烧结余热能量回收驱动技术

烧结余热能量回收驱动技术
烧结余热能量回收驱动技术

一、技术名称:烧结余热能量回收驱动技术

二、适用范围:冶金行业余压余热能量回收

三、与该节能技术相关生产环节的能耗现状:

冶金流程的烧结工序能耗约占吨钢能耗的10%以上,冷却机排出的废气带走的热量,其热能大约为烧结矿烧成系统热耗量的35%,烧结工序能耗约占冶金总能耗的12%,是仅次于炼铁的第二大耗能工序。在钢铁企业烧结流程中,烧结主抽风机容量占到总装机容量的30%~50%。由于烧结生产中部分附属设备运转率低,且选择的电机容量偏大,主抽风机耗电量占到50%~70%。同时,我国烧结工序余热利用率还不足30%,与发达国家相比差距非常大,每吨烧结矿的平均能耗要高20kgce。

四、技术内容:

1、技术原理

将烧结余热能量回收发电技术与电动机拖动的烧结主抽风机驱动系统集成配置,使得烧结余热汽轮机、烧结主抽风机以及同步电动机同轴串联布置,形成烧结余热与烧结主抽风机能量回收三机组(SHRT)。

1.技术原理

烧结余热能量回收驱动技术(SHRT)在原有的电机驱动的烧结主抽风机和烧结余热能量回收发电系统技术的基础上,将两种系统集成配置,形成烧结余热回收汽轮机与电动机同轴驱动烧结主抽风机的新型联合能量回收机组。取消了发电机及发配电系统,合并自控系统、润滑油系统、调节油系统等,可避免能量转换的损失环节,增加能量回收,确保装置在各种工况下都不会影响到烧结生产线的正常运行,并且能最大限度回收利用烧结烟气余热的能量。当整套机组正常运行时,烧结工艺各种工况对烧结主抽风机风量的需求主要通过烧结主抽风机的调节门来实现,不论任何情况,烧结主抽风机组都是一套独立的系统,可以完全满足烧结工艺正常运行的各种工况。

2.关键技术

(1)烧结余热产生的废热通过余热锅炉产生蒸汽,再通过汽轮机转换为机械能,直接作用在轴系上,与电动机同轴驱动烧结主抽风机,提高能源利用效率;

(2)机组采用大型变速离合器,能够使烧结汽轮机与机组实现在线啮合、在线脱开。主要关键技术包括三机联合机组软件设计及组态、轴系稳定性计算等。

3.工艺流程

一般烧结厂烧结烟气平均温度≤150℃,机尾温度达300~400℃。烧结机尾风箱及冷却机密闭段的烟气除尘后,加热余热锅炉以回收低品位余热,产生过热蒸汽推动汽轮机做功,汽轮机通过变速离合器与双出轴驱动的烧结主抽风机连接,烧结主抽风机的另一侧与同步电动机连接。机组中余热汽轮机及同步电动同轴驱动烧结主抽风机做功,降低电机电流从而达到节能的目的。该技术系统的工艺流程见图1。

图1SHRT技术系统工艺流程图

五、主要技术指标

(1)烧结环冷系统:220m2;

(2)配套余热回收汽轮机:5000kW;

(3)烧结主抽风机:SJ22000;

(4)电机:8000kW,余能利用效率提高5%。

六、技术应用情况

该技术已获得2项目实用新型专利。自2010年开展研究以来,到目前已成功完成机组系统技术及关键技术的研究,先后完成江苏镔鑫、山西通才、联鑫钢铁等6个项目的技术设计,以及山西通才SHRT机组、盐城市联鑫SHRT机组的现场调试及投运,节能效果显著。

七、典型用户及投资效益:

典型用户:山西通才工贸有限公司、盐城市联鑫钢铁有限公司

典型案例1

案例名称:山西通才工贸有限公司项目

建设规模:328m2冶金烧结等低品位热能回收及烧结主抽风机,回收功率5000kW。主要建设内容:SHRT机组、汽轮机、变速离合器、烧结主抽风机、同步电动机、润滑调节油站、余热回收系统、土建、厂房、工艺管道等。项目投资额5000万元,建设期1.5年。机组投运后,电动机电流可从380A降至200A,回收余热能量为3200kW。当蒸汽正常后,可回收余热能量5400kW,年节能量达13824tcce,年碳减排量36495tCO

,投资回收期约1年。

2

典型案例2

案例名称:盐城市联鑫钢铁有限公司项目

建设规模:220m2冶金烧结等低品位热能回收及烧结主抽风机,回收功率4350kW。主要建设内容:SHRT机组、汽轮机、变速离合器、烧结主抽风机、同步电动机、润滑调节油站、余热回收系统、土建、厂房、工艺管道等。项目投资额5000万元,项目建设期1.5年。机组投运后,SHRT将烧结余热能量回收直接作用在轴系上,驱动烧结主抽风机运行,降低电动机功率约62%,年节约标准煤

,投资回收期约1年。

10240吨,年碳减排量27033tCO

2

八、推广前景和节能潜力:

