(x)是两个实函数。
它的解析解可以使用变量代换和积分得到,并且具有唯一解性质。
一阶非齐次方程则需要分别求解其对应的齐次方程的通解和非齐次项的特解,二者通过线性叠加得到完整的解析解。
对于高阶的常微分方程,可以使用欧拉方程、变量替换等方法将其化为低阶常微分方程的形式,然后使用已有的解析方法求解。
此外,常微分方程还可以应用变分原理、特征方程等特殊方法得到解析解,需要根据具体问题选择不同的解析方法。
总之,解析方法是求解常微分方程的重要方法之一,它可以得到具有精度和可解释性的解析结果,对于动力学系统的分析和计算有重要意义。
但是,对于复杂的非线性微分方程,解析方法可能会面临困难,需要使用数值方法求解。
常微分方程课件
在经济中的应用
描述经济现象:通过常微分方程描述经济现象的变化趋势和规律 预测经济走势:利用常微分方程对经济走势进行预测和分析 优化资源配置:通过常微分方程找到最优的资源配置方案,提高经济效益 制定经济政策:利用常微分方程分析政策对经济的影响,制定合理的经济政策
在生物与工程中的应用
描述种群增长模型
常微分方程是描述函数随时间变化的数学模型。 常微分方程的性质包括解的存在性、唯一性和连续依赖性。 解的存在性是指对于给定的初值问题,存在至少一个解。 唯一性是指对于给定的初值问题,存在唯一的解。
分类与表示方法
线性微分方程: 形如y' = px + q的方程,其中p 和q是常数
非线性微分方程: 形如y' = f(y)的 方程,其中f(y) 是一个关于y的 函数
一阶微分方程: 只含有一个自变 量和一个导数的 微分方程
高阶微分方程: 含有多个自变量 和多个导数的微 分方程
求解方法简介
分离变量法 变量代换法 欧拉方法 龙格-库塔方法
03 一阶常微分方程
一阶线性微分方程
定义:形如 y'=f(x)g(y)的 一阶微分方程, 其中f和g都是
可导函数。
求解方法:通 过变量分离法、 积分因子法、 公式法等求解。
感谢您的观看
汇报人:
分岔与混沌
分岔:当系统的参数发生变化时,系统的定性行为发生突然改变的现象。 混沌:在确定性非线性系统中,由于对初值的高度敏感性而产生的复杂运动状态。 举例:Lorenz 方程。 应用:天气预报、生态学、经济学等。
定性理论的应用与限制
应用领域:物理学、生物学、经济学等 解决实际问题:解释自然现象、预测未来趋势等 限制:定性理论无法处理某些复杂系统或非线性问题 未来研究方向:如何克服定性理论的局限性,拓展其应用范围
系统动力学的9种模型解析
系统动力学的9种模型解析标题:系统动力学的9种模型解析引言:系统动力学是一种研究动态复杂系统行为的数学方法,广泛应用于经济学、生态学、管理学等领域。
本文将深入探讨系统动力学的9种常见模型,并分析其理论基础和应用领域。
通过对这些模型的解析,旨在帮助读者更深入地理解系统动力学及其在实践中的作用。
第一部分:系统动力学概述在介绍具体的模型之前,有必要先了解系统动力学的基本概念和原理。
系统动力学着重于分析系统内部各个组成部分之间的相互关系,通过建立微分方程等数学模型来描述系统的演化过程。
这一方法注重动态演化和非线性特性,在解决复杂问题时具有独特的优势。
第二部分:9种系统动力学模型1. 常微分方程模型:系统动力学的基础,用于描述动态系统的变化过程。
2. 资源流模型:关注系统内资源的流动和变化,适用于生态学、能源管理等领域的研究。
3. 增长模型:研究系统中因子的增长和衰减,可应用于经济学、人口学等领域。
4. 循环模型:探讨系统中的循环过程,如经济周期的波动,可应用于宏观经济研究。
5. 积聚模型:研究系统中积聚和堆积的过程,如资本积累,适用于经济学和企业管理等领域。
