孔的加工及其达到的精度
孔加工技术
所用刀具 规格 ф18 ф19.8 ф20
钻孔 扩孔 铰孔
钻头 扩孔钻 铰刀
攻螺纹工具
丝锥 丝锥一般成组使用。M6 ~ M24
矩形尾部
的丝锥每组有两个。加工粗牙螺纹M6以
下和M24以上的丝锥每组有三个。加工 细牙螺纹的丝锥不论大小,每组都是两
个。丝锥柄部一般用标记I、II、III代
表头锥、二锥和三锥。
攻螺纹和套螺纹
用丝锥来加工内螺纹的操作称为攻螺纹。用板牙加工外螺纹 的方法称为套扣。攻螺纹和套螺纹可以在钻床上也可以在车床上 进行。但单件小批生产主要用手工操作。
在工件上加工一个直径为ф20H9的圆孔,要求孔的 加工质量达到IT7、表面粗糙度Ra0.8。试将加工工艺列 于下表。
加工顺序及方法 名称
Dቤተ መጻሕፍቲ ባይዱ
倒角
D1
L
塑
H
底孔示意图
攻螺纹操作
工件安装 将加工好底孔的工件固定好,孔的端面应基本保持 水平。 倒角 在孔口部倒角,直径可略大于螺孔大径。 丝锥选择 攻螺纹时必须按头锥、二锥、三锥的顺序攻至标 准尺寸。 攻螺纹 攻螺纹时两手用力要均匀,每攻入1 ~ 2圈,应将丝 锥反转1/4圈进行断屑和排屑。攻不通孔时,应做好记号,以防丝 锥触及孔底。 润滑 对钢件攻螺纹时应加乳化液或机油。
机械制造
第二十四章
钻削和镗削加工
在制造业中,孔的应用非常广泛。回 转体工件中心的孔通常在车床上加工,非 回转体工件上的孔以及回转体上非中心的 孔通常在镗床和钻床上加工。
孔的常见类型
孔的类型很多。 常见孔:如轴承孔、销孔、螺纹孔、喷嘴等。 深孔:如油缸活塞孔、枪管、炮管等。 特型孔:如内花键孔、内齿轮等。 根据各种孔的应用情况及常用的加工方法,可以把孔粗略地分 为以下四类: 普通小直径圆孔 普通大直径圆孔 微孔、深孔及超大圆孔 特型孔
各种加工方法的经济精度和表面粗糙度
各种加工方法能够达到的尺寸的经济精度表1 孔加工的经济精度表2 圆锥形孔加工的经济精度表3 圆柱形深孔加工的经济精度表4 花键孔加工的经济精度表5 外圆柱表面加工的经济精度表6 端面加工的经济精度(mm)表7 用成形铣刀加工的经济精度(mm)注:指加工表面至基准的尺寸精度。
表8 同时加工平行表面的经刘精度(mm)注:指两平行表面距离的尺寸精度。
表9 平面加工的经济精度注:1 表内资料适用于尺寸<1m,结构刚性好的零件加工,用光洁的加工表面作为定位和测量基准。
2 端铣刀铣削的加工精度在相同的条件下大体上比圆柱铣刀铣削高一级。
3 细铣仅用于端铣刀铣削。
表10 公制螺纹加工的经济精度表11 花键加工的经济精度表12 齿形加工的经济精度各种加工方法能够达到的形状的经济精度表13 平面度和直线度的经济精度表14 圆柱形表面形状精度的经济精度注:形状精度等级的公差值见附表2、3。
表15 曲面加工的经济精度表16 在各种机床上加工时形状的平均经济精度各种加工方法所能够达到的相互位置的经济精度表17 平行度的经济精度表18 端面跳动和垂直度的经济精度表19 同轴度的经济精度表20 轴心线相互平行的孔的位置经济精度注:对于钻、卧镗及组合机床的镗孔偏差同样适用于铰孔。
表21 轴心线相互垂直的孔的位置经济精度注:在镗空间的垂直孔时,中心距误差可按上式相应的找正方法选用。
各种加工方法能够达到的零件表面粗糙度表22 各种加工方法能够达到的零件表面粗糙度各类型面的加工方案及经济精度表23 外圆表面加工方案表24 孔加工方案表25 平面加工方案——机械篇标准公差及形位公差附表1 标准公差值注:基本尺寸小于1mm时,无IT14至IT18。