预计到2015年,该技术可在钢铁行业推广到20/%,形成的年节能能力约40

万tce,年碳减排能力105万tCO

2

烧结余热回收

烧结余热回收 ■我国烧结工序能耗约占企业总能耗15%,仅次于炼铁工序,比国外先进指标高出20%以上。主要原因之一是余热资源回收与利用水平低。 ■烧结余热回收做得好的国家是日本,住友和歌山钢厂的4号烧结机生产每吨烧结矿可回收蒸汽量110~120 kg,其中低压蒸气为175℃(0.78MPa),中压蒸汽375℃(2.55MPa),吨矿回收电力20kWh,工序能耗40kgce/t。 ■我国马钢引进日本川崎余热发电技术,2台328m2 烧结机余热发电,2005年9月投产,装机容量17.5MW,吨矿发电10kWh,年发电0.7亿kWh,经济效益4000万元以上,年节约3万tce;济钢1台320m2烧结机国产化余热发电系统,2007年1月投产,装机容量10MW,吨矿发电17kWh,年发电0.7亿kWh。 废气温度低,且变化频繁 废气流量大,漏风率高 梯级回收,区分余热质量 煤调湿 “煤调湿”(CMC)是“装炉煤水分控制工艺”(coal moisture control process)的简称,是将炼焦煤料在装炉前去除一部分水分,保持装炉煤水分稳定在6%左右,然后装炉炼焦的一种煤预处理工艺。煤调湿有严格的水分控制措施,能确保入炉煤水分恒定。煤调湿以其显著的节能、环保和经济效益受到普遍重视。美国、前苏联、德国、法国、日本和英国等都进行过不同形式的煤调湿试验和生产,尤其是日本发展最为迅速。截至2009年底,日本现有的16个焦化厂51组(座)焦炉中,其中有36组(座)焦炉配置了煤调湿装置,占焦炉总数的70.5%。 煤调湿技术的效果是: 1)降低炼焦耗热量、节约能源。采用煤调湿技术后,煤料含水量每降低1%,炼焦耗热量相应降低62.0MJ/t(干煤)。当煤料水分从11%下降至6%时,炼焦耗热量相当于节省了62.0×(11-6)=310MJ/t(干煤)=10.6kgce/ t(干煤)。 2)提高焦炉生产能力。由于装炉煤水分的降低,使装炉煤堆密度增加,干馏时间缩短,因此,焦炉生产能力可提高4%~11%。 3)改善焦炭质量。焦炭的冷态强度DI 可提高1%~1.5%,反应后强度CSR提高1%~3%。4)扩大炼焦用煤资源。在保证焦炭质量不变的情况下,可多配弱黏结煤8%~10%。 5)减少氨水处理量。装炉煤水分若降低约5%,则可减少1/3的剩余氨水量,相应减少1/3的蒸氨用蒸汽量,同时也减轻了废水处理装置的生产负荷。 6)延长焦炉炉体寿命。因煤料水分稳定在6%水平上,使得煤料的堆密度和干馏速度稳定,焦炉操作趋于稳定,从而起到保护炉体、延长焦炉寿命的作用。 7)节能的社会效益。减少温室效应,平均每t入炉煤可减少约35.8kg的CO2排放量。 我国焦化厂炼焦煤含水量普遍偏高,年平均含水在11%左右。每万吨水进入焦炉,在焦炉中汽化要耗费大约3.9×1010kJ的热能,相当于约1300吨标准煤。如果采用煤调湿装置,不仅降低炼焦耗热量、减少温室气体排放,而且能提高焦炭产量和质量,并降低成本。由于装炉煤水分的降低,大大减少所需处理的酚氰废水量。 建议和发展方向 1)在用高炉煤气加热焦炉的钢铁企业焦化厂应大力推广以焦炉烟道废气为热源的煤调湿技术; 2)在用焦炉煤气加热焦炉的独立焦化厂应推广以低压蒸汽为热源的煤调湿技术。

能量回收器原理

反渗透海水淡化系统中的能量回收装置 按照工作原理,流体能量回收技术主要分为流体非直接接触式和流体直接接触式两大类。 一、流体非直接接触式技术 在非直接接触式流体能量回收装置中,高低压流体对需要借助叶轮和轴来传递能量,即以机械能作为流体能量传递的中间环节,故又称为机械能中介式技术。能量转换过程为压力能——机械能——压力能。 采用流体非直接接触式技术的典型装置类型有逆转泵型、佩尔顿型叶轮和水力透平等。这种技术的节能机理是在回收高压流体中的压力能的同时减少高压泵的提升压力差来降低 系统的能耗。 1.逆转泵和佩尔顿叶轮型 逆转泵和佩尔顿叶轮型装置的原理类似,属于外力驱动泵式装置,即其加压泵由外电机驱动,通过轴传递的能量为辅助形式。高压废流体驱动透平中的叶轮,通过传动轴与泵连接,为新鲜低压流体加压,做功后的高压废流体丧失能量后排出。下图为此类装置的能量传递示意图 2.水力透平装置与逆转泵及佩尔顿叶轮机型最大的区别在于其透平叶轮和泵体叶轮安 装在同一壳体中,用高压浓盐水直接冲击透平叶片,通过轴功直接驱动加压泵工作,并尽可能减少中间传动轴的机械能损失,从高压流体回收后的能量作为唯一驱动力驱动泵的工作。下图为此装置的示意图 二、流体直接接触正位移技术 这种技术的节能机理是在产量不变的情况下减少通过高压泵的流量的方式来降低系统

的能耗。它是高低压流体直接交换压力能,而不需要机械辅助装置,又称正位移技术,能量的转换过程为压力能——压力能。按照运动部件的类型,这类装置可分为活塞式功交换器和旋转式压力交换器两种。 1.活塞式功交换器 活塞式功交换器自身结构简单,高压流体通过活塞为低压流体加压,同时活塞还可有效防止高低压流体的混流,而且活塞本山阻力非常小,传递效率接近100%。下图为其结构示意图 2.旋转式压力交换器 旋转式压力交换器主要部件是一个无轴的转子,沿轴向开有数个孔道,高低压流体在孔道中交换能量,并依靠转子的连续转动实现系统的连续运行。