6. 信息流模型:研究系统中信息传递和决策的影响,可用于管理学和组织行为学的研究。
7. 优化模型:优化系统中某些指标的值,如最大化效益或最小化成本,适用于运筹学等领域。
8. 非线性模型:考虑系统中的非线性效应,如混沌和复杂性的产生,广泛应用于自然科学和社会科学。
9. 策略模型:研究系统中不同决策对结果的影响,适用于战略管理和政策制定等领域。
第三部分:系统动力学的理论与实践系统动力学的理论基础包括建模、仿真和分析等方法。
通过系统动力学模型,我们可以深入研究系统的行为、寻找潜在问题,并基于模型结果做出合理的决策。
在实践中,系统动力学可应用于企业管理、政策制定、环境保护等领域,为问题解决提供了一种全面和系统的方法。
第四部分:总结与回顾通过对系统动力学的9种模型的解析,我们可以看到系统动力学对于复杂问题的分析和理解具有重要意义。
4-1第四章 常微分方程ppt课件
第一节 常微分方程
一、引例 [曲线方程]
一平面曲线上任一点的切线斜率等于该点横坐标的二倍,试 建立该曲线满足的方程式.
解 设所求曲线为yfx由导数的几何意义知,曲线上任一点 px,y处的切线斜率为 y 根据题意有 y2x即
dy 2x dx
w精w选w.2c0e2c1.e版du课.c件n
4
第一节 常微分方程
二、概念和公式的引出
凡含有未知函数导数(或微分)的方程,称为微分方程.微分方程 有时也简称为方程. 未知函数为一元函数的微分方程称为常微分方程. 微分方程中未知函数的导数的最高阶数称为微分方程的阶. 任何满足微分方程的函数都称作微分方程的解. 如果微分方程中含有任意常数,且独立变化的任意常数的个数与 微分方程的阶数相同,这样的解称作微分方程的通解.不含任意 常数的解称作微分方程的特解.
dPtkPt k0常数
dt
等式右端的负号是由于 Pt随时间 t 的增加而减少.
研究
w精w选w.2c0e2c1.e版du课.c件n
6
第一节 常微分方程
案例2 [自由落体运动] 一质量为m的质点,在重力作用下自由下落, 求其运动方程. 解 建立坐标系如图,坐标原点取在水平地面, y轴铅直向上,设在时刻
约翰.伯努利(Johann Bernoulli 1667-1748), 雅可布的弟弟,原来也错选了职业,他起先学医,并在 1694年获得巴塞尔大学博士学位,论文是关于肌肉收缩问 题的。但他也爱上了微积分,很快就掌握了它,并用它来解决几何学、 微分方程和力学上的许多问题。1695年他任荷兰戈罗宁根大学数学物 理教授,而在他的哥哥雅可布死后继任巴塞尔大学教授。1696年约翰 向全欧洲数学家挑战,提出一个很艰难的问题:“设在垂直平面内有 任意两点,一个质点受地心引力的作用,自较高点下滑至较低点,不 计摩擦,问沿着什么曲线下滑,时间最短?” 这就是著名的“最速降线”问题。它的难处在于和普通的极大极 小值求法不同,它是要求出一个未知函数(曲线),来满足所给的条 件。这问题的新颖和别出心裁引起了很大兴趣,罗比塔、伯努利兄弟、 莱布尼茨和牛顿都得到了解答。
非线性动力学系统的数值模拟
非线性动力学系统的数值模拟非线性动力学系统是自然界和人工系统中普遍存在的一类系统,其行为规律无法简单地用线性关系描述。
数值模拟非线性动力学系统是研究这类系统行为的重要手段之一。
本文将介绍非线性动力学系统的基本概念和数值模拟方法,并结合具体例子进行阐述。
一、非线性动力学系统概述非线性动力学系统的定义是:系统中的因果关系不仅仅依赖于输入的线性关系,而且可能存在非线性项。
这些系统在演化过程中具有多样的行为,例如周期性、混沌和奇异吸引子等。