13 22-4-25 10:32附表2 平面度、直线度公差值附表3 圆度、圆柱度公差值附表4 平行度、垂直度、倾斜度公差值附表5 同轴度、对称度、圆跳动、全跳动公差值参考文献1 《金属机械加工工艺人员手册》修订本上海科学技术出版社1981年2 《机械制造工艺学》顾崇衔等编著陕西科学技术出版社1982年3 《航空机械设计手册》第三机械工业部612所编1979年4 《机械制造工艺学课程设计简明手册》华中工学院机械制造工艺教研室编1981年5 《机械工程手册》第46篇机械工业出版社1981年6 《圆柱齿轮加工》上海科学技术出版社1979年切削用量切削用量的选择原则正确地选择切削用量,对提高切削效率,保证必要的刀具耐用度和经济性,保证加工质量,具有重要的作用。
孔加工技术
四、铣镗加工中心
铣镗加工中心是一种计算机控制的、具有刀库的、 能自动 换刀的铣镗床。
主要部件: 刀库 主轴箱 机械手 工作台 数控装置
第六 节 镗刀和镗床加工工艺特点
一、镗刀 镗床常用的镗刀有单刃镗刀和双刃镗刀两 种。
1、单刃镗刀安装在镗刀杆上,加工的孔径大小由调整刀头 的伸出长度来保证,多用于单件小批量生产中。
➢横刃斜角Ψ 主切削刃与横刃在钻头端面上投影的夹角。 ➢螺旋角β 最外缘螺旋线切线与轴线的夹角
3.钻头受力分析:
在各切削刃上:
轴向力Ff 径向力Fp 切向力Fc 总的扭矩:
M=M0+M01+M横 轴向力:
F=F0+F01+F横 轴向力主要由横刃产生,
扭矩主要由主刃产生。
4.麻花钻的缺点shortcoming of twist drills
由于内排屑深
孔钻可以避免
切屑划伤孔壁
故加工质量较
高,精度达
IT9-7,Ra值
达3.2μm。
扁钻轴向尺寸小、刚性好,结构简单、制造容易,便 于采用先进刀具材料,换刀方便,适用于数控机床,尤 其在加工大直径孔(D>38mm)时,更是比麻花钻经济。
套料钻:中孔结构,切削刃分布在四周,加工孔时它只 切出一个环形的孔,而中间留下的料芯可二次使用。 适于加工直径大于60mm的深孔及贵重材料。
(3)铰孔的应用:铰孔用于软材料零件孔的精加工,不 能加工硬材料; 铰孔孔径φ1~φ80
铰孔的精度和表面粗糙度主要取决于铰刀的精度、安装方式、切
削用量、切削液等条件。为避免产生积屑瘤,铰孔时应采用较低
的切削速度、较大的进给量并施加适当的切削液。
铰刀分为机用铰刀和手用铰刀。手用铰刀的铰削直径为: ø1~ø50mm机用铰刀为: ø10~ø80mm
内孔的加工讲解
15
11
四、磨孔与孔的精密加工 1 磨孔工艺特点:属于孔的精加方法。精度可达IT7, Ra1.6~0.4 μm。 磨孔不仅能获得较高的尺寸精度和表面质量,而且 还可以提高孔的位置精度和孔的轴线的直线度。与外圆 磨削相比,工作条件较差:砂轮直径小,刚性差,排屑 和散热困难,生产率低。对于淬硬零件中的孔加工,磨 孔是主要的加工方法。 内孔为断续圆周表面(如有键槽或花键的孔)、阶 梯孔及盲孔时,常采用磨孔作为精加工。
研磨孔是一种光整加工方法。精度可达IT7~IT6, Ra0.4~0.025μm,形状精度也有相应的提高,但不能提 高位置精度。
16
珩磨头对孔施加一定压力,结构如图;切除极小的 加工余量。
17
②研磨孔是一种光整加工方法。精度可达IT7~IT6, Ra0.4~0.025μm,形状精度也有相应的提高,但不能提 高位置精度。需要在精镗、精铰或精磨之后进行。
18
固定式研磨棒多用于单件生产。带槽研磨棒便于存 贮研磨剂,用于粗研,光滑研磨棒,一般用于精研。如 图所示 。所有研具采用比工件软的材料制成,这些材料 为铸铁、铜、青铜、巴氏合金及硬木等。有时也可用钢 做研具。研磨时,部分磨粒悬浮于工件与研具之间,部 分磨粒则嵌入研具的表面层,工件与研具作相对运动, 磨料就在工件表面上切除很薄的一层金属 ( 主要是上工 序在工件表面上留下的凸峰 ) 。
12
磨孔时砂轮的尺寸受被加工孔径尺寸的限制,一般 砂轮直径为工件孔径的 0.5—0.9 倍,磨头轴的直径和 长度也取决于被加工孔的直径和深度。故磨削速度低, 磨头的刚度差,磨削质量和生产率均受到影响。
提高孔加工的精度的方法
提高孔加工的精度的方法对于钳工专业而言,钻孔是其中最重要的加工操作,它是一种确定孔系和孔位置准确度的方式。