烧结机废气余热利用

烧结机废气余热利用 冀留庆 林学良 (中钢集团工程设计研究院有限公司 北京100080) 摘 要 烧结机及烧结矿冷却机的废气温度在400℃以下,为了回收低温废气的余热,开发了纯低温余热锅炉。概述了锅炉及汽轮发电机组的设计和运行情况,并展望了应用前景。讨论的余热锅炉为发电用锅炉,用于回收烧结机和烧结矿冷却机排放的低温余热,机组安装于360m 2烧结机。 关键词 烧结机 烧结冷却机 余热锅炉 汽轮发电机组 W aste G as R ecovery of Sintering Machine J I Liu -qing LIN Xue -liang (Sinosteel Engineering Design &Research Institute Co.,Ltd. Beijing 100080) Abstract The tem perature of waste gas of sintering machine and sintering cooling machine is below 400℃.S ingle low -tem perature waste heat boiler is designed to recover the heat of low -tem perature waste gas.This paper describes the design and running situation of the boiler and turbogenerator set and prospects its application.The boiler mentioned is a power generation boiler.It is used to recover low -tem perature waste heat em itted by sintering machine and sintering cooling machine and installed in a 360m 2sintering machine.K eyw ords sintering machine sintering cooling machine waste heat boiler turbogenerator set 0 前言在钢铁生产过程中,烧结工序的能耗约占总能耗的 10%,仅次于炼铁工序。在烧结工序总能耗中,有近50%的 热能以烧结机烟气和冷却机废气的显热形式排入大气,既浪费了热能又污染了环境。烧结废气不仅数量大,而且可供回收的热量也大,但由于废气温度均低于400℃,所以如何回收其中的低温余热,进一步降低烧结生产能耗是我国烧结矿生产企业面临的节能技术课题。 在日本低温余热回收已应用得相当广泛,这种技术是利用烧结环冷机余热锅炉来产生低压过热蒸汽供汽轮机组发电。2005年9月,由日本川崎重工提供的一套先进而成熟可靠的低温余热发电成套设备在马钢炼铁厂投产发电。该套设备配2台容量为37.4t/h 废气锅炉(每台300m 2烧结机配备1台废气锅炉),装机容量为17.5MW 凝汽式汽轮发电机组。设计年发电量为1.4×108 kW ?h 。经4年运行实绩证明,该系统安全可靠,能为烧结生产带来显著的经济效益和环境效益。该技术近几年已经在我国烧结行业开始普及推广。对于关键设备余热锅炉的制造难点是如何应对烟气的低品位和高灰分问题,经过国内技术人员共同努力已经解决。方法是采用低成本的扩展受热面,即采用螺旋鳍片管来提高换热效率,采用机械振打清灰技术解决高灰分问题。 1 工艺简介 烧结环冷机余热锅炉是抽出环冷机第1段(300-400 ℃ )和第2段(250-300℃)的冷却热废气,废气进入余热锅炉经热交换后,余热锅炉出口排烟温度降至165℃。为了充分回收利用热能,将余热锅炉排出的165℃废气通过循环风机再送回烧结环冷机鼓风口,从而实现余热锅炉到烧结机之 间的烟气再循环方式。 烧结机余热锅炉是抽出烧结机高温段烟气,该段排出的 300-330℃的烟气进入余热锅炉经热交换后余热锅炉出口 排烟温度降至165℃。通过循环风机再送回烧结机低温段经烧结除尘器和主风机排向大气。产生的蒸汽与烧结环冷机余热锅炉产生的蒸汽混合进入汽轮发电机做功发电。 对于烧结余热利用可采用烧结环冷机余热锅炉和烧结机余热锅炉形式,也可以将环冷机高温段废气和烧结机高温段烟气混合后进入一个共同的余热锅炉进行热交换,但是带来的问题是余热锅炉出口排烟分配平衡调整不易。所以笔者认为2个余热锅炉较适宜。 2 锅炉规范及结构简述 对于360m 2烧结机配套的锅炉规范如下: 环冷机锅炉设计参数:型号QC720/350-45-1.25/300;第1段:废气流量360000m 3/h ,进口温度300-400℃,第2段:废气流量360000m 3/h ,进口温度250-300℃,出口温度 165-180℃,废气含尘量1g/m 3,漏风率≤2%,锅炉总废气 阻力≤500Pa ,蒸汽出口压力1.25MPa ,蒸汽出口温度300℃,蒸发量45t/h 。 烧结机锅炉设计参数:型号QC350/300-25-1.25/250;废气流量350000m 3/h ;进口温度300-330℃;出口温度165 -180℃;废气含尘量2g/m 3;漏风率≤2%;锅炉总废气阻力 ≤500Pa ;蒸汽出口压力1.25MPa ;蒸汽出口温度250℃;蒸发量25t/h 。 锅炉的总体方案是经充分调研并进行多方案比较而确定的。余热锅炉采用自然循环的立式结构,立式结构布置节约了占地面积,也方便了废气管道的布置;自然循环省掉 ? 61? 工业安全与环保 Industrial Safety and Environmental Protection 2009年第35卷第12期 December 2009

余热回收技术

余热回收技术 1、热管余热回收器 热管余热回收器即是利用热管的高效传热特性及其环境适应性制造的换热装置,主要应用于工业节能领域,可广泛回收存在于气态、液态、固态介质中的废弃热源。按照热流体和冷流体的状态,热管余热回收器可分为:气—气式、气-汽式、气—液式、液—液式、液—气式。按照回收器的结构形式可分为:整体式、分离式和组合式。 2、间壁式换热器 换热器是化工,石油,动力,食品及其它许多工业部门的通用设备,在生产中占有重要地位.在化工生产中换热器可作为加热器、冷却器、冷凝器、蒸发器和再沸器等,应用更加广泛。换热器种类很多,但根据冷、热流体热量交换的原理和方式基本上可分三大类即:间壁式、混合式和蓄热式。在三类换热器中,间壁式换热器应用最多。常见间壁式换热器如:冷却塔(或称冷水塔) 、气体洗涤塔(或称洗涤塔) 、喷射式热交换器、混合式冷凝器。 3、蓄热式换热器 蓄热式换热器用于进行蓄热式换热的设备,一般用于对介质混合要求比较低的场合。换热器内装固体填充物,用以贮蓄热量。一般用耐火砖等砌成火格子(有时用金属波形带等)。

蓄热式换热分两个阶段进行。第一阶段,热气体通过火格子,将热量传给火格子而贮蓄起来。第二阶段,冷气体通过火格子,接受火格子所储蓄的热量而被加热。这两个阶段交替进行。通常用两个蓄热器交替使用,即当热气体进入一器时,冷气体进入另一器。常用于冶金工业,如炼钢平炉的蓄热室。也用于化学工业,如煤气炉中的空气预热器或燃烧室,人造石油厂中的蓄热式裂化炉。 4、节能陶瓷换热器 陶瓷换热器是一种新型的换热设备,在高温或腐蚀环境下取代了传统的金属换热设备。用它的特殊材质——SIC质,把窑炉原来用的冷空气变成了热空气来达到余热回收的目的。由于其可长期在浓硫酸、盐酸和碱性气、液体中长期使用。抗氧化,耐热震,高温强度高,抗氧化性能好,使用寿命长。热攻工业窑炉。把换取的热风作为助燃风送进窑炉与燃气形成混合气进行燃烧,可节能25%-45%,甚至更多的能源。 5、喷射式混合加热器 喷射式混合加热器是射流技术在传热领域的应用,喷射式混合加热器是通过汽、水两相流体的直接混合来生产热水的设备。喷射式混合加热器具有传换效率高,噪音低(可达到65dB以下),体积小,安装简单,运行可靠,投资少。利用喷射式混合加热器回收发电厂、造纸厂、化工厂的余热,加热采暖循环水

