高一数学期中考试 试题卷

合集下载

2024-2025学年上期高一年级期中考试数学试题

2024-2025学年上期高一年级期中考试数学试题

2024-2025学年上期高一年级期中考试数学试题(满分150分,考试时间120分钟)注意事项:1.答题前,考生务必将自己的姓名、考号填写在答题卡上相应的位置。

2.作答时,全部答案在答题卡上完成,答在本试卷上无效。

3.考试结束后,只交答题卡,试卷由考生带走。

一、单项选择题:本大题共 8 小题,每小题 5 分,共 40 分. 在每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.1.若集合,集合,,则A ∪(C U B )=( )A .B .C .D .2.“”是“”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件3.已知,,则( )A .B .C .D .4.已知函数,( )A .B .C .D .15.函数的定义域为( )A .B .C .D .6.为提高生产效率,某公司引进新的生产线投入生产,投入生产后,除去成本,每条生产线生产的产品可获得的利润(单位:万元)与生产线运转时间(单位:年)满足二次函{}1,2,3,4U ={}1,2A ={}2,3B ={}2{}1,3{}1,2,4{}1,2,302x <<13x -<<0a b >>d c <0ac bd >>ac bd >a c b d +>+0a cb d +>+>211,1()1,11x x f x x x ⎧--≤⎪=⎨>⎪+⎩((2))f f =15-151-()()01f x x =-2,3⎛⎫+∞ ⎪⎝⎭()2,11,3∞⎡⎫⋃+⎪⎢⎣⎭()2,11,3∞⎛⎫⋃+ ⎪⎝⎭2,3⎡⎫+∞⎪⎢⎣⎭s t数关系:,现在要使年平均利润最大,则每条生产线运行的时间t 为( )年.A .7B .8C .9D .107.已知函数,且,则实数的取值范围是( )A .B .C .D .8.德国著名数学家狄利克雷在数学领域成就显著,以其命名的函数f (x )={1, x ∈Q0, x ∈C R Q 被称为狄利克雷函数,其中为实数集,为有理数集,以下关于狄利克雷函数的四个结论中,正确的个数是( )个.①函数偶函数;②函数的值域是;③若且为有理数,则对任意的恒成立;④在图象上存在不同的三个点,,,使得∆ABC 为等边角形. A .1B .2C .3D .4二、多项选择题:本大题共 3 小题,每小题 6 分,共 18 分. 在每小题给出的四个选项中,有多项符合题目要求. 全部选对得 6 分,选对但不全的得部分分,有选错的得0分.9.下列说法正确的有( )A .命题“,”的否定是“,”B .若,则C .命题“,”是假命题D .函数是偶函数,且在上单调递减.10.下列选项中正确的有( )A .已知函数是一次函数,满足,则的解析式可能为B .与表示同一函数C .函数的值域为224098s t t =-+-()()4f x x x =+()()2230f a f a +-<a ()3,0-()3,1-()1,1-()1,3-R Q ()f x ()f x ()f x {}0,10T ≠T ()()f x T f x +=x R ∈()f x A B C 1x ∀>20x x ->1x ∃≤20x x -≤a b >22ac bc ≥Z x ∀∈20x >21y x =()0,∞+()f x ()()98f f x x =+()f x ()34f x x =--||()x f x x =1,0()1,0x g x x >⎧=⎨-≤⎩()2f x x =+(,4]-∞D .定义在上的函数满足,则11.下列命题中正确的是( )A .若,,,则B .已知,,,则的最小值是C .若,则的最小值为4D .若,,,则的最小值为三、填空题:本大题共 3 小题,每小题 5 分,共 15 分.12.已知集合,若,则实数13.已知函数,则的单调增区间为14.若定义在上的函数同时满足;①为奇函数;②对任意的,,且,都有.则称函数具有性质P .已知函数具有性质P ,则不等式的解集为 .四、解答题:本题共 5 小题,共 77 分. 解答应写出文字说明、证明过程或演算步骤.15.已知集合,.(1)当时,求,,A ∩(C R B ); (2)若,求实数m 的取值范围.16.已知关于x 的不等式的解集为.(1)求m ,n 的值;(2)正实数a ,b 满足,求的最小值.R ()f x 2()()1f x f x x --=+()13x f x =+0a >0b >21a b +=ab 0a >0b >32a b +=12a b a b+++20ab >4441a b ab ++0a >0b >31132a b a b+=++2+a b 165{}21,2,1A a a a =---1A -∈a =()2f x x x x =-+()f x (,0)(0,)-∞+∞ ()f x ()f x 1x 2(0,)x ∈+∞12x x ≠x f x x f x x x -<-211212()()0()f x ()f x 2(4)(2)2f x f x x --<+{}27|A x x =-<<{}|121B x m x m =+≤≤-4m =A B ⋂A B A B B = 2200x mx --<{}2|x x n -<<2na mb +=115a b+17.已知幂函数为偶函数.(1)求的解析式; (2)若在上是单调函数,求实数的取值范围.18.已知函数.(1)证明:函数是奇函数;(2)用定义证明:函数在上是增函数;(3)若关于的不等式对于任意实数恒成立,求实数的取值范围.19.已知函数(1)证明:,并求函数的值域;(2)已知为非零实数,记函数的最大值为.①求;②求满足的所有实数.()()2157m f x m m x -=-+()f x ()()3g x f x ax =--[]1,3a ()31x f x x x =++()f x ()f x ()0,∞+x ()()2310f ax ax f ax ++-≥x a ()()f x g x ==()()222f x g x =+()f x a ()()()x x h f g x a =-()m a ()m a ()1m a m a ⎛⎫= ⎪⎝⎭a。

山东省菏泽市2024-2025学年高一上学期11月期中考试数学(B卷)试卷(含解析)

山东省菏泽市2024-2025学年高一上学期11月期中考试数学(B卷)试卷(含解析)

2024—2025学年度第一学期期中考试高一数学试题(B )2024.11注意事项:1.本试卷分选择题和非选择题两部分.满分150分,考试时间120分钟.2.答题前,考生务必将姓名、班级等个人信息填写在答题卡指定位置.3.考生作答时,请将答案答在答题卡上.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫来黑色墨水签字笔在答题卡上各题的答题区域内作答.超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效.一、选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合要求的.1.已知集合,,则中最小的3个元素为( )A .2,4,6B .0,4,8C .0,2,4D .4,8,122.命题“,”的否定是( )A .,B .,C .,D .,3.下列命题正确的是( )A .B .C .D .,4.某店家经销甲、乙两件商品,国庆节期间甲商品的利润率为,乙商品的利润率为,两件商品共可获利160元;国庆节后,甲商品的利润率为,乙商品的利润率为,两件商品共可获利200元.则两件商品的进价分别为( )A .甲400元,乙1000元B .甲800元,乙800元C .甲1000元,乙500元D .甲1200元,乙200元5.不等式成立的一个充分不必要条件为( ){}2,A x x n n ==∈N {}4,B x x n n ==∈N A B ⋂()7,3x ∀∈-[)7,3x ∈-()7,3x ∀∈-[)7,3x ∉-()7,3x ∀∉-[)7,3x ∉-()7,3x ∃∉-[)7,3x ∈-()7,3x ∃∈-[)7,3x ∉-22a b a b >⇒>b d ad bc a c >⇒>11a b a b >⇒>0b a >>0a m a m b m b +>⇒>+10%12%15%10%2605000x x -+<A.B .C .D .6.若函数有三个零点,,,若,则零点所在区间为( )A .B .C .D .7.已知函数的图象如图所示,则关于的不等式的解集为( )A .B .C .D .8.已知函数是定义在R 上的函数,若对于任意,都有,则实数的取值范围是( )A .B .(0,+∞)C .D .二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知为任意实数,关于的方程,则( )A .当时,方程有两实数根B .当时,方程有两异号的实数根C .当时,方程有两实数根,,则D .若方程有两个实数根,,则10.已知函数,则( )A .当时,有最小值―2B .的图象关于原点对称3020x -<1050x -<10050x x -<-()()()21050200x x x ---<()32f x x ax bx c =+++1-10x ()2,3c ∈0x ()2,3()3,4()4,5()5,6()()20f x ax bx c a =++≠x 20cx ax b ++≥1,12⎡⎤-⎢⎥⎣⎦[]2,1-(][),21,-∞-+∞ [)1,1,2⎛⎤-∞-+∞ ⎥⎝⎦ ()21f x ax =+1213x x ≤<≤()()12122f x f x x x ->--a {}01,3⎡⎫-+∞⎪⎢⎣⎭1,03⎡⎫-⎪⎢⎣⎭m x 2210x x m -+-=2m ≤1m <4m =1x 2x 123x x =1x 2x 121121x x m +=-()14f x x x=+-0x >()f x ()()4g x f x =+C .在(―1,1)上为减函数D .有且只有两个零点11.若,表示不超过的最大整数,例如:,,已知函数,则( )A .B .在上单调递增C .有无数个零点D .值域为三、填空题:本题共3小题,每小题5分,共15分.12.已知集合,,若,则实数的取值范围为 .13.已知,则的最大值为 ,取得最大值时的的值为 .14.学校教室与办公室相距米,某同学有重要材料要送交给老师.他从教室出发先匀速跑步2分钟来到办公室,在办公室停留2分钟,然后匀速步行6分钟返回教室,请写出该同学行走路程关于时间的函数关系式的 .四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知集合,.(1)若,求实数的取值范围;(2)若,求实数的取值范围.16.已知定义在上的偶函数在上单调递减,且.(1)求不等式的解集;(2)比较与的大小.17.解关于x 的不等式ax 2-(2a +3)x +6>0(a ∈R ).18.已知.(1)判断奇偶性并用定义证明;(2)判断在上的单调性并用定义证明;(3)求的值域.19.对于定义域为的函数,如果存在区间,同时满足:①在上是单调函数;()f x ()f x x ∈R []x x []2.13-=-[]3.13=()[]g x x x =-()()2.13g g -<-()g x [)(),1n n n +∈N ()g x ()g x [)0,1[]1,2A =-[],1B p p =+B A ⊆p (),2x ∞∈--()42f x x x =++()f x x a y t {}22A x a x a =<<-{}17B x x =≤≤B A ⊆a A B ⊆a R ()f x [)0,+∞()20f =()220f x ->()223f a a -+()2f -()2211x f x x +=-()f x ()f x ()1,+∞()f x D ()y f x =[],m n D ⊆()f x [],m n②当时,,则称是该函数的“优美区间”.(1)求证:是函数的一个“优美区间”;(2)求证:函数不存在“优美区间”;(3)已知函数有“优美区间”,当取得最大值时求的值.[],x m n ∈()[],f x m n ∈[],m n []0,3()319f x x =()11g x x=-()()()221,0a a x h x a a a x +-=∈≠R [],m n n m -a答案1.B解析:,,故中最小的3个元素为0,4,8.故选:B2.D解析:“,”的否定是“,”.故选:D3.D解析:A 选项,不妨设,满足,但,,A 错误;B 选项,,若,此时,即,不妨设,此时,满足,但,B 错误;C 选项,不妨设,满足,但,C 错误;D 选项,,因为,,故,则,即,D 正确.故选:D4.C解析:设甲,乙商品的进价分别元,则,解得,所以两件商品的进价分别为甲1000元,乙500元,C 正确.故选:C5.D解析:由,即,解得,{}{}2,0,2,4,6,8,10,A x x n n ==∈=N {}{}4,0,4,8,12,B x x n n ==∈=N A B ⋂()7,3x ∀∈-[)7,3x ∈-()7,3x ∃∈-[)7,3x ∉-0,1a b ==-a b >220,1a b ==22a b <0b d bc ad a c ac--=>0ac >0bc ad ->bc ad >1,0,2,1a b c d ====-0112->b d a c>bc ad >1,2a b =-=-a b >11a b<()()()b a m a m a ab bm ab am b m b b b m b b m -++---==+++0b a >>0m >0,0b a b m ->+>()()0b a m a m a b m b b b m -+-=>++a m a b m b +>+,x y 10%12%16015%10%200x y x y +=⎧⎨+=⎩1000500x y =⎧⎨=⎩2605000x x -+<()()10500x x --<1050x <<对于A :由,即,解得,所以是不等式成立的充要条件,故A 错误;对于B :由,即,解得,因为真包含于,所以是不等式成立的必要不充分条件,故B 错误;对于C :由,解得,所以是不等式成立的充要条件,故C 错误;对于D :由,解得或,因为真包含于,所以是不等式成立的充分不必要条件,故D 正确.故选:D6.A 解析:依题意可得,则,所以,显然为连续函数,又,所以,,,,,根据零点存在性定理可知的第三个零点.故选:A7.B解析:由二次函数的图象可知,函数的图象开口向上,且该函数的图象与轴相切,对称轴为直线,所以,,且,则,,不等式即,即,解得,3020x -<203020x -<-<1050x <<3020x -<2605000x x -+<1050x -<501050x -<-<4060x -<<()10,50()40,60-1050x -<2605000x x -+<10050x x -<-1050x <<10050x x -<-2605000x x -+<()()()21050200x x x ---<1020x <<2050x <<()()10,2020,50 ()10,50()()()21050200x x x ---<2605000x x -+<()()110110f a b c f a b c ⎧=+++=⎪⎨-=-+-+=⎪⎩01a c b +=⎧⎨=-⎩()32f x x cx x c =--+()f x ()2,3c ∈()2630f c =-<()32480f c =->()460150f c =->()5120240f c =->()6210350f c =->()f x ()02,3x ∈()f x x 1x =()()2212f x a x ax ax a =-=-+0a <2b a =-c a =20cx ax b ++≥220ax ax a +-≥220x x +-≤21x -≤≤因此,不等式的解集为.故选:B.8.C解析:因为,所以,故,令,则,故在上单调递增,即在上单调递增,若,此时在上单调递增,满足要求,若,当时,需满足,解得或,或与取交集得,当时,需满足,解得,与取交集得,综上,.故选:C9.AB解析:对于A :因为,当时,所以方程有两实数根,故A 正确;对于B :若方程有两异号的实数根,则,解得,即当时,方程有两异号的实数根,故B 正确;对于C :当时,方程无实数根,故C 错误;对于D :若方程有两个实数根,,则,即,当时,方程的两根,,显然无意义,故D 错误.故选:AB20cx ax b ++≥[]2,1-1213x x ≤<≤()()()()12121212222f x f x f x f x x x x x ->-⇒-<-+-()()112222f x x f x x +<+()()2F x f x x =+()()12F x F x <()()2F x f x x =+[]1,3()221ax x F x =++[]1,30a =()21F x x =+[]1,30a ≠0a >212a-≤0a >1a <-0a >1a <-0a >0a >0a <232a -≥103a -≤<103a -≤<0a <103a -≤<13a ≥-()()224184m m ∆=---=-2m ≤840m ∆=-≥Δ84010m m =->⎧⎨-<⎩1m <1m <4m =()()2244180∆=--⨯-=-<1x 2x 840m ∆=-≥2m ≤1m =220x x -=12x =20x =121121x x m +=-10.ABD解析:A 选项,,由基本不等式得,当且仅当,即时,等号成立,A 正确;B 选项,的定义域为,则,故为奇函数,图象关于原点对称,B 正确;C 选项,的定义域为,由对勾函数性质知,在上为减函数,而在上不为减函数,C 错误;D 选项,令得,解得,故有且只有两个零点,D 正确.故选:ABD 11.BCD解析:因为,所以,,所以,故A 错误;当时,,所以,所以在上单调递增,故B 正确;当时,,则,所以有无数个零点,故C 正确;由取整函数定义可得,所以,所以函数的值域为,故D 正确;故选:BCD12.解析:,显然,故,解得,0x >()1442f x x x =+-≥=-1x x=1x =()()14g x f x x x =+=+()(),00,-∞+∞ ()()11g x x x g x x x ⎛⎫-=--=-+=- ⎪⎝⎭()()4g x f x =+()f x ()(),00,-∞+∞ ()f x ()()1,0,0,1-()1,1-()0f x =140x x+-=2=x ()f x ()[]g x x x =-()[]()2.1 2.1 2.1 2.130.9g -=---=---=()[]()333330g -=---=---=()()2.13g g ->-[)(),1x n n n ∈+∈N []x n =()[]g x x x x n =-=-()g x [)(),1n n n +∈N ()N x n n =∈[]x n =()[]0g x x x =-=()g x []1x x x -<≤[]01x x ≤-<()[]g x x x =-[)0,111p -≤≤B A ⊆B ≠∅112p p ≥-⎧⎨+≤⎩11p -≤≤故的取值范围为.故答案为:13. 解析:,因为,故,故,所以,当且仅当,即时,等号成立,故答案为:;.14.解析:匀速跑步的速度为米/分,匀速步行的速度为米/分,故.故答案为:15.(1)(2)解析:(1)因为,,且,所以,解得,即实数的取值范围为;p 11p -≤≤11p -≤≤6-4-()()442222f x x x x x ⎡⎤=+=--+--⎢⎥++⎣⎦(),2x ∞∈--()420,02x x -+>->+()4242x x -+-≥=+()()4224262f x x x ⎡⎤=--+--≤--=-⎢⎥+⎣⎦()422x x -+=-+4x =-6-4-,022,241,41063a t t y a t at a t ⎧≤≤⎪⎪=<<⎨⎪⎪+≤≤⎩2a 6a (),022,2414,410663a t t y a t a at a t a t ⎧≤≤⎪⎪=<<⎨⎪⎪+-=+≤≤⎩,022,241,41063a t t y a t at a t ⎧≤≤⎪⎪=<<⎨⎪⎪+≤≤⎩(),3-∞-[]1,3-{}22A x a x a =<<-{}17B x x =≤≤B A ⊆2271a a ⎧->⎨<⎩3a <-a (),3-∞-(2)因为,当,即,解得,此时,满足;当,则,解得,综上可得,即实数的取值范围为.16.(1)(2)解析:(1)定义在上的偶函数在上单调递减,则在上单调递增,又,所以,则当时,不等式,即,即,解得或,所以不等式的解集为;(2)因为当且仅当时取等号,又,且在上单调递减,所以.17.详见解析解析:原不等式可化为:(ax ﹣3)(x ﹣2)>0;当a =0时,化为:x <2;当a >0时,化为:(x )(x ﹣2)>0,①当2,即0<a 时,解为:x 或x <2;②当2,即a 时,解为:x ≠2;③当2,即a 时,解为:x >2或x ,当a <0时,化为:(x )(x ﹣2)<0,解为:x <2.A B ⊆22a a ≥-()()120a a +-≤12a -≤≤A =∅A B ⊆A ≠∅222127a a a a ⎧<-⎪≥⎨⎪-≤⎩23a <≤13a -≤≤a []1,3-()()2,00,2-⋃()()2232f a a f -+≤-R ()f x [)0,+∞(),0-∞()20f =()()220f f -==22x -<<()0f x >()220f x ->2222x -<-<204<<x 20x -<<02x <<()220f x ->()()2,00,2-⋃()2223122a a a -+=-+≥1a =()()22f f -=()f x [)0,+∞()()2232f a a f -+≤-3a-3a >32<3a>3a =32=3a <32>3a<3a -3a综上所述:当a <0时,原不等式的解集为:(,2);当a =0时,原不等式的解集为:(﹣∞,2);当0<a 时,原不等式的解集为:(﹣∞,2)∪(,+∞);当a 时,原不等式的解集为:(﹣∞,2)∪(2,+∞);当a 时,原不等式的解集为:(﹣∞,)∪(2,+∞)18.(1)为偶函数,证明见解析(2)在上的单调递增,证明见解析(3)解析:(1)为偶函数,理由如下:令,解得,故的定义域为,,故为偶函数;(2)任取,且,故,因为,且,所以,所以,故,,所以在上的单调递增;(3)由得,即,3a32<3a32=32>3a()f x ()f x ()1,+∞()[),11,∞∞--⋃+()f x 210x -≠1x ≠±()2211x f x x +=-()()(),11,11,-∞-⋃-⋃+∞()()()()22221111x x f x f x x x +-+-===---()f x ()12,1,x x ∈+∞12x x <()()()()22222222221212122112222221211211111111x x x x x x x x x x f f x x x x x x +++----++-=-=----()()()()12122212211x x x x x x +-=--()12,1,x x ∈+∞12x x <2212121210,10,0,0x x x x x x -<-<+>-<()()()()121222122011x x x x x x +-<--()()120f x f x -<()()12f x f x <()f x ()1,+∞2211x y x +=-221y x y x -=+211y x y -=+因为且,所以且,解得或,故值域为.19.(1)证明见解析(2)证明见解析(3)解析:(1)在区间上单调递增,又,当时,,根据“优美区间”的定义,是的一个“优美区间”;(2),设,可设或,则函数在上单调递增.若是的“优美区间”,则是方程的两个同号且不等的实数根.方程无解.函数不存在“优美区间”.(3),设.有“优美区间”,或,在上单调递增.若是函数ℎ(x )的“优美区间”,则,是方程,即(*)的两个同号且不等的实数根.,或,20x ≥21x ≠101y y -≥+111y y -≠+1y ≥1y <-()[),11,∞∞--⋃+3a =()319f x x = []0,3()()00,33f f ==∴[]0,3x ∈()[]310,39f x x =∈∴[]0,3()319f x x =()()110g x x x=-≠[]{},0m n x x ⊆≠∣[](),,0m n ∞⊆-[](),0,m n ∞⊆+()11g x x=-[],m n [],m n ()g x 11,,11m m m n n n⎧-=⎪⎪⎨⎪-=⎪⎩210x x -+=210x x -+= ∴()11g x x=-()()(){}221,0,0a a x h x a a xx a x +-=∈≠≠R ∣[]{},0m n x x ⊆≠∣()h x [],m n [](),,0m n ∞∴⊆-[](),0,m n ∞⊆+()211a h x a a x+∴=-[],m n [],m n ()()h m m h n n ⎧=⎪⎨=⎪⎩,m n ∴211a x a a x +-=()22210a x a a x -++=()()()2222Δ4310a a a a a a ∴=+-=+->1a ∴>3a <-由(*)式得.或,当时,取得最大值..222111,a am n mna a a++==+=n m∴-=== 1a>Q3a<-∴3a=n m-3a∴=。

贵州省六盘水市2024-2025学年高一上学期11月期中考试 数学(含答案)

贵州省六盘水市2024-2025学年高一上学期11月期中考试 数学(含答案)