非线性动力学系统广泛应用于物理学、工程学、生物学和社会科学等领域。
二、数值模拟方法数值模拟非线性动力学系统的目标是通过离散化的时间步骤来近似系统的持续演化。
常用的数值模拟方法包括常微分方程数值解法、映射法和蒙特卡洛方法等。
1. 常微分方程数值解法常微分方程数值解法是数值模拟非线性动力学系统最常用的方法之一。
常见的数值解法有欧拉法、龙格-库塔法和四阶龙格-库塔法等。
这些方法根据系统的特性和所需精度选择合适的数值积分算法。
2. 映射法映射法是一种离散时间系统的数值模拟方法。
该方法将连续时间系统离散化为一系列映射关系,通过迭代计算系统的状态演化。
常用的映射法有Henon映射、Logistic映射和Lorenz映射等。
3. 蒙特卡洛方法蒙特卡洛方法是通过随机抽样和统计分析来模拟非线性动力学系统。
通过生成符合系统演化规律的随机数序列,并对大量样本进行统计,可以获得系统的平均性质和概率分布等信息。
三、具体例子下面以经典的洛伦兹吸引子为例,介绍非线性动力学系统数值模拟的步骤和结果展示。
洛伦兹吸引子是描述大气对流现象中的非线性动力学行为的一个模型。
其动力学方程为:dx/dt = σ(y - x),dy/dt = x(ρ - z) - y,dz/dt = xy - βz。
其中,x、y和z是系统状态变量,t是时间,σ、ρ和β是系统的参数。
通过选择适当的参数值,可以观察到洛伦兹吸引子的演化过程。
线性动力学系统的建模及其控制研究
线性动力学系统的建模及其控制研究线性动力学系统是一种常见的物理系统模型。
它具有优良的数学性质和简单的结构,经常被用来描述物理现象和工程问题。
在控制领域中,线性动力学系统被广泛应用于控制系统的设计和分析中。
本文将从线性动力学系统的建模和控制两个方面进行讨论。
一、线性动力学系统的建模1.动力学方程线性动力学系统的动力学方程通常采用微分方程的形式表示。
微分方程描述了系统状态随时间的演化规律。
对于线性动力学系统,其动力学方程通常为一阶或二阶线性微分方程。
例如,考虑一个简单的弹簧振子系统,其动力学方程可以表示为:m*x'' + b*x' + k*x = f(t)其中,m、b、k分别为弹簧的质量、阻尼系数和弹性系数,x为弹簧的位移,f(t)为外部施加的力。
2.状态空间模型除了用微分方程描述动力学方程外,线性动力学系统还可以采用状态空间模型表示。
状态空间模型将系统的状态表示成一组向量,然后通过状态方程和输出方程描述系统状态随时间的演化规律和输出值的计算。
例如,考虑一个简单的电路系统,其状态方程和输出方程可以分别表示为:dx/dt = A*x + B*uy = C*x + D*u其中,x为系统状态向量,u为输入向量,y为输出向量,A、B、C、D为系统参数矩阵。
3.传递函数模型线性动力学系统还可以采用传递函数模型表示。
传递函数模型将输入和输出之间的关系表示成一个有理函数,通常用拉普拉斯变换转换为复频域形式表示。
传递函数模型具有直观性和可操作性,经常被用来分析系统的频率特性和稳定性。
例如,对于一个简单的单输入单输出系统,其传递函数可以表示为:G(s) = Y(s) / U(s) = (K / (s*T+1))其中,K为系统增益,T为系统时间常数。
二、线性动力学系统的控制研究1.稳定性分析系统的稳定性是控制系统设计和分析的基础。
对于线性动力学系统,其稳定性可以通过系统参数和初始条件判断。
通常采用Lyapunov稳定性理论、Routh稳定性准则、根轨迹法等方法进行分析。
常微分方程与动力系统
常微分方程与动力系统的研究进展
05
数值计算方法的发展
早期方法:有限差分法和有限元法