钻削加工时,操作者可以利用理论联系实际的方法分析岀孔的中心位置、确定钻床主轴线和被加工工件表面的垂直度以及做好麻花钻刃磨的质量提升工作,从而达到不断提升钻孔工艺以及提高钳工操作能力的目的,希望本文能够使更多的人掌握钳工孔加工精度的方法在钳工专业的基本实习训练中,孔加工是相对比较难掌握的基本操作之一。
在孔加工实习训练中反映问题最多的是单孔的直径控制和多孔的孔距精度控制,特别是对孔距的精度控制最为突出。
在实践中,如果是成批量的生产加工,可以通过制做工卡具来实现对孔距的控制,这样不仅能满足产品的技术要求,还能极大地提高工作效率。
但在小批量的生产加工中,对孔和孔距的形状和位置精度控制,则要通过划线、找正等方法来予以保证。
?钳工孔加工实习课题训练中容易岀现的问题:?钻孔时孔径超岀尺寸要求,一般是孔径过大;?孔的表面粗糙度超岀规定的技术要求;?孔的垂直度超出位置公差要求;?孔距(包括边心距和孔距)超出尺寸公差的要求;?孔加工中岀现问题的主要原因分析:?钻头刃磨时两个主切削刃不对称,在钻削过程中,使钻头的径向受力; 对钻削的切削速度选择不当;?钻削时工件未与钻头保持垂直;?未对孔距尺寸公差进行跟踪控制;三、提高孔加工精度的方法:在孔加工的课题训练中,对于前三个问题,需要加强练习。
比如主切削刃的不对称问题,在刃磨时,要对砂轮面进行检查,如果砂轮的磨削面不平整,应及时进行修整,刃磨的角度应保持一致。
对于不同的孔径,要选择相应的切削速度。
在钻孔过程中,自始至终都要避免钻头的径向受力。
钻孔时,不仅要保证平口钳的上平面与钻头的垂直,也要保证夹持工件时夹持面与加工表面的垂直。
夹持要牢固,避免在钻孔过程中,由于夹持不牢使工件发生滑陷。
这些都需要在实习的过程中让学生慢慢体会和认真掌握的。
?最容易出现也是最难掌握的问题是孔距精度的控制问题,在这里作一下重点阐述。
高精度孔的加工方法
高精度孔的加工方法
高精度孔的加工方法是指对于精度要求较高的孔进行加工的方法,例如在精密机械、航空航天、高速列车等领域中需要使用的孔。
高精度孔的加工需要保证孔的直径、圆度、表面质量等指标都达到一定的要求。
目前常见的高精度孔加工方法有以下几种:
1. 珩磨加工:珩磨是一种高速旋转的研磨工艺,通过磨头在被加工物表面的摩擦作用中去除材料,从而达到加工目的。
珩磨加工可以在孔内进行,可以加工出高精度圆度的孔。
2. 钻孔加工:钻孔是最常见的孔加工方法之一,可以使用林格曼钻头等工具进行。
钻孔加工可以达到较高的精度要求,但是对于深孔加工会出现偏差的问题。
3. 放电加工:放电加工是一种特殊的非机械加工方法,通过电火花放电来将被加工物表面的材料溶解或脱落,从而达到加工的目的。
放电加工可以加工出高精度的孔,但是加工速度较慢。
4. 激光加工:激光加工是一种高精度的非机械加工方法,通过激光束直接照射被加工物表面,将材料蒸发或熔化,从而达到加工目的。
激光加工可以加工出极高精度的孔,但是设备价格高昂,适用范围有限。
- 1 -。
高精度深长孔加工方法
学院: 机械工程学院专业班级: 学号: 姓名:高精度深长孔的精密加工一、历史背景枪钻与内排屑深孔钻两种加工孔的刀具分别出现于20世纪30年代初和40年代初的欧洲兵工厂,这并非历史的偶然。
其主要历史背景是:一次世界大战(1914〜1918年)首次使战争扩大到世界规模。
帝国主义列强为瓜分殖民地而需要大量现代化的枪炮(特别是枪械和小口径火炮的需求量极大)。
而继续使用传统的扁钻、麻花钻、单刃炮钻,已经完全不能满足大量生产新式武器的要求,迫切需要进行根本性的技术更新。
于是高精度深长孔的制造就成为了一个摆在制造者面前的一个首要问题,并且一直延续到了现今。
第一次世界大战中的火炮二、传统加工工艺及存在的问题在现代机械加工中,也经常会遇到一些深孔的加工,例如长径比(L/D)≥10,精度要求高,内孔粗糙度一般为Ra0.4~0.8的典型深孔零件,过去我们采用的传统工艺路线一般是:钻孔(加长标准麻花钻)→扩孔(双刃镗扩孔刀)→铰孔(标准六刃铰刀)→研磨此工艺虽可达到精度要求,但也存在诸多缺点,特别是在最初工序采用加长麻花钻钻孔时,切削刃越靠近中心,前脚就越大。