纯电动汽车制动能量回收技术

纯电动汽车制动能量回 收技术 Document number:PBGCG-0857-BTDO-0089-PTT1998

纯电动汽车制动能量回收技术 电动汽车制动能量回收技术是利用汽车在踩动刹车进行减速时将制动效能转变为电能储存并回收到电池当中,摩擦能量没有被浪费掉而是变相扩充了电池的容量,增加了纯电动汽车的续航里程,并且减少了刹车系统耗材的磨损。 电动汽车在“新能源”话题备受瞩目的今日已经不是个陌生词语,但是电动汽车的历史比大多数人想像得要长很多。1896年还推出了为电动车换电的服务,也就是我们今天所说的“充电桩”的雏形[仇建华,张珍,电动汽车制动能量回收方式设计[J].上海汽车.2012,12.];在十九世纪末二十世纪初的交通大变革中,电动汽车作为一种新型事物快速成长但又迅速陨落。有社会环境的影响也有自身条件的限制。 目前常见的纯电动汽车,其动力电池组、电池变换器和电动机之间为电气连接,电动机、减速器和车轮之间为机械连接。 纯电动汽车制动能量回收技术研究背景 ?动车从登上历史的舞台开始,续航性能如何提升一直是人们争议很大的点。从根本上来说,续航能力可以通过

改进蓄能和驱动方式来提高,除此之外,制动能量回收也是重要的方式之一。 制动能量回收,简单来说,就是把电动汽车的电机组中无用的部分、不需要的部分,甚至有害的惯性转动带来的动能转化为电能,并返回给蓄电池,与此同时产生制动力矩,使电动机快速停止惯性转动,这整个过程也就成为再生制动过程[叶永贞,纯电动汽车制动能量回收系统研究[D].山东:青岛理工大学,2013.]。 电动汽车发展至今,已有大部分安装了类似装置以节约制动能,经过研究发现,在行驶路况频繁变化的路段,制动能量回收技术可以增加20%左右的续驶里程。 制动能量回收方法 制动能量回收方法有常见三种: 飞轮蓄能。特点:①结构简单;②无法大量蓄能。 液压蓄能。特点:①简便、可大量蓄能;②可靠性高。 蓄电池储能。特点:①无法大量蓄能②成本太高。 电动汽车制动能量回收系统的结构 无独立发电机的制动能量回收系统。①前轮驱动制动能量回收系统;②全轮驱动能量回收制动系统。有独立发电机的制动能量回收系统。 系统传动方式

离心压缩机余热回收工程技术方案要点

离心压缩机余热回收工程技术方案 编制单位: 编制日期:

目录 一、项目概况 (1) 二、项目建设的必要性 (1) 三、项目建设内容 (2) (一)项目设计原则 (2) (二)建设内容 (3) (三)工艺流程简述 (4) (四)产品特点.............. 错误!未定义书签。 四、热工计算 (6) (一)基本参数 (6) (二)设计计算书 (6) (三)主要设备 (7) 五、经济效益分析 (10)

一、项目概况 有限公司现有三台空压机常年运行,空压机采用离心式两级压缩工艺,提供总容量为800Nm3/min,0.35MPa的压缩空气供生产使用,根据工艺和设备的要求,二级入口风温不可高于65℃。空压机压缩空气二级出口温度为夏季140℃,现生产工艺是将风温降到60℃以下。 有四台三级离心压缩空压机,提供总容量为730Nm3/min,0.75MPa的压缩空气供生产使用,根据工艺和设备的要求,二、三级入口风温不可高于65℃,空压机压缩空气三级出口温度夏季为140℃,现在的运行方式是将三级出口风温降到60℃以下外供。 二、项目建设的必要性 国民经济和社会发展第“十二五”规划纲要提出:“面对日趋强化的资源环境约束,必须增强危机意识,树立绿色、低碳发展理念,以节能减排为重点,健全激励和约束机制,加快构建资源节约、环境友好的生产方式和消费模式,增强可持续发展能力。” “十二五”期间的节能指标为:单位GDP能耗降低率为17%。在能源费用日趋增高的今天,节能降耗也是企业降低运行成本,提高经济效益的一个有效途径。 本项目中,空压机作为压缩空气的生产设备,在制取压缩空气的过程中,不可避免的要产生大量热量,受生产工艺的制约,

能量回收装置

Recuperator能量回收装置 毋庸置疑,阿科凌与业内竞争对手相比的最大优势在于我们的专利设备— Recuperator能量回收装置。它是阿科凌专有的能量回收装置/工作转换机,阿科凌也因此成为全球唯一一家拥有专有能量回收装置的海水淡化水供应商。回流机属于等压能量回收装置,具体而言,它是一种活塞式工作转换机。 回流机结构紧凑,呈塔状结构,经过不断的改良, 如今已是第三个版本。阿科凌研发实验室不遗余力 地致力于回流机新功能的开发,并将于近期推出升 级版新产品。回流机目前仅应用于阿科凌的交钥匙 解决方案和自建自营的项目中,但计划不久将作为 第三方产品进行销售。回流机能实现高达98.5% 的废弃能量回收率,可大幅节省运营成本。 背景介绍 膜组件是反渗透海水淡化过程的核心部分,从一开 始,反渗透法海水淡化技术便致力于膜组件的开发 与改良。 阿科凌专功膜法脱盐项目,反渗透海水淡化过程的终极目标是获取材质与结构均符合脱盐市场需求(如高产出率、高脱盐率、抗高压、抗化学性和低给水污染物排放)的膜组件。 随着阿科凌系统设计技术的不断进步,加之阿科凌多年的反渗透系统运营经验、优化的预处理解决方案以及更高效设备和更优材质的采用,将成功节省运营成本并大幅降低系统的生命周期成本。 工作原理 回流机通过反渗透膜滤过的盐水给预处理海水加 压,加压过程由反渗透膜的盐水流量进行调节。 该装置包含两个直立的双向不锈钢塔,分别进行加 压转移和解压释放处理。预处理海水来自加压给水 箱,而给水箱为系统提供恒定的水流量和水压。 回流机能够将加压盐水的能量回收至反渗透膜及 增压泵—只需把加压盐水替换成相同流速的预处 理海水。