01
02
现代方法:谱方法、有限体积法和无网格法
数值软件:MATLAB、COMSOL和FEniCS等
03
04
应用领域:科学计算、工程技术和物理模拟等
理论分析的进展
数值解法:从有限差分法到有限元法、谱方法等
分岔与混沌理论:研究复杂系统的动态行为
预测未来状态
单击此处输入(你的)智能图形项正文,文字是您思想的提炼,请尽量言简意赅的阐述观点
设计实验方案
在化学中的应用
描述化学反应的动力学行为
预测化学反应的进程和结果
研究化学反应的稳定性和平衡态
分析化学反应的复杂性和非线性行为
在生物中的应用
描述种群增长模型
描述生理周期模型
描述神经传导模型
描述生态平衡模型
实际应用的研究:将常微分方程与动力系统的理论应用于实际问题中,如物理、生物、经济等领域的问题
常微分方程与动力系统的实际案例分析
06
人口动态模型
人口动态模型是一类常微分方程模型,用于描述人口随时间变化的规律。
该模型基于生物学和统计学原理,考虑出生率、死亡率、迁移率等因素对人口数量的影响。
通过求解人口动态模型,可以预测未来人口数量和结构的变化趋势,为政策制定和资源分配提供科学依据。
神经网络模型
简介:神经网络模型是一种模拟人类神经系统的计算模型,通过模拟神经元之间的连接和信号传递过程,实现机器学习和人工智能应用。
原理:神经网络模型由多个神经元组成,每个神经元接收输入信号并产生输出信号,通过调整神经元之间的连接权重,使得神经网络能够自适应地学习和识别各种数据模式。
非线性动力学的基本概念与原理
非线性动力学的基本概念与原理随着科技的不断发展,物理学等领域也在不断的深入研究。
非线性动力学作为其中一个分支,正逐渐受到人们的关注。
本文就来探讨一下非线性动力学的基本概念与原理。
一、什么是非线性动力学非线性动力学是指研究系统的运动规律与演变过程的学科,它关注的是系统在不同状态下的演化和转化,以及其中的规律性和混沌性等。
非线性动力学最初是由Poincare在竞赛中研究和发现,它和线性动力学不同,线性动力学的系统遵循着线性守恒定律,其状态随时间呈现出稳定的周期振动。
而非线性动力学的系统则会存在不稳定、混沌等问题。
二、非线性动力学的原理非线性动力学的研究涉及到的内容很广泛,包括了力学、物理、生物、化学等多个领域。
其中,非线性动力学的基本原理主要有以下几个方面:1. 非线性系统非线性系统指的是系统中存在着不同程度的非线性关系,常常会出现不可预测的现象。
非线性动力学所研究的系统大多数是非线性系统。
2. 混沌混沌是非线性系统中十分特殊的一种状态,其表现为在一定的参数条件下,系统与初始条件有很大的敏感性,从而使得系统呈现出不规则、复杂的运动状态。
混沌状态包括了自相似、自组织凝聚等自适应现象。
混沌现象的研究对于改变系统的状态具有十分重要的意义。
3. 红外、紫外发散非线性动力学研究中出现的红外、紫外发散问题,是指在计算中出现的无限大结果,其存在导致计算的结果并不精确。
红外、紫外发散问题是非线性动力学中非常常见的问题之一,也是研究非线性动力学的一个难点。
4. 动力学方程动力学方程是非线性动力学中最重要的基础之一,它是描述系统动力学过程的基本工具,也是研究系统演化的数学模型。
动力学方程可以通过数学计算来得到系统运动的轨迹和演化规律,因此其研究对于了解非线性动力学系统的运动规律是必不可少的。
5. 常微分方程常微分方程是非线性动力学中应用最为广泛的数学工具之一,它描述了一些时间变化连续的系统,可用于描述许多非线性动力学系统的演化规律。
常微分方程内容方法与技巧