若钻头刚性差,则震动更大,表面形状误差难以控制,加工后孔的直线度误差,钻头易产生不均匀的磨损等现象,生产效率和产品合格率低,而且研磨抛光时,工作环境比较脏,由于钻孔工序的缺点,而带来的影响难以在后面的工序中克服,形状误差不能得以修正,因此加工质量差。
传统深孔的加工流程三、工艺路线与刀具的改进本着提高生产效率提高产品合格率的原则,结合深孔加工的一些特性,对加工工艺及刀具进行了改进,改进后的工艺路线是:钻孔(BTA钻)→扩孔(BTA扩)→铰孔(单刃铰刀)→研磨1、钻孔与扩孔刀具及工艺的改进单管内排屑深孔钻的由来单管内排屑深孔钻产生于枪钻之后。
其历史背景是:枪钻的发明,使小深孔加工中自动冷却润滑排屑和自导向问题获得了满意的解决,但由于存在钻头与钻杆难于快速拆装更换和钻杆刚性不足、进给量受到严格限制等先天缺陷,而不适用于较大直径深孔的加工。
钻孔工艺精度标准
不同精度及不同毛坯的圆柱孔加工例:孔Φ25(0,+0.033),孔公差H8,麻花钻至孔Φ24.8,铰孔至Φ25(0,+0.033)孔Φ35(0,+0.062),孔公差H7,麻花钻Φ34.8,铰孔至Φ35(0,+0.062)Φ8(0,+0.018),孔公差约H7-H8,中心钻定位,麻花钻至Φ6,粗镗至Φ7.5,精镗至Φ8(0,+0.018)1、钻削直径较大的孔(大于30mm)时,不宜用大钻头一次钻出,最好分多次钻削,即先用直径较小的钻头钻孔,再用较大直径钻头扩到所要求的尺寸。
基孔制选作基准的孔称为基准孔,基准孔代号H(下偏差值0,上偏差值正值)基轴制选作基准的轴称为基准轴,基准轴代号h(上偏差值0,下偏差值负数)外圆面加工1.粗车:主要作为外圆的预加工,除淬硬钢以外,各种零件的加工都适用。
当零件的外圆要求精度低、表面粗糙度较大时,只粗车即可。
2.粗车-半精车:用于各类零件上不重要的表面或非配合表面。
3.粗车-半精车-精车:精度更高4.粗车-半精车-磨削:用于加工精度稍高、粗糙度值较小、且淬硬的钢件外圆面,也可广泛地用于加工未淬硬的钢件或铸铁件。
平面加工方法未注公差等级GB/T1804-2000公差等级约IT10-IT14之间下面是赠送的励志的100句经典话,需要的朋友可以学习下,不需要的朋友可以下载后编辑删除!!谢谢!!【励志的话】平凡却无私的人啊千万不要抱怨命运的不公。
也许,命运只是用另一种方式偏爱着你那是因为善良的她想让你尽快长大感知人间悲喜,聆听世间哀乐。
虽然有时跌倒,有时失败但请记住跌倒不是失败,失败不是否定。
平凡却无私的人啊千万不要抱怨命运的不公也许,命运只是用透明的方式倾向与你那是因为,慈爱的她想让你尽早成熟看尽人间繁华,尝便世间甘苦。
虽然有时哭泣,有时逃避但请记住哭泣不是永久逃避不是永恒平凡却无私的人啊千万不要抱怨命运的不公也许,命运只是施舍于被它偏爱的人那是因为严厉的她不想让你溺爱长大,感受人们欢呼,享受世界鼓舞虽然有时悲愤,有时无助。
台式钻床加工高精度孔距方法
台式钻床加工高精度孔距方法作者:陈博范来源:《职业·下旬》2019年第05期在国家职业技能鉴定和职业技能大赛中,装配钳工、机修钳工及工具钳工等钳工类工种高级工、技师甚至高级技师技能操作考核试题中,大部分为组合件锉配试题。
该组合件锉配试件中都有精密孔和高精度孔距加工,也是考核的一项重要内容。
在钳工技师操作技能考核试题中有这么一组精孔加工内容,用10mm厚板进行锉配,板上有两个精孔10H7需钻孔加工,板侧面到两孔的距離(边孔距)为30±0.04mm,两孔中心距50±0.04mm。
往往在技能操作考核中,考场一般只准备台式钻床和普通平口钳,在其他准备通知单中不允许准备靠模及钻模等二类加工工具,并要求在规定时间内手工操作完成精孔加工。
这将给操作者带来很大难度,因此大部分操作者很难保证加工精度。