六盘水市2024-2025学年度第一学期期中质量监测高一年级数学试题卷(考试时长:120分钟试卷满分:150分)注意事项:1.答题前,务必在答题卡上填写姓名和准考证号等相关信息并贴好条形码.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上,写在本试题卷上无效.3.考试结束后,将答题卡交回.一、单项选择题(本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一个符合题目要求.)1. 命题“,”的否定为()A. ,B. ,C. ,D. ,2. 已知集合,,则下列关系正确的是()A.B. C. D. 3. “”是“”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件4. 下列函数中既是奇函数又在区间上为增函数是()A. B. C. D.5. 已知,,,则的最小值为()A. 9B. 8C. 4D. 36. 已知函数的部分图象如图所示,则()的x ∃∈Q 220x -=x ∃∉Q 220x -≠x ∃∈Q 220x -≠x ∀∈Q 220x -≠x ∀∉Q 220x -≠{}22A x x =-≤≤{}0,1,2B =AA ⊆Z 1B ⊆B A⊆1x >2x >()0,∞+1y x=21y x =+y x x =1y x x=+0a >0b >21a b +=12a b+()1f x x x=-A. 的定义域为B. 的值域为C. 在区间上单调递减D. 的解集为7. 若关于的不等式对一切实数都成立,则的取值范围为()A. B. C. D. 8. 已知是上的偶函数,当时,.若,则的取值范围为()A. B. C. D. 二、多项选择题(本大题共3小题,每小题6分,共18分,在每小题给出的四个选项中,至少有两个符合题目要求,全选对得6分,部分选对得部分分,有选错的得0分.)9. 下列命题为真命题的是()A. 若,则 B. 若,,则C. 若,,则 D. 若,则10. 下列说法正确的是()A 若,则B. 若,则C. 若是偶函数,则是偶函数D. 若是奇函数,则的图象关于轴对称11. 已知函数,.,用表示,中的较大者,记为,则()()f x ()f x ()f x (),0∞-()0f x >()()1,01,∞-⋃+x ()()21110a x a x -+--<x a (]3,1-()3,1-()(),31,-∞-+∞ ()[),31,-∞-⋃+∞()y f x =R 0x ≥()11f x x =+()1122f m ->m ()1,+∞()0,1()(),01,-∞⋃+∞(),0-∞a b >22ac bc >a b >c d >a d b c ->-a b >c d >ac bd >a b >1212b a->-()21f x x +=()39f =()21f x x =-()212f x x x+=+()y f x =()2y f x =-()y f x =()y f x =y ()3f x x =+()()21g x ax =+x ∀∈R ()M x ()f x ()g x ()()(){}max ,M x f x g x =A. 的解集为B. 当时,的值域为C. 若在上单调递增,则D. 当时,不等式有4个整数解三、填空题(本大题共3个小题,每小题5分,共15分.)12. 函数的定义域为_________.13. 如图所示,动物园要建造一面靠墙的矩形熊猫居室,墙长.如果可供建造围墙的材料总长是,则当宽为_________时,才能使所建造的熊猫居室面积最大,熊猫居室的最大面积是_________.14. 已知定义在上的函数满足:①;②,,;③在上单调递减.则不等式解集为_________.四、解答题(本大题共5个小题,共77分,解答应写出文字说明,证明过程或演算步骤.)15. 已知函数(1)求,的值;(2)若,求的取值范围.16. 设全集,集合,.(1)若,求,;(2)若,求的取值范围.17. 已知二次不等式的解集为.的()0f x >()3,-+∞1a =()M x [)1,+∞()M x 2,9⎡⎫-+∞⎪⎢⎣⎭3a ≥-106a -≤<()214g x x >()1f x =-20m 36m x m 2m R ()f x ()124f =x ∀y ∈R ()()()f x y f x f y +=()f x R ()()244f xf x ≥+()22,0,1,0.x x x f x x x ⎧-<=⎨+≥⎩()1f -()()3ff -()3f a ≤a U =R {}13A x m x m =+≤≤224B y y x x ⎧⎫==+⎨⎬⎩⎭2m =U A ðA B A B A = m 220ax bx ++<()2,1--(1)求不等式的解集;(2)已知,且,求最小值.18. 已知函数.(1)若是偶函数,求的值;(2)求关于的不等式的解集;(3)若在区间上最小值为,求的值.19. 已知集合,其中且.若集合满足:①;②对于中的任意两个元素,(,),满足;则称集合是关于实数的“压缩集”.例如,集合是关于的“压缩集”,理由如下:①;②,,.(1)判断集合是否是关于的“压缩集”,并说明理由:(2)若集合是关于的“压缩集”,(i )求证:,;(提示:)(ii )求中元素个数的最大值.的的2340x x a -+≥0m >0n >mn m n b =++m n +()()2122f x x a x a =-++-()f x a x ()0f x <()f x []1,2-1-a {}123,,,,n A x x x x +=⊆N n +∈N 3n ≥A 123n x x x x <<<< A i x j x i {}1,2,3,,j n ∈ 111i j x x K-≥A K {}2,3,4A =12K =234<<1112412-≥1113412-≥1112312-≥{}3,4,5A =20K =A 20K =1120i n n i x x --≥{}1,2,3,,i n ∈ 11202020n in i --++= A六盘水市2024-2025学年度第一学期期中质量监测高一年级数学试题卷一、单项选择题(本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一个符合题目要求.)1.【答案】C2.【答案】D3.【答案】B4.【答案】C5.【答案】A6.【答案】D7.【答案】A8.【答案】B二、多项选择题(本大题共3小题,每小题6分,共18分,在每小题给出的四个选项中,至少有两个符合题目要求,全选对得6分,部分选对得部分分,有选错的得0分.)9.【答案】BD10.【答案】BCD11.【答案】ABD三、填空题(本大题共3个小题,每小题5分,共15分.)12.【答案】13.【答案】 ①. ②. 14.【答案】四、解答题(本大题共5个小题,共77分,解答应写出文字说明,证明过程或演算步骤.)15.【答案】(1),(2)16. 【解析】【分析】(1)利用基本不等式求得函数的值域,从而解得集合,再求结果即可;(2)根据题意可得,对参数的取值进行分类讨论,列出满足题意的不等式,求解即可.【小问1详解】因,当且仅当,也即,故,又时,,故或,.【小问2详解】由可得:;①若,即时,,满足题意;②若时,要满足题意,则,解得.综上所述,实数的取值范围为:.17.【解析】为[)3,∞-+9162[]1,2-()13f -=()()316f f -=[]1,2-224y x x=+B m 2244y x x =+≥=224x x =x =[)4,+∞224B y y x x ⎧⎫==+⎨⎬⎩⎭[)4,=+∞2m ={|36}A x x =≤≤U A ð{|3x x =<6}x >A B {|3}x x =≥A B A = 13m m +>12m <A =∅12m ≥14m +≥[)3,m ∈+∞m [)1,3,2⎛⎫-∞⋃+∞ ⎪⎝⎭【分析】(1)根据不等式的解集,求得,再解一元二次不等式即可;(2)根据(1)中所求,结合不等式,即可求得的最小值.【小问1详解】根据题意可得:,且,解得,经检验满足题意;,也即,,解得,故不等式的解集为:.【小问2详解】由(1)可知,也即,因为,故可得,也即,故,解得或,又,故,当且仅当,也即时取得等号;故的最小值为.18.【答案】(1)(2)答案见解析(3)【解析】【分析】(1)求出二次函数的对称轴,代入计算,即可得到结果;(2)将不等式因式分解,然后按照两根的大小关系讨论,即可得到结果;(3)求出二次函数的对称轴,然后结合二次函数的图像特点,分类讨论,即可得到结果.【小问1详解】因为二次函数的对称轴为,,a b b ()214mn m n ≤+m n +()()221,21b a a-+-=--⨯-=1,3a b ==2340x x a -+≥23410x x -+≥()()3110x x --≥[)1,1,3x ⎛⎤∈-∞⋃+∞ ⎥⎝⎦2340x x a -+≥[)1,1,3⎛⎤-∞⋃+∞ ⎥⎝⎦mn m n b =++3mn m n =++()214mn m n ≤+()2134m n m n ++≤+()()24120m n m n +-+-≥()()620m n m n +-++≥6m n +≥2m n +≤-0,0m n >>6m n +≥,3m n mn m n ==++3m n ==m n +61a =-1a =()()2122f x x a x a =-++-12a x +=若是偶函数,则对称轴为,即.【小问2详解】由可得,即,当时,即,不等式的解集为;当时,即,不等式的解集为;当时,即,不等式的解集为;综上所述,当时,不等式的解集为;当时,不等式的解集为;当时,不等式的解集为;【小问3详解】二次函数的对称轴为,当时,即,此时函数在上单调递减,则,不符合题意;当时,即,此时,即,化简可得,解得或(舍);当时,即,此时函数在上单调递增,则,即,解得(舍);综上所述,.19. 【解析】【分析】(1)根据的“压缩集”定义判断即可;(2)设且,则,()f x 102a x +==1a =-()0f x <()21220x a x a -++-<()()210x x a ---<⎡⎤⎣⎦12a ->3a >21x a <<-12a -=3a =∅12a -<3a <12a x -<<3a >{}21x x a <<-3a =∅3a <{}12x a x -<<()()2122f x x a x a =-++-12a x +=122a +≥3a ≥()f x []1,2-()()min 20f x f ==1122a +-<<33a -<<()min 112a f x f +⎛⎫==- ⎪⎝⎭()211122122a a a a ++⎛⎫-+⋅+-=- ⎪⎝⎭()()150a a --=1a =5a =112a +≤-3a ≤-()f x []1,2-()()min 11f x f =-=-31a =-13a =-1a =20K =12{,,,,,,,}N i j n A x x x x x +=⊆ 121i j n n x x x x x x -<<<<<<<< 1211111i j nx x x x x >>>>>>>(i)根据,结合即可证;(ii )根据定义,要使中元素个数最大必有,以为界点判断两侧最多能有几个元素属于集合A ,即可得答案.【小问1详解】集合是关于的“压缩集”,理由如下:由题意,对于有,且,,,所以,对于其中任意两个元素都有成立,故是关于的“压缩集”.【小问2详解】设且,所以,(i )由题意,中的任意两个元素,(),满足,所以,得证;(ii )由题意随递减,而,,所以中元素个数最大,则,即,若存在,则,可得,所以,若时,此时,显然与矛盾,所以,若必有,以下讨论和两种情况,当,1111120i j i j x x x x -=-≥112111111111i i n i n i i n x x x x x x x x ++-+-=-+-++- A {1,2,3,4,5}A ⊆20k x ={}3,4,5A =20K ={}3,4,5A =345<<111||3412-=112||3515-=111||4520-=11120i j x x -≥{}3,4,5A =20K ={}121,,,,,,N i n n A x x x x x -+=⊆ 121i n n x x x x x -<<<<<< A i x j x i <j 1111120i j i j x x x x -=-≥11211111111111202020n ii n i i i n i n n i x x x x x x x x ++-+---=-+-++-≥++=111n n x x --N n +∈1114520-=1111563020-=<A 1234512345x x x x x =<=<=<=<={1,2,3,4,5}A ⊆6x 6111520x -≥661320203x x ≤⇒≥67x ≥120n x -≥1111111102020n n n n x x x x ---≥⇒≤-≤n x +∈N 20n x ≥120n x -<20n x =20n x >20n x =则,此时,即,由,故在区间中最多有一个元素属于集合,当时,,显然与矛盾,此时最大元素为,同理可证均有,所以,,有,其中,即最多有7个元素;当,若,则,得且,即,同时,得且,即,而,且,故有,此时,综上,,则,其中,即最多有8个元素;同理讨论,均可得,即最多有8个元素;综上,中元素个数的最大值为8.120n x -<111120n n x x -≥+11111010n n x x --≥⇒≤11317107020-=<[7,10]A 67x =67711111120720x x x -≥⇒≤-⇒71401113x ≥>110n x -≤A 7n x x =68,9,10x =7n x x =20n x =6{1,2,3,4,5,,20}A x =6{7,8,9,10}x ∈20n x >119n x -=1111920n x -≥11380n x ≤n x +∈N 380n x ≥21111920n x --≥2139380n x -≥2n x -+∈N 29n x -≤67x ≥1121796320-=<26n x x -=268n n -=⇒=8380x ≥{}681,2,3,4,5,,19,A x x =6{7,8,9}x ∈1{11,12,13,14,15,16,17,18}n x -∈{}6781,2,3,4,5,,,A x x x =A。

福建省厦门2024-2025学年高一上学期期中考试数学试卷(含答案)

福建省厦门2024-2025学年高一上学期期中考试数学试卷(含答案)

厦门2024-2025学年第一学期期中考高一数学试卷(答卷时间:120分钟 卷面总分:150分)一、单选题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项符合题目要求.1.设全集,集合,则( )A .B .C .D .2.若命题,则命题的否定为( )A .B .C .D .3.已知命题,若命题是命题的充分不必要条件,则命题可以为( )A .B .C .D .4.下列幕函数满足:“①;②当时,为单调通增”的是( )A . B .C .D .5.已知函数(其中)的图象如图所示,则函数的图像是( )A .B .C .D .6.已知且,则的最小值是( )A .B . 25C .5D .{}0,1,2,3,4,5,6U ={}{}1,2,3,3,4,5,6A B ==U ()A B = ð{}1,2{}2,3{}1,2,3{}0,1,2,32:0,320p x x x ∃>-+>p 20,320x x x ∃>-+≤20,320x x x ∃≤-+≤20,320x x x ∀≤-+>20,320x x x ∀>-+≤:32p x -<≤q p q 31x -≤≤1x <31x -<<3x <-,()()x R f x f x ∀∈-=-(0,)x ∈+∞()f x ()f x =3()f x x=1()f x x-=2()f x x=()()()f x x a x b =--a b >()2xg x a b =+-0,0x y >>3210x y +=32x y+52657.已知偶函数与奇函数的定义域都是,它们在上的图象如图所示,则使关于的不等式成立的的取值范围为( )A .B .C .D .8.已知,则与之间的大小关系是( )A .B .C .D .无法比较二、多选题:本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多个选项符合题目要求,全部选对得5分,部分选对得部分分.9.下列函数中,与不是同一函数的是( )A .B .C .D .10.若,则下列不等式成立的是( )A .B.C .D .11.设,用符号表示不大于的最大整数,如.若函数,则下列说法正确的是( )A .B .函数的值域是C .若,则D .方程有2个不同的实数根三、填空题:本大题共3小题,每小题5分,共15分.将答案填写在答题卷相应位置上.12.计算________.13.“不等式对一切实数都成立”,则的取值范围为________.()f x ()g x (2,2)-[0,2]x ()()0f x g x ⋅>x (2,1)(0,1)-- (1,0)(0,1)- (1,0)(1,2)- (2,1)(1,2)-- 45342024120241,2024120241a b ++==++a b a b>a b <a b =y x =2y =u =y =2n m n=,0a b c a b c >>++=22a b <ac bc <11a b<32a a a b b+>+x R ∈[]x x [1.6]1,[ 1.6]2=-=-()[]f x x x =-[(1.5)]1f =-()f x [1,0]-()()f a f b =1a b -≥2()30f x x -+=21232927()((1.5)48---+=23208x kx -+-<x k14.某学校高一年级一班48名同学全部参加语文和英语书面表达写作比赛,根据作品质量评定为优秀和合格两个等级,结果如表所示:若在两项比赛中都评定为合格的学生最多为10人,则在两项比赛中都评定为优秀的同学最多为________人.优秀合格合计语文202848英语301848四、解答题:本大题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)已知集合,集合.(1)当时,求,.(2)若,求的取值范围.16.(15分)已知函数.(1)判断函数的奇偶性并用定义加以证明;(2)判断函数在上的单调性并用定义加以证明.17.(15分)已知函数.(1)若函数图像关于对称,求不等式的解集;(2)若当时函数的最小值为2,求当时,函数的最大值.18.(17分)某游戏厂商对新出品的一款游戏设定了“防沉迷系统”规则如下①3小时内(含3小时)为健康时间,玩家在这段时间内获得的累积经验值(单位:EXP )与游玩时间(单位:小时)滴足关系式:;②3到5小时(含5小时)为疲劳时间,玩家在这段时间内获得的经验值为0(即累积经验值不变);③超过5小时为不健康时间,累积经验值开始损失,损失的经验值与不健康时国成正比例关系,正比例系数为50.(1)当时,写出累积经验值与游玩时间的函数关系式,求出游玩6小时的累积经验值;(2)该游戏厂商把累积经验值与游现时间的比值称为“玩家愉悦指数”,记为,若,且该游戏厂商希望在健康时间内,这款游戏的“玩家愉悦指数”不低于24,求实数的取值范围.19.(17分)《见微知著》谈到:从一个简单的经典问题出发,从特殊到一般,由简单到复杂,从部分到整体,由低维到高维,知识与方法上的类比是探索发展的重要途径,是发现新问题、新结论的重要方法.例如,已知,求证:.{}34A x x =-<≤{}121B x k x k =+≤≤-2k ≠A B ()R A B ðA B B = k 2()f x x x=-()f x ()f x (0,)+∞2()23,f x x bx b R =-+∈()f x 2x =()0f x >[1,2]x ∈-()f x [1,2]e ∈-()f x E t 22016E t t a =++1a =E t ()E f t =E t ()H t 0a >a 1ab =11111a b+=++证明:原式.波利亚在《怎样解题》中也指出:“当你找到第一个蘑菇或作出第一个发现后,再四处看看,他们总是成群生长.”类似上述问题,我们有更多的式子满足以上特征.请根据上述材料解答下列问题:(1)已知,求的值;(2)若,解方程;(3)若正数满足,求的最小值.111111ab b ab a b b b=+=+=++++1ab =221111a b+++1abc =5551111ax bx cxab a bc b ca c ++=++++++,a b 1ab =11112M a b=+++高一数学期中考参考答案1234567891011A DCB DAABABDBDACD12.13.14.1215.解:(1)由题设,则,,则,(2)由,若时,,满足;若时,;综上,.16.解:(1)是奇函数,证明如下:由已知得的定义域是,则,都有,且,所以是定义域在上的奇函数.(2)在上单调递减,证明如下:,且,都有∵,∴,∵,∴∴,即,所以在上单调递减32({}3B ={}34A B x x =-<≤ {}()34R A x x x =≤->或ð()R A B = ð∅A B A B A =⇒⊆ B =∅1212k k k +>-⇒<B ≠∅12151322214k k k k k +≤-⎧⎪+>-⇒≤≤⎨⎪-≤⎩52k ≤()f x ()f x (,0)(0,)-∞+∞ (,0)(0,)x ∀∈-∞+∞ (,0)(0,)x -∈-∞+∞ 22()()()f x x x f x x x-=--=-=--()f x (,0)(0,)-∞+∞ ()f x (0,)+∞12,(0,)x x ∀∈+∞12x x <22212121121212122222()()x x x x x x f x f x x x x x x x --+-=--+=222112************222()()x x x x x x x x x x x x x x x x --+⨯---==211212()(2)x x x x x x -⨯+=12x x <210x x ->12,(0,)x x ∈+∞120x x >12()()0f x f x ->12()()f x f x >()f x (0,)+∞17.解:(1)因为图像关于对称,所以:,所以:得:,即,解得或所以,原不等式的解集为:(2)因为是二次函数,图像抛物线开口向上,对称轴为,①若,则在上是增函数所以:,解得:;所以:,②若,则在上是减函数,所以:,解得:(舍);③若,则在上是减函数,在上是增函数;所以,解得:或(舍),所以:综上,当时,的最大值为11;当时,最大值为6.18.解:(1)当时,,,当时,,当时,当时,所以,当时,.(2)当时,,整理得:恒成立,令函数的对称轴是,当时,取得最小值,即,()f x 2x =2b =22()43()43,1f x xx f x x x e e -+=-+=<2430x x ee -+<2430x x -+<1x <3x >{}13x x x <>或2()23f x x bx =-+x b =1b ≤-()f x [1,2]-min ()(1)422f x f b =-=+=1b =-max ()()7411f x f x b ==-=2b ≥()f x [1,2]-min ()(2)742f x f b ==-=54b =12b -<<()f x [1,]b -(,2]b 2min ()()32f x f b b ==-=1b =1b =-max ()(1)426f x f b =-=+=1b =-()f x 1b =()f x 03t <≤1a =22016E t t =++3t =85E =35t <≤85E =5t >8550(5)33550E t t=--=-22016,03()85,3533550,5t t t E t t t t ⎧++<≤⎪=<≤⎨⎪->⎩6t =()35E t =03t <≤22016()24t t aH t t++=≥24160t t a -+≥2()416f t t t a =-+2(0,3]t =∈2t =()f t 164a -1640a -≥14a ≥19.解:(1).(2)∵,∴原方程可化为:,即:,∴,即,解得:.(3)∵,当且仅当,即∴有最小值,此时有最大值,从而有最小值,即有最小值.222211111ab ab b aa b ab a ab b ab a b+=+=+=++++++1abc =55511(1)ax bx bcxab a abc bc b b ca c ++=++++++5551111x bx bcx b bc bc b bc b ++=++++++5(1)11b bc x b bc ++=++51x =15x =2221122111111211223123123ab b b b b M ab a b b b b b b b b b++=+=+==-=-++++++++++12b b +≥=12b b =1b a b===12b b +1123b b ++3-11123b b-++2-11112M a b=+++2。

期中考试数学高一真题试卷

期中考试数学高一真题试卷

期中考试数学高一真题试卷一、选择题(每题3分,共30分)1. 已知函数\( f(x) = 2x^2 - 3x + 1 \),求\( f(2) \)的值。

A. 3B. 5C. 7D. 92. 圆的半径为5,圆心到直线的距离为3,求圆与直线的位置关系。

A. 相离B. 相切C. 相交D. 包含3. 已知等差数列的首项为2,公差为3,求第5项的值。

A. 17B. 14C. 11D. 84. 若\( \sin \theta = \frac{1}{2} \),求\( \cos 2\theta \)的值。

A. 0B. -1C. 1D. -\( \frac{1}{2} \)5. 函数\( y = \log_2 x \)的定义域是:A. \( x > 0 \)B. \( x < 0 \)C. \( x \geq 0 \)D. \( x \leq 0 \)6. 已知\( \frac{1}{x} + \frac{1}{y} = 5 \),且\( x + y = 10 \),求\( xy \)的值。

A. 4B. 8C. 12D. 167. 一个直角三角形的两条直角边分别为3和4,求斜边的长度。

A. 5B. 6C. 7D. 88. 已知\( a \)和\( b \)是方程\( x^2 + 5x + 6 = 0 \)的两个根,求\( a + b \)的值。

A. -3B. -2C. -1D. 09. 函数\( y = \sqrt{x} \)的值域是:A. \( x \geq 0 \)B. \( y \geq 0 \)C. \( y > 0 \)D. \( y \leq 0 \)10. 已知\( \tan \alpha = 2 \),求\( \sin 2\alpha \)的值。

A. \( \frac{4}{5} \)B. \( \frac{3}{5} \)C.\( \frac{2}{5} \) D. \( \frac{1}{5} \)二、填空题(每题4分,共20分)11. 若\( \cos \theta = -\frac{\sqrt{3}}{2} \),\( \theta \)的终边在第二象限,则\( \sin \theta \)的值为________。

江苏省扬州市扬州中学2024-2025学年高一上学期11月期中数学试题(含答案)

江苏省扬州市扬州中学2024-2025学年高一上学期11月期中数学试题(含答案)

江苏省扬州中学2024-2025学年第一学期期中试题高一数学 2024.11试卷满分:150分,考试时间:120分钟注意事项:1.作答前,请考生务必将自己的姓名、考试证号等写在答题卡上并贴上条形码2.将选择题答案填写在答题卡的指定位置上(用2B 铅笔填涂),非选择题一律在答题卡上作答(用0.5mm 黑色签字笔作答),在试卷上答题无效。

3.考试结束后,请将答题卡交监考人员。

一、单项选择题:本大题共8小题,每小题5分,共40分。

在每题给出的四个选项中只有一项是最符合题意的。

1.已知集合,,则( )A. B. C. D. 或2. 已知为常数,集合,集合,且,则的所有取值构成的集合元素个数为( )A. 1B. 2C. 3D.43.设为奇函数,且当时,,则当时,( )A. B. C. D. 4.函数的值域为( )A. B. C. D. 5.已知函数的定义域为,则函数)A. B. C. D. 6. 若不等式的解集为,那么不等式的解集为( ){|02}A x x =<<{|14}B x x =<<A B = {|02}x x <<{|24}x x <<{|04}x x <<{2|x x <4}x >a {}260A x x x =+-=∣{20}B x ax =-=∣B A ⊆a ()f x 0x ≥()2f x x x =+0x <()f x =2x x +2x x -2x x --2x x -+x x y 211-++=(]2,∞-()2,∞-()20,[)∞+,2(2)f x +(3,4)-()g x =(1,6)(1,2)(1,6)-(1,4)20ax bx c ++>{}12x x -<<()()2112a x b x c ax ++-+>A. B. 或C. 或 D. 7.命题在单调增函数,命题在上为增函数,则命题是命题的( )条件.A.充分不必要B.必要不充分C.充要D.既不充分也不必要8. 已知,则的最大值为( )A. B. C. D.二、多项选择题:本大题共3小题,每小题6分,共18分。

江西省部分学校2024-2025学年高一上学期11月期中考试数学试题(含解析)

江西省部分学校2024-2025学年高一上学期11月期中考试数学试题(含解析)