必修三会考测试题(100分)一、选择题(50分)1.下列主张体现春秋战国时期儒家思想的是A.仁者爱人,民贵君轻B.祸兮福之所倚,福兮祸之所伏C.兼爱非攻,节用尚俭D.发不阿贵,以法治国2.提出“罢黜百家,独尊儒术”的思想家是A.荀匡B.董仲舒C.朱熹D.陆九渊3.朱熹提出“存天理,灭人欲”,其中“天理”主要是指A.天道的运行法则B.社会的发展规律C.封建的道德规范D.“天人感应”理论4.明末李贽说:“夫天生一人,自有一人之用,不待取给孔子而后足也。
若必待取足于孔子,则千古以前无孔子,终不得为人乎?”其思想核心是A.维护封建礼教B.主张学以致用C.反对迷信封建D.抨击腐朽统治5.黄宗羲指出:“古者以天下为主,君为客。
凡君之毕世而经营者,为天下也;今也以君为主,天下为客。
凡天下亡地而得安宁者,为君也。
”反映的核心思想是A.维护封建礼教B.抨击君主专制C.提倡经世致用D.主张君主立宪6.在我国古代医药学的重要成就中,奠定后世中医临床学理论基础的是A.《伤寒杂病论》B.《本草纲目》C.《千金方》D.《黄帝内经》E.五禽戏7.被称为中医学奠基之作的是A.《伤寒杂病论》B.《本草纲目》C.《千金方》D.《黄帝内经》E.五禽戏8.总结我国北方农业生产经验且为我国现存最早最完整的农书是A.《氾胜之书》 B.《齐民要术》 C.《农书》 D.《农政全书》9. 余秋雨说:“汉字是第一项中华文明长寿的秘密,……它是活着的图腾,永恒的星辰”。
汉字是世界上最古老的的文字之一,下列关于汉字字体按出现先后顺序排列正确的是A.甲骨文、楷书、隶书、篆书B.甲骨文、篆书、隶书、楷书C.篆书、甲骨文、隶书、楷书D.楷书、甲骨文、篆书、隶书10.有西方学者认为:“近代世界赖以建立的种种发明与发现可能有一半来源于中国。
”传入欧洲并对近代世界产生深远影响的宋代科技成就是A.地动仪B.造纸术C.雕版印刷术D.指南针11.中国古代四大发明对欧洲近代社会产生重大影响。
数学的动力系统
数学的动力系统数学的动力系统是研究在时间上随着某种规律变化的数学对象的行为的一个分支。
它的研究对象可以是常微分方程、差分方程、迭代函数等。
动力系统的研究使我们能够更好地理解自然界和社会现象中的规律性行为,并且在应用方面也有着广泛的应用。
一、动力系统的基本概念动力系统的研究首先需要理解几个基本概念。
1. 流形:流形可以理解为具有某种结构的空间。
在动力系统中,我们通常考虑的是具有平滑结构的流形。
2. 相空间:相空间描述了动力系统中所有可能的状态的集合。
对于一个具体的系统,其相空间的维度取决于系统的自由度。
3. 相轨道:相轨道是指动力系统中某个初始条件下的演化路径。
相轨道可以用来描述系统的演化过程。
4. 不变集:不变集是指在动力系统中保持不变的子集。
不变集可以是一个点、一条轨道或一个区域。
二、动力系统的性质动力系统的性质可以通过对系统的相轨道进行分析来研究。
1. 稳定性:稳定性是指当初始条件发生微小扰动时,系统是否能够保持在原有的轨道上演化。
对于稳定性的研究可以帮助我们理解系统的长期行为。
2. 周期性:周期性是指系统在相空间中重复出现的现象。
周期轨道是动力系统中重要的研究对象,通过对周期轨道的研究可以揭示系统的周期性行为。
3. 混沌现象:混沌是指动力系统中出现的不可预测的、高度敏感的行为。
混沌现象常常出现在非线性动力系统中,它使得系统的行为表现出随机性和复杂性。
三、动力系统在现实中的应用动力系统的研究不仅仅局限于理论层面,它在现实中也有着广泛的应用。
1. 天体力学:天体力学是动力系统中一个重要的应用领域。
通过对天体运动的动力学行为进行研究,我们能够更好地理解行星运动、星际尘埃云的演化等现象。