笔者曾多次参加技能大赛,并训练学生参加技能大赛及各类技能鉴定,本文总结出几种提高钻孔精度的方法,与大家共同分享探讨。
一、精密划线找正加工法一般情况下,钻孔划线是用高度尺划出孔位置线,冲眼规圆,然后通过规圆找正钻孔。
由于冲眼规圆误差较大很难保证孔距精度,现在笔者介绍一种精密划线找正加工法。
这种方法是用高度游标卡尺或量块校准划出孔位置加工线及不同孔径的方格线,以试件孔10H7为例,分别划出6、8、9.8mm孔径边框方格线,也可多划几个不同孔径边框方格线。
钻孔时采用9.8mm、顶角为90°~100°麻花钻头,钻锪窝边线依次与孔径边框线同时相切,若没有相切,应及时找正试件位置直至9.8mm孔窝相切(若没有相切可反面再试一次)。
钻孔时注意要不同方位观察相切情况,也可用精密游标卡尺测量孔窝边线到孔径边框线位置尺寸,位置确定后钻通9.8mm孔,孔口倒角后,机铰或手铰10H7至精度要求。
这里需要注意的是划线钻孔前,用样冲冲眼也非常关键。
冲眼是一项技术工作,如果冲眼小了钻孔时定心不好,开始钻孔时钻头钻尖就会偏移,有时无法定心,有时刚定心就得开始找正,费时费劲。
在车床上加工内孔的精度和适用范围
序号 1 2 3 4 5 6 7 8 9 10 11 12
加工方法 钻
R 精度等级(IT) 精度等级(IT) 表面粗糙度 a / µm
11~13 9~10 7~8 12~13 10~11 8~10 7~9 11~13 9~11 8~10 6~7 6~8
12.5 1.6~3.2 0.8~1.6 12.5 3.2~6.3 1.6~3.2 0.8~1.6 6.3~12.5 1.6~3.2 0.8~1.6 0.4~0.8 0.1~0.4
未淬硬钢、铸铁以及有色金属实心Байду номын сангаас 坯(加工孔径15-35mm)
未淬硬钢、铸铁以及有色金属铸孔 (或锻孔毛坯)
未淬硬钢件的铸孔或锻孔毛坯
王先奎主编,机械工业出版社,2009.5 王先奎主编,机械工业出版社,2009.
钻-铰 钻-粗铰-精铰 钻 钻-扩 钻-扩-铰 钻-扩-粗铰-精铰 粗镗 粗镗-半精镗 粗镗-半精镗-精 镗(铰) 粗镗-半精镗-精 镗-浮动镗铰 粗镗-半精镗-精 镗-浮动镗铰
注:此表摘自《机械加工工艺手册》加工技术卷,王先奎主编 此表摘自《机械加工工艺手册》加工技术卷,
适用范围 未淬硬钢,铸铁以及有色金属实心毛 坯(加工孔径15-20mm)
箱体零件的孔系加工方法与精度分析——《机械制造工程学》课程教学中的典型零件加工专题
机械加工精度作为机械制造工程学课程的重要内容之一,在教学中一般按照工艺系统的几何误差、受力变形等分立的内容进行教学。
为提高学生综合运用所需知识分析解决具体问题的能力,我们开展了“专题驱动式”教学方法研究。
下面以箱体零件的孔系加工为专题,对其工艺方案与加工精度进行分析。
箱体类零件是机械传动装置中重要的基础件,箱体上若干有相互位置精度要求的孔构成箱体孔系,包括平行孔系、同轴孔系等。
孔系的加工方法与孔系的加工精度对保证传动装置的性能和质量具有重要影响。
一、平行孔系加工平行孔系的精度要求主要是各孔轴线之间及轴线与基准面之间的尺寸精度和轴线间的平行度等几何精度。
可以通过以下几种方法保证平行孔系精度要求。
1.找正法。
采用辅助装置来确定各个被加工孔的正确位置,如划线找正、心轴块规找正等。
2.镗模法。
镗模是引导镗刀杆在工件上镗孔用的机床夹具,利用镗模板上的孔系保证箱体孔系位置精度,镗杆与镗床主轴多采用浮动连接,以减小机床主轴的回转精度对加工精度的影响。
3.坐标法。
首先将被加工孔之间的孔距尺寸换算为两个相互垂直的坐标尺寸,然后精确地调整机床主轴与工件在水平和垂直方向的相对位置,以间接保证孔距精度。
为保证工作台和主轴的位移精度,必须在镗床上加上坐标测量装置。
二、同轴孔系加工在成批生产中,常采用镗模加工箱体同轴孔系以保证其轴线的同轴度。
在单件小批生产时,一般不采用镗模,常采用如下两种方法保证其轴线孔的同轴度。