江西省2024—2025学年上学期第一次模拟选科联考高一数学试卷共4页,19小题,满分150分。

考试用时120分钟。

注意事项:1.考查范围:必修第一册第一章至第三章第二节。

2.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡指定位置上。

3.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

4.考生必须保持答题卡的整洁。

考试结束后,请将答题卡交回。

一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集,集合,,则A.{2,3,4,5}B.{1,3,4}C.{3,4}D.{3}2.已知命题,,则为A., B.,C., D.,3.已知为定义在R 上的奇函数,当时,,则A. B.C. D.4.已知是幂函数,若,则a =A.B.2C.4D.65.若A. B. C. D.6.已知定义在R 上的函数满足,且,且,,则A. B.C. D.7.若关于x 的不等式的解集为,且,则实数m 的值为}{1,2,3,4,5U =2}{1,M =}2,{3,4N =()U M N = ð:1p x ∃>320x ->p ⌝1x ∀…320x ->1x ∀…320x -…1x ∀>320x -<1x ∀>320x -…()f x 0x >31()1f x x x =-+(1)f -=12-1232-3292()(4)m f x m x -=-()2f a =121a <-=5(1)a -+5(1)a +6(1)a -+6(1)a +()f x (5)(5)f x f x +=-12,(5,)x x ∀∈+∞12x x ≠121[(()()x x x f --2]()0f x >(5.5)(4.5)f f >(2.7)(3.2)f f <(7.3)(7.9)f f >(2.7)(5.2)f f >220()21x m x m m +-+-<12(,)x x 12112x x +=A.-4B.-1C.1D.48.已知函数若存在实数x ,使,则实数a 的取值围为A. B.C. D.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列计算中正确的是A.C. D.10.使成立的一个充分条件可以是A.且 B.且C.且 D.且11.已知函数的定义域为R ,且的图象关于原点对称,的图象关于y 轴对称,则A. B.C.函数是增函数D.三、填空题:本题共3小题,每小题5分,共15分.12.已知函数,则________.13.已知幂函数的图象过点,则________.14.对于任意实数x ,表示不小于x 的最小整数,例如(1.2)=2,,表示不大于x 的最大整数,例如[1.2]=1,.已知定义在R 上的函数,若集合,则集合A 中所有元素的和为________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)已知函数在上单调递减,其中,且.(1)求的解析式;(2)求函数,的值域.16.(15分)已知集合,,且.23,2,(),2,x ax a x f x a x ⎧-++>⎪=…()0f x <(,1)-∞-(,2)(6,)-∞-+∞(,6)(1,)-∞--+∞(,1)(6,)-∞-+∞ 1144-=2=±23(8)4-=23184-=3a b c ->a c >2b c >-2a c >b c >-2a c >b c>-3a c >2b c>()f x (2)4y f x =+-(4)4y f x x =++(2)4f =(6)12f =-()f x (8)(4)824f x f x x -+-=-30,()()1,0,x f x g x x x x ==-<⎪⎩…((1))g f -=()m f x x =3(3,33[(2)]f =()x (0.2)0-=[]x 0.21[]-=-()(2)[3]f x x x =⋅4|(),23A y y f x x ⎧⎫==-<-⎨⎬⎩⎭…()af x b x=+(0,)+∞24a =(1)1f =()f x 2()2()[()]g x f x f x =+[1,4]x ∈(4,29]A m =+{|2233}B x m x m =-+……12B ∈(1)当时,求实数m 的取值范围;(2)设;,若p 是q 的必要不充分条件,求实数m 的取值范围.17.(15分)已知定义在R 上的奇函数与偶函数满足,若.(1)求的解析式;(2)求关于x 的不等式的解集.18.(17分)某糕点连锁店现有五家分店,出售A ,B 两款糕点,A 为特价糕点,为吸引顾客,按进价销售.已知用16000元购进A 糕点与用22000元购进B 糕点的重量相同,且B 糕点每斤的进价比A 糕点每斤的进价多6元.(1)求A ,B 两种糕点每斤的进价;(2)经市场调查发现,B 糕点每斤售价30元时,每月可售出3120斤,售价每提高1元,则每月少售出120斤,售价每降低1元,则每月多售出120斤,糕点店不会低于进价销售.则B 糕点每斤定价为多少元时,糕点店通过卖B 糕点获得的月利润最大?最大是多少?(3)因为使用进价销售的A 糕点物美价廉,所以深受顾客青睐,五个分店每月的总销量为10000斤.今年年初该连锁店用50万购进一批设备,用于生产A 糕点.已知每斤糕点的原材料价格为8元,若生产A 糕点n 个月()所用的原材料之外的各种费用总计为万元,若只考虑A 糕点,记该连锁店前n 个月的月平均利润为z 万元,求z 的最大值.19.(17分)对非空数集A 及实数k ,定义,,已知.(1)当时,若集合A 为单元素集,求A ;(2)当时,若集合,求ab 的所有取值构成的集合;(3)若A 中有3个元素,求实数k 的取值范围.16A ∉:p t A ∈:q t B ∈()f x ()g x ()()2||2f x g x x x +=++()()()h x f x g x =⋅()h x 2(3)(3)0h x tx h x t -+-<*n ∈N 211324n n +2{|,}A k x x a k a A ==-∈ {|,}A k x x k a a A ⊗==-∈A k A k =⊗ 1k =3k ={,}A a b =江西省2024—2025学年上学期第一次模拟选科联考高一数学参考答案及评分细则1.【答案】A【解析】,故选A.2.【答案】D【解析】根据存在量词命题的否定是全称量词命题,得,.故选D.3.【答案】B【解析】因为为定义在R 上的奇函数,所以.故选B.4.【答案】C【解析】因为是幂函数,所以,得,故时,.故选C.5.【答案】C【解析】当时,.故选C.6.【答案】D【解析】由题意得函数在上单调递减,在上单调递增.对选项A ,,A 错误;对选项B ,因为函数在上单调递减,所以,B 错误;对选项C ,因为函数在上单调递增,所以,C 错误;对选项D ,因为,函数在上单调递减,故,D 正确.故选D.7.【答案】B【解析】因为关于x 的不等式的解集为,所以关于x 的方程有两个不相等的实数根,所以,解得,且,,所以,解得.故选B.8.【答案】D【解析】当时,,即,因为,所以,故有解,{3,4,5}{2,3,4}{2,3,4,5}()U M N == ð:1p x ⌝∀>320x -…()f x 311(1)(1)1112f f ⎛⎫-=-=--= ⎪+⎝⎭92()(4)m f x m x-=-41m -=5m =12()f x x ==2=4a =1a <-10a +<3(1)a =--3(1)a =+=336(1)(1)(1)a a a --+=-+()f x (,5)-∞(5,)+∞(5.5)(50.5)f f =+=(50.5)(4.5)f f -=()f x (,5)-∞(2.7)(3.2)f f <()f x (5,)+∞(7.3)(7.9)f f >(5.2)(5f f =+0.2)(50.2)(4.8)f f =-=()f x (,5)-∞(2.7)(4.8)(5.2)f f f >=220()21x m x m m +-+-<12(,)x x 220()21x m x m m +-+-=12,x x 22[2(1)]41()440m m m m ∆=--⨯⋅-=-+>1m <122(1)x x m +=--212x x m m =-1221212112(1)2x x m x x x x m m+--+===-1m =-2x >230x ax a -++<23(1)x a x +<-2x >11x ->231x a x +>-即,因为,当且仅当,即时等号成立,故;当时,有解,即有解,也即,因为单调递增,故时,取最大值-1,故.综上,实数a的取值范围为.故选D.9.【答案】ACD (每选对1个得2分)【解析】对于A ,,A 正确;对于B,B 错误;对于C ,,C 正确;对于D ,,D 正确.故选ACD.10.【答案】AC (每选对1个得3分)【解析】充分性成立,即选项能推出,对于A ,,又,同向不等式相加得,A 成立;对于B ,令,,,满足且,但,B 不成立;对于C ,,又,同向不等式相加得,,C 成立;对于D ,令,,,满足且,但,D 不成立.故选AC.11.【答案】ABD (每选对1个得2分)【解析】A 选项,的定义域为R ,因为的图象关于原点对称,所以为奇函数,所以,故,令,得,A 正确;B 选项,由的图象关于y 轴对称,得为偶函数,所以,即,令,得,得,B 正确;C 选项,因为,C 错误;D 选项,因为,所以,因为,令,得,即,故,,D 正确.故选ABD.12.【答案】-8【解析】,.13.【答案】64【解析】由,所以.14.【答案】67【解析】当时,;当时,,,2min31x ax ⎛⎫+>⎪-⎝⎭223(11)341226111x x x x x x +-++==-+++=--- (4)11x x -=-3x =6a >2x …0a +<a <max (a <y =2x =y =1a <-(,1)(6,)-∞-+∞ 1144-=2=23(8)4-==232311848-===3a b c ->22b c b c <-⇒->a c >3a b c ->3a =7b =1c =-2a c >b c >-433a b c -=-<-=b c b c <-⇒->2a c >3a b c ->5a =8b =1c =-3a c >2b c >33a b c -=-=()f x (2)4y f x =+-(2)4y f x =+-(2)4(2)40f x f x --++-=(2)(2)8f x f x -++=0x =(2)4f =(4)4y f x x =++(4)4y f x x =++(4)4(4)4f x x f x x --=++(4)(4)8f x f x x -=++2x =4(2)(6)16f f ==+(6)12f =-(2)(6)f f >(2)(2)8f x f x -++=()8(4)f x f x =--(4)(4)8f x f x x -=++4x t -=()(8)328f t f t t =-+-()(8)328f x f x x =-+-8(4)(8)328f x f x x --=-+-(8)(4)824f x f x x -+-=-(1)112f -=--=-3((1))(2)(2)8g f g -=-=-=-333m =3m =-3()f x x =333(3(36[(2)](22264f ⨯====2x =-()(4)[6](4)(6)24f x =-⋅-=-⨯-=523x -<<-10423x -<<-(2)3x =-,,;当时,,,,,;当时,,,,,.综上,,集合A 中所有元素的和为67.15.解:(1)由得,(2分)因为函数在上单调递减,所以,故.(5分)由得,所以.(7分)(2),(10分)当时,,,,所以函数,的值域为.(13分)【评分细则】值域写成集合或区间形式均给分.16.解:(1)因为,所以,得,(2分)又因为,所以,即,(5分)故当时,m 的取值范围是.(7分)(2)因为,所以,,若p 是q 的必要不充分条件,则B 是A 的真子集,(10分)故(12分)解得.故实数m 的取值范围是.(15分)【评分细则】结果写成集合或区间或不等式形式均给分.17.解:(1)因为,即,又,得,,(4分)635x -<<-[3]6x =-()(2)[3](3)(6)18f x x x =⋅=-⨯-=5332x -- (10)233x --……(2)3x =-9532x --……[3]5x =-()(2)[3](3)(5)15f x x x =⋅=-⨯-=3423x -<<-8323x -<<-(2)2x =-9342x -<<-[3]5x =-()(2)[3](2)(5)10f x x x =⋅=-⨯-={24,18,15,10}A =24a =2a =±()af x b x=+(0,)+∞0a >2a =(1)21f b =+=1b =-2()1f x x=-222424()2()[()]211g x f x f x x x x ⎛⎫=+=-+-=- ⎪⎝⎭[1,4]x ∈2[1,16]x ∈241,44x ⎡⎤∈⎢⎥⎣⎦2131,34x ⎡⎤-∈-⎢⎥⎣⎦2()2()[()]g x f x f x =+[1,4]x ∈3,34⎡⎤-⎢⎥⎣⎦12B ∈221233m m -+……37m ……16A ∉2916m +<72m <16A ∉73,2⎡⎫⎪⎢⎣⎭37m ……A O ≠B O ≠224,3329,m m m ->⎧⎨++⎩…36m <…(3,6]()()2||2f x g x x x -+-=-+-+()()2||2f x g x x x -+=-++()()2||2f x g x x x +=++()2f x x =()||2g x x =+所以.(5分)(2)因为,所以为奇函数,(7分)又当时,单调递增,故函数在R 上单调递增.(9分)则不等式,可化为,即,即,(11分)①若,即时,;②若,即时,不等式无解;③若,即时,,综上,当时,解集为,当时,解集为,当时,解集为.(15分)【评分细则】1.第一问求出和的解析式分别给2分;2.第一问结果写成分段函数形式不扣分;3.第二间结果不写成集合或区间形式扣1分,未总结,但结果正确均给满分,三种情况每少一种情况扣1分.18.解:(1)设A 糕点每斤的进价为a 元,B 糕点每斤的进价为元,所以,解得,所以A 糕点每斤的进价为16元,B 糕点每斤的进价为22元.(4分)(2)设B 糕点每斤涨价元,蛋糕店通过B 糕点获得的月利润为y 元.由题意,(6分)当时,y 有最大值.(8分)所以B 糕点每斤定价为39元时,月利润最大,最大为34680元.(9分)(3)设前n 个月的总利润为w ,因为A 糕点每斤售价为16元,每月可售出10000斤,故每月可收入16万元,其中原材料为8万元,则,(12分)月平均利润万元,(15分)()()()2(||2)h x f x g x x x =⋅=+()2()(||2)2(||2)()h x x x x x h x -=--+=-+=-()h x 0x …2()24h x x x =+()h x 2(3)(3)0h x tx h x t -+-<2(3)(3)(3)h x tx h x t h t x -<--=-23(3)0x t x t +--<(3)(1)0x t x -+<13t <-3t <-13tx <<-13t=-3t =-13t >-3t >-13t x -<<3t <-|13t x x ⎧⎫<<-⎨⎬⎩⎭3t =-∅3t >-|13t x x ⎧⎫-<<⎨⎬⎩⎭()f x ()g x (6)a +16000220006a a =+16a =(8)x x -…22(3022)(3120120)120216024960120(9)34680y x x x x x =+--=-++=--+9x =22*111311685050()324324w n n n n n n n ⎛⎫=--+-=-+-∈ ⎪⎝⎭N 503131215.2532444w n z n n ==--+-+==…当且仅当,即时等号成立,(16分)所以z 的最大值为5.25.(17分)【评分细则】1.第二问未配方,只要结果正确,就给分;2.第三问未说明等号成立条件扣1分.19.解:(1)时,设,由,得,所以,即,得或1,故或.(4分)(2)时,,由,得,得或即或(5分)当时,是方程的两根,故,(6分)当时,两式相减得,由集合中元素的互异性得,所以,故,即,同理,故是方程的两根,所以,(7分)故ab 的所有取值构成的集合为.(8分)(3)设,由,得,①若故是方程的三个不等的实数根,而此方程最多有两个实数根,不可能有三个实数根,故不成立;(11分)②若,当时,,令,得,(12分)对,,两式相减得,因为,所以,代入,得,同理,5032n n=40n =1k ={}A a =11A A =⊗ 2{1}{1}a a -=-211a a -=-220a a +-=2a =-{2}A =-1}{A =3k ={,}A a b =33A A =⊗ 22{3,3}{3,3}a b a b --=--2233,33a a b b ⎧-=-⎨-=-⎩2233,33,a b b a ⎧-=-⎨-=-⎩2260,60a a b b ⎧+-=⎨+-=⎩226,6,a b b a ⎧=-⎨=-⎩2260,60a ab b ⎧+-=⎨+-=⎩,a b 260x x +-=6ab =-226,6a b b a⎧=-⎨=-⎩22a b a b -=-a b ≠1a b +=266(1)5a b a a =-=--=+250a a --=250b b --=,a b 250x x --=5ab =-{6,5}--{,,}A a b c =A k A k =⊗ 222{,,}{,,}a k b k c k k a k b k c ---=---222,,,a k k a b k k b c k k c ⎧-=-⎪-=-⎨⎪-=-⎩,,a b c 220x x k +-=222,,,a k kb b k k ac k k c ⎧-=-⎪-=-⎨⎪-=-⎩2c k k c -=-220c c k +-=180k ∆=+ (1)8k -…2a k k b -=-2b k k a -=-22a b a b -=-a b ≠1a b +=2a k k b -=-2120a a k -+-=2120b b k -+-=故为方程的两个不相等的实根,令,得,(13分)当时,与均有两个不相等的实根,且这两个方程的根不完全相同,故符合题意;(14分)③若则,根据集合中元素的互异性,两两不相等,不妨设,(ⅰ)当时,,又,所以,这与矛盾,故不成立;(ⅱ)当时,,又,所以,这与矛盾,故不成立;(ⅲ)当时,,又,所以,这与矛盾,故不成立;(ⅳ)当时,,又,所以,这与矛盾,故不成立.(16分)综上,实数k 的取值范围是.(17分)【评分细则】1.第一问只得出一种情况,扣2分;结果不写成集合形式,扣1分;2.第二问求出ab 的一个值,给2分,最后结果不写成集合形式,扣1分;3.第三问结果写成不等式、集合或区间形式,结果正确即给满分.,a b 2120x x k -+-=14(12)0k '∆=-->38k >38k >2120x x k -+-=220x x k +-=222,,,a k k b b k k c c k k a ⎧-=-⎪-=-⎨⎪-=-⎩2222a b b c c a k +=+=+=,,a b c a b c >>0a b c >>>22a b >b c >22c a b b ++>22c a b b ++=0a b c >>>22a b >b c >22c a b b ++>22c a b b ++=0a b c >>>22b c <c a <22b c a c ++<22b c a c ++=0a b c >>>22b c <c a <22b c a c ++<22b c a c ++=3,8⎛⎫+∞ ⎪⎝⎭。

2023~2024学年第一学期高一期中考试数学试题[含答案]

2023~2024学年第一学期高一期中考试数学试题[含答案]


上单调递增,
f x f 1 1
min
,C 正确;
D
选项,令
2x2
3x
0
,解得
x
3 2

0(舍去),
f x

的图象与 x 轴只有 1 个交点,D 错误.
故选:ABC
11.
已知关于 x 的不等式
ax²
2bx
3c
0
x
的解集为
|
3
x
1 ,则下列结论正确的是(
A. 充要条件
B. 充分不必要条件
C. 必要不充分条件
D. 既不充分又不必要条件
【答案】C
【解析】
【分析】利用充分、必要条件的定义即可判断.
【详解】由 a b 得不到 ac2 bc2 ,如 c 0 ,故充分性不成立,
反之,由 ac2 bc2 可以得到 a b ,故必要性成立,
则“ a b ”是“ ac2 bc2 ”的必要不充分条件.
若 m 2 ,则 f (x) x2 ,函数 f (x) 在 (0, ) 上为增函数,不符合题意,舍去;
若m
1 ,则
f
(x)
1 x
,函数
f
(x) 在 (0, ) 上为减函数,符合题意;
所以实数 m 的值是 1.
故选:B.
4. 已知 a, b, c 是实数,则“ a b ”是“ ac2 bc2 ”的( )

2
x
5
0
【答案】C
【解析】
【分析】“存在一个符合”的否定为“任一个都不符合”
【详解】命题
p: x R
3x2
,使得
2
x
5
0

四川省内江市2024-2025学年高一上学期期中考试数学试题(含答案)

四川省内江市2024-2025学年高一上学期期中考试数学试题(含答案)

2024级高一上期半期考试数学试题数学试题共4页.满分150分.考试时间120分钟.注意事项:1.答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置上.2.答选择题时,必须使用2B铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其他答案标号.3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上.4.所有题目必须在答题卡上作答,在试题卷上答题无效.第Ⅰ卷(选择题,共58分)一、单选题(本大题共8 小题,每小题5 分,共40 分.在每小题给出的四个选项中,只有一项符合题目要求).1 .已知集合A = {x | -1 < x ≤2}, B = {x | -2 < x ≤1} ,则A U B = ( )A .{x | -1 < x < 1}B .{x | -1 < x ≤1}C .{x | -2 < x < 2}D .{x | -2 < x ≤2}2 .函数f的定义域为 ( )D.3 .已知集合A 满足A ≤{0, 1, 2, 3} ,则满足条件的集合A 的个数为 ( )A .8B .10C .14D .164 .已知函数f(x) 满足f(x + 2) = 3x + 4 ,则f (2) =()A .-2B .1C .4D .75 .下列命题为真命题的是 ( )A .若a > b,则a2 > b2B .若a > b,则ac2 > bc2C .若a > b ,则D .若a > b > 0 ,则6 .已知x>3 ,则对于y = x +下列说法正确的是 ( )A.y 有最大值7 B.y 有最小值7 C.y 有最小值4 D.y 有最大值47 .设x, y ∈R ,下列说法中错误的是 ()A .“ x > 1”是“ x2> 1”的充分不必要条件B .“ x > 1 ,y > 1 ”是“x + y > 2,xy > 1 ”的充要条件C .“ xy = 0 ”是“ x 2 + y 2 = 0 ”的必要不充分条件D .“ x 2 ≠ 4”是“x ≠ 2”的充分不必要条件8 .当x ∈(一1, 1) 时,不等式2kx 2 一 kx 一 恒成立,则k 的取值范围是 ()A .(一3, 0)B .[一3, 0)C .D . 二、多选题(本大题共 3 小题,每小题 6 分,共 18 分.在每小题给出的四个选项中,有两项或两项以上符合题目要求).9 .已知p :“ x ∈ R ,x 2一 (a + 1)x + 1 > 0 恒成立”为真命题,下列选项可以作为p 的 充分条件的有 ()A .一3 < a < 0B .a ≤ 一3或a ≥ 1C .0 < a < 1D .一3 < a < 110 .下列说法正确的是 ()A . 1+x . 1x 与y = 1x 2 表示同一个函数B .已知函数f (x ) 的定义域为[一3, 1] ,则函数f (2x 一1) 的定义域为[一1, 1]C .函数y = x +的值域为[0, +∞)D .已知函数满足f = x ,则f = 一11.已知集合{x x 2 + ax +b = 0,a > 0}有且仅有两个子集,则下面正确的是 ()A .a 2 一 b 2 ≤ 4B .C .若不等式x 2 + ax 一 b < 0 的解集为(x 1, x 2 ) ,则x 1x 2 > 0D .若不等式x 2 + ax + b < c 的解集为(x 1, x 2 ) ,且= 4 ,则 c = 4第Ⅱ卷(非选择题,共 92 分)三、填空题(本大共 3 小题 ,每小题 5 分,满分 15 分).12 .命题“x > 0, 2x 2 + x +1 > 0”的否定是 .13 .设函数f (x ) ,g (x )分别由下表给出:x 1 一 x 2x1234f(x)1313g (x)3232则满足f(g(x)) = g(f(x))的x的值为.14.设函数0,若f则实数a的取值范围是.四、解答题(本题共计5 小题,共77 分,解答应写出文字说明,证明过程或演算步骤).15 .(13 分)已知函数(1)在如图给定的直角坐标系内画出f (x) 的图象;(2)求不等式f (x) > 1 的解集.16 .(15 分)已知函数f (x) = x2 一2bx + 3, b ∈R.(1)若函数f (x ) 的图象经过点(4, 3) ,求实数b的值;(2)在(1)的条件下,求不等式f (x) < 0的解集;(3)解关于x 的不等式2x2 + (1一2a) x 一a > 0 .17 .(15 分)通过技术创新,某公司的汽车特种玻璃已进入欧洲市场.2023 年,该种玻璃售价为25 欧元/平方米,销售量为80 万平方米,销售收入为2000 万欧元.(1)据市场调查,若售价每提高1 欧元/平方米,则销售量将减少2 万平方米;要使销售收入不低于2000 万欧元,试问:该种玻璃的售价最多提高到多少欧元/ 平方米?(2)为提高年销售量,增加市场份额,公司将在2024 年对该种玻璃实施二次技术创新和营销策略改革:提高价格到m 欧元/平方米(其中m > 25 ),其中投入万欧元作为技术创新费用,投入500万欧元作为固定宣传费用,投入2m 万欧元作为浮动宣传费用,试问:该种玻璃的销售量n (单位/万平方米)至少达到多少时,才可能使2024 年的销售收入不低于2023 年销售收入与2024 年投入之和?并求出此时的售价.18 .(17 分)命题p :任意x ∈R, x2 一2mx 一5m > 0 成立;命题q : 3x ∈[0, 4], x2 一2x 一3 + m ≥0 成立.(1)若命题p 为真命题,求实数m 的取值范围;(2)若命题p, q 至少有一个为真命题,求实数m 的取值范围;19.(17 分)问题:正实数a, b 满足a + b = 1 ,求的最小值.其中一种解法是:+2 ≥3 +2当且仅当且a + b = 1 时,即a = 一1且b = 2 一时取等号.学习上述解法并解决下列问题:(1)若正实数x, y 满足x + y = 1 ,求的最小值;(2)若实数a, b, x, y 满足一试比较a2一b2 和(x 一y )2的大小,并指明等号成立的条件;(3)求代数式3m一5 一一2 的最小值,并求出使得M 最小的m的值.2024级高一上期半期考试数学参考答案单选题1~5:DDDCD 6~8:BBD多选题9:ACD 10:ABD 11:ABD填空题12 . 3x > 0, 2x 2 + x +1≤ 0 13 .2 或 4 14 . (-∞, 解答题15 .(满分 13 分)解:(1)当-1 ≤ x ≤ 2 时:x- 1012f (x )232- 1当2 < x ≤ 5 时:x25f (x )-12………………………………………………………………………………………………(1 分)图像如下:………………………………………………( 2 ) 令f (x ) > 1 则(6分)1 〔 1)当-1 ≤ x ≤2 时,f (x ) > 13 - x 2> 1,……………………………………………………(7 分)所以x 2 - 2 < 0 ,解得- 2 ≤ x≤ · 2 ,………………………………………………………(8分)所以-1≤ x < ·2 ; …………………………………………………………………………(9 分)当2 < x ≤ 5 时,f (x ) > 1 x - 3 > 1 ,……………………………………………………(10 分)解得x > 4 ,所以4 < x ≤ 5 ;………………………………………………………………(11 分)综上, -1≤ x < ·2 或4 < x ≤ 5 ……………………………………………………………(12 分)所以f (x )> 1 的解集为[-1, ) (4, 5].…………………………………………………(13 分)16 .(满分 15 分)解:(1)因为f (x ) = x 2 - 2bx + 3 的图象经过点(4, 3),所以f (4) = 42 - 8b + 3 = 3 ,则b = 2 ; ……………………………………………………(2 分)(2)由(1)得f (x ) = x 2 - 4x + 3 = (x -1)(x - 3) < 0 ,…………………………………(4 分)解得1 < x < 3 ,………………………………………………………………………………(5 分)所以不等式f (x )< 0 的解集为{x 1 < x < 3 };………………………………………………(6 分)(3):2x 2 + (1 - 2a )x - a > 0, : (x - a )(2x +1 )> 0 ,………………………………………(8 分)当a > - 时,不等式的解集为;…………………………………… 当a < - 时,不等式的解集为;…………………………………… 当a = - 时,不等式的解集为 .……………………………………………… 综上所述:当a > - 时,不等式的解集为当a < - 时,不等式的解集为{x ∣x < a 或x > -当a = - 2 时,不等式的解集为{l x x ≠ - 2,} ………………………………………………(15 分)17 .(满分 15 分)〔-5 < m < 0l m ≥ -5解:(1)设该种玻璃的售价提高到x (x ≥ 25) 欧元/平方米,……………………………(1 分)则有80 - 2(x - 25)x ≥ 2000 ,……………………………………………………………(3 分)解得:25 ≤ x ≤ 40 ,…………………………………………………………………………(4 分)所以该种玻璃的售价最多提高到 40 欧元/平方米. …………………………………………(5 分)(2) 由题mn ≥2000 + 500 + 2m +m 2 -600) , ………………………………………(7 分)整理得:mn ≥1500 + 2m + m 2 ,…………………………………………………………(8 分)除以m 得:n ≥m + 2 ,………………………………………………………… 由基本不等式得:当且仅当 m ,即m = 30 > 25 时,等号成立,…………………………………(14 分)所以该种玻璃的销售量n 至少达到 102 万平方米时,才可能使2024 年的销售收入不低于2023年销售收入与2024 年投入之和,此时的售价为 30 欧元/平方米.………………………(15 分)18 .(满分 17 分)解:(1)对于命题p : 对任意x ∈ R ,不等式x 2 - 2mx - 5m > 0恒成立,则有Δ = 4m 2 + 4× 5m = 4m ( m + 5) < 0,……………………………………………………(2 分)解的-5 < m < 0 ;……………………………………………………………………………(3 分)综上,当p 为真时,实数m 的取值范围是{m | -5 < m < 0}………… …………………(4 分)(2)对于命题q : 存在x ∈[0, 4] ,使得不等式x 2 - 2x - 3 + m ≥ 0 成立,只需(x 2 - 2x - 3 + m )max ≥ 0 ,而x 2 - 2x - 3 + m = (x -1)2 + m - 4 ,………………………(6 分): x = 4, (x 2 - 2x - 3+ m )max = 9 + m - 4 = m + 5 ,: m + 5 ≥ 0 ,则m ≥ -5 ,………………(8 分)所以当命题q 为真时,实数m 的取值范围是m ≥ -5 ,……………………………………(9 分)从而当命题p 为假命题, q 为真命题时,m ≤ -5 或m ≥ 0 且m ≥ -5 ,则m ≥ 0 或m = -5 ;................................(11 分)当命题p 为真命题,q 为假命题时,-5 < m < 0 且m < -5 ,无解;...............(13 分)当命题p 为真命题,q 为真命题时,{ ,则-5 < m < 0 ;……………………(15 分)综上所述:m ≥ -5 .…………………………………………………………………………(16分)此时x , y 也满足 所以当命题p ,q 至少有一个为真命题时,实数m 的取值范围是{m | m ≥ 5}…………(17 分)19 .(满分 17 分)解:(1)因为x > 0, y > 0 且x + y = 1,所以 ≥ 5 + 2 = 5 + 26 ,………………… 当且仅当 即x = - 2, y = 3 - 时取等号,…………………………………(3 分)y x 所以x + y 的最小值是5 + 2 6 .……………………………………………………………(4 分),当且仅当 时,所以x 2 + y 2 - ≤ x 2 + y 2 -2 = 且x , y 同号时等号成立,所以a 2 -b 2 ≤ (x - y )2,2 2x a 2 - y b 2 = 1 . …………………………………………………………………(9 分)x = 3m - 5, y = m - 2 ,由 则x 2 - y 2 = (3m -5) -( m - 2) = 2m -3 > 0,………………………………………………(12 分)因为x > 0, y > 0 ,所以x > y ,构造由x 2 - 3y 2 = 1 ,可得M = ·3m - 5 - ·m - 2 = x - y3同正,………………………………………………………(15 分).……………………………………………………(17分)3又由取等号时 x 2= 3y 2 且x , y 结合x 2 - 3y 2 = 1 ,解得 ,可得m ≥ 2 ,………………………(11 分),………………………………………(13 分)…………………………………(14 分)因此a 2 = 1, b 2 = 所以 时,…………………(16 分),…………………(8 分)等号成立, ……(7 分)( )xy x y xy x y ………(6 分)M 取得最小值≤ + - = -由(2)知当且仅当(3)令,即 2 2x 2=2。