2. 经济学:经济学中的许多问题都可以用动力系统的方法进行建模和分析。
例如,经济增长模型、市场交易模型等都可以用动力系统的理论进行研究。
3. 生物学:生物学中也有很多现象可以用动力系统的方法进行描述。
例如,种群动力学模型可以用来研究物种的繁衍与灭绝、生态系统的稳定性等问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《常微分方程》课程大纲
一、课程简介
课程名称:常微分方程学时/学分:3/54
先修课程:数学分析,高等代数,空间解析几何,或线性代数(行列式,矩阵与线性方程组,线性空间F n,欧氏空间R n,特征值与矩阵的对角化), 高等数学(多元微积分,无穷级数)。
面向对象:本科二年级或以上学生
教学目标:围绕基本概念与基本理论、具体求解和实际应用三条主线开展教学活动,通过该课程的教学,希望学生正确理解常微分方程的基本概念,掌握基本理论和主要方法,具有一定的解题能力和处理相关应用问题的思维方式,如定性分析解的性态和定量近似求解等思想,并希望学生初步了解常微分方程的近代发展,为学习动力系统学科的近代内容和后续课程打下基础。
二、教学内容和要求
常微分方程的教学内容分为七部分,对不同的内容提出不同的教学要求。
(数字表示供参考的相应的学时数,第一个数为课堂教学时数,第二个数为习题课时数)
第一章基本概念(2,0)
(一)本章教学目的与要求:
要求学生正确掌握微分方程,通解,线性与非线性,积分曲线,线素场(方
向场),定解问题等基本概念。
本章教学重点解释常微分方程解的几何意义。
(二)教学内容:
1.由实际问题:质点运动即距离与时间关系(牛顿第二运动定律),放射性元素衰变过程,人口总数发展趋势估计等,通过建立数学模型,导出微分方程。
2.基本概念(常微分方程,偏微分方程,阶,线性,非线性,解,定解问题,特解,通解等)。
3.一阶微分方程组的几何定义,线素场(方向场),积分曲线。
4.常微分方程所讨论的基本问题。
第二章初等积分法(4,2)
(一)本章教学目的与要求:
要求学生熟练掌握分离变量法,常数变易法,初等变换法,积分因子法等初等解法。
本章教学重点对经典的几类方程介绍基本解法,勾通初等积分法与微积分学基本定理的关系。
并通过习题课进行初步解题训练,提高解题技巧。
(二)教学内容:
1. 恰当方程(积分因子法); 2. 分离变量法
3. 一阶线性微分方程(常数变易法)
4. 初等变换法(齐次方程,伯努利方程,黎卡提方程)
5.应用举例
第三章常微分方程基本定理(10,2)
(一)本章教学目的与要求:
要求学生正确掌握存在和唯一性定理及解的延伸的含义,熟记初值问题的解存在唯一性条件,正确理解解对初值和参数的连续依赖性和可微性的几何含意。
本章教学重点是介绍常微分方程基本定理,给出几何含意,不追求定理条件的减弱,所涉及的方程至少是连续,使条件、结论及证明简洁,学生易于掌握,也为本学科的后续课程奠定基础。
在习题课中,可介绍这些基本定理的应用,如证明初等函数恒等式,及推导欧拉公式。
(二)教学内容:
1. 皮卡存在和唯一性定理,用构造毕卡序列,并有它的一致收敛性来证明此定理;
2. 佩亚若存在定理;
3.解的延拓(几何含意);用两个例子说明延拓到边界的含义:时间的边界或状态空间的边界。
4. 解的全局存在唯一性定理,为动力系统理论奠定基础。
5. 比较定理(几何含意);
6.解对初值和参数的连续依赖性(几何含意);
7.解对初值和参数的连续可微性(几何含意)。
第四章奇解(2,1)
(一)本章教学目的与要求:
要求学生正确掌握微分方程奇解的定义,并对几类一阶隐式方程会求奇解。