【免费下载】冶炼炉渣干法粒化余热回收技术

★新型高温炉渣余热回收技术研究分析及对策建议 2012年7月,国务院正式发布《“十二五”国家战略性新兴产业发展规划》,在重点发展方向和主要任务中明确提出“积极开发和推广用能系统优化技术,促进能源的梯次利用和高效利用”,确定了“中低品位余热余压回收利用技术”作为高效节能产业发展的重大行动之一。为了贯彻落实国家节约能源,保护环境的政策,建设资源节约型社会和环境友好型社会,实现可持续发展的战略目标,六院自筹资金积极开展冶炼炉渣余热回收利用技术研究。 目前我国主要采用水淬工艺处理高温炉渣。水冲渣之后产生大量蒸汽,同时生成污染性酸性气体。蒸汽直接排入大气无法进行热量回收,酸性气体造成大气的污染。由于冲渣后的水温度较低,是一种很难高效利用的低品位热源,使用热泵等技术进行利用效率低、污染大且很难在短期内回收投资。冶炼炉渣显热为高品位余热资源,有很高的回收价值,随着国际竞争的日益加剧和能源的持续紧缺,冶金行业面临着多项维系可持续发展战略的问题,其中如何高效地回收冶炼炉渣显热是其中的重要问题之一,因此有必要转变思路采用环保高效的余热利用工艺进行余热回收。 六院十一所成功开发出一种新型高温炉渣余热回收技术——离心空气粒化结合两级流化床余热回收工艺,该工艺能够高效环保地进行炉渣的余热回收,代表了国际上最为先进的高温炉渣余热吸收工艺。 一、国内外相关研究开展情况 高温炉渣余热回收的工艺主要有湿法工艺和干法工艺两种。湿法工艺是指用水或水与空气的混合物使熔融渣冷却,然后再运输的方案,一

般也称为水淬工艺。干法工艺即依靠高压空气或其他方法实现熔融金属冷却、粒化的工艺。湿法处理工艺是将高炉渣作为一种材料来加以利用,并没有对其余热量进行充分的利用。从节能和环保的角度来看,湿法工艺都无法避免处理渣耗水量大的问题。干式粒化工艺是在不消耗新水的情况下,利用高炉渣与传热介质直接或间接接触进行的高炉渣粒化和显热回收的工艺,几乎没有有害气体排出,是一种环境友好的新式处理工艺。 (一)国外研究状况 20 世纪70年代,国外就已开始研究干式粒化炉渣的方法。前苏联、英国、瑞典、德国、日本、澳大利亚等国都开展过高温炉渣(包括高炉渣、钢渣等) 干式粒化技术的研究。日本钢管公司(NKK)开发的转炉钢渣风淬粒化工艺和双内冷却转筒粒化工艺因为处理能力不高、运行不稳定、粒度不均匀等缺点不适合在现场大规模连续处理高炉渣。英国克凡纳金属公司(KvaernerMetals)提出转杯离心粒化气流化床热能回收技术,该法因为热量回收效率高,粒化后渣质量较好,粒度均匀,强度较高,粒径小于2mm等优势具有较好的发展前景。该法曾经于20世纪80年代初期在英国钢铁公司年产1万吨的高炉上进行了为期数年的工业试验,未实现大范围的工业化应用。澳大利亚也对该法的粒化和传热过程进行过一些数值计算和实验研究工作。对高炉渣中显热的回收目前在国际上仍然处于工业试验性阶段,还没有任何一种干式处理工艺实现了工业应用,但已有的各类技术研究积累了很多相关的理论知识和实践经验。 (二)国内研究状况 目前,国内冶金企业对于高温炉渣全部采用水淬工艺进行处理。高

制动能量回收技术现状及发展趋势

研究生课程考核试卷 (适用于课程论文、提交报告) 科目:汽车技术现状及发展趋势教师:贺岩松姓名:赵金龙学号:20110702218 专业:车辆工程类别:学术 上课时间:2011年11月至2011年11月 考生成绩: 阅卷评语: 阅卷教师(签名) 重庆大学研究生院制

再生制动技术现状及发展趋势 摘要 随着新能源危机的加剧,混合动力汽车和纯电动汽车已经成为新一代汽车的发展方向,而再生制动技术作为混合动力汽车和电动汽车的一向重要节能技术,已经得到越来越大的重视。再生制动技术使汽车在制动过程中将一部分动能转化为电能并储存在储能装置中,实现了制动减速时的能量再利用。本文对再生制动的工作原理、技术发展现状进行了详细的阐述,并提出日后的发展趋势。 关键词:制动能量;制动能量回收;发展现状 Regenerative Braking Technology Status and Development Trends ABSTRACT With the new energy crisis intensifies, hybrid vehicles and pure electric vehicles has become the new direction of next generation car, and regenerative brakingtechnology as an important energy-saving technology for hybrid vehicles and electric cars has been paid more and more attention.During braking, part of the kinetic energywill be turn into electrical energy by regenerative braking technology so that we can achieve the energy re-use when the car speed is brakingdeceleration .In this paper, regenerative braking technology works and research status has been elaborated in detail and proposed the future development trend. Key words:Braking energy; Energy regeneration and use; Research status

纯电动汽车制动能量回收技术

纯电动汽车制动能量回收技术 电动汽车制动能量回收技术是利用汽车在踩动刹车进行减速时将制动效能转变为电能储存并回收到电池当中,摩擦能量没有被浪费掉而是变相扩充了电池的容量,增加了纯电动汽车的续航里程,并且减少了刹车系统耗材的磨损。 电动汽车在“新能源”话题备受瞩目的今日已经不是个陌生词语,但是电动汽车的历史比大多数人想像得要长很多。1896年还推出了为电动车换电的服务,也就是我们今天所说的“充电桩”的雏形[仇建华,张珍,电动汽车制动能量回收方式设计[J].上海汽 车.2012,12.];在十九世纪末二十世纪初的交通大变革中,电动汽车作为一种新型事物快速成长但又迅速陨落。有社会环境的影响也有自身条件的限制。 目前常见的纯电动汽车,其动力电池组、电池变换器和电动机之间为电气连接,电动机、减速器和车轮之间为机械连接。 纯电动汽车制动能量回收技术研究背景 ?动车从登上历史的舞台开始,续航性能如何提升一直是人们争议很大的点。从根本上来说,续航能力可以通过改进蓄能和驱动方式来提高,除此之外,制动能量回收也是重要的方式之一。 制动能量回收,简单来说,就是把电动汽车的电机组中无用的部分、不需要的部分,甚至有害的惯性转动带来的动能转化为电能,并返回给蓄电池,与此同时产生制动力矩,使电动机快速停止惯性转动,这整个过程也就成为再生制动过程[叶永贞,纯电动汽车