2024-2025学年吉林省长春市高一上学期期中考试数学检测试题(含解析)

2024-2025学年吉林省长春市高一上学期期中考试数学检测试题(含解析)

考生注意:1.满分150分,考试时间120分钟.2.考生作答时,请将答案答在答题卡上.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答.超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效.3.本卷命题范围:人教A 版必修第一册第四章4.4.2结束.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一2024-2025学年吉林省长春市高一上学期期中考试数学检测试题项是符合题目要求的.1. 命题“()1,1x ∃∈-,221x x +≤”的否定是( )A. ()1,1x ∃∉-,221x x +≤B. ()1,1x ∃∉-,221x x +>C. ()1,1x ∀∈-,221x x +> D. ()1,1x ∀∈-,221x x +≥【答案】C【解析】【分析】由命题否定的定义即可得解.【详解】全称量词命题的否定是存在量词命题,故命题“()1,1x ∃∈-,221x x +≤”的否定是“()1,1x ∀∈-,221x x +>”.故选:C.2. 已知集合51,N M xx x +⎧⎫=>∈⎨⎬⎩⎭,则M 的子集的个数是( )A. 15B. 8C. 7D. 16【答案】D【解析】【分析】根据不等式的性质,结合子集个数公式进行求解即可.【详解】因为N x +∈,所以由{}51551,2,3,4x x M x>⇒>⇒<⇒=,所以M 的子集的个数是4216=,3. 若函数()31f x -的定义域为1,13⎛⎫ ⎪⎝⎭,则函数()2f x 的定义域为( )A. ()0,1 B. (),1-∞ C. ()1,1- D. 1,13⎛⎫ ⎪⎝⎭【答案】A【解析】【分析】根据抽象函数的定义域即可得到答案.【详解】令31t x =-,则()310,2t x =-∈,则022x <<,解得01x <<,即定义域为()0,1.故选:A.4. 设0.53,6,ln(ln 3)a b c ===,则( )A. a b c>> B. b a c >>C. a c b>> D. b c a >>【答案】B【解析】【分析】根据指数函数与对数函数的单调性质将a ,b ,c 分别与1与3比较即可.【详解】解:0.5133a <=< ,336log 36log 273b ==>=,ln(ln 3)1c =<,b a c ∴>>.故选:B .5. 函数3()33x xx f x -=+的图象大致为( )A. B.C. D.【答案】A【分析】根据函数的基本性质逐项排除即可.【详解】因为()f x 的定义域为R ,关于原点对称.3()()33x x x f x f x ---==-+,所以函数()f x 是奇函数,即()f x 的图象关于原点对称,故B 错误;当0x >时,因为30x >,330x x -+>,所以()3033x x x f x -=>+,故C 错误;因为1239627(1),(2)(1)33109341f f f --====<++,所以()f x 在(0,)+∞上并不单调递增,故D 错误.故选:A.6. 声强级(单位:dB )由公式1210lg 10I I L -⎛⎫= ⎪⎝⎭给出,其中I 为声强(单位:2W/m ).某班级为规范同学在公共场所说话的文明礼仪,开展了“不敢高声语,恐惊读书人”主题活动,要求课下同学之间交流时,每人的声强级不超过40dB .现已知3位同学课间交流时,每人的声强分别为72510W/m -⨯,8210W/m -,92210W/m -⨯,则这3人中达到班级要求的人数为( )A. 0B. 1C. 2D. 3【答案】C【解析】【分析】根据所给声强级公式计算声强级不超过40dB 的声强,即可求解.【详解】依题意,1210lg 4010I I L -⎛⎫=≤⎪⎝⎭,∴810I -≤,故声强为8210W/m -,92210W/m -⨯的两人达到要求,故选:C 7. 已知(12)2,0()1(1),02x a x a x f x a x -+<⎧⎪=⎨+≥⎪⎩是x R ∈上的增函数,那么a 的取值范围是( )A. 1(0,)2B. 1(,1]2 C. (1,14) D. 1(0,4【答案】D【解析】【分析】利用函数的单调性,列出不等式组,转化求解a 的范围即可.【详解】要使函数(12)2,0()1(1),02x a x a x f x a x -+<⎧⎪=⎨+⎪⎩…是R 上的增函数,需12011122a a a ⎧⎪->⎪+>⎨⎪⎪⎩…,解得104a <…,故选:D .8. “高斯函数”为[]y x =,其中[]x 表示不超过x 的最大整数,例如:[]2.13-=-,[]3,13=. 已知函数()[]()13f x x x =--,[)0,2x ∈,则不等式()f x x ≤的解集为( )A. 1,12⎡⎫⎪⎢⎣⎭ B. 3,14⎡⎫⎪⎢⎣⎭ C. 1,22⎡⎫⎪⎢⎣⎭ D. 3,24⎡⎫⎪⎢⎣⎭【答案】D【解析】【分析】先将()[]()13f x x x =--,[)0,2x ∈转化为分段函数,然后分类解()f x x ≤即可.【详解】当[)0,1x ∈时,[]0x =,1x <,此时()()3133f x x x =-=-,当[)1,2x ∈时,[]1x =,1x ≥,此时()()2122f x x x =-=-,若()f x x ≤,当[)0,1x ∈时,()33f x x x =-≤,得34x ≥,故3,14x ⎡⎫∈⎪⎢⎣⎭,当[)1,2x ∈时,()22f x x x =-≤,得2x ≤,故[)1,2x ∈,所以()f x x ≤得解集为3,24⎡⎫⎪⎢⎣⎭,故选:D.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 已知命题2:430p x x -+<,那么命题p 成立的一个充分不必要条件是( )A. 1x ≤- B. 12x << C. 3x ≥ D. 23x <<【答案】BD【解析】【分析】解出不等式,再根据充分不必要的条件的判定即可得到答案.【详解】2430x x -+<,解得13x <<,设{}|13A x x =<<则命题p 成立的充分不必要条件是集合A 的真子集,则BD 选项符合题意.故选:BD.10. 下列说法正确的有( )A. 若12x <,则1221x x +-的最小值是3B 若0a b >>,1ab =,则12a b a b <+C. 若24a b -<+<,228a b <-<,则42b -<<D. 若0a >,0b >,111a b +=,则1411a b +--的最小值是4【答案】BCD【解析】【分析】根据基本不等式即可求解AD ,根据不等式的性质即可求解BC.【详解】对于A ,由题设210x -<,则()112121112112x x x x ⎡⎤+=--++≤-+=-⎢⎥--⎣⎦,当且仅当121x -=,即0x =时等号成立,A 错误;对于B ,因为1ab =,0a b >>,所以10>>>a b ,则122a a b +=>,11222a a b a =<⋅,所以12a b a b<+,B 正确;对于C ,∵228a b <-<,∴822b a -<-<-,∵24a b -<+<,∴4228a b -<+<,∵8224228b a a b -<-<-⎧⎨-<+<⎩,∴1236b -<<,∴42b -<<,故C 正确;.对于D ,由题设ab a b =+,而()144545111b a b a a b ab a b +-+==+----++,又()11444559b a b a b a a b a b ⎛⎫+=+⨯+=++≥+=⎪⎝⎭,当且仅当23b a ==时等号成立,所以14411a b +≥--,D 正确.故选:BCD .11. 已知函数()()()log 1log 3a a f x x x =-++(0a >且1a ≠)在定义域内存在最大值,且最大值为2,()212x x m g x ⋅-=,若对任意111,2x ⎡⎤∈-⎢⎥⎣⎦,存在[]21,1x ∈-,使得()()12f x g x ≥,则实数m 的取值可以是( )A. 1- B. 0 C. 2log 7 D. 3【答案】ABC【解析】【分析】先求出()()22log 14f x x ⎡⎤=-++⎣⎦,得到11,2x ⎡⎤∴∈-⎢⎥⎣⎦时,()[]2log 72,2.f x ∈-再由题意得到2log 722m --…,即可求出m 的范围,对照四个选项即可得到正确答案.【详解】()f x 定义域为()3,1-.()()()()()22log 1log 3log 23log 14a a a a f x x x x x x ⎡⎤=-++=--+=-++⎣⎦由题意知1x =-时,()2f x =,即log 42,2a a =∴=.此时()()22log 14f x x ⎡⎤=-++⎣⎦,11,2x ⎡⎤∴∈-⎢⎥⎣⎦时,()[]2log 72,2.f x ∈-()[]1,1,12x g x m x =-∴∈- 时,min ()2g x m =-,由2log 722m --…得2log 7m …对照四个选项,可以选:ABC.故答案为:ABC三、填空题:本题共3小题,每小题5分,共15 分.12. 函数()21(01)x f x a a -=+<<的图象恒过定点P ,则点P 坐标为__________..【答案】()2,2【解析】【分析】根据20x -=,即可求解2x =,代入即可得纵坐标.【详解】令20x -=,则2x =,故()0212f a =+=,因此P ()2,2,故答案为:()2,213. 若幂函数的图象过点14,4⎛⎫--⎪⎝⎭,则它在[]1,4上的最小值为____.【答案】14##0.25【解析】【分析】先求出解析式()1f x x=,利用单调性求出()f x 在[]1,4上的最小值.【详解】设幂函数()f x x α=.因为幂函数的图像过点14,4⎛⎫-- ⎪⎝⎭,所以()()1444f α-=-=-,解得:1α=-.所以()11f x x x-==.所以()f x 在[]1,4上单调递减,所以()f x 在[]1,4上的最小值为()144=f .故答案为:1414. 若集合()(){0,}xx f x f x >=-∣中恰有k 个元素,则称函数()f x 是“k 阶准偶函数”.已知函数()232,{23,x x a f x x x a-+≤=+>是“2阶准偶函数”,则a 的取值范围是________【答案】10,2⎡⎫⎪⎢⎣⎭【解析】【分析】根据题意分类讨论,0a <时,其中2()23()f x x x a =+>有部分具有偶函数性质,不符合题意;0a ≥时,根据分段函数的解析式通过方程()()(0)f x f x x =->的解,确定a 的范围.【详解】根据题意,函数()232,{23,x x a f x x x a-+≤=+>是“2阶准偶函数”,则集合()(){}0,x x f x f x =-中恰有2个元素,当0a <时,函数()232,23,x x a f x x x a-+≤⎧=⎨+>⎩一段部分为223,y x x a =+>,注意到函数223y x =+本身具有偶函数性质,故集合()(){}0,x x f x f x =-中不止有两个元素;当0a >时,根据“2阶准偶函数”定义得()f x 的可能取值为223x +或32x -+,()f x -为32x +,3232x x +=-+,故0x =,方程无解,当 22332x x +=+,解得12x =或1x =,故要使得集合()(){}0,x x f x f x =-中恰有2个元素,则需要满足12a <,即102a <<,当0a =时,函数()()232,0,23,0x x f x f x x x -+≤⎧=⎨+>⎩的取值为223x +,()f x -为32x +,根据题意得:22332x x +=+,解得12x =或1x =,满足恰有两个元素,故0a =满足条件.综上,实数a 的取值范围是10,2⎡⎫⎪⎢⎣⎭.故答案为:10,2⎡⎫⎪⎢⎣⎭.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. (1)若3515a b ==,求55a b +的值;(2)求值:()()22ln1327lg5lg2lg503πe ++⨯--+.【答案】(1)5;(2)14π-【解析】的【分析】(1)由指对互化求出a 和b ,再结合换底公式即可求解;(2)考虑将lg 2lg 50⨯转化为()()1lg 51lg 5-⨯+,进而得解.【详解】(1)因为3515a b ==,所以35log 15,log 15==a b ,3551,1lo 1g 15l g 1o 1a b ==,则()()15151535551155log 3log 55log 355log 15log 15a b ⎛⎫+=+=+=⨯= ⎪⎝⎭;(2)()()()()()22223331027lg 5lg 2lg 503π13lg 5lg lg 105π315++⨯--+=++⨯⨯-++()()()()()22223lg 51lg 51lg 5π413πlg 51lg 514π=++-⨯+-+=-++-=-.16. 已知集合1{|2}2A x x =≤<,{}211B x m x m =-≤≤+∣.(1)若12m =,求()R A B ð;(2)若“x A ∈”是“x B ∈”的必要条件,求实数m 的取值范围.【答案】(1)3|22x x ⎧⎫<<⎨⎬⎩⎭(2)3|124m m m ⎧⎫≤⎨⎬⎩⎭或【解析】【分析】(1)根据题意,直接由集合的运算,即可得到结果;(2)根据题意,由条件可得B A ⊆,然后分B =∅与B ≠∅讨论,即可得到结果.【小问1详解】当12m =时,302B x x ⎧⎫=≤≤⎨⎬⎩⎭∣, {R |0B x x =<ð或32x ⎫>⎬⎭,则()R 3|22A B x x ⎧⎫⋂=<<⎨⎬⎩⎭ð.【小问2详解】因为“x A ∈”是“x B ∈”的必要条件,则B A ⊆,当B =∅时,则121m m +<-,即2m >;当B ≠∅时,121121212m m m m +≥-⎧⎪⎪-≥⎨⎪+<⎪⎩,解得314m ≤<,综上所述,m 的取值范围为3|124m m m ⎧⎫≤⎨⎬⎩⎭或.17. 已知()()ln e 1x f x ax =+-是偶函数,()e e x x g x -=-(1)求a 的值;(2)若不等式()()()g f x g m x >-在[)1,+∞上恒成立,求实数m 的取值范围.【答案】(1)12a =(2)()1ln e 12m <++【解析】【分析】(1)根据函数奇偶性的性质即可求a 的值;(2)根据函数的单调性将不等式()()()g f x g m x >-在[)1,∞+上恒成立,转化为()m f x x <+在[)1,+∞上恒成立,设()()h x f x x =+,求出其最小值,从而得出结果.【小问1详解】()f x 的定义域是R ,因为()f x 是偶函数,所以()()f x f x -=恒成立,所以()()ln e 1ln e 1x x ax ax -++=+-,即()()ln e 1ln e 1x x x ax ax +-+=+-,所以()210a x -=恒成立,所以12a =;小问2详解】()e e1e e x x x x g x -=-=-,x ∈R ,因为e x y =是增函数,1x y e =是减函数,所以()1e e x x g x =-是增函数,所以不等式()()()g f x g m x >-等价于()f x m x >-,【所以()m f x x <+在[)1,+∞上恒成立,设()()()1ln e 12x h x f x x x =+=++,x ∈R ,因为()ln e 1x y =+是增函数,12y x =是增函数,所以()()1ln e 12x h x x =++是增函数,所以当1x ≥时,()()()min 11ln e 12h x h ==++,所以()1ln e 12m <++.18. 2024年8月16日,商务部等7部门发布《关于进一步做好汽车以旧换新工作的通知》.根据通知,对符合《汽车以旧换新补贴实施细则》规定,报废旧车并购买新车的个人消费者,补贴标准由购买新能源乘用车补1万元、购买燃油乘用车补7000元,分别提高至2万元和1.5万元,某新能源汽车配件公司为扩大生产,计划改进技术生产某种组件.已知生产该产品的年固定成本为2000万元,每生产*(N )x x ∈百件,需另投入成本()W x 万元,且045x <<时,()23260W x x x =+;当45x ≥时,4900()501495020W x x x =+-+,由市场调研知,该产品每件的售价为5万元,且全年内生产的该产品当年能全部销售完.(1)分别写出045x ≤<与45x ≥时,年利润y (万元)与年产量x (百件)的关系式(利润=销售收入-成本);(2)当该产品的年产量为多少百件时,公司所获年利润最大?最大年利润是多少?【答案】(1)答案见解析;(2)年产量为50百件时,该企业所获年利润最大,最大年利润是2830万元【解析】【分析】(1)结合题意,分045x ≤<和45x ≥时利用利润=销售收入-成本求出关系式即可;(2)当045x ≤<时,由二次函数求出最值,当45x ≥时,由基本不等式求出最值,再确定结果即可;【小问1详解】由题意可得当045x ≤<时,225003260200032000240y x x x x x =--=---+,当45x ≥时,49004900500(5014950)20002950(2020y x x x x x =-+--=-+++,【小问2详解】由(1)得045x ≤<时,()22324020003402800y x x x =-+-=--+,此时40x =(百件)时,max 2800y =(万元),当45x ≥时,490049002950(2970(20)2970297027028302020y x x x x =-+=-++≤-=-⨯=++,当且仅当49002020x x +=+,即50x =时等号成立,max 2800y =(万元),而28002830<,故50x =(百件)时,利润最大,综上所述,年产量为50百件时,该企业所获年利润最大,最大年利润是2830万元.19. 已知函数()f x 满足如下条件:①对任意0x >,()0f x >;②()11f =;③对任意0x >,0y >,总有()()()f x f y f x y +≤+.(1)写出一个符合上述条件的函数(写出即可,无需证明);(2)证明:满足题干条件的函数()f x 在()0,∞+上单调递增;(3)①证明:对任意的0s >,()()22k k f s f s ≥,其中*N k ∈;②证明:对任意的()()1*2,2N k k x k -∈∈,都有()122x f x f x x ⎛⎫->- ⎪⎝⎭.【答案】(1)()()1a f x xa =>(答案不唯一) (2)证明见解析(3)①证明见解析;②证明见解析【解析】分析】(1)根据条件设计一个函数即可;(2)根据条件,运用函数单调性的定义推导即可;(3)运用递推的方法先证明①,再根据①的结论,考虑的x 的区间即可证明.【小问1详解】()f x x =,()2f x x =,()3f x x =等,即形如()()1f x x αα=>均可;【小问2详解】【任取0x y >>,()()()()f x f y f x y y f y -=-+-.因为0x y ->,故()()()f x y y f x y f y -+≥-+且()0f x y ->.故()()()()()0f x f y f x y y f y f x y -=-+-≥->.故()f x 在()0,∞+上单调递增.【小问3详解】①由题意可知:对任意正数s ,都有()0f s >,且()()()f s f t f s t +≤+,在③中令x y s ==,可得()()22f s f s ≥,即()()22f s f s ≥;故对任意正整数k 与正数s ,都有()()()()()()()()1122222222k k k k k k f s f s f s f s f s f s f s f s ---=⋅⋅⋅⋅⋅⋅⋅≥;②由①可知:对任意正整数k 与正数s ,都有()()22k k f s f s ≥,故对任意正整数k 与正数s ,都有()()1122k k f s f s --≥,令12k s -=,则()()1112212k k k f f ---≤=;对任意()()1*2,2k k x k -∈∈N ,可得()112,2k k x --∈,并且2122,2k k x --<< 12222k k x--<< ,又因为()11f =,所以由(2)中已经证明的单调性可知:()()()11122122k k k x f x f f --->≥=>,()111222k k f f x x --⎛⎫<≤< ⎪⎝⎭,所以()122x f x f x x⎛⎫->- ⎪⎝⎭.【点睛】对于第二问,如何巧妙运用()()()f x f y f x y +≤+ 要学习,抽象函数中经常会用到这个方法;对于第三问,可以把2k s 看作2k s s s s++++ ,再运用()()()f x f y f x y +≤+ 可以证明①,再利用①的结论推出()2x f x > ,12f x x ⎛⎫< ⎪⎝⎭ .。

2024-2025学年广东省深圳市高一上学期期中考试数学检测试题(含解析)

2024-2025学年广东省深圳市高一上学期期中考试数学检测试题(含解析)