本章教学重点是给出奇解的几何含意:不满足微分方程解的存在唯一性定理。
(二)教学内容:
1. 一阶隐式方程; 2. 奇解;
3.包络
第五章高阶微分方程与线性微分方程组(12,4)(一)本章教学目的与要求:
要求学生掌握高阶微分方程转化为微分方程组的方法,准确掌握向量函数线性无关,基础解阵等基本概念和常数变易法,待定系数法,叠加原理,刘维尔公式等;熟记线性齐次方程组解空间的结构和通解表示;熟练掌握exp(At)和基本解阵的计算,以及初值问题的求解。
本章教学重点是线性齐次方程组解空间的结构和线性非齐次微分方程组通解表示,在习题课上加强求常系数线性微分方程组通解的训练,并介绍用计算机符号运算系统软件包计算exp(At)。
(二)教学内容:
1.高阶微分方程
(高阶微分方程与方程组关系,一般理论,高阶常系数线性微分方程的解法)
2.线性微分方程组(线性方程组的矩阵记法; 定解问题和向量,矩阵的模;
初值问题解的存在唯一性,齐次方程组解空间的结构; 非齐次线性微分方程组和常数变易公式);
3. 常系数线性微分方程组(e xp(At)的定义,性质和计算; 齐次方程组的基本解阵和初值问题;非齐次方程组及其初值问题)
4. 周期系数的线性微分方程组
第六章首次积分(6,2)
(一)本章教学目的与要求:
要求学生正确掌握首次积分的定义,性质和求首次积分的基本方法。
本章教学重点是首次积分的性质和意义,它可看作线性微分方程组的一般理论在非线性微分方程组中的推广。
习题课上加强首次积分求法的训练,和保守系统判定。
(二)教学内容:
1.首次积分的定义;
2. 首次积分的性质(首次积分存在的充要条件,通过首次积分可降阶,
通积分);
3.首次积分的存在性,保守系统,梯度系统。
第七章定性理论与分支理论初步(6,1)
(一)本章教学目的与要求:
要求学生正确掌握动力系统的基本概念,奇点及其分类,李雅普诺夫函数,稳定和渐近稳定等概念;
熟练掌握判别二阶线性系统奇点分类及其稳定性;掌握用线性近似判别奇点的稳定性,以及初步掌握李雅普诺夫第二方法。
本章教学重点是奇点及其分类,李雅普诺夫函数,稳定和渐近稳定等概念;以及用线性近似判别奇点的稳定性和初步掌握李雅普诺夫第二方法使用。
(二)教学内容:
1. 动力系统、相空间与轨线(相空间、轨线、平衡点(奇点)、动力系统等);
2. 解的稳定性(李雅普偌夫稳定性定义, 线性近似判别稳定性, 李雅普偌夫
第二方法)
3. 结构稳定与分支
4. 平面动力系统的奇点与极限环(以Van der Pol 方程为例介绍概念)。
三、课程考核及说明
最终成绩由平时作业、课堂表现、小组大作业、结业考试成绩组合而成。
各部分所占比例如下:
平时作业和上课参与程度:10%。
主要考核对知识点的掌握程度、口头及文字表达能力。
小组大作业及报告讨论:20%。
主要考核应用所学知识分析解决问题、创造性工作及文字表达等方面的能力。
结业考试:70%,主要考核对常微的基本概念和基本理论,以及求解的技巧和方法的掌握程度和应用能力。
四、教材与参考资料
丁同仁,李承治《常微分方程》,高等教育出版社,2004
Morris W. Hirsch, Stephen Smale and Robert L. Devaney, “Differential Equa-
tions, Dynamical System & An Introduction to Chaos“, Elsevier. 2007
Weinan E,“Introduction to Ordinary Differential Equations
and Dynamical Systems“,2009。