1.利用已加工孔作支承导向。
在加工好的箱体前壁孔内装一个导向套,对镗杆起支承支撑和引导作用。
它适用于加工壁间距较小的箱体同轴孔。
2.利用镗床后立柱作支承导向。
镗床后立柱上的导向套作支承导向,可解决因镗杆悬臂过长而挠度大进而影响同轴度的问题。
这种方法需用较长的镗杆,而且调整后立柱导套比较麻烦、费时,通常适用于大型箱体的孔系加工。
三、孔系加工的精度分析(一)受力变形的影响1.镗杆受力变形的影响。
镗削过程中,随着镗杆的回转,径向力Fy 与切向力Fz 的合力Fyz 方向不断改变。
h9孔加工方法
h9孔加工方法
在机械加工中,H9孔是一种常见的孔径公差等级,表示孔径的公差范围为±0.087毫米。
为了达到这个精度要求,可以采用以下几种加工方法:首先,钻孔、扩孔和较孔是常用的孔加工方法。
这些方法可以根据孔径大小和材料硬度选择不同的刀具和切削参数。
对于小型孔径,一般采用钻孔或扩孔的方法;对于大型孔径,通常采用较孔的方法。
在钻孔和扩孔时,需要注意控制切削速度和进给量,以避免产生过多的切削热和切削力,影响孔的精度和质量。
在较孔时,需要选用适当的钱刀和切削液,以确保孔的表面质量和精度。
其次,对于硬材料或高精度要求的孔,可以采用热处理和研磨的方法。
通过适当的热处理可以提高材料的硬度和强度,从而增加刀具的寿命和提高加工效率。
研磨则是一种提高孔精度和表面质量的加工方法,可以通过研磨工具对孔进行精细的磨削和抛光,以达到H9孔的精度要求。
最后,在加工完成后,需要进行测量和检验,以确保孔的精度和质量符合要求。
常用的测量方法有内径千分尺、卡尺和塞规等。
如果发现孔的精度和质量不符合要求,需要进行相应的调整和修正,以达到最终的加工要求。
总之,为了加工出高质量的H9孔,需要选择合适的加工方法、刀具和切削参数,并进行精确的测量和检验。
通过不断的实践和经验积累,可以提高加工技能和水平,为机械制造行业的发展做出贡献。
孔的加工方法
孔的加工方法孔的加工方法是机械加工中的一项重要工艺,它在各种机械零件的加工中都有着广泛的应用。
孔的加工方法主要包括钻削、铰孔、镗孔、扩孔、钻孔等多种方式,不同的工件和要求会选择不同的加工方法来完成。
下面将对几种常见的孔的加工方法进行简要介绍。
首先是钻削,钻削是一种常见的孔加工方法,利用钻头在工件上旋转并向下推进,以达到加工孔的目的。
钻削适用于加工直径较小的孔,且加工精度要求不高的情况。
钻削适用于金属、塑料、木材等材料的孔加工,是一种常见的孔加工方法。
其次是铰孔,铰孔是一种通过铰刀在工件上旋转切削孔的方法。
铰孔适用于加工直径较大的孔,且要求孔的表面光洁度较高的情况。
铰孔通常用于金属材料的孔加工,能够满足对孔的表面质量要求较高的情况。
再者是镗孔,镗孔是一种通过镗刀在工件上旋转并推进的方式来加工孔的方法。
镗孔适用于加工大直径、深孔或者对孔的精度要求较高的情况。
镗孔通常用于金属材料的孔加工,能够满足对孔的精度和表面质量要求较高的情况。
此外还有扩孔和钻孔等加工方法,它们分别适用于不同的工件和加工要求。
扩孔适用于将已有的孔扩大到所需的直径,通常通过扩孔刀具来完成;而钻孔则是一种通过钻头在工件上旋转并向下推进来加工孔的方法,适用于加工直径较小、深度较浅的孔。
总的来说,孔的加工方法是机械加工中的重要工艺,不同的加工方法适用于不同的工件和加工要求。
在实际生产中,需要根据具体的工件和加工要求来选择合适的孔的加工方法,以确保加工效率和加工质量。
同时,加工人员需要熟练掌握各种孔的加工方法的操作技巧,以确保加工过程顺利进行。
希望本文能够对读者对孔的加工方法有所帮助。
各种加工方法所能达到的精度等级
牌号字母
钢铁种类
牌号字母
钢铁种类
S ×× C
半精
0.4 ~ 1.6
精
0.025 ~ 0.4
珩磨 平面
0.025 ~ 1.6
圆柱
0.012 ~ 0.4
研磨 粗
0.2 ~ 1.6
半精
0.05 ~ 0.4
精
0.012 ~ 0.1