一第I 2024-2025学年广东省深圳市高一上学期期中考试数学检测试题卷、选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1 已知集合{}3,1,1,3,{24}A B x x =--=-<<∣,那么A B = ( )A. {}1,1- B. {}1,3 C. {}1,1,3- D. {}0,2,4【答案】C【解析】【分析】根据交集知识来求得正确答案.【详解】依题意,{}1,1,3A B ⋂=-.故选:C2. 函数()1f x x =的定义域是( )A. [)1,-+∞ B. [)1,0- C. [)()1,00,-+∞ D. ()(),00,-∞+∞ 【答案】C【解析】【分析】根据根式和分式性质,列不等式即可求解.【详解】()1f x x =+的定义域需满足100x x +≥⎧⎨≠⎩,解得1x ≥-且0x ≠,故定义域为[)()1,00,-+∞ ,故选:C3. 若幂函数()y f x =的图象经过点,则(5)f 的值是( )A.B. C. 15 D. 25【答案】A【解析】.的的【分析】设()a f x x =,由已知条件可得()2f =,求出a 的值,可得出函数()f x 的解析式,进而可求得(5)f 的值.【详解】设()a f x x =,则()22a f ==12a =,故()f x =(5)f =.故选:A.4. 已知函数()2132f x x +=+,则()2f 的值等于( )A. 2B. 5C. 11D. 1-【答案】B【解析】【分析】令12x +=,求出x 的值,代入解析式中可得结果.【详解】令12x +=,求出1x =,则()223125f =⨯+=.故选:B5. 已知函数()322,11,1x x f x x x -⎧>=⎨+≤⎩,则()()3f f =( )A. 2B. 1C. 12D. 14【答案】A【解析】【分析】先求出()3f ,进而可得出答案.【详解】由()322,11,1x x f x x x -⎧>=⎨+≤⎩,得()33321f -==,所以()()()231112f f f ==+=.故选:A.6. 下列四个命题中为真命题的是( )A. ,143x x ∃∈<<Z B. ,510x x ∃∈+=Z C. 2,10x x ∀∈-≠R D. 2,20x x x ∀∈++>R 【答案】D【解析】【分析】根据全称量词命题、存在量词命题的知识对选项进行分析,从而确定正确答案【详解】A 选项,由143x <<得1344x <<,x 不是整数,所以A 选项错误.B 选项,由510x +=得15x =-,x 不是整数,所以A 选项错误.C 选项,1x =或1x =-时,210x -=,所以C 选项错误.D 选项,由于22172024x x x ⎛⎫++=++> ⎪⎝⎭,所以D 选项正确.故选:D7. 已知函数()f x 为R 上的奇函数,当0x <时,()2f x x =+,则()()03f f +等于( )A. 3- B. 1- C. 1 D. 3【答案】C【解析】【分析】根据(3)f (3)f =--以及(0)0f =可求出结果.【详解】因为函数()f x 为R 上的奇函数,当0x <时,()2f x x =+,所以()()()33321f f =--=--+=.而()00f =,∴()()031f f +=.故选:C .8. 已知关于x 的一元二次不等式2210kx x -+<的解集为(),m n ,则43m n +-的最小值是( )A. 32 B.3 C. 92 D. 6【答案】A【解析】【分析】根据不等式与对应方程的关系,结合根与系数的关系,得出m 与n 的关系式,再利用基本不等式求43m n +-的最小值.【详解】因为(),m n 是不等式2210kx x -+<的解集,所以,m n 是方程2210kx x -+=的两个实数根且0k >,所以2m n k +=,1mn k =,所以112m n mn m n=++=,且0m >,0n >;所以111141194(4)()(5)(5(54)22222n m m n m n m n m n +=⋅+⋅+=⋅++≥+=⨯+=,当且仅当322n m ==时“=”成立;所以43m n +-的最小值为93322-=.故选:A .二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 下列说法中,正确的是( )A. 若b a <,则11a b<B. 若22ac bc >,则a b>C. 若0b a <<,则22b a >D. 若,a bcd ><,则a c b d->-【答案】BCD【解析】【分析】利用特殊值以及不等式的性质来确定正确答案.【详解】A 选项,111,1,,b a b a a b=-=<>,所以A 选项错误.B 选项,若22ac bc >,则20c >,则a b >,所以B 选项正确.C 选项,若0b a <<,则()()22220,b a b a b a b a -=+->>,所以C 选项正确.D 选项,若,a b c d ><,则c d ->-,所以a c b d ->-,所以D 选项正确.故选:BCD10. 若正实数a ,b 满足21a b +=,则下列说法正确的是( )A. 12a b+有最小值9 B. 24a b +的最小值是C. ab 有最大值18 D. 22a b +最小值是25【答案】ABC 的【解析】【分析】根据基本不等式求最值后判断.【详解】()1212222559b a a b a b a b a b ⎛⎫+=++=++≥+= ⎪⎝⎭,当且仅当2213b a a b a b =⇒==时等号成立,A 对;22422a b a b +=+≥=,当且仅当222a b =,即1124a b ==,时等号成立,B 对;21a b +=≥,则18ab ≤,当且仅当2a b =,即1124a b ==,时等号成立,C 对;由12a b =-,则222221541555a b b b b ⎛⎫+=-+=-+ ⎪⎝⎭,而102b <<,所以2215a b +≥,当且仅当25b =时等号成立,D 错.故选:ABC 11. 高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,他和阿基米德、牛顿并列为世界三大数学家,用其名字命名的“高斯函数”为:设x ∈R ,用[]x 表示不超过x 的最大整数,则[]y x =称为高斯函数.例如:[ 3.2]4-=-,[2.3]2=.已知函数21()122x x f x =-+,则关于函数()[()]g x f x =的叙述中正确的是( )A. ()f x 是奇函数B. ()f x 在R 上是减函数C. ()g x 是偶函数D. ()g x 的值域是{}1,0-【答案】AD【解析】【分析】利用奇偶性的定义判断可选项A ,C ,由函数单调性的结论可判断选项B ,由函数单调性求出()f x 的取值范围,结合定义可得()g x 的值域可判断选项D .【详解】对于选项A :因为函数11()112221122x x x f x =-=--=++11212x -+,x ∈R ,可得()121()1221221x x x f x f x ---=-=-=-++,所以函数()f x 为奇函数,故A 正确;对于选项B :因为12x y =+、112=-+x y 在R 上是增函数,所以()11212xf x =-+在R 上是增函数,故B 错误;对于选项C :因为()11212x f x =-+,则()()11g f ==⎡⎤⎣⎦106⎡⎤=⎢⎥⎣⎦,()()11g f -=-=⎡⎤⎣⎦116⎡⎤-=-⎢⎥⎣⎦,即()()11g g -≠,所以函数()g x 不是偶函数,故C 错误;对于选项D :因为121x +>,则10112x <<+,可得11()22f x -<<,所以()[()]g x f x =的值域为{}1,0-,故D 正确.故选:AD .第II 卷三、填空题(本题共3小题,每小题5分,共15分)12. 已知函数()1(0xf x a a =+>且1)a ≠,则函数()f x 的图象恒过定点的坐标为__________.【答案】()0,2【解析】【分析】根据指数型函数的定点的求法求得正确答案.【详解】由于()0012f a =+=,所以定点坐标为()0,2.故答案为:()0,213. 求值:121081(0.1)2)16-⎛⎫⨯-= ⎪⎝⎭__________.【答案】252##12.5【解析】【分析】利用指数幕的运算性质直接求解即可.【详解】1210811925(0.1)2)101110160.142-⎛⎫⎛⎫⨯--=-⨯=-⨯= ⎪ ⎪⎝⎭⎝⎭.故答案为:252##12.5.14. 已知函数()0.50.5f x x x -=+,若()3f a =,则()2f a =__________,若关于x 的不等式()()24110mf x f x --≤在区间1,32⎡⎤⎢⎥⎣⎦上有解,则实数m 的取值范围是__________.【答案】 ①. 7 ②. 13,2⎛⎤-∞ ⎥⎝⎦【解析】3=,两边平方整理可得17a a +=,即()217f a a a =+=.利用换元法,结合分离参数,问题转化成9m t t ≤+在103,3⎡⎤⎢⎥⎣⎦能成立,求实数m 的取值范围.【详解】()()0.50.5,3f x x x f a -=+=+=,故17a a +=,所以()217f a a a =+=.()()24110mf x f x --≤,即2211110m x x x x ⎛⎫⎛⎫+-+-≤ ⎪ ⎪⎝⎭⎝⎭,设111,,3,2x t x y x x x ⎡⎤+=∈=+⎢⎥⎣⎦在1,12⎡⎤⎢⎥⎣⎦上单调递减,在(]1,3上单调递增,故222210112,,223t x x t x x ⎡⎤⎛⎫∈+=+-=- ⎪⎢⎥⎣⎦⎝⎭,故290mt t --≤,故9m t t ≤+,不等式()()24110mf x f x --≤在区间1,32⎡⎤⎢⎥⎣⎦上有解,即9m t t ≤+在区间1,32⎡⎤⎢⎥⎣⎦上有解,函数()9y g t t t ==+在[)2,3上单调递减,在103,3⎡⎤⎢⎥⎣⎦上单调递增,()max 101318113()max 2,max ,32302g t g g ⎧⎫⎛⎫⎧⎫===⎨⎬⎨⎬ ⎪⎝⎭⎩⎭⎩⎭,故132m ≤.故答案为:7;13,2∞⎛⎤- ⎥⎝⎦.【点睛】关键点点睛:应用换元法解决问题时,一定要注意新元的取值范围.四、解答题(本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤)15. 已知集合{}{}5,16A x a x a B x x =≤≤+=-≤≤∣∣,全集U =R .(1)当0a =时,求()U A B ð;(2)若“x A ∈”是“x B ∈”的充分条件,求实数a 的取值范围.【答案】(1){0xx ≤<∣-1或56}x <≤ (2)11a -≤≤【解析】【分析】(1)将0a =代入再由集合的交、补运算即可求解;(2)由“x A ∈”是“x B ∈”的充分条件,得A B ⊆,再利用集合的包含关系即可求解.小问1详解】当0a =时,集合{}05A x x =≤≤∣{0U A x x =<∣ð或5}x >,()U A B ð{0∣-1=≤<xx 或56}x <≤ ;【小问2详解】由“x A ∈”是“x B ∈”的充分条件,得A B ⊆,因为5a a <+,所以A ≠∅则由A B ⊆,得1a ≥-且56a +≤,解得11a -≤≤,所以实数a 的取值范围是11a -≤≤.16. 已知函数()2f x mx n =+,满足()()01,13f f =-=(1)求函数()f x 的解析式;(2)求不等式()2f x x ->的解集;(3)对于R x ∈,不等式()0f x ax ->恒成立,求实数a 的取值范围.【答案】(1)()221f x x =+ (2){1|2x x <-或 1}>x (3)(-【解析】【分析】(1)将已知条件代入求出,m n 即可求解;(2)由(1)可知()221f x x =+,则解不等式即可求解;【(3)将不等式转化为2210x ax -+>恒成立,因为()221f x x ax =-+开口向上,根据0∆<即可求解.【小问1详解】由函数()2f x mx n =+,满足()()01,13f f =-=,()()220011(1)3f m n f m n ⎧=⋅+=⎪⎨-=⋅-+=⎪⎩,解得21m n =⎧⎨=⎩,故函数()f x 的解析式为:()221f x x =+.【小问2详解】由(1)知()221f x x =+,即不等式转化为2210x x -->,则()()1210x x -+>,所以不等式的解集{1|2x x <-或 1}>x .【小问3详解】不等式转化为2210x ax -+>恒成立,因为()221f x x ax =-+开口向上,可得280a ∆=-<,解之可得a -<<,所以实数a 的取值范围是(-.17. 某公司决定对旗下的某商品进行一次评估,该商品原来每件售价为25元,年销售8万件.(1)据市场调查,若价格每提高1元,销售量将相应减少2000件,要使销售的总收入不低于原收入,该商品每件定价最多为多少元?(2)为了扩大该商品的影响力,提高年销售量.公司决定立即对该商品进行全面技术革新和销售策略调整,并提高定价到x 元.公司拟投入21(600)6x -万元.作为技改费用,投入50万元作为固定宣传费用,投入5x 万元作为浮动宣传费用.试问:当该商品改革后的销售量a 至少达到多少万件时,才可能使改革后的销售收入不低于原收入与总投入之和?并求出此时每件商品的定价.【答案】(1)40元 (2)10.2万件,30元【解析】【分析】(1)设每件定价为t 元,求出原销售收入和新销售收入后列不等式求解;(2)列出不等关系21125850(600)56ax x x ≥⨯+++-,分离参数得1501165a x x ≥++,从而利用基本不等式即可得解.【小问1详解】依题意,设每件定价为()25t t ≥元,得()8250.2258t t --⨯≥⨯⎡⎤⎣⎦,整理得26510000t t -+≤,解得2540t ≤≤.所以要使销售的总收入不低于原收入,每件定价最多为40元.【小问2详解】依题意知当25x >时,不等式21125850(600)56ax x x ≥⨯+++-有解,等价于25x >时,1501165a x x ≥++有解,由于1501106x x +≥=,当且仅当15016x x =,即30x =时等号成立,所以10.2a ≥,当该商品改革后销售量a 至少达到10.2万件时,才可能使改革后的销售收入不低于原收入与总投入之和,此时该商品的每件定价为30元.18. 已知函数()23f x x ax a =++-,a ∈R .(1)若()f x 过点(2,6)P ,求()f x 解析式;(2)若()y f x =.(ⅰ)当[]13,x ∈-函数()f x 不单调,求a 的取值范围;(ⅱ)当[]0,2x ∈函数()f x 的最小值是关于a 的函数()m a ,求()m a 表达式【答案】(1)()24f x x x =-+ (2)(ⅰ)()6,2-;(ⅱ)()23,013,4047,4a a m a a a a a a ->⎧⎪⎪=--+-≤≤⎨⎪+<-⎪⎩【解析】【分析】(1)根据题意,将点(2,6)P 代入函数的解析式,求得1a =-,即可求解;(2)(ⅰ)根据题意,结合二次函数的图象与性质,列出不等式132a -<-<,即可求解;(ⅱ)由(ⅰ)知,对称轴为2a x =-,结合二次函数性质,分<02a -,022a ≤-≤和>22a -,三种情况讨论,即可求解.【小问1详解】因为函数()23f x x ax a =++-过点(2,6)P ,将点(2,6)P 代入函数的解析式,可得4236a a ++-=,解得1a =-,所以函数()f x 解析式为()24f x x x =-+.【小问2详解】(ⅰ)由函数()23f x x ax a =++-,可得其图象对应的抛物线开口向上,且对称轴为2a x =-,要使得[]1,3x ∈-函数()f x 不单调,可得132a -<-<,解得62a -<<,所以实数a 的取值范围()6,2-;(ⅱ)由(ⅰ)知,函数()f x 的图象对应的抛物线开口向上,且对称轴为2a x =-,当<02a -时,即0a >时,()f x 在[]0,2单调递增,所以()()min 03f x f a ==-;当022a ≤-≤时,即40a -≤≤时,()f x 在[0,)2a -单调递减,在(,2]2a -单调递增,所以()2min 1(322a f x f a a =-=--+;当>22a -时,即4a <-时,()f x 在[]0,2单调递减,所以()()min 27f x f a ==+,所以()m a 表达式为()23,013,4047,4a a m a a a a a a ->⎧⎪⎪=--+-≤≤⎨⎪+<-⎪⎩19. 已知函数()()240,12x x a a f x a a a a+-=>≠+是定义在R 上的奇函数.(1)求实数a 的值;(2)判断()f x 在定义域上的单调性,并用单调性定义证明;(3)[]1,2x ∃∈,使得()22x t f x ⋅≥-成立,求实数t 的取值范围.【答案】(1)2 (2)增函数,证明见解析(3)0t ≥【解析】【分析】(1)利用“奇函数在原点上有定义,则()00f =”即可求解.(2)根据单调性定义即可证明.(3)先将不等式()22x t f x ⋅≥-化为()221121x x t ≥--+-,再利用换元法结合函数单调性求出()221121x x --+-的最小值即可得解.【小问1详解】因为()()240,12x x a a f x a a a a+-=>≠+,R x ∈,定义域关于原点对称,令0x =,所以()2002a f a-==+,故2a =,则()()21R 21x x f x x -=∈+,()()211221211221x x x x x x f x f x ------===-=-+++,所以()f x 为定义在R 上的奇函数,故2a =.【小问2详解】()2121x x f x -=+是R 上的增函数.证明:任取12,R x x ∈,且12x x <,()()()()()()()()()()()1221121212121212212121212222121212121212121x x x x x x x x x x x x x x f x f x -+--+----=-==++++++,所以12x x <,所以1210x +>,2210x +>,12022x x <<,所以12220x x -<, ()()1221210x x ++>,所以()()120f x f x -<,即()()12f x f x <,所以()f x 是R 上的增函数.【小问3详解】当[]1,2x ∈时,不等式()·22x t f x ≥-即()()222121x x x t -+≥-,故()()222222112121x x x x x t --≥=--+--,则令21x v =-,由题意可知[]1,3v ∃∈,21t v v ≥-+,因为函数y x =,2y x =-为[]1,3上的增函数,故21y v v =-+在[]1,3v ∈上单调递增,故min 2211101v v ⎛⎫-+=-+= ⎪⎝⎭,所以0t ≥.。

甘肃省武威市武威第一中学2023-2024学年高一上学期期中考试数学试卷(含答案)

甘肃省武威市武威第一中学2023-2024学年高一上学期期中考试数学试卷(含答案)

武威一中2023年秋季学期期中考试高一年级 数学试卷第Ⅰ卷(选择题)一、单选题(共8小题,每小题5分)1.已知A 是由0,,三个元素组成的集合,且,则实数为( )A.2B.3C.0或3D.0,2,3均可2.已知全集,集合,,那么( )A. B. C. D.3.若集,合,则( )A. B. C. D.4.设,则( )A.B.C.1D.-25.若命题“,使得成立”是假命题,则实数的取值范围是( )A. B. C. D.6.已知函数是一次函数,且,则( )A.11B.9C.7D.57.已知函数是定义在上的偶函数,又,则,,的大小关系为( )A. B.C. D.8.若定义在R 的奇函数,若时,则满足的的取值范围是( )A. B.C. D.m 232m m -+2A ∈m U =R {}24A x x =-≤≤∣501x B x x ⎧⎫-=<⎨⎬+⎩⎭A B = ()1,4-(]1,4-()2,5-[)2,5-{}24x A x =<∣{N 13}B x x =∈-<<∣A B = {12}xx -<<∣{}0,1{}1{13}xx -<<∣()212,11,11x x f x x x ⎧--≤⎪=⎨>⎪+⎩()()1f f =15120R x ∃∈201k x >+k 1k >01k <<1k ≤0k ≤()f x ()23f f x x ⎡⎤-=⎣⎦()5f =()22f x ax a =+[],2a a +()()2g x f x =+()2g -()3g -()2g ()()()232g g g ->->()()()322g g g ->>-()()()223g g g ->>-()()()232g g g >->-()f x 0x <()2f x x =--()0xf x ≥x ()[],20,2-∞- ()(),22,-∞-+∞ ][(,20,2⎤-∞-⎦[]2,2-二、多选题(共4小题,每小题选对得5分,错选或多选得0分,少选或漏选得2分)9.下列结论中,不正确的是( )A. B. C. D.10.下列命题中,真命题的是( )A.,都有 B.任意非零实数,都有C.,使得D.函数211.下列命题正确的是( )A.命题“,,”的否定是“,,”B.与是同一个函数C.函数的值域为D.若函数的定义域为,则函数的定义域为12.函数的定义域为R ,已知是奇函数,,当时,,则下列各选项正确的是( )A. B.在单调递C. D.第Ⅱ卷(非选择题)三、填空题13.已知,集合,则图中阴影部分所表示的集合是________.14.函数的单调递减区间为________.15.已知集合,,若“”是“”的必要非充分条件,则实数的取值范围是________.0.20.20.20.3>113323--<0.10.20.81.25->0.33.11.70.9>x ∀∈R 21x x x -≥-,a b 2b a a b+≥()1,x ∃∈+∞461x x +=-y =x ∀y ∈R 220x y +≥x ∃y ∈R 220x y +<()1f x x =-()211x g x x -=+y x =[)0,+∞()1f x +[]1,4()f x []2,5()f x ()1f x +()()22f x f x +=-[]1,2x ∈()22f x ax =+()()4f x f x +=()f x []0,1()10f =13533f ⎛⎫=⎪⎝⎭U R ={11}A x x =->{B xy ==∣y =204x A xx ⎧⎫+=<⎨⎬-⎩⎭{}22210B x x ax a =-+-<∣x A ∈x B ∈a16已,,,知为四个互不相等的实数.若,,,中最大,则实数的取值范围为________.四、解答题17.(本小题10分)计算下列各式(式中字母都是正数):(1);(2);(3.18.(本小题12分)已知函数.(1)证明:函数在上是减函数;并求出函数在的值域;(2)记函数,判断函数的的奇偶性,并加以证明.19.(本小题12分)设关于的函数,其中,都是实数。