制动能量回收系统研究[D].山东:青岛理工大学,2013.]。 电动汽车发展至今,已有大部分安装了类似装置以节约制动能,经过研究发现,在行驶路况频繁变化的路段,制动能量回收技术可以增加20%左右的续驶里程。 制动能量回收方法 制动能量回收方法有常见三种: 飞轮蓄能。特点:①结构简单;②无法大量蓄能。 液压蓄能。特点:①简便、可大量蓄能;②可靠性高。 蓄电池储能。特点:①无法大量蓄能②成本太高。 电动汽车制动能量回收系统的结构 无独立发电机的制动能量回收系统。①前轮驱动制动能量回收系统;②全轮驱动能量回收制动系统。有独立发电机的制动能量回收系统。 系统传动方式 液压混合动力系统的系统传动方式有四种:串联式;并联式;混联式;轮边式。 串联式混合动力驱动系统。串联式混合动力驱动系统,动力源有:发动机和高压蓄能器。 这种方式只适合整车质量小、车速不能过高的小型公交车等。 并联式混合动力驱动系统。并联式混合动力驱动系统动力源是发动机和高压蓄能器。但并联式车辆在制动能量再生系统不工作或出故障时可以由发动机单独直接驱动车辆。 并联式系统的驱动路线有两条,一条是由发动机传给变速器,

余热回收系统设计方案

国电太一13 号、14号炉分控相变余热回收系统 设计方案说明书

太一13、14 号炉余热回收系统设计方案热力系统设计方案本设计严格遵照投标文件的技术方案和技术要求,相关内容见投标文件。本说明仅为细化图纸的说明,作为投标文件的补充。本系统图是在投标文件的基础上进行了细化,增加了详细的管道、设备布置和规格。 烟道热源换热器分为4 组布置在除尘器前的水平烟道上,重心在风机房最靠近除尘器的支撑横梁上,设安装平台,并进行横梁加固(由脱硝装置改造单位配套完成)。膨胀节设在靠近除尘器一侧,换热器采用滑动支撑。二次风道冷源换热器布置在送风机出口的水平风道,一次风道冷源换热器布置在一次风机出口的弯道前倾斜布置。 气流调节分为两个单元,即左侧的两个烟道换热器的出口蒸汽母管汇合后由一个调节阀控制,相应右侧两个烟道换热器的出口蒸汽母管汇合后由另一个调节阀控制,部分母管制简化了系统,也增加了系统的稳定。水位的调节由四个水位计分别控制四个供水调节阀,左侧的两个水位计分别指示左侧两个烟道换热器的上部单元和下部单元,右侧的两个水位计分别指示右侧两个烟道换热器的上部单元和下部单元。每个换热单元都独立设有隔离阀。为防止冬季设备停运时管路冻裂,每个换热单元都独立设有放水阀。 烟道换热器进出口的阀门分左右侧,集中布置在风机房顶,汇总到母管后由风机房顶进入风机房二次风道换热器侧。水箱和汽液换热器等设备布置在零米风道换热器之间,水泵布置在水箱附近-1.0 米的泵坑。 为了夏季进一步降低排烟温度,本设计补充了凝结水加热器作为备用设备,凝结水加热器的耗汽量为余热回收系统最大负荷的35%。 本设计的排空管路由三个电磁阀控制,便于手动和自动操作。本设计的补充氮气系统是为了在冷源换热器负压较大时,在不改变相变分压的前提下,增加系统全压,避免空气漏入系统内。 另外,本次工程还将原风道内的暖风器拆除,以减小系统的阻力,降低风机的电耗。本余热回收系统可替代原暖风器系统,但供汽和回水仍用原系统管路。

丹佛斯能量回收装置模拟

Seal Zone PX High Pressure Outlet PX Low Pressure inlet Seal Zone Start PX Booster Pump Main High Pressure Pump 0 flow 0 bar 0 flow 0 bar 0 flow 0 bar 0 flow 0 bar 0 flow 0 bar 0 flow 0 bar PX High Pressure Inlet PX Low pressure Outlet V F D FM FM PX Rotor Step 1: Start seawater supply or fresh water flush. SW Pump Start Flush Seal zone Air Vent Permeate 0 flow

Seal Zone PX Rotor Seal zone LP PX High Pressure Outlet PX Low Pressure inlet PX Booster Pump Main High Pressure Pump --flow 2 bar 0 flow 2 bar --flow 2 bar 58.8 flow 2 bar 58.8 flow 1 bar PX High Pressure Inlet PX Low pressure Outlet V F D FM FM Seawater Pump Start Booster Stop SW Pump Air Vent 0 flow 2 bar Permeate 0 flow Seal Zone

空压机余热回收系统(小论文)

学号:201114230305 毕业设计翻译文档GRADUATE DESIGN TRANSLATION DOCUMENT 设计题目:空压机余热回收方案设计 学生姓名:王赶强 专业班级:11装备3班 学院:机械工程学院 指导教师:陈丽文讲师 2015年06月10日