抛光 一般
0.1 ~ 1.6
精
0.012 ~ 0.1
滚压抛光
0.05 ~ 3.2
超精加工 平面
0.012 ~ 0.4
圆柱
0.012 ~ 0.4
滚压
0.4 ~ 3.2
磨
0.2 ~ 1.6
研磨
0.05 ~ 1.6
齿轮及花键加工 刨
0.8 ~ 6.3
滚
0.8 ~ 6.3
插
0.8 ~ 6.3
磨
0.1 ~ 0.8
剃
0.2 ~ 1.6
粗糙度:0.012、0.025、0.050、0.100、0.20、0.40、0.80、1.6、3.2、6.3、12.5、25、50、100
半精
0.4 ~ 6.3
精
.3 ~ 25
半精
1.6 ~ 12.5
精
0.2 ~ 1.6
金刚车
0.025 ~ 0.2
车端面 粗
6.3 ~ 25
半精
高精度细长孔的数控加工研究
高精度细长孔的数控加工研究高精度细长孔加工技术是数控加工领域中的一个重要领域,也是目前工业制造领域中一个快速发展的技术。
随着现代高科技的不断发展,对细小孔洞的要求越来越高,因此,高精度细长孔加工技术的发展有着广泛而深远的意义。
一、高精度细长孔加工的背景现代工业生产中,高精度细长孔扮演着至关重要的角色。
例如在航空航天、汽车、电子、医疗设备等行业制造中,都需要进行细小孔洞的加工。
以航空制造为例,飞机发动机的缸体内需要加工出数百个细小孔洞,以保证发动机正常工作。
而在医疗设备领域,医学导管、内镜、骨钉等医疗器械的制造也需要进行高精度细小孔洞的加工。
因此,高精度细长孔加工技术的研究和发展对于现代工业制造具有重要的战略意义。
二、高精度细长孔加工技术的研究内容高精度细长孔加工技术的研究包含着多个方面,其中最主要的是细小孔径和长孔的加工。
1. 细小孔径的加工目前,传统的钻床加工细小孔洞已经无法满足工业制造对高精度细长孔加工的要求。
因此,需要对传统加工方法进行改进和优化,以适应工业现代化对细小孔径加工的需要。
现代高精度细长孔加工技术最常用的方法是电火花加工和激光加工。
电火花加工是高精度细小孔洞加工技术中的一种常用方法。
该技术主要采用电极和工件之间的电火花放电的方式对工件进行加工,可以高效地加工出高精度的细小孔洞。
这种加工方法可以加工各种不锈钢、塑料、玻璃等材料的细小孔洞。
但是,由于电极磨损等问题的存在,加工稳定性有待提高。
激光加工技术也是一种高效、高精度的细小孔洞加工方法。
它采用激光束对工件材料进行熔化并蒸发的方式进行加工。
相比于传统的机械加工方法,激光加工方法可以通过激光照射来实现对细小孔洞的加工。
同时,激光加工可以加工各种材料的孔洞,并且由于激光加工具有高能量密度和能量集中等特点,可以达到高精度、高速度、高质量的加工效果。
2. 长孔的加工高精度细小孔洞加工不仅涉及到孔径的大小,也与孔洞长度有关,因为现代制造工业生产中,很多机械零部件都需要有一定长度的孔洞,以实现该部件特定的功能。
磨孔的工艺特点及应用场合
磨孔的工艺特点及应用场合磨孔是一种机械加工工艺,通过使用专用的磨具和磨削工具,将工件内部加工成圆形、圆柱形的孔。
以下是关于磨孔的工艺特点及应用场合的详细介绍。
1. 工艺特点磨孔相对于其他孔加工方法,具有如下的特点:1.1 高精度:磨孔能够达到较高的加工精度,甚至可以达到亚微米级别的精度。
这得益于磨削工具和磨具的高精度,以及磨削过程中的热沉积效应,磨孔内壁能够得到很好的光洁度和精度。
1.2 高表面质量:磨孔可以得到较高的表面光洁度和质量。
磨削过程中,磨具与工件表面之间的相对运动能够消除工件表面的凹凸不平,从而得到光滑、平整的孔壁。
1.3 多种加工材料可使用:磨削工艺可以处理各种硬度的工件材料,包括金属、非金属和复合材料等。
无论是钢材、铝材还是陶瓷材料,磨孔都能够满足加工要求。
1.4 高效率:磨削工艺可以在较短的时间内实现孔的加工,加工效率高。
而且磨削过程中不需要太多的人工干预,可以实现自动化加工,提高生产效率。