河南省郑州市十所省级示范性高中2024-2025学年高一上学期期中联考数学试卷含答案

河南省郑州市十所省级示范性高中2024-2025学年高一上学期期中联考数学试卷含答案

2024-2025学年上期高一年级期中联考试题数学学科(答案在最后)命题人:考试时间:120分钟分值:150分注意事项:本试卷分试题卷和答题卡两部分.考生应首先阅读试题卷上的文字信息,然后在答题卡上作答(答题注意事项见答题卡).在试题卷上作答无效.一、单项选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}2,0,1,2,3M =-,{}|114N x x =-<-≤,则M N = ()A.{}2,0,1,2,3- B.{}2,0,1- C.{}0,1,2,3 D.{}20-,【答案】B 【解析】【分析】利用集合交集的定义求解即可.【详解】因为{}2,0,1,2,3M =-,{}|32N x x =-≤<,所以{}2,0,1M N ⋂=-.故选:B 2.函数0()(3)f x x =+的定义域是()A.(,3)(3,)-∞-⋃+∞B.(,3)(3,3)-∞-- C.(,3)-∞- D.(,3)-∞【答案】B 【解析】【分析】根据函数解析式,只需解析式有意义,即3030x x ->⎧⎨+≠⎩,解不等式即可求解.【详解】由0()(3)f x x =+,则3030x x ->⎧⎨+≠⎩,解得3x <且3x ≠-,所以函数的定义域为(,3)(3,3)-∞-- 故选:B3.已知p :223x x +=,q :2x =,则p 是q 的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】D 【解析】【分析】解方程223x x +=和2x =,根据充分条件、必要条件即可求解.【详解】由223x x +=,得1x =-或3x =,由2x =,得3x =或0x =,因为1x =-或3x =成立推不出3x =或0x =成立,反之也不成立,所以p 既不是q 的充分条件,也不是q 的必要条件.故选:D4.若()f x 为偶函数,()g x 为奇函数,且()()3xf xg x +=,则()f x 的图象大致为()A. B.C. D.【答案】A 【解析】【分析】根据函数的奇偶性可得()()3xf xg x --=,即可求解()f x 解析式,通过排除可得答案.【详解】解:由()()3xf xg x +=得:()()3xf xg x --+-=,即()()3xf xg x --=,由()()()()33xx f x g x f x g x -⎧+=⎪⎨-=⎪⎩解得:()332x x f x -+=,由33122x x -+≥=,排除BC .由指数函数的性质(指数爆炸性)排除D .故选:A5.函数y =)A.5,2⎡⎫+∞⎪⎢⎣⎭ B.(),1-∞ C.[)4,+∞ D.5,2⎛⎫-∞ ⎪⎝⎭【答案】B 【解析】【分析】根据复合函数的单调性即可求解.【详解】2540x x -+≥,即(4)(1)0x x --≥,解得4x ≥或1x ≤,令254t x x -=+,则254t x x -=+的对称轴为5522x -=-=,254t x x ∴=-+在(,1)-∞上单调递减,在[4,)+∞上单调递增,又y =是增函数,y ∴=在(,1)-∞上单调递减,在[4,)+∞上单调递增.故选:B.6.若函数()2,142,12x ax x f x a x x ⎧+>⎪=⎨⎛⎫-+≤ ⎪⎪⎝⎭⎩是R 上的增函数,则实数a 的取值范围为()A.(2,)-+∞B.(2,8)- C.10,83⎛⎫⎪⎝⎭D.10,83⎡⎫⎪⎢⎣⎭【答案】D 【解析】【分析】根据条件,要使函数是R 上的增函数,每一段函数在其定义域内必须为增函数且左端的最大值小于等于右端的最小值,列出不等式组求解即可.【详解】因为函数2,1()(4)2,12x ax x f x ax x ⎧+>⎪=⎨-+≤⎪⎩是R 上的增函数,所以1240214+22aaa a ⎧-≤⎪⎪⎪->⎨⎪⎪+≥-⎪⎩,解得:1083a ≤<,故选:D .7.已知()f x 的定义域为()0,∞+,且满足()41f =,对任意()12,0,x x ∈+∞,都有()()()1212f x x f x f x ⋅=+,当()0,1x ∈时,()0f x <.则()()31263f x f x ++-≤的解集为()A.(]0,4 B.(]3,5 C.()3,6 D.[)4,5【答案】B 【解析】【分析】利用单调性定义可判断函数为增函数,再结合单调性可求不等式的解.【详解】设()34,0,x x ∞∈+且34x x <,对任意(),0,x y ∈+∞,都有()()()f xy f x f y =+即()()()f xy f x f y -=,∴()()3344x f x f x f x ⎛⎫-= ⎪⎝⎭,340x x << ,3401x x ∴<<,又当()0,1x ∈时,()0f x <,()()33440x f x f x f x ⎛⎫-=<⎪⎝⎭,()f x \在()0,∞+上是增函数,令124x x ==,则()()()16442f f f =+=,令14x =,216x =,则()()()644163f f f =+=,()()()3126364f x f x f ∴++-≤=,结合()f x 的定义域为()0,∞+,且在()0,∞+上是增函数,又()()()1212f x x f x f x ⋅=+恒成立,()()()312664f x x f ⎡⎤∴+⋅-≤⎣⎦,()()310260312664x x x x +>⎧⎪->∴⎨⎪+-≤⎩(]3,5x ∴∈,∴不等式的解集为(]3,5,故选:B .8.已知函数()f x 是R 上的奇函数,对任意的()12,,0x x ∞∈-,()()()211212120,x f x x f x x x x x ->≠-,设()1523,,1325a f b f c f ⎛⎫⎛⎫==--= ⎪ ⎪⎝⎭⎝⎭,则a ,b ,c 的大小关系是()A.a b c >>B.c a b>> C.c b a>> D.b c a>>【答案】A 【解析】【分析】确定数()()f x g x x=在(),0-∞上单调递增,()g x 是()(),00,-∞+∞ 上的偶数,变换得到13a g ⎛⎫=- ⎪⎝⎭,25b g ⎛⎫=- ⎪⎝⎭,()1c g =-,根据单调性得到答案.【详解】()()()211212120,x f x x f x x x x x ->≠-,即()()()121212120,f x f x x x x x x x ->≠-,故函数()()f x g x x=在(),0-∞上单调递增,()f x 是R 上的奇函数,故()g x 是()(),00,-∞+∞ 上的偶数,1113333a f g g ⎛⎫⎛⎫⎛⎫===- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,522255b f g ⎛⎫⎛⎫=--=- ⎪ ⎪⎝⎭⎝⎭,()()()111c f g g ===-.12135->->-,故a b c >>.故选:A二、多项选择题:本题共3小题,每小题6分,共18分,在每小题给出的四个选项中,有多项符合题目的要求,全部选对的得6分,部分选对的得3分,有选错的得0分.9.下列说法正确的是()A.至少有一个实数x ,使210x +=B.“0a b >>”是“11a b<”的充分不必要条件C.命题“21,04x x x ∃∈-+<R ”的否定是假命题D.“集合{}210A x ax x =++=”中只有一个元素是“14a =”的必要不充分条件【答案】BD 【解析】【分析】由在实数范围内,20x >可得A 错误;举反例可得必要性不成立,可得B 正确;由全称与特称命题的性质和二次函数的性质可得C 错误;由集合A 中只有一个元素可得0a =或14,再由必要性可得D 正确;【详解】对于A ,在实数范围内,20x >,210x +>,故A 错误;对于B ,若0a b >>,则11a b<,充分性成立,若11a b<,如1,2a b =-=-,此时0a b >>,必要性不成立,所以“0a b >>”是“11a b<”的充分不必要条件,故B 正确;对于C ,命题“21,04x x x ∃∈-+<R ”的否定是21,04x x x ∀∈-+≥R ,由二次函数的性质可得()214f x x x =-+开口向上,0∆=,所以()0f x ≥恒成立,故C 错误;对于D ,若集合{}210A x ax x =++=中只有一个元素,当0a =时,1x =-;当0a ≠时,可得11404a a D =-=Þ=,所以必要性成立,故D 正确;故选:BD.10.已知正实数,x y 满足22x y +=,则下列说法不正确的是()A.3x y +的最大值为174B.42x y +的最小值为2C.2xy 的最大值为2D.211x y+的最小值为2【答案】AC 【解析】【分析】直接利用基本不等式即可求解BC ,利用乘“1“法即可判断D ,利用二次函数的性质可求解A.【详解】对于A ,因为22x y +=,所以22x y =-,因为,x y 为正实数,所以220y ->,解得:0<<y ,2231732324x y y y y ⎛⎫+=-+=--+ ⎪⎝⎭,由二次函数的性质可知3x y +的无最大值,故A 错误;对于B ,22422(22x y x y ++≥⨯=,当且仅当21x y ==时取等号,故B 正确;对于C ,22212x y xy ⎛⎫+≤= ⎪⎝⎭,当且仅当21x y ==时取等号,所以2xy 的最大值为1,故C 错误;对于D ,因为22x y +=,所以2122x y +=,222222111111=1=12222x y y xx y x y x y x y ⎛⎫⎛⎫⎛⎫++⋅+⋅+=++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭111222≥+=+⨯=,当且仅当2222y xx y=,即21x y ==时取等,故D 正确.故选:AC .11.给出定义:若()1122m x m m -<≤+∈Z ,则称m 为离实数x 最近的整数,记作{}x m =.在此基础上给出下列关于函数(){}f x x x =-的四个结论,其中正确的是()A.函数()y f x =值域为10,2⎡⎤⎢⎥⎣⎦B.函数()y f x =是偶函数C.函数()y f x =在11,22⎡⎤-⎢⎣⎦上单调递增D.函数()y f x =图象关于直线()2kx k =∈Z 对称【答案】ABD 【解析】【分析】根据{}x 的定义,画出函数的图象,根据图象判定即可.【详解】根据{}x 的定义知函数()y f x =的定义域为R ,又{}x m =,则{}{}11,22x x x -<≤+即{}11,22x x -<-≤所以{}10,2x x ≤-≤故函数()y f x =值域为10,2⎡⎤⎢⎣⎦,A 正确;函数()y f x =的图象如下图所示,有图可知函数()y f x =是偶函数,B 正确;函数()y f x =在11,22⎡⎤-⎢⎣⎦上有增有减,C 错误;由图可知()y f x =的图象关于()2kx k =∈Z 对称,D 正确.故选:ABD.三、填空题:本题共3小题,每小题5分,共15分.12.已知函数()()222,22,2x x x f x f x x ⎧-++≤⎪=⎨->⎪⎩,则()5f =__________.【答案】3【解析】【分析】将5x =代入分段函数中即可得出答案.【详解】因为()()222,22,2x x x f x f x x ⎧-++≤⎪=⎨->⎪⎩,所以()()()()()55233211223f f f f f =-==-==-++=.故答案为:3.13.已知函数()1f x xx=+,计算()()()()1111122024202420232f f f f f f f ⎛⎫⎛⎫⎛⎫++++++++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭_________.【答案】2024【解析】【分析】先求出1()()f x f x+,再观察所求,倒序相加即可得解.【详解】由()1xf x x=+,得111()()111111x x x f x f x x x x x+=+=+=++++,所以111()()()(1)(1)(2)(2024)202420232f f f f f f f ++++++++ 111[((2024)][()(2023)][()(2)][(1)(1)]202420232f f f f f f f f =++++++++ 11112024=++++= .故答案为:2024.14.下列结论中,正确的结论有__________(填序号).①若1x <-,则11x x ++的最大值为2-②当0x ≥时,函数21244x y x x +=++的最大值为1③若正数,x y 满足23x y xy +=,则2x y +的最小值为83④若,a b 为不相等的正实数,满足11a b a b +=+,则118a b a b++≥+【答案】③④【解析】【分析】对①:借助基本不等式计算可得;对②:借助整体思想可得()12211y x x =+++,再利用基本不等式计算即可得;对③:由23x y xy +=可得12133y x+=,再借助基本不等式中“1”的活用计算即可得;对④:由11a b a b+=+可得1ab =,再通分后借助基本不等式计算即可得.【详解】对①:由1x <-,则10x -->,故()()11111311x x x x +=---+-≤-=-+---当且仅当()111x x --=--,即2x =-时,等号成立,即11x x ++的最大值为3-,故①错误;对②:()()22111122444212211x x y x x x x x ++===≤+++++++,当且仅当0x =时,等号成立,故函数21244x y x x +=++的最大值为14,故②错误;对③:由23x y xy +=,故2121333x y xy y x+=+=,又,x y 为正数,故()12224482233333333x y x y x y y x y x ⎛⎫+=++=+++≥+ ⎪⎝⎭,当且仅当423x y ==时,等号成立,故2x y +的最小值为83,故③正确;对④:若,a b 为不相等的正实数,满足11a b a b +=+,则118a b a b++≥+由11a b a b +=+,则11a b a b b a ab--=-=,又,a b 为不相等的正实数,故1ab =,则11888a b a b a b a b ab a b a b+++=+=++≥+++当且仅当1a =+,1b =-或1a =-,1b =+时,等号成立,故④正确.故答案为:③④.四、解答题:本题共5小题,共77分,解答应写出必要的文字说明、证明过程及验算步骤.15.(1)求值:110340.064(π)(16)--++;(2)已知()112230a aa -+=>,求值:12222a a a a --++++.【答案】(1)8π5-;(2)949【解析】【分析】(1)根据题意,由指数幂的运算即可得到结果;(2)由()112230a aa -+=>平方可得1a a -+的值,再对1a a -+平方可得22a a -+的值,代入即可得出答案.【详解】(1)110340.064(π)(16)--++()1313442123π5⎡⎤⎛⎫=-++-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦212π35=-++-8π5=-(2)()112230a a a -+=> ,21112227,a a a a --⎛⎫∴+=+-= ⎪⎝⎭()2221247,a a a a --+=+-=12229.249a a a a --++∴=++16.设全集U =R ,集合{}{}02,123A x x B x a x a =<≤=-<<+.(1)若2a =时,求(),U A B A B ⋃⋂ð;(2)若A B B = ,求实数a 的取值范围.【答案】(1){}07A B x x ⋃=<<,(){}01U A B x x ⋂=<≤ð(2)(],4-∞-【解析】【分析】(1)得到集合B 后,结合并集定义即可得A B ,结合交集与补集定义即可得()U A B ⋂ð;(2)由A B B = 可得B A ⊆,分B =∅及B ≠∅计算即可得解.【小问1详解】当2a =时,{}17B x x =<<,则{}07A B x x ⋃=<<,{1U B x x =≤ð或}7x ≥,故(){}01U A B x x ⋂=<≤ð;【小问2详解】因为A B B = ,所以B A ⊆,若B =∅,则231a a +≤-,即4a ≤-,若B ≠∅,则232410a a a +≤⎧⎪>-⎨⎪-≥⎩,无解;综上,当A B B = 时,a 的取值范围是(,4ù-¥-û.17.已知函数2()()2f x x a b x a =-++.(1)若关于x 的不等式()0f x <的解集为{|12}x x <<,求,a b 的值;(2)当2b =时,(i )若函数()f x 在[2,1]-上为单调递增函数,求实数a 的取值范围;(ii )解关于x 的不等式()0f x >.【答案】(1)12a b =⎧⎨=⎩(2)(i )6a ≤-;(ii )答案见解析【解析】【分析】(1)根据一元二次不等式解集与一元二次方程根的关系,借助韦达定理列式计算即得.(2)把2b =代入,利用二次函数的单调性列出不等式即可得解;分类讨论解一元二次不等式即可作答.【小问1详解】依题意,关于x 的方程2()20x a b x a -++=的两个根为1和2,于是得322a b a +=⎧⎨=⎩,解得12a b =⎧⎨=⎩,所以12a b =⎧⎨=⎩.【小问2详解】当2b =时,2()(2)2f x x a x a =-++,(i )函数()f x 的对称轴为22a x +=,因函数()f x 在[2,1]-上为单调递增函数,则222a +≤-,解得6a ≤-,所以实数a 的取值范围是6a ≤-;(ii )不等式为2(2)20x a x a -++>,即()(2)0x a x -->,当2a <时,解得x a <或2x >,当2a =时,解得2x ≠,当2a >时,解得2x <或x a >,综上可知,当2a <时,不等式的解集为(,)(2,)a -∞⋃+∞,当2a =时,不等式的解集为(2)(2,)-∞⋃+∞,,当2a >时,不等式的解集为(2)(,)a -∞⋃+∞,.18.在园林博览会上,某公司带来了一种智能设备供采购商洽谈采购,并决定大量投放市场,已知该种设备年固定研发成本为50万元,每生产一台需另投入90元,设该公司一年内生产该设备x 万台且全部售完,每万台的销售收入()G x (万元)与年产量x (万台)满足如下关系式:()()180,0202000800070,201x x G x x x x x -<≤⎧⎪=⎨+->⎪-⎩.(1)写出年利润()W x (万元)关于年产量x (万台)的函数解析式(利润=销售收入-成本)(2)当年产量为多少万台时,该公司获得的年利润最大,并求出最大利润.【答案】(1)()()25090,0208000201950,201x x x W x x x x ⎧-+-<≤⎪=⎨-+->⎪-⎩(2)20,1350【解析】【分析】(1)由利润等于销售收入减去投入成本和固定成本可得解析式;(2)分别求出分段函数每一段的最大值后比较可得结论.【小问1详解】因为()()180,0202000800070,201x x G x x x x x -<≤⎧⎪=⎨+->⎪-⎩,所以()()()25090,02050908000201950,201x x x W x G x x x x x x ⎧-+-<≤⎪=--=⎨-+->⎪-⎩;【小问2详解】当020x <≤时,()()225090451975W x x x x =-+-=--+,由函数性质可知当45x ≤时单调递增,所以当20x =时,()max 1350W x =,当20x >时,()()()8000400201950201193011W x x x x x ⎡⎤=-+-=--++⎢⎥--⎣⎦,由不等式性质可知()()4002011930202193011301W x x x ⎡⎤=--++≤-⨯⨯=⎢⎥-⎣⎦,当且仅当40011x x -=-,即21x =时,等号成立,所以()max 1130W x =,综上当20x =时,()max 1350W x =.19.已知函数()()2210g x ax ax b a =-++>在区间[]2,3上有最大值4和最小值1.设()()g x f x x =.(1)求,a b 的值;(2)若不等式()220x x f k -⋅≥在[]1,1x ∈-上有解,求实数k 的取值范围;(3)若()2213021x x f k k -+⋅-=-有三个不同的实数解,求实数k 的取值范围.【答案】(1)1,0a b ==(2)(],1-∞(3)()0,∞+【解析】【分析】(1)根据()g x 的函数性质,即可判断()g x 在[]2,3上单调性,即有()()21,34g g ==,解出,a b 即可;(2)根据(1)中结论,代入题中,先对式子全分离,再用换元求出其最值即可得出结果;(3)将(1)中结论,代入题中式子,令()21xh x t =-=,根据图像变换画出函数图象,根据()()2213221210x x k k --+⋅-++=有三个不同的根及()h x 图象性质可知,只需()()232210t k t k -+++=有两个不同的实数解1t 、2t ,且有101t <<,21t >,或101t <<,21t =成立即可,根据二次函数根的分布问题,分别列出不等式解出即可.【小问1详解】解:由题知()()211g x a x b a =-++-,因为0a >,所以()g x 为开口向上的抛物线,且有对称轴为1x =,所以()g x 在区间[]2,3上是单调增函数,则()()2134g g ⎧=⎪⎨=⎪⎩,即11414a b a a b a ++-=⎧⎨++-=⎩,解得1,0a b ==;【小问2详解】由(1)得()221g x x x =-+,则()12f x x x =+-,因为()220x x f k -⋅≥在[]1,1x ∈-上有解,即[]1,1x ∃∈-,使得12222x x x k +-≥⋅成立,因为20x >,所以有2111222x x k ⎛⎫+-⋅≥ ⎪⎝⎭成立,令12x t =,因为[]1,1x ∈-,所以1,22t ⎡⎤∈⎢⎥⎣⎦,即1,22t ⎡⎤∃∈⎢⎥⎣⎦,使得221k t t ≤-+成立,只需()2max 21k t t ≤-+即可,记()()22211h t t t t =-+=-,因为1,22t ⎡⎤∈⎢⎥⎣⎦,得()()max 21h t h ==,所以k 的取值范围是(],1-∞;【小问3详解】因为()2213021x x f k k -+⋅-=-有三个不同实数解,即()()2213221210x x k k --+⋅-++=有三个不同的根,令()21x h x t =-=,则()0,t ∈+∞,则()h x 图象是由2x y =图象先向下平移一个单位,再将x 轴下方图像翻折到x 轴上方,画出函数图象如下:根据图像可知,一个()h x 的函数值,最多对应两个x 值,要使()()2213221210x x k k --+⋅-++=有三个不同的根,则需()()232210t k t k -+++=有两个不同的实数解1t 、2t ,且有101t <<,21t >,或101t <<,21t =,记()()()23221m t t k t k =-+++,当101t <<,21t >时,只需()()021010m k m k ⎧=+>⎪⎨=-<⎪⎩,解得0k >,当101t <<,21t =,只需()()021********m k m k k ⎧⎪=+>⎪=-=⎨⎪+⎪<<⎩,解得不存在,故舍去,综上:实数k 的取值范围是()0,∞+.【点睛】方法点睛:本题考查函数与方程的综合问题,属于中难题,关于方程根的个数问题的思路有:(1)对方程进行整体换元;(2)根据换元的对象,由图像变换,画出其图象;(3)根据方程根的个数,分析函数值的取值范围及二次方程根的个数;(4)利用二次函数根的分布问题进行解决即可.。

湖北省武汉市部分学校2024-2025学年高一上学期11月期中考试数学试题含答案

湖北省武汉市部分学校2024-2025学年高一上学期11月期中考试数学试题含答案

2024~2025学年度第一学期武汉市部分学校高一年级期中调研考试数学试卷(答案在最后)武汉市教育科学研究院命制2024.11.13本试题卷共4页,19题,全卷满分150分。

考试用时120分钟。

★祝考试顺利★注意事项:1.答题前,先将自己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

写在试卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内。

写在试卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试卷和答题卡一并上交。

一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合1,0,1,2,3}{A =-},220}{|B x x x =-<,则A B = A.{0,1,2}B.{1}C.{0,1}D.(0,2)2.命题p :[0,1]x ∀∈,20x x +的否定是A.0[0,1]x ∃∈,200x x +> B.[0,1]x ∀∈,20x x +>C.0[0,1]x ∃∈,200x x + D.[0,1]x ∀∈,20x x +3.下列关于幂函数2()f x x -=的判断:①定义域为(0,)+∞,②值域为R ;③是偶函数;④在(0,)+∞上单调递减.其中正确的个数是A.4B.3C.2D.14.下列不等式中成立的是A.若0a b >>,则22ac bc > B.若a b >,则33a b >C.若0a b <<,则22a ab b << D.若a b <且0ab ≠,则11a b<5.已知函数2()f x 的定义域为[1,2],则函数(21)f x +的定义域为A.1,12⎡⎤⎢⎥⎣⎦B.30,2⎡⎤⎢⎥⎣⎦C.[1,2]D.[1,4]6.已知函数()y f x =的图象关于点(,)P a b 成中心对称图形的充要条件是函数()y f x a b =+-为奇函数.若111()123f x x x x =+++++存在对称中心(,)a b ,则2a b +=A.-4B.-3C.3D.47.已知函数()f x 是定义在R 上的偶函数,12,[0,)x x ∀∈+∞,且12x x ≠,恒有122212))1((f x f x x x ->--.若(1)1f =,则不等式2()2f x x <-的解集为A.(,1)-∞ B.(1,)+∞C.(,1)(1,)-∞-+∞ D.(1,1)-8.已知0a <,关于x 的方程22246aa x x x+=-+在[1,2)上有实数解,则a 的取值范围为A.[3,2]-- B.[3,2)--C.[3,-D.[3,-二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.某智能手机生产厂家对其旗下的某款手机的续航能力进行了一轮测试(一轮测试时长为6小时),得到了剩余电量y (单位:百分比)与测试时间t (单位:h)的函数图象如图所示,则下列判断中正确的有A.测试结束时,该手机剩余电量为85%B.该手机在前5h 内电量始终在匀速下降C.该手机在0h~3h 内电量下降的速度比3h~5h 内下降的速度更快D.该手机在5h~6h 进行了充电操作10.已知函数|1|,0()1,0x x f x x x+⎧⎪=⎨>⎪⎩,关于x 的方程()0f x k -=,下列判断中正确的是A.1k =时方程()0f x k -=有3个不同的实数根B.方程()0f x k -=至少有2个不同的实数根C.若方程()0f x k -=有3个不同的实数根,则k 的取值范围为(0,1]D.若方程()0f x k -=有3个不同的实数根1x ,2x ,3x ,则123x x x ++的取值范围为[)1,-+∞11.已知正数,a b 满足321a b+=,则下列结论中正确的是A.24abB.5ab +C.2a b-的最小值为1- D.b 与2a -可以相等三、填空题:本题共3小题,每小题5分,共15分.12.已知函数2,0()2,0x x f x x ⎧=⎨<⎩,则((1))f f -=________.13.已知函数32()f x x x=+,若()f a =()f a f -+=________.14.对于任意实数,a b ,定义,min{,},a a b a b b a b ⎧=⎨>⎩,当实数,x y 变化时,令228min ,8yt x y x y =++,则t 的最大值为________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(本小题13分)已知集合{|21}A x a x a =+,2{|430}B x x x =-+ .(1)当12a =时,求A B ,R B A ð;(2)若“x A ∈”是“x B ∈”成立的充分条件,求实数a 的取值范围.16.(本小题15分)已知函数1()2f x x x=-.(1)判断函数()f x 的奇偶性并证明;(2)讨论函数()f x 在区间(0,)+∞上的单调性并证明.17.(本小题15分)(1)对于正实数,,,a b c d ,求证:2()()a b c d --;(2)已知函数()M t =1)的结论,求函数()M t 的最小值,并求出此时对应的t 的值.18.(本小题17分)在日常生活中,经济学家们通常将函数()f x 的边际函数()M f x 定义为()(1)()M f x f x f x =+-.现已知某高科技企业每月生产某种特殊设备最多11台,根据以往经验:生产x 台(111x ,*x ∈N )这种特殊设备的月收入函数为2281()70R x x x =++(单位:千万元),其月成本函数为126()14C x x x=+(单位:千万元).求:(1)月收入函数()R x 的最小值及此时x 的值;(2)月成本函数()C x 的边际函数()M C x 的定义域及最大值(精确到0.01千万元);(3)生产x 台这种特殊设备的月利润()p x 的最小值.(月利润=月收入-月成本)19.(本小题17分)对于定义在R 上的函数()f x ,若其在区间[,]()p q p q >上存在最小值m 和最大值M ,且满足p m M q < ,则称()f x 是区间[,]p q 上的“聚集函数”.现给定函数22()24x a f x ax =-+.(1)当2a =时,求函数()f x 在[1,4]-上的最大值和最小值,并判断()f x 是否是“聚集函数”;(2)若函数()f x 是[1,4]-上的“聚集函数”,求实数a 的取值范围;(3)已知s a t <<,若函数()f x 是[,]s t 上的“聚集函数”,求t s -的最大值.数学答案一、选择题1234567891011BACBBADBACDACDABD二、填空题12.413.三、解答题15.解:(1)当12a =时,312A x x ⎧⎫=≤≤⎨⎬⎩⎭,由20}{3|4B x x x =-+≤可得:13}{|B x x =≤≤因此[1,3]A B = ,R 3,32B A ⎛⎤= ⎥⎝⎦ð·······················································································6分(2)由题意可得A B ⊆当A =∅时,21a a >+,∴1a >当A ≠∅时,12113a a a ≤⎧⎪≥⎨⎪+≤⎩,解得112a ≤≤综上所述,a 的取值范围1,2⎡⎫+∞⎪⎢⎣⎭.························································································13分16.解:(1)函数()f x 是奇函数,下面给出证明:可知函数定义域为(,0)(0,)-∞+∞ ,关于原点对称.对于任意(,0)(0,)x ∈-∞+∞ ,有1()2()f x x f x x-=-+=-,故为奇函数.·······································6分(2)函数()f x 在区间(0,)+∞内单调递增,证明如下:任取12,(0,)x x ∈+∞,且12x x <,则21212121212112122))()1111((222()x x f x f x x x x x x x x x x x x x ⎛⎫⎛⎫-=---=-+-=-+ ⎪ ⎝-⎪⎭⎝⎭2112)12(x x x x ⎛⎫=-++ ⎪⎝⎭∵210x x ->,12120x x +>∴21)()(f x f x >∴()f x 在(0,)+∞上单调递增.······························································································15分17.(1)证明:∵2()()a b c d ----(()ac bd ac bd bc ad =+--+--20bc ad =+-=-≥∴原不等式得证.(当且仅当bc ad =即a cb d=时取到等号)···············································································6分(2)解:由t 满足430110t t t -≥⎧⇒≥⎨-≥⎩,此时(43)(1)320t t t ---=->∵431t t ->->,∴()0M t >2=1=由(1)可知:222233()(21)(1)44M t t t ⎡⎤⎛⎫=≥----= ⎪⎢⎥⎝⎭⎣⎦,所以3()2M t ≥,当且仅当2231421t t --=,即1312t =时取到等号.综上所述:当1312t =时,()M t 的最小值为32.·······································································15分18.解:(1)2281()7070187088R x x x =++≥=+=当且仅当2281x x =即3x =时取到等号.即()R x 的最小值为88千万元,此时3x =.(2)由()(1)()M C x C x C x =+-,可知定义域为110x ≤≤,*N x ∈.∴126126126()14(1)14141(1)M C x x x x x x x⎛⎫=++-+=- ⎪++⎝⎭,110x ≤≤,*N x ∈.由函数单调性可知:()M C x 在110x ≤≤,*N x ∈上单调递增.∴当10x =时,max 126707()1412.85111055M C x =-=≈⨯(千万元),···············································10分(3)2228112699()()()70141452p x R x C x x x x x x x x x ⎛⎫⎛⎫⎛⎫⎛⎫=-=++-+=+-++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,∴29()73p x x x ⎛⎫=+-+ ⎪⎝⎭,111x ≤≤,*N x ∈.令9()7g x x x=+-,∵(1)3g =,1(2)2g =,1(5)5g =,1(6)2g =∴min 76()(5) 3.0425p x p ===(千万元),此时5x =.································································17分19.解:(1)当2a =时,221()21(2)122x f x x x =-+=--因此()f x 在[1,4]-上的最小值为-1,最大值为72.因为71,[1,4]2⎡⎤-⊆-⎢⎥⎣⎦,所以函数()f x 是“聚集函数”.·······························································4分(2)()f x 在[1,4]-上的最大值为(1)f -与(4)f 中的较大者,因此221(1)442(4)4844a f a a f a ⎧-=++≤⎪⎪⎨⎪=-+≤⎪⎩解得82a -≤≤-+∵[82[1,4]--+⊆-.因此对称轴[1,4]x a =∈-,即221()()24a f x x a =--在[1,4]-上的最小值214a -≥-,解得22a -≤≤.综上所述,a的取值范围是[8-.·················································································10分(3)∵221()()24a f x x a =--,()f x 的对称轴(,)x a s t =∈∴2min ()4a y f a ==-,下面讨论()f x 的最大值.①若2s t a +≤,由抛物线图像可知,22max ()24s a y f s as ==-+∴min max s y y t ≤<≤,设L t s =-,即要求L 的最大值.222222max min11(2)()24422s a a L y y as s as a s a ⎛⎫≥-=-+--=-+=- ⎪⎝⎭,∵2s t a +≥,∴022t s La s --≥=>,代入上式,得2122L L ⎛⎫≥ ⎪⎝⎭,故8L ≤.②若2s ta +≥,由抛物线图像可知,22max ()24t a y f t at ==-+∴min max s y y t ≤<≤,设L t s =-,有()222222max min112()24422t a a L y y at t at a t a ⎛⎫≥-=-+--=-+=- ⎪⎝⎭∵2s t a +≤,∴022t s L t a --≥=>,代入上式,得2122L L ⎛⎫≥ ⎪⎝⎭,故8L ≤.综上可知L t s =-的最大值为8,当且仅当82()t s s t a f a s -=⎧⎪+⎪=⎨⎪=⎪⎩时取到等号,即228442a ta s a s t ⎧-=⎪⎪⎪=-⎨⎪=+⎪⎪⎩,消去,s t 可得:2282a a =-,解得2a =-±即22 6a t s ⎧=-+⎪⎪=+⎨⎪=-+⎪⎩或226a t s ⎧=--⎪⎪=-⎨⎪=--⎪⎩时取到.因此t s -的最大值为8.······································································································17分。

2024-2025学年河南省郑州市高一上学期期中数学质量检测试卷(含解析)

2024-2025学年河南省郑州市高一上学期期中数学质量检测试卷(含解析)