空压机余热回收系统方案设计 王赶强 1.背景 随着工业和经济的迅速发展,人们对于能源的索取也与日俱增。伴随人类无休止的开采,世界能源危机也与日俱增,化石燃料的储量日益减少,随之,能源的合理利用,能源的高效利用以及能源的重复利用、回收利用得到了人们的广泛关注。中国是世界能源生产的大国,然而,限制国民经济发展的主要问题还是能源,面对能源生产不能高速发展又急需经济上的快速发展唯有两条路可行:一是尽可能的增加能源的生产量,二是能源的节约利用。中国是世界上能源利用率最低的国家之一,节能的潜力巨大,特别是在工业热能的转换和利用之中有很大的节能空间。 2.研究方向 工业余热的回收和利用是提高能源利用率和环境保护的有效途径,对提高国民经济的发展、能源的二次利用以及环境的保护具有重要的意义,因此,工业余热的回收利用受到了极大的关注。现设计一套空压机余热回收方案,利用余热回收系统对公司现有的6台阿特拉斯空压机进行余热回收再利用。本文采用两套系统分别对空压机产生的高温气体和机油进行余热回收,通过工艺计算和设计要求选用合适的换热器,采用PLC和PID模块进行水量的自动添加控制,最后综合此套系统的消费和收益进行可行性分析,对国内余热回收领域有很大参考价值。 3.研究内容 热回收系统包含动力装置、空压机设备、换热设备、存储设备、输送装置及管道。 动力装置采用电机提供动力,电机与空压机之间用联轴器连接,其特点是主机与电动机之间为柔性联结,联结可靠,便于对电机进行注油保养,而且单件重量较轻,现场维护方便。 空压机设备采用阿特拉斯螺杆空压机,阿特拉斯螺杆空压机拥有世界上最高的单级压缩比,最高单级压缩比可至18,所以阿特拉斯螺杆空压机的工作压力可至1.5MPa。低含油量螺杆空压机中最关键的是油气分离装置,阿特拉斯螺杆空压机所采用的是德国MANN公司的产品,技术指标可靠,油含量的大小可控制于

汽车减震器能量回收装置设计概要

目录 1 绪论 (1) 1.1 能量回收装置简介 (1) 1.2 研究的背景及意义 (1) 1.3 国内外发展现状及趋势 (2) 1.3.1国外发展现状 (2) 1.3.2国内发展趋势 (2) 2 理论基础 (3) 2.1 减震器 (3) 2.2 电磁发电技术 (4) 2.2.1法拉第电磁感应定律 (4) 2.2.2电磁感应发电装置结构 (4) 2.3 压电发电技术 (5) 2.3.1压电材料 (5) 2.3.2压电效应 (5) 3 基于压电叠堆储能的新式能量回收装置的结构及工作原理 (7) 3.1 压电叠堆发电装置的结构 (7) 3.2 能量回收装置的工作原理 (7) 4 能量回收装置的等效模型分析 (8) 4.1 模型假设 (8) 4.2 等效模型 (8) 4.3 发电装置的性能分析 (8) 4.4油压频率f对回收装置输出特性的影响 (9) 4.5 压电叠堆长度对输出特性的影响 (9) 4.6 压电叠堆截面面积S对输出特性的影响 (10) 4.7 本章小结 (11) 5 能量回收装置输出电路 (11) 6 结论与展望 (12) 参考文献 (13)

汽车减震器能量回收装置设计 摘要:传统的被动悬架以及半主动悬架只能起到加速车架和车身震动的衰减作用,而起不到对振动能量回收的作用。当汽车对减震器施加力时,减震器孔壁与油液间的摩擦及液体分子内的摩擦便形成对振动的阻尼力,使车身和车架的振动能量转化为热能,被油液和减振器壳体所吸收,并散到大气中,这一部分能量被白白浪费掉。设计一种能量回收装置,能量回收装备将减震器内部的部分压力能转化为电能储存起来。通过查阅大量关于能源转化的资料,并对各种能量回收方案进行比较,最终确定用压电叠堆能量回收的装置对减震器内部的压力能进行回收。本文主要对压电能量回收装置的工作原理、理论设计、及数学模型的分析进行概述。 关键词:能量回收;储存;压电叠堆 1绪论 1.1能量回收装置简介 目前,大多数的混合动力车和电动车都配有制动能量回收装置,该装置有推广到非混合动力车的趋势,国际汽联也希望通过KERS系统在F1中的推广,树立环保先锋的形象。制动能量的回收通常有两种途径,一是以高速旋转的飞轮储存能量,二是车轮在制动时带动发电机,产生的电能储存于电池组中。制动产生的额外能量可以回收,那么汽车行驶中产生的其它能量也可以回收。减震器是悬架的重要组成部分,悬架的好坏关系到汽车的舒适性。在能源短缺的今天,节能减排越来越受到人们的重视。消费者在选择汽车时,在考虑动力性、舒适性、美观的同时,经济性也是一个重要的原因。减震器能量回收装置,能够回收减震器在伸张、压缩行程产生的能量,通过压电能量回收原理将机械能转变为电能储存于蓄电池之中,为其他用电设备供电。1.2研究的背景及意义 从汽车发明以来,汽车工业带动了各个国家经济的发展,但在其发展过程中,一系列的问题不断出现。能源短缺、环境污染、气候变暖成为各个国家面临的共同挑战。如何采用新的技术创造出一种新型的汽车成为各国企业不断攻克的难题。 当前内燃机汽车普遍采用的是普通的液力减震器。由于传统的减震器只起到缓解汽车振动的作用,并不能回收汽车在振动过程中的能量,这就造成了能量的浪费。 众所周知,在经过不平的路面时,汽车车身会发生振动,并且路面越不平稳,汽车振动的越厉害。通常情况下,振动的能量会以减震器内部机油摩擦生热而损耗,如果能将汽车振动作用在减震器上的能量加以回收再利用,为汽车的其他电器提供能量,已达到节能的目的。