考生注意:1.本试卷分选择题和非选择题两部分.满分150分,考试时间120分钟.2.答题前,考生务必用直径0.5毫米黑色墨水签字笔将密封线内项目填写清楚.3.考生作答时,请将答案答在答题卡上.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效.4.本卷命题范围:人教A 版必修第一册第一章~第三章.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的2024-2025学年河南省郑州市高一上学期期中数学质量检测试卷.1. 已知(){}(){},3,,1A x y x y B x y x y =+==-=∣∣,则A B = ( )A. 2,1x y ==B. ()2,1 C.(){}2,1 D. {}2,1【答案】C 【解析】【分析】利用交集定义即可求得A B⋂【详解】由31x y x y +=⎧⎨-=⎩,可得21x y =⎧⎨=⎩则A B =(){}(){},3,1x y x y x y x y +=⋂-=∣∣()(){}3=,=2,11x y x y x y ⎧⎫+=⎧⎨⎨⎬-=⎩⎩⎭∣故选:C2. 已知a ,b ,c ,d 均为实数,则下列说法正确的是( )A. 若a b >,c d >,则a c b d +>+ B. 若a b >,c d >,则a c b d ->-C. 若a b >,c d >,则ac bd > D. 若ac bc >,则a b>【答案】A 【解析】【分析】根据不等式的性质,结合举反例的方法,可得答案.【详解】对于A ,根据同向不等式具有可加性可知A 正确;对于B ,21a b =>=,24c d =->=-,但45a c b d -=<-=,故B 错误;对于C ,21a b =>=,24c d =->=-,但44ac bd =-==-,故C 错误;对于D ,当0c <时,由ac bc >,得a b <,故D 错误.故选:A .3. 下列函数中,与函数2y x =+是同一函数的是( )A. 22y =+B. 2y =+C. 22x y x=+ D.y =【答案】B 【解析】【分析】通过两个函数三要素的对比可得答案.【详解】2y x =+的定义域为R .对于A ,22y =+的定义域为[)0,+∞,与2y x =+的定义域不同,不是同一函数;对于B ,22y x =+=+定义域为R ,与2y x =+的定义域相同,对应关系相同,是同一函数;对于C ,22x y x=+的定义域为{}0x x ≠,与2y x =+的定义域不同,不是同一函数;对于D,2,2,22,2x x y x x x +≥-⎧==+=⎨--<-⎩与2y x =+对应关系不同,不是同一函数.故选:B .4. 已知p :0a b >> q :2211a b<,则p 是q 的( )A. 充分不必要条件 B. 必要不充分条件C. 充要条件 D. 既不充分也不必要条件【答案】A 【解析】【分析】根据0a b >>与2211a b <的互相推出情况判断出属于何种条件.【详解】当0a b >>时,220a b >>,所以2211a b<,所以充分性满足,当2211a b<时,取2,1a b =-=,此时0a b >>不满足,所以必要性不满足,所以p 是q 的充分不必要条件,的故选:A.5. 已知函数()f x 为R 上的奇函数,当0x <时,()2f x x =+,则()()03f f +等于( )A. 3- B. 1- C. 1D. 3【答案】C 【解析】【分析】根据(3)f (3)f =--以及(0)0f =可求出结果.【详解】因为函数()f x 为R 上的奇函数,当0x <时,()2f x x =+,所以()()()33321f f =--=--+=.而()00f =,∴()()031f f +=.故选:C .6. 若0x <,则1x x+( )A 有最小值―2B. 有最大值―2C. 有最小值2D. 有最大值2【答案】B 【解析】【分析】运用基本不等式求解即可.【详解】因为0x <,则0x ->,所以1()()2x x -+≥=-,当且仅当1x x -=-即:=1x -时取等号.所以12x x+≤-,当且仅当=1x -时取等号.故选:B.7. 已知函数()f x 的图象由如图所示的两条曲线组成,则( )A. ()()35ff -= B. ()f x 是单调增函数.C. ()f x 的定义域是(][],02,3∞-⋃D. ()f x 的值域是[]1,5【答案】D 【解析】【分析】根据函数的图象,结合函数求值、函数单调性、定义域与值域,可得答案.【详解】对于选项A ,由图象可得()32f -=,所以()()()321ff f -==,A 错误;对于选项B ,()04f =,()21f =,()()02f f >,故()f x 不是单调增函数,B 错误;对于选项C ,由图象可得()f x 的定义域为[][]3,02,3-⋃,C 错误;对于选项D ,由图象可得()f x 的值域为[]1,5,D 正确.故选:D .8. 若定义域为R 的奇函数()f x 在(),0-∞上单调递减,且()20f =,则满足20)(x f x x≥的x 的取值范围是( )A. [][)2,02,-⋃+∞ B. ][3,10,1⎡⎤--⋃⎣⎦C. [)[)2,02,-⋃+∞ D. [)(]2,00,2-U 【答案】D 【解析】【分析】首先根据函数奇偶性与单调性,得到函数()f x 在相应区间上的符号,再根据两个数的乘积大于等于零,分类转化为对应自变量不等式,最后求并集得结果.【详解】因为定义在R 上的奇函数()f x 在(,0)-∞上单调递减,且(2)0f =,所以()f x 在(0,)+∞上也是单调递减,且(2)0f -=,(0)0f =,所以当(,2)(0,2)x ∈-∞-⋃时,()0f x >,当(2,0)(2,)x ∈-+∞ 时,()0f x <,由20)(x f x x≥可得()0xf x ≥且0x ≠可得020x x <⎧⎨-≤<⎩或002x x >⎧⎨<≤⎩解得20x -≤<或02x <≤,所以满足20)(x f x x≥的x 的取值范围是[)(]2,00,2-U ,故选:D .二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9. 下列函数既是偶函数,又在()0,∞+上单调递增的是( )A. y =B. 2y x =C. yD. 1y x=【答案】BC 【解析】【分析】根据函数的单调性和奇偶性逐项分析判断.【详解】对A :=y =在定义域内为奇函数,又∵y =在R 上单调递增,5u x =在R 上单调递增,则y =在R 上单调递增,A 错误;对B :∵()22x x -=,则2y x =在定义域内为偶函数,且在()0,∞+内单调递增,B 正确;对C :y又∵当()0,x ∈+∞,y 在()0,∞+内单调递增,C 正确;对A :∵11=--x x ,则1y x =在定义域内为奇函数,且1y x=在()0,∞+内单调递减,D 错误;故选:BC.10. 下列关于幂函数y x α=的说法正确的是( )A. 幂函数的图象都过点()0,0,()1,1B. 当1,3,1α=-时,幂函数的图象都经过第一、三象限C. 当1,3,1α=-时,幂函数是增函数D. 若0α<,则幂函数的图象不过点()0,0【答案】BD 【解析】【分析】由幂函数的性质逐个判断即可.【详解】对于A ,当0α<时,幂函数的图象不通过点()0,0,A 错误;对于B ,幂指数1,3,1α=-时,幂函数分别为y x =,3y x =,1y x -=,三者皆为奇函数,图象都经过第一、三象限,故B 正确;对于C ,当1α=-时,幂函数1y x -=在(),0∞-,(0,+∞)上皆单调递减,C 错误;对于D ,若0α<,则函数图象不通过点()0,0,D 正确.故选:BD .11. 下列结论正确的是( )A. 函数21x y x+=的最小值是2B. 若0ab >,则2b a a b+≥C. 若x ∈R ,则22122x x +++的最小值为2D. 若0,0a b >>22a b ++≥【答案】BD 【解析】【分析】根据题意,结合基本不等式,逐项判定,即可求解.【详解】对于A 中,当0x <时,可得0y <,所以A 错误;对于B 中,因0ab >,则2b a a b +≥=,当且仅当b a a b =时,即a b =时,等号成立,所以B 正确;对于C中,由221222x x ++≥=+,当且仅当22122x x +=+时,此时方程无解,即等号不成立,所以C 错误;对于D 中,因为0,0a b >>22a b ++≥≥,当且仅当a b =时,等号成立,所以D 正确.故选BD .12. 已知函数()f x 的定义域为A ,若对任意x A ∈,存在正数M ,使得()f x M ≤成立,则称函数为()f x 是定义在A 上的“有界函数”.则下列函数是“有界函数”的是( )A. 3()4x f x x+=- B. ()f x =C. 25()22f x x x =-+ D. ()f x 【答案】BCD 【解析】【分析】“有界函数”值域需要有界,化简各函数,并求出函数的值域,然后进行判断.【详解】对于A ,3(4)77()1444x x f x x x x+--+===-+---,由于704x ≠-,所以()1f x ≠-,所以()[)0,f x ∈+∞,故不存在正数M ,使得()f x M ≤成立.对于B ,令21u x =-,则[]0,1u ∈,()f x =,所以()[]0,1f x ∈,故存在正数1,使得()1f x ≤成立.对于C ,令2222(1)1u x x x =-+=-+,则()5f x u=,易得1u ≥.所以()5051f x <≤=,即()(]0,5∈f x ,故存在正数5,使得()5f x ≤成立.对于D ,令t =[]0,2t ∈,24x t =-,则[]()22117()40,224f x t t t t ⎛⎫=-++=--+∈ ⎪⎝⎭,易得()1724f x ≤≤,所以()172,4f x ⎡⎤∈⎢⎥⎣⎦,故存在正数174,使得()174f x ≤成立.故选:BCD.三、填空题:本题共4小题,每小题5分,共20分.13. 已知命题p :x ∀∈Q ,x N ∈,则p ⌝为______.【答案】x ∃∈Q ,x ∉N 【解析】【分析】由全称命题的否定为特称命题即可求解.【详解】因为p :x ∀∈Q ,x ∈N ,所以p ⌝为x ∃∈Q ,x ∉N .故答案为:x ∃∈Q ,x ∉N .14. 函数()1f x x=+的定义域为_____________.【答案】()(],00,1-∞⋃【解析】【分析】由题意列不等式组即可求得.【详解】要使函数()1f x x=有意义,只需10,0,x x -≥⎧⎨≠⎩解得:1x ≤且0x ≠,从而()f x 的定义域为()(],00,1-∞⋃.故答案为:()(],00,1-∞⋃15. 已知函数()f x 满足下列3个条件:①函数()f x 的图象关于y 轴对称;②函数()f x 在()0,∞+上单调递增;③函数()f x 无最值.请写出一个满足题意的函数()f x 的解析式:______.【答案】()21f x x=-(答案不唯一)【解析】【分析】结合函数的对称性、单调性及常见函数即可求解.【详解】由()f x 的图象关于y 轴对称知()f x 为偶函数,()f x 在(0,+∞)上单调递增,()f x 无最值,根据幂函数性质可知满足题意的一个函数为()21f x x=-.故答案为:()21f x x =-(答案不唯一)16. 已知函数()21x f x x=+,则不等式()211f x -<的解集是____________.【答案】()0,1【解析】【分析】由题可得()f x 为偶函数,且在()0,∞+上单调递增,后利用()()f x f x =可得答案.【详解】因为()f x 的定义域为R ,且()()f x f x -=,所以()f x 是偶函数.的又当0x >时,()21x f x x =+2222211x x x+-==-++单调递增.因为()f x 是偶函数,所以()f x 在(),1-∞单调递减,又因为()11f =,所以()211f x -<()()211f x f ⇔-<211121101x x x ⇔-<⇒-<-<⇒<<.故答案为:()0,1.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17. 设全集U =R ,集合{}2680A x x x =-+=,31B x x ⎧⎫=<⎨⎬⎩⎭.(1)求()U A B ⋃ð;(2)设集合(){}233,C x x a a x a =+=+∈Z ,若A C 恰有2个子集,求a 的值.【答案】(1)(){03U A B x x ⋃=≤≤ð或}4x = (2)2或4.【解析】【分析】(1)解方程和不等式求出集合,A B ,再由补集、并集运算即可求解;(2)解方程求出集合C ,再通过a 的讨论即可求解.【小问1详解】2680x x -+=,解得2x =或4,则{}2,4A =;由31x<,解得0x <或3x >,则{0B x x =<或}3x >;所以{}03U B x x =≤≤ð,(){03U A B x x ⋃=≤≤ð或}4x =.【小问2详解】因为A C 恰有2个子集,所以A C 仅有一个元素.()()()23330x a a x x x a +=+⇒--=,当3a =时,{}3C =,A C ⋂=∅,不满足题意;当2a =时,{}2,3C =,{}2A C ⋂=,满足题意;当4a =时,{}4,3C =,{}4A C ⋂=,满足题意.综上,a 的值为2或4.18. 已知函数()1f x x x=+.(1)求证:()f x 在()0,1上单调递减,在()1,+∞上单调递增;(2)当1,22x ⎡⎤∈⎢⎥⎣⎦时,求函数()f x 值域.【答案】(1)证明见解析 (2)52,2⎡⎤⎢⎥⎣⎦.【解析】【分析】(1)根据函数单调性的定义,结合作差法,可得答案;(2)根据(1)的单调性,求得给定区间上的最值,可得答案.【小问1详解】证明:()12,0,1x x ∀∈,且12x x <,有()()()121221212121212121121211111x x x x f x f x x x x x x x x x x x x x x x x x ⎛⎫⎛⎫⎛⎫---=+-+=-+-=-+=-⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.由()12,0,1x x ∀∈,且12x x <,得210x x ->,1210x x -<,120x x >,所以()12211210x x x x x x --⋅<,即()()21f x f x <.所以()f x 在()0,1上单调递减.同理,当()12,1,x x ∈+∞,且12x x <,有()()()1221211210x x f x f x x x x x --=-⋅>.故()f x 在()1,+∞上单调递增.【小问2详解】由(1)得()f x 在1,12⎡⎤⎢⎥⎣⎦上单调递减;在[]1,2上单调递增.()12f =,()15222f f ⎛⎫== ⎪⎝⎭,所以()52,2f x ⎡⎤∈⎢⎥⎣⎦.故函数()f x 的值域为52,2⎡⎤⎢⎥⎣⎦.的19. 设函数()223y ax b x =+-+.(1)若关于x 的不等式0y >的解集为{}13x x -<<,求4y ≥的解集;(2)若1x =时,2,0,0y a b =>>,求14a b+的最小值.【答案】(1){}1(2)9【解析】【分析】(1)根据不等式的解集得到方程的根,代入求出,a b ,从而解不等式求出解集;(2)先得到1a b +=,利用基本不等式“1”的妙用求出最小值.【小问1详解】由题知()2230ax b x +-+=的两个根分别是1-,3,则23093630a b a b +-+=⎧⎨+-+=⎩,解得1,4.a b =-⎧⎨=⎩故()2223234y ax b x x x =+-+=-++≥,2210x x -+≤,解得1x =.所求解集为{}1.【小问2详解】1x =时,2y =,即12++=a b ,所以有1a b +=,那么()1414a b a b a b ⎛⎫+=++ ⎪⎝⎭41459b a a b=+++≥+=,当且仅当41b a a b a b ⎧=⎪⎨⎪+=⎩,即1,323a b ⎧=⎪⎪⎨⎪=⎪⎩时,取等号.故14a b+的最小值为9.20. 已知集合(){}40A x x x =-≥,{}121B x a x a =+<<-.(1)若x A ∀∈,均有x B ∉,求实数a 的取值范围;(2)若2a >,设p :x B ∃∈,x A ∉,求证:p 成立的充要条件为23a <<.【答案】(1)5,2⎛⎤-∞ ⎥⎝⎦(2)证明见解析【解析】【分析】(1)根据二次不等式,解得集合的元素,利用分类讨论思想,可得答案;(2)根据充要条件的定义,利用集合之间的包含关系,可得答案.【小问1详解】(){}(][)40,04,A x x x ∞∞=-≥=-⋃+.因为x A ∀∈,均有x B ∉,所以A B =∅ .当2a ≤时,B =∅,满足题意;当2a >时,10214a a +≥⎧⎨-≤⎩,解得512a -≤≤,所以522a <≤.综上,52a ≤,即a 的取值范围是5,2⎛⎤-∞ ⎥⎝⎦.【小问2详解】证明:若p :x B ∃∈,x A ∉为真命题,则p ⌝:x B ∀∈,x A ∈为假命题.先求p ⌝:x B ∀∈,x A ∈为真命题时a 的范围,因为2a >,所以B ≠∅,由p ⌝:x B ∀∈,x A ∈,得B A ⊆.则210a -≤或14a +≥,解得12a ≤或3a ≥,所以3a ≥.因为p ⌝:x B ∀∈,x A ∈为假命题,所以23a <<.综上,若2a >,则p 成立的充要条件为23a <<.21. 某市财政下拨专款100百万元,分别用于植绿护绿和处理污染两个生态维护项目,植绿护绿项目五年内带来的生态收益可表示为投放资金x (单位:百万元)的函数1y (单位:百万元):12710x y x =+,处理污染项目五年内带来的生态收益可表示为投放资金x (单位:百万元)的函数2y (单位:百万元):20.3y x =.设分配给植绿护绿项目的资金为x (单位:百万元),两个生态项目五年内带来的生态收益总和为y (单位:百万元).(1)将y 表示成关于x 的函数;(2)为使生态收益总和y 最大,对两个生态项目的投资分别为多少?【答案】(1)27330(0100)1010x x y x x =-+≤≤+ (2)分配给植绿护绿项目20百万元,处理污染项目80百万元【解析】【分析】(1)由题意列式化简即可;(2)将原式变形构造成对勾函数,利用对勾函数的性质求最值即可.【小问1详解】若分配给植绿护绿项目的资金为x 百万元,则分配给处理污染项目的资金为()100x -百万元,∴272730.3(100)30(0100)101010x x x y x x x x =+-=-+≤≤++.【小问2详解】由(1)得27(10)2703(1010)2703(10)306010101010x x x y x x +-+-+⎡⎤=-+=-+⎢⎥++⎣⎦6042≤-=(当且仅当2703(10)1010x x +=+,即20x =时取等号),∴分配给植绿护绿项目20百万元,处理污染项目80百万元,生态收益总和y 最大.22. 设函数()()2*1488,,N f x mx m mn x m m n =+-++∈ .(1)若()f x 为偶函数,求n 的值;(2)若对*N n ∀∈,关于x 的不等式()0f x ≤有解,求m 的最大值.【答案】(1)2. (2)2.【解析】【分析】(1)根据函数为偶函数可得到14880m mn -+=,变形为714n m=+,结合*,1,N m n m ∈≥,即可确定答案.(2)根据对*N n ∀∈,关于x 的不等式()0f x ≤有解,可得22(1488)40m mn m ∆=-+-≥恒成立,结合二次不等式的解法,讨论n 取值,即可确定答案.【小问1详解】根据题意,函数()()2*1488,R,,N f x mx m mn x m x m n =+-++∈∈为偶函数,即满足()()f x f x -=,即()()22()1488()1488m x m mn x m mx m mn x m -+-+-+=+-++,R x ∈,则14880m mn -+=变形可得:714n m =+ ,又由*,1,N m n m ∈≥ ,则 101m<≤ , 故77111711,44444n m <+≤<≤∴ ,又N n *∈ ,则2n = ;【小问2详解】根据题意,若对*N n ∀∈,关于x 的不等式()0f x ≤有解,由于*,N 0m m ∈>,则22(1488)416[(32)2][(42)2]0m mn m m n m n ∆=-+-=-+-+≥恒成立 ,当1n = 时,32(2)(1)0m m ∆=++≥ ,对*N m ∀∈都成立, 当2n =时,32(2)0m ∆=-+≥,解得2m ≤ ,又*N m ∈,则12m ≤≤ ,当3n ≥时,21232n n <-- ,则223m n ≤- 或 12m n ≥-,当 223m n ≤- 时,又由1m ≥,则n 只能取2,不符合题意,舍去,当 12m n ≥- 时,又由1m ≥,从3n =开始讨论:令1()2g n n =-,由于1()2g n n =-单调递减,故只需1(3)132m g ≥==-,此时m 的取值范围为[1,2] ;综上所述,m 的最大值为2.。

2024-2025学年湖南省长沙市长郡中学高一上学期期中考试数学试卷(含答案)

2024-2025学年湖南省长沙市长郡中学高一上学期期中考试数学试卷(含答案)

2024-2025学年湖南省长沙市长郡中学高一上学期期中考试数学试卷一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.已知a∈R,若集合M={1,a},N={−1,0,1},则“a=0”是“M⊆N”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件2.下列命题是全称量词命题且为真命题的是A. ∀a,b∈R,a2+b2<0B. 菱形的两条对角线相等C. ∃x0∈R,x20=x0D. 一次函数的图象是直线3.设全集U=R,集合A={1,2,3,4,5},B={x|3<x<8,x∈N},则下图中的阴影部分表示的集合是A. {1,2,3,4,5}B. {3,4}C. {1,2,3}D. {4,5,6,7}4.若函数f(x)=4x2−kx−8在[5,8]上是单调函数,则实数k的取值范围是A. (−∞,40)B. (−∞,40]∪[64,+∞)C. [40,64]D. [64,+∞)5.已知关于x的不等式ax2+bx+c>0的解集为{x|13<x<12},则不等式cx2+bx+a>0的解集为A. {x|−12<x<−13}B. {x|x>3或x<2}C. {x|2<x<3}D. {x|−3<x<−2}6.已知关于x的不等式2x+2x−a≥7在区间(a,+∞)上恒成立,则实数a的最小值为A. 1B. 32C. 2 D. 527.17世纪初,约翰·纳皮尔为了简化计算而发明了对数.对数的发明是数学史上的重大事件,恩格斯曾经把笛卡尔的坐标系、纳皮尔的对数、牛顿和莱布尼兹的微积分共同称为17世纪的三大数学发明.我们知道,任何一个正实数N可以表示成N=a×10n(1≤a<10,n∈Z)的形式,这便是科学记数法,若两边取常用对数,则有lg N=n+lg a.现给出部分常用对数值(如下表),则可以估计22023的最高位的数值为真数x2345678910lg x(近0.301030.477120.602060.698970.778150.845100.903090.95424 1.000似值)A. 6B. 7C. 8D. 98.已知函数g(x)是R上的奇函数,且当x<0时,g(x)=−x2+2x,函数f(x)={x,x≤0,g(x),x>0,若f(2−x2 )>f(x),则实数x的取值范围是A. (−2,1)B. (−∞,−2)∪(1,+∞)C. (1,2)D. (−∞,1)∪(2,+∞)二、多选题:本题共3小题,共18分。