烧结机工序的余热回收利用

烧结机工序的余热回收利用 烧结工序是高炉矿料入炉以前的准备工序。有块状烧结和球团状烧结两种工艺。块状烧结是将不能直接加入炉的炼铁原料,如精矿粉、高炉炉尘、硫酸渣等配加一定的燃料和溶剂,加热到1300~1500℃,使粉料烧结成块状。球团烧结则是将细磨物料,如精矿粉配加一定的黏结剂,在造球设备上滚成球,然后在烧结设备上高温烧结。两种烧结过程都要消耗大量的能源。据统计,烧结工序的能耗约占冶金总能耗的12%。而其排放的余热约占总能耗热能的49%。回收和利用这些余热,显然极为重要。烧结工序内废气温度分布示意图如右图。由图可知,回收余热主要在成品显热及冷却机的排气显热两个方面。 烧结生产时,在烧结机尾部及溜槽部分,烧结矿热料温度可达700~800℃,除热废气外,料品还以辐射形式向外界散发热量。这部分高品位热量主要通过余热锅炉回收。热管技术目前主要应用在冷却机废气的余热回收。 热烧结矿从烧结机尾部落下经过单辊破碎振动筛筛分后,落到冷却机传送带上,在冷却机上布置有数个冷却风罩,风罩内装有轴流风机(吸风式),使冷却风通过矿料层,能过矿料层后的风温在第一风罩内一般可达250~400℃,第二风罩内风温一般为200℃左右。冷却矿料的另一种形式是鼓风冷却,即风机在矿料层底部鼓风,通过矿层后进入风罩排空。 烧结余热回收的应用流程如右图所示。 在第一风罩内布置热管蒸汽发生器,冷却通过热的矿料,被加热到250~350℃,通过热管蒸汽发生器热管的蒸发段,温度降为150℃左右排空。第二风罩的热风温度较低,一般为200℃左右。在此风罩内布置软水加热器,加热汽包的给水。在溜槽或冷却机前端的密封罩内布有蒸汽过热器,过热从汽包产出的饱和蒸汽。

锅炉余热回收水技术

锅炉余热回收水技术 【摘要】余热回收水技术是锅炉节能技术的其中之一。这种节能技术不仅能够降低污染度,还能够提高锅炉的热效率。本文通过几方面对有关锅炉(主要是循环流化床锅炉简称CFB)余热回收水技术进行阐述,分析锅炉余热水进行回收的重要意义。 【关键词】锅炉余热回收探讨技术 1 关于锅炉余热回收水技术 锅炉余热技术就是指:通过技术设备把余热回收,使其能够产生蒸汽或者热水。余热回收技术主要工作是在省煤器的后面加上一个换热器,利用烟气对水进行加热,将热量进行回收利用。例如:平常的工业锅炉在燃烧之后,其尾部的烟气温度会达到250-350℃。一般来说,对烟气进行除尘处理后就会直接排向大气,这些热量不仅直接被浪费,同时还会污染大气环境。为了节能减排,在锅炉尾部即省煤器的后面加装余热回收的装置。而一般使用的余热回收装置就是把水加热(比如加热到85℃)后再输入到锅炉当中加热,这样既可以节省燃料(比方本来要将水从30摄氏度加热到210摄氏度,现在只要从85℃加热到210℃),又可以降低排出的烟气温度。 对锅炉余热进行回收后,可以对我们生活中常用的水进行加热使用。对生活用水的加热主要通过在节煤设备后安装换热器,让锅炉排除的烟气与水蒸气在热管介质下进行换热,以达到加热和回收的目的。由于水的硬度很高,长期的烟气和水蒸气换热会导致热管外部凝结水垢,降低换热器的工作效率。由于考虑到运用对分子进行物理交换降低水硬度的技术会花费较高,因此研究锅炉余热回收水新技术有较高的经济价值。 2 锅炉余热流失的现状调查 在对锅炉烟气进行温度测量时候发现,温度高达130℃~160℃,存在很大的热能量。锅炉排出的烟气热能量是整个锅炉工作中热量损失最多的,通常锅炉排出的烟气余热量高达50%--70%。而且锅炉在对进行排放污水的过程,会经过一连串的扩容器,由于在排水过程压力降低,导致水汽分离,汽朝扩容器上方走,分离出的水会在扩容器底部,直接排到外部水沟里,造成浪费。再者一般锅炉设计都没有考虑到对接连的扩容器中水汽分离的蒸汽进行回收,仅将其蒸汽引入除氧器中,这样会造成一定的能源浪费。最后对锅炉余热进行疏水的管道一般是埋在地下,疏出水直接流入锅炉储水罐,疏出水产生的热能量未能得到利用,还要对其进行处理,处理费又会是一笔经济浪费。 3 锅炉余热回收水技术的发展 锅炉余热的水回收主要经过冷凝器设备,冷凝器能够降低余烟温度,从而对

2018年TI杯大学生电子设计竞赛题E-能量回收装置

2018年TI杯大学生电子设计竞赛 E题:变流器负载试验中的能量回馈装置(本科及高职高专) 1.任务 设计并制作一个变流器及负载试验时的能量回馈装置,其结构如图1所示。 变流器进行负载试验时,需在其输出端接负载。通常情况下,输出电能消耗在该负载上。为了节能,应进行能量回馈。负载试验时,变流器1(逆变器)将直流电变为交流电,其输出通过连接单元与变流器2(整流器)相连,变流器2将交流电转换成直流电,并回馈至变流器1的输入端,与直流电源一起共同给变流器1供电,从而实现了节能。 + _U1 图1 变流器负载试验中的能量回馈装置 2.要求 (1)变流器1输出端c、d仅连接电阻性负载,变流器1能输出50Hz、25V 0.25V、2A的单相正弦交流电。(20分)(2)在要求(1)的条件下,变流器1输出交流电的频率范围可设定为20Hz~100H,步进1Hz。(15分)(3)变流器1与能量回馈装置按图1所示连接,系统能实现能量回馈,变流器1输出电流I1 = 1A。(20分)(4)变流器1与能量回馈装置按图1所示连接,变流器1输出电流I1 = 2A,要求直流电源输出功率P d越小越好。(35分)(5)其他。(10分)(6)设计报告(20分)项目主要内容满分方案论证比较与选择,方案描述 3 理论分析与计算系统相关参数设计 5 电路与程序设计系统原理框图与各部分的电路图,系统软件流程图 5 测试方案与测试结果测试方案合理,测试结果完整性,测试结果分析 5 设计报告结构及规范性摘要,正文结构规范,图表的完整与准确性。 2 总分20 3.说明

(1)图1所示的变流器1及能量回馈装置仅由直流电源供电,直流电源可采用实验室的直流稳压电源。 (2)图1中的“连接单元”可根据变流器2的实际情况自行确定。 (3)电路制作时应考虑测试方便,合理设置测试点。 (4)能量回馈装置中不得另加耗能器件。 (5)图1中,a、b与c、d端应能够测试,a、c端应能够测量电流;c、d端应能够断开,另接其他阻性负载。

相关文档
最新文档