四川省成都市2024-2025学年高一上学期期中考试数学试题含答案

四川省成都市2024-2025学年高一上学期期中考试数学试题含答案

成都市2024-2025学年上学期半期考试高一年级数学试题(答案在最后)考试时间120分钟满分150分一、单选题1.已知集合A ={1,2,3,4,5},{},|15B x x =<<,则A ∩B 的元素个数为()A.2B.3C.4D.5【答案】B 【解析】【分析】直接根据集合的交集运算求解即可.【详解】因为集合A ={1,2,3,4,5},{}|15B x x =<<所以{}2,3,4A B = ,即A ∩B 的元素个数为3个.故选:B2.函数221y x mx =++在[2,+∞)单调递增,则实数m 的取值范围是()A.[2,)-+∞B.[2,+∞)C.(,2)-∞ D.(,2]-∞【答案】A 【解析】【分析】直接由抛物线的对称轴和区间端点比较大小即可.【详解】函数221y x mx =++为开口向上的抛物线,对称轴为x m =-函数221y x mx =++在[2,+∞)单调递增,则2m -≤,解得2m ≥-.故选:A.3.若函数的定义域为{}22M x x =-≤≤,值域为{}02N y y =≤≤,则函数的图像可能是()A. B.C. D.【答案】B 【解析】【分析】根据函数的定义域与值域,结合函数的性质判断即可.【详解】对A ,该函数的定义域为{}20x x -≤≤,故A 错误;对B ,该函数的定义域为{}22M x x =-≤≤,值域为{}02N y y =≤≤,故B 正确;对C ,当()2,2x ∈-时,每一个x 值都有两个y 值与之对应,故该图像不是函数的图像,故C 错误;对D ,该函数的值域不是为{}02N y y =≤≤,故D 错误.故选:B.4.已知函数()af x x =,则“1a >”是“()f x 在()0,∞+上单调递增”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A 【解析】【分析】由幂函数的单调性结合充分必要条件的定义判断.【详解】当0a >时,函数()af x x =在()0,∞+上单调递增,则1a >时,一定有()f x 在()0,∞+上单调递增;()f x 在()0,∞+上单调递增,不一定满足1a >,故“1a >”是“()f x 在()0,∞+上单调递增”的充分不必要条件.故选:A.5.已知0,0x y >>,且121y x+=,则12x y +的最小值为()A.2B.4C.6D.8【答案】D 【解析】【分析】利用不等式的乘“1”法即可求解.【详解】由于0,0x y >>,故111122244428x y x xy y x y xy ⎛⎫⎛⎫+=++=++≥+ ⎪ ⎪⎝⎭⎝⎭,当且仅当14,121,xy xyy x⎧=⎪⎪⎨⎪+=⎪⎩即2,14x y =⎧⎪⎨=⎪⎩时,等号成立,故12x y +的最小值为8.故选:D6.已知定义域为R 的函数()f x 不是偶函数,则()A.()(),0x f x f x ∀∈-+≠RB.()(),0x f x f x ∀∈--≠RC.()()000,0x f x f x ∃∈-+≠RD.()()000,0x f x f x ∃∈--≠R 【答案】D 【解析】【分析】根据偶函数的概念得()(),0x f x f x ∀∈--=R 是假命题,再写其否定形式即可得答案.【详解】定义域为的函数()f x 是偶函数()(),0x f x f x ⇔∀∈--=R ,所以()f x 不是偶函数()()000,0x f x f x ⇔∃∈--≠R .故选:D .7.若函数()22f x ax bx c=++的部分图象如图所示,则()1f =()A.23-B.112-C.16-D.13-【答案】D 【解析】【分析】利用函数图象求得函数定义域,利用函数值可得出其解析式,代入计算即求得函数值.【详解】根据函数图象可知2x =和4x =不在函数()f x 的定义域内,因此2x =和4x =是方程20ax bx c ++=的两根,因此可得()()()224f x a x x =--,又易知()31f =,所以可得2a =-;即()()()124f x x x =---,所以()113f =-.故选:D8.奇函数()f x 在(),0-∞上单调递增,若()10f -=,则不等式()0xf x <的解集是().A.()()101,∪,-∞-B.()()11,∪,-∞-+∞C.()()1001,∪,- D.()()101,∪,-+∞【答案】C 【解析】【分析】由()f x 奇偶性,单调性结合题意可得答案.【详解】因奇函数()f x 在(),0∞-上单调递增,()10f -=则()f x 在()0,∞+上单调递增,1=0.得()()()01,01,f x x ⋃∞>⇒∈-+;()()()0,10,1f x x ∞⋃<⇒∈--.则()()000x xf x f x <⎧<⇒⎨>⎩或()()()01,00,10x x f x ⋃>⎧⇒∈-⎨<⎩.故选:C二、多选题9.下列关于集合的说法不正确的有()A.{0}=∅B.任何集合都是它自身的真子集C.若{1,}{2,}a b =(其中,a b ∈R ),则3a b +=D.集合{}2yy x =∣与{}2(,)x y y x =∣是同一个集合【答案】ABD 【解析】【分析】根据集合的定义,真子集的定义,集合相等的定义判断各选项.【详解】{0}中含有一个元素,不是空集,A 错;任何集合都是它自身的子集,不是真子集,B 错;由集合相等的定义得2,1a b ==,3a b +=,C 正确;集合{}2yy x =∣中元素是实数,集合{}2(,)x y y x =∣中元素是有序实数对,不是同一集合,D 错,故选:ABD .10.已知二次函数()2223y m x mx m =-++-的图象与x 轴有两个交点()()12,0,,0x x ,则下面说法正确的是()A.该二次函数的图象一定过定点()1,5--;B.若该函数图象开口向下,则m 的取值范围为:625m <<;C.当2m >,且12x ≤≤时,y 的最大值为45m -;D.当2m >,且该函数图象与x 轴两交点的横坐标12,x x 满足1232,10x x -<<--<<时,m 的取值范围为:21114m <<【答案】ABD 【解析】【分析】代入1x =-,解得5y =-,即可求解A ,根据判别式即可求解B ,利用二次函数的单调性即可求解C ,利用二次函数的图象性质即可列不等式求解.【详解】由()2223y m x mx m =-++-可得()22123y m x x =+--,当1x =-时,5y =-,故二次函数的图象一定过定点()1,5--,A 正确,若该函数图象开口向下,且与x 轴有两个不同交点,则()()220Δ44230m m m m -<⎧⎨=--->⎩,解得:625m <<,故B 正确,当2m >,函数开口向上,对称轴为02mx m =-<-,故函数在12x ≤≤时,单调递增,当2x =时,911y m =-,故y 的最大值为911m -;C 错误,当2m >,则开口向上,又1232,10x x -<<--<<时,则3,4210x y m =-=->,且2,110x y m =-=-<,且1,50x y =-=-<,且0,30x y m ==->,解得21114m <<,m 的取值范围为:21114m <<,D 正确,故选:ABD11.已知幂函数()()293mf x m x =-的图象过点1,n m ⎛⎫-⎪⎝⎭,则()A.23m =-B.()f x 为偶函数C.364n =D.不等式()()13f a f a +>-的解集为(),1-∞【答案】AB 【解析】【分析】利用幂函数的定义结合过点1,n m ⎛⎫- ⎪⎝⎭,可求,m n 判断AC ;进而可得函数的奇偶性判断B ;解不等式可求解集判断D.【详解】因为函数()()293mf x m x =-为幂函数,所以2931m -=,解得23m =±,当23m =时,幂函数()23f x x =的图象不可能过点3,2n ⎛⎫- ⎪⎝⎭,故23m ≠,当23m =-,幂函数()23f x x -=的图象过点3,2n ⎛⎫ ⎪⎝⎭,则2332n -=,解得3232629n -⎛⎫=±=±⎪⎝⎭,故A 正确,C 错误;()23f x x -=的定义域为{|0}x x ≠,且()2233()()f x x x f x ---=-==,故()f x 为偶函数,故B 正确;函数()23f x x-=在(0,)+∞上单调递减,由()()13f a f a +>-,可得()()13fa f a +>-,所以1310a a a ⎧+<-⎪⎨+≠⎪⎩,解得1a <且1a ≠-,故D 错误.故选:AB.三、填空题12.满足关系{2}{2,4,6}A ⊆⊆的集合A 有____________个.【答案】4【解析】【分析】由题意可得集合A 为{}2,4,6的子集,且A 中必包含元素2,写出满足条件的集合,即可得答案.【详解】即集合A 为{}2,4,6的子集,且A 中必包含元素2,又因为{2,4,6}的含元素2的子集为:{}2,{}2,4,{}2,6,{2,4,6}共4个.故答案为:4.13.已知()f x 满足()()()2f x y f x f y +=++,且()22f =,则()3f =______.【答案】4【解析】【分析】令1x y ==得()10f =,再令1x =,2y =即可求解.【详解】令1x y ==得()()()21122f f f =++=,所以()10f =,令1x =,2y =得()()()31224f f f =++=.故答案为:4.14.已知函数()()()22223124,,4f x x ax ag x x x a a =-+-=-+-∈R ,若[]10,1x ∀∈,[]20,1x ∃∈,使得不等式()()12f x g x >成立,实数a 的取值范围是__________.【答案】(),6-∞【解析】【分析】由题意将问题转化为()(),min max f x g x >[]0,1x ∈,成立,利用二次函数的性质求解即可.【详解】若对任意[]10,1x ∈,存在[]20,1x ∈,使得不等式()()12f x g x >成立,即只需满足[]min min ()(),0,1f x g x x >∈,()22314g x x x a =-+-,对称轴()1,2x g x =在10,2⎡⎫⎪⎢⎣⎭递减,在,1,12⎛⎤ ⎥⎝⎦递增,()2min 18,2g x g a ⎛⎫==- ⎪⎝⎭()[]2224,0,1f x x ax a x =-+-∈,对称轴4a x =,①04a≤即0a ≤时,()f x 在0,1递增,()22min min ()04()8f x f a g x a ==->=-恒成立;②014a<<即04a <<时,()f x 在0,4a ⎡⎫⎪⎢⎣⎭递减,在,14a ⎛⎤ ⎥⎝⎦递增,22min min 7()4,()848a f x f a g x a ⎛⎫==-=- ⎪⎝⎭,所以227488a a ->-,故04a <<;③14a≥即4a ≥时,()f x 在[0,1]递减,()22min min ()12,()8f x f a a g x a ==--=-,所以2228a a a -->-,解得46a ≤<,综上(),6a ∞∈-.故答案为:(),6∞-【点睛】方法点睛:本题首先需要读懂题意,进行转化;其次需要分类讨论,结合二次函数的性质最后进行总结,即可求出结果.四、解答题15.设全集R U =,集合{|23}P x x =-<<,{|31}.Q x a x a =<≤+(1)若1a =-,求集合()U P Q ð;(2)若P Q =∅ ,求实数a 的取值范围.【答案】(1){|03}x x <<(2)][132,,⎛⎫-∞-+∞ ⎪⎝⎭【解析】【分析】(1)先求出U Q ð,再求()U P Q ⋂ð即可;(2)分Q =∅和Q ≠∅两种情况求解即可【小问1详解】解:当1a =-时,{|31}{|30}Q x a x a x x =<≤+=-<≤;{|3U C Q x x =≤-或0}x >,又因为{}23P x x =-<<,所以(){|03}.U P Q x x ⋂=<<ð【小问2详解】解:由题意知,需分为Q =∅和Q ≠∅两种情形进行讨论:当Q =∅时,即31a a ≥+,解得12a ≥,此时符合P Q =∅ ,所以12a ≥;当Q ≠∅时,因为P Q =∅ ,所以1231a a a +≤-⎧⎨<+⎩或3331a a a ≥⎧⎨<+⎩,解之得3a ≤-.综上所述,a 的取值范围为][1,3,.2∞∞⎛⎫--⋃+ ⎪⎝⎭16.已知二次函数()()20f x ax bx c a =++≠满足()()14f x f x x -+=,且()0 1.f =(1)求函数()f x 的解析式;(2)解关于x 的不等式()()2641f x t x t ≤-+-+.【答案】(1)()2221f x x x =-+(2)答案见解析.【解析】【分析】(1)利用待定系数法计算即可求解析式;(2)根据(1)的结论含参讨论解一元二次不等式即可.【小问1详解】因为()01f =,1c =,所以()21f x ax bx =++,又因为()()14f x f x x -+=,所以()(()22[1)1114a x b x ax bx x ⎤++++-++=⎦,所以24ax a b x ++=,所以240a a b =⎧⎨+=⎩,所以22a b =⎧⎨=-⎩,即()222 1.f x x x =-+【小问2详解】由()()2641f x t x t ≤-+-+,可得不等式()222440x t x t +++≤,即()2220x t x t +++≤,所以()()20x x t ++≤,当2-=-t ,即2t =时,不等式的解集为{|2}x x =-,当2t -<-,即2t >时,不等式的解集为{|2}x t x -≤≤-,当2t ->-,即2t <时,不等式的解集为{|2}x x t -≤≤-,综上所述,当2t =时,不等式的解集为{|2}x x =-,当2t >时,不等式的解集为{|2}x t x -≤≤-,当2t <时,不等式的解集为{|2}.x x t -≤≤-17.已知函数()221x f x x -=.(1)用单调性的定义证明函数()f x 在()0,∞+上为增函数;(2)是否存在实数λ,使得当()f x 的定义域为11,m n ⎡⎤⎢⎥⎣⎦(0m >,0n >)时,函数()f x 的值域为[]2,2m n λλ--.若存在.求出λ的取值范围;若不存在说明理由.【答案】(1)证明见详解;(2)存在,()2,+∞.【解析】【分析】(1)设()12,0,x x ∞∈+,且12x x <,然后作差、通分、因式分解即可判断()()12f x f x <,得证;(2)根据单调性列不等式组,将问题转化为210x x λ-+=存在两个不相等的正根,利用判别式和韦达定理列不等式组求解可得.【小问1详解】()222111x f x x x-==-,设()12,0,x x ∞∈+,且12x x <,则()()()()22121212122222222212211212111111x x x x x x f x f x x x x x x x x x -+⎛⎫--=---=-== ⎪⎝⎭,因为120x x <<,所以221212120,0,0x x x x x x <-+>>,所以()()120f x f x -<,即()()12f x f x <,所以函数()f x 在0,+∞上为增函数.【小问2详解】由(1)可知,()f x 在11,m n ⎡⎤⎢⎥⎣⎦上单调递增,若存在λ使得()f x 的值域为[]2,2m n λλ--,则22112112f m m m f n n n λλ⎧⎛⎫=-=- ⎪⎪⎪⎝⎭⎨⎛⎫⎪=-=- ⎪⎪⎝⎭⎩,即221010m m n n λλ⎧-+=⎨-+=⎩,因为0m >,0n >,所以210x x λ-+=存在两个不相等的正根,所以21212Δ40100x x x x λλ⎧=->⎪=>⎨⎪+=>⎩,解得2λ>,所以存在()2,λ∞∈+使得()f x 的定义域为11,m n ⎡⎤⎢⎥⎣⎦时,值域为[]2,2m n λλ--.18.习总书记指出:“绿水青山就是金山银山”.淮安市一乡镇响应号召,因地制宜的将该镇打造成“生态水果特色小镇”.调研过程中发现:某珍稀水果树的单株产量W (单位:千克)与肥料费10x (单位:元)满足如下关系:()252,02()48,251x x W x x x x ⎧+≤≤⎪=⎨<≤⎪+⎩其它成本投入(如培育管理等人工费)为20x (单位:元).已知这种水果的市场售价大约为10元/千克,且供不应求.记该单株水果树获得的利润为()f x (单位:元).(1)求()f x 的函数关系式;(2)当投入的肥料费用为多少时,该单株水果树获得的利润最大?最大利润是多少?【答案】(1)25030100,02()48030,251x x x f x x x x x⎧-+≤≤⎪=⎨-<≤⎪+⎩;(2)当投入的肥料费用为30元时,获得的利润最大,最大利润是270元.【解析】【分析】(1)由单株产量W 乘以售价减去肥料费和其它成本投入可得出的函数关系式;(2)利用二次函数的单调性求出当02x ≤≤时,()f x 的最大值,由基本不等式求出当25x <≤时,()f x 的最大值,即可得出答案.【小问1详解】(1)由题意可得()()()1020101030f x W x x x W x x=--=-()22105230,025030100,024804830,251030,2511x x x x x x x x x x x x x x ⎧⨯+-≤≤⎧-+≤≤⎪⎪==⎨⎨-<≤⨯-<≤⎪⎪+⎩+⎩.故()f x 的函数关系式为25030100,02()48030,251x x x f x x x x x⎧-+≤≤⎪=⎨-<≤⎪+⎩.【小问2详解】(2)由(1)22319150,025030100,02102()48030,251651030(1),2511x x x x x f x x x x x x x x ⎧⎧⎛⎫-+≤≤⎪-+≤≤⎪ ⎪⎪⎪⎝⎭==⎨⎨-<≤⎡⎤⎪⎪-++<≤+⎢⎥⎪⎪+⎣⎦⎩⎩,当02x ≤≤时,()f x 在30,10⎡⎤⎢⎥⎣⎦上单调递减,在3,210⎛⎤ ⎥⎝⎦上单调递增,且(0)100(2)240f f =<=,max ()(2)240f x f ∴==;当25x <≤时,16()51030(1)1f x x x ⎡⎤=-++⎢⎥+⎣⎦,16181x x ++≥=+ 当且仅当1611x x=++时,即3x =时等号成立.max ()510308270f x ∴=-⨯=.因为240270<,所以当3x =时,max ()270f x =.当投入的肥料费用为30元时,该单株水果树获得的利润最大,最大利润是270元.19.已知集合,A B 中的元素均为正整数,且,A B 满足:①对于任意,i j a a A ∈,若i j a a ≠,都有i j a a B ∈;②对于任意,m k b b B ∈,若m k b b <,都有k mb A b ∈.(1)已知集合{}1,2,4A =,求B ;(2)已知集合{}()2,4,8,8A t t =>,求t ;(3)若A 中有4个元素,证明:B 中恰有5个元素.【答案】(1){}2,48B =,(2)16t =(3)证明见解析【解析】【分析】(1)根据①可得2,4,8都是B 中的元素,进而证明B 中除2,4,8外没有其他元素即可求解,(2)根据条件①②,即可求解,(3)根据题意可得41a a ,3324421123,,,,a a a a a a a a a a ,4321a a a a 是A 中的元素,进而根据11a =和12a ≥可得{}2341111,,,A a a a a =,进而{}3456711111,,,,a a a a a B ⊆,接下来假设B 中还有其他元素,且该元素为k ,利用k 与31a 的关系得矛盾求解.【小问1详解】由①可得2,4,8都是B 中的元素.下面证明B 中除2,4,8外没有其他元素:假设B 中还有其他元素,分两种情况:第一种情况,B 中最小的元素为1,显然81不是A 中的元素,不符合题意;第二种情况,B 中最小的元素为2,设B 中除2,4,8外的元素为()2k k b b >,因为2k b 是A 中的元素,所以k b 为4或8,而4,8也是B 中的元素,所以B 中除2,4,8外没有其他元素.综上,{}2,4,8B =.【小问2详解】由①可得,8,16,32,2,4,8t t t 都是B 中的元素.显然84,82,162t t t <<<,由(2)可得,422,,8816t t t 是A 中的元素,即,,248t t t 是A 中的元素.因为842t t t t <<<,所以2,4,8842t t t ===,解得16t =.【小问3详解】证明:设{}12341234,,,,A a a a a a a a a =<<<.由①可得,1224,a a a a 都是B 中的元素.显然1224a a a a <,由②可得,2412a a a a 是A 中的元素,即41a a 是A 中的元素.同理可得3324421123,,,,a a a a a a a a a a ,4321a a a a 是A 中的元素.若11a =,则34344122a a a a a a a a =>,所以3412a a a a 不可能是A 中的元素,不符合题意.若12a ≥,则32311a a a a a <<,所以321211,a a a a a a ==,即23213121,a a a a a a ===.又因为44443211a a a a a a a <<<<,所以444123321,,a a a a a a a a a ===,即441a a =,所以{}2341111,,,A a a a a =,此时{}3456711111,,,,a a a a a B ⊆.假设B 中还有其他元素,且该元素为k ,若31k a <,由(2)可得71a A k ∈,而7411a a k >,与{}2341111,,,A a a a a =矛盾.若31k a >,因为31k A a ∈,所以131,1,2,3,4i k a i a ==,则31,1,2,3,4i k a i +==,即{}45671111,,,k a a a a ∈,所以B 中除3456711111,,,,a a a a a 外,没有其他元素.所以{}3456711111,,,,B a a a a a =,即B 中恰有5个元素.【点睛】方法点睛:对于以集合为背景的新定义问题的求解策略:1、紧扣新定义,首先分析新定义的特点,把心定义所叙述的问题的本质弄清楚,应用到具体的解题过程中;2、用好集合的性质,解题时要善于从试题中发现可以使用的集合的性质的一些因素.3、涉及有交叉集合的元素个数问题往往可采用维恩图法,基于课标要求的,对于集合问题,要熟练基本的概念,数学阅读技能、推理能力,以及数学抽象和逻辑推理能力.。

陕西省宝鸡中学2024-2025学年高一上学期期中考试数学试题

陕西省宝鸡中学2024-2025学年高一上学期期中考试数学试题

陕西省宝鸡中学2024-2025学年高一上学期期中考试数学试题一、单选题1.已知集合{}{}1,3,4,8,9,A B x A ==∈,则A B = ()A .{1,3}B .{1,4}C .{1,9}D .{4,9}2.已知,a b为实数,则>是“33a b >”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件3.命题“N m ∃∈”的否定是()A .N m ∃∈B .N m ∃∉C .N m ∀∈D .Nm ∀∈4.已知3x >,则43x x +-的最小值为()A .4B .5C .6D .75.已知函数()()2157m f x m m x +=-+为幂函数,则实数m 的值为()A .4或3B .2或3C .3D .26.若不等式20ax bx c -+>的解集为{}21x x -<<,则不等式20ax bx c ++>的解集为()A .{}12x x -<<B .{}11x x -<<C .{}22x x -<<D .{}13x x -<<7.如果记圆周率π小数点第n 位上的数字为y ,那么以下说法正确的为()A .y 不是n 的函数B .y 是n 的函数,定义域是{}1,2,3,4, C .y 是n 的函数,值域是{}1,2,3,4,,9 D .y 是n 的函数,且该函数单调8.已知函数()f x 定义域为R ,满足()1f x +为偶函数,当()12,1,x x ∈+∞且12x x ≠时有不等式()()()12120x x f x f x -->⎡⎤⎣⎦恒成立,设()1,,32a f b f c f ⎛⎫=-== ⎪⎝⎭,则()A .a b c >>B .a c b >>C .c a b>>D .c b a>>二、多选题9.下列说法正确的是()A .任何集合都是它自身的真子集B .{x x 是等边三角形}{x x ⊆是等腰三角形}C .“A =∅”是“A B =∅ ”的充分不必要条件D .集合{}2*|1,N x x a a =+∈={}2*|45,N x x a a a =-+∈10.下列不等式一定成立的是()A .若0a b c >>>,则a a cb b c+<+B .若a b >,且11a b>则0ab <C .若0a b <<,则22a ab b >>D .若01b a <<<,则1a b ab +<+11.已知非零实数,a b 满足241a b +=,则()A .22a b +的最大值为54B .212ab ≤C .24114a b+≥D .1b b+的最小值为2三、填空题12.已知函数()f x 满足11)4f x =-,则(3)f =.13.函数()[]f x x =的函数值表示不超过x 的最大整数,例如,[3.5]4,[2.1]2-=-=,那么函数()[]g x x x =-的值域是.14.定义在R 上的函数()f x ,对任意,x y ∈R 都满足()()()4f x y f x f y +=+-,则()()20242024f f -+=.四、解答题15.已知()2f x x bx c =++,且()()10,30f f ==.(1)求()1f -的值及()f x 的值域;(2)若()g x =()g x 的定义域.16.当k 取什么值时,一元二次不等式23208kx kx +-<对一切实数x 都成立.17.已知集合()(){}20A x x a x a =--<,集合211x B xx ⎧⎫=<⎨⎬-⎩⎭,命题:P x A ∈,命题:q x B ∈.(1)当实数a 为何值时,p 是q 的充要条件;(2)若p 是q 的充分不必要条件,求实数a 的取值范围.18.(1)若正数,x y 满足9x y xy +=,求23x y +的最小值.(2)已知0,0,0a b c >>>,且0a b c +-≥,求4b aa c+的最小值.19.已知函数2()bx a f x bx x a+=++是偶函数,且1(1)2f =.(1)用定义证明()f x 在(,0)-∞上单调递增,并解不等式()(2)f x f x >-;(2)函数1()21,()2()h x x g x mx f x =--=+,对21[1,2],[1,2]x x ∀∈-∃∈-使得()()12h x g x =,求实数m 的取值范围.。

河南省南阳市六校2024-2025学年高一上学期10月期中考试数学试题

河南省南阳市六校2024-2025学年高一上学期10月期中考试数学试题

河南省南阳市六校2024-2025学年高一上学期10月期中考试数学试题学校:___________姓名:___________班级:___________考号:___________三、填空题【分析】分别求出f(x )值域为[]2,18时的定义域,从而可求解.【详解】由函数()()2223122f x x x x =-+=-+³,所以当x =1时,f(x )有最小值()12f =,当()18f x =时,即22318x x -+=,解得3x =-或5x =,又因为[)3,1x Î-时,f(x )单调递减,(]1,5x Î时,f(x )单调递增,所以n 的最大值为5,m 的最小值为3-,所以n m -的最大值为538+=.故选:D.8.B【分析】根据函数f(x )为偶函数且在(],0-¥上单调递减,则()()110f f =-=,且f(x )在()0,+¥上单调递增,然后对x 分情况讨论,从而可求解.【详解】由函数f(x )为偶函数且在(],0-¥上单调递减,且()10f =,所以()()110f f =-=,且f(x )在()0,+¥上单调递增,当1x £-时,12x -£-,则()10f x ->,所以()10xf x -<;当10x -<£时,211x -£-£-,则()10f x -³,所以()10xf x -£;当01x <<时,110x -<-<,则()10f x -<,所以()10xf x -<;当12x ££时,011x £-£,则()10f x -£,所以()10xf x -£;当x >2时,11x ->,则()10f x ->,所以()10xf x ->.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

益阳市2020年上学期高一数学期中考试
时量:120分钟 满分150分
第Ⅰ卷(选择题 共60分)
一、选择题(本大题共12个小题, 每小题5分,共60分,在每小题给出的四个选项中,只有一项是最符合题目要求的.)
1. 下列命题正确的是
A. 终边相同的角都相等
B. 钝角比第三象限角小
C. 第一象限角都是锐角
D. 锐角都是第一象限角
2. 若角α的终边经过点P )54,53(−,则sin tan αα⋅的值是 A. 15
16 B. 1516− C. 35 D. 35− 3. 已知2sin sin 1θθ+=,则24cos cos θθ+=
A. 1
B. 2
C.
D.
4. 化简sin (π-α)cos (-α)sin ⎝⎛⎭⎫π2+αcos (π+α)sin (-α)
等于 A. sin α B. cos α C. tan α− D. cos α−
5. 若向量a ,b 满足|a |=1,|b |=2,且a ⊥(a +b ),则a 与b 的夹角为
A. π2
B. 2π3
C. 3π4
D. 5π6 6. 在函数①y =cos|2x |,②y =|cos x |,③y =cos ⎝⎛⎭⎫2x +π6,④y =tan ⎝
⎛⎭⎫2x -π4中,最小正周期为π的所有函数为 A .①②③ B .①③④
C .②④
D .①③ 7. 函数()sin()(0,)2f x x π
ωϕωϕ=+><的图像如图所示,先将图像上所有点的横坐标伸长到原来的6倍,纵坐标不变,再将所得的图像向左平移
72π个单位长度,得到函数()g x 的图像,下列结论正确的是
A. ()g x 是奇函数
B. ()g x 在[2,0]π−上单调递增
C. ()g x 的图像关于(3,0)π对称
D. ()g x 的图像关于3x π=−对称
8. 函数f (x )=tan ⎝
⎛⎭⎫2x -π3的单调递增区间是( ) A. ⎣⎡⎦⎤k π2-π12,k π2+5π12(k ∈Z ) B. ⎝⎛⎭
⎫k π2-π12,k π2+5π12(k ∈Z ) C. ⎝⎛⎭⎫k π+π6,k π+2π3(k ∈Z ) D. ⎣
⎡⎦⎤k π-π12,k π+5π12(k ∈Z ) 9. 1+2sin (π-3)cos (π+3)化简的结果是( )
A .sin 3-cos 3
B .cos 3-sin 3
C .±(sin 3-cos 3)
D .以上都不对
10. 在△ABC 中,AD 、BE 、CF 分别是BC 、CA 、AB 上的中线,它们交于点G ,则下列各等式中不.正确..
的是 A. 23BG BE =
B. 2CG GF =
C. 12
DG AG = D. 0GA GB GC ++= 11. 已知函数1()cos(3)1
x x e f x x a e −=⋅++,其中[]0,a π∈,则()f x 的大致图像不可能是
12. 已知函数()2sin()(*)6f x x N π
ωω=+∈有一条对称轴为23
x π=,当ω取最小值时,关于x 的方程 ()f x a =在区间[,]63
ππ−上有且只有一个根,则实数a 的取值范围是 A. [1,1]− B. [1,1)− C. [1,0]− D. 以上都不对
第Ⅱ卷(非选择题 共90分)
二、填空题(本大题共4小题,每小题5分,共20分. 把答案填在题中的横线上.) 13. 7cos()6
−π= . 14. 已知扇形的圆心角为π6,面积为π3
,则扇形的弧长等于________. 15. 若21tan =α,则α
αααcos 3sin 2cos sin −+= . 16. 已知点(1,0),(3,4)A B ,O 为坐标原点,点C 在AOB ∠的平分线上,且2OC =,则点C 的坐标为
三、解答题:第17小题满分10分,第18至第22小题满分各12分,共70分,解答应写出文字说明,证明过程或演算步骤
17. (本小题满分10分)
已知向量a =(-3,1),b =(1,-2),c =(1,1).
(1)求向量a 与b 的夹角的大小;
(2)若c ∥(a +k b ),求实数k 的值.
18. (本小题满分12分)
已知sin α,cos α是关于x 的方程21370x x t −+=的两根,α∈(0,π),
(1)求t 的值;
(2)求tan α的值.
19. (本小题满分12分)
如图,在△OAB 中,P 为线段AB 上一点,且OP →=xOA →+yOB →.
(1)若AP →=PB →,求x ,y 的值;
(2)若AP →=3PB →,|OA →|=4,|OB →|=2,且OA →与OB →的夹角为60°,求OP →·AB →的值.
20. (本小题满分12分)
已知函数f (x )=sin(ωx +φ)⎝
⎛⎭⎫ω>0,-π2≤φ≤π2的图象上相邻的最高点和最低点的距离为22,且f (x )的图像过点⎝
⎛⎭⎫2,-12, (1)求函数f (x )的解析式;
(2)求函数f (x )的单调递减区间
(3)求f (x )在区间[1,2]−上的值域.
21. (本小题满分12分)
在平面直角坐标系xOy 中,已知四边形OABC 是等腰梯形,A (6,0),C (1,3),点M 满足OM →=12
OA →,点P 在线段BC 上运动(包括端点),如图所示.
(1)求∠OCM 的余弦值;
(2)是否存在实数λ,使(OA →-λOP →)⊥CM →?若存在,求出实数λ的取值范围;若不存在,请说明理由.
22. (本小题满分12分)
函数f (x )=1-2a -2a cos x -2sin 2x 的最小值为g (a ),a ∈R . 函数()21h x x =−
(1)求g (a )(结论写成分段函数的形式);
(2)是否存在实数a 满足:任给1(0,2)x ∈,都存在2x R ∈使得12()()h x f x =?若存在,求实数a 的取值范围; 若不存在,请说明理由.。

相关文档
最新文档