1.5 适应性强:磨削工艺适用于各种形状的孔洞加工,包括圆孔、椭圆孔、长孔等。
对于一些特殊形状的孔,磨孔工艺能够提供个性化的解决方案,满足多样化的加工需求。
2. 应用场合磨孔广泛应用于各个工业领域,特别是在高精度、高质量要求的场合中。
2.1 汽车制造业:在汽车制造中,磨孔被广泛应用于发动机缸体、缸盖等零部件的孔加工。
发动机缸体的气门孔和燃油喷嘴孔等都需要通过磨孔工艺来实现高精度加工。
2.2 航空航天领域:在飞机、航天器等航空航天设备的制造中,磨孔是不可或缺的工艺。
例如,涡轮发动机中的轴承孔、涡轮叶片的孔等都需要通过磨孔来实现。
2.3 电子电器行业:在电子电器产品的制造中,通常需要进行很多精密的孔加工。
例如,手机中的各类声孔、按键孔,电脑主板上的插针孔等,都可以通过磨孔来实现高精度的加工。
2.4 仪器仪表制造:在仪器仪表制造中,磨孔常常用于加工各类传感器孔、测量孔等。
由于磨孔具有高精度和高表面质量的特点,能够满足仪器仪表的高要求。
各种加工方法的经济精度和表面粗糙度
各种加工方法能够达到的尺寸的经济精度表1 孔加工的经济精度表2圆锥形孔加工的经济精度表3圆柱形深孔加工的经济精度6mm7mm91<1m2端铣刀铣削的加工精度在相同的条件下大体上比圆柱铣刀铣削高一级。
3细铣仅用于端铣刀铣削。
11各种加工方法能够达到的形状的经济精度2315各种加工方法所能够达到的相互位置的经济精度表19同轴度的经济精度表20 轴心线相互平行的孔的位置经济精度注:对于钻、卧镗及组合机床的镗孔偏差同样适用于铰孔。
表21轴心线相互垂直的孔的位置经济精度各种加工方法能够达到的零件表面粗糙度表22 各种加工方法能够达到的零件表面粗糙度各类型面的加工方案及经济精度表23外圆表面加工方案标准公差及形位公差附表1标准公差值1mm IT14IT1813 22-2-21 16:331 《金属机械加工工艺人员手册》修订本上海科学技术出版社1981年2 《机械制造工艺学》顾崇衔等编著陕西科学技术出版社1982年3 《航空机械设计手册》第三机械工业部612所编1979年4 《机械制造工艺学课程设计简明手册》华中工学院机械制造工艺教研室编1981年5 《机械工程手册》第46篇机械工业出版社1981年6 《圆柱齿轮加工》上海科学技术出版社1979年切削用量切削用量的选择原则正确地选择切削用量,对提高切削效率,保证必要的刀具耐用度和经济性,保证加工质量,具有重要的作用。
1粗加工切削用量的选择原则:粗加工时加工精度与表面求不高,毛坯余量较大。
因此,选择粗加工的切削用量时,要尽可能保证较高的单位时间金属切除量(金属切除率)和必要的刀具耐用度,以提高生产效率和降低加工成本。
金属切除率可以用下式计算:Z k vfa X1000式中Zw——单位时间内的金属切除量(mm3/s);v --- 切削速度(m/s);f --- 进给量(mm/r);a p -------- 切削深度(mm)。
提高切削速度、增大进给量和切削深度,都能提高金属切除率。
对加工高精度孔位置精度的几点思考
关键词 : 零件
在 多 年各种 型式 的船 用柴 油机 零件 的生 产加 工
过程 中 ,发 现被 加工零 件 的精 度直 接影 响产 品 的工
作 性能 和使 用寿命 。有 些零 件孔 的位置 精度 要求达
到± . 5 + .3 00 - 00 mm, 2 而就 我 们 目前: J 工 的 手 段来 fJ Lt  ̄
说 ,孔 加 工 的 位 置 精 度 一 般 只 能 较 稳 定 地 保 证
在± . - 0 1m 00 + . m。本文 针对 零件 的 加工 过程 , 5 0 从加 工 工艺 、 配套 工装及 操作 细 节等各 方 面进行 改 进 , 从 而保 证孔 的位 置精度 。
图 1 零 件 加 工 示 意 图
维普资讯
3 2
机械 产 品 与科 技 20 0 6年 第 2期
l 匀圆磨 削常 见缺 陷分析及其 消除方法
第三装配厂 秦 莉 刘 红 霞 张 文 峰
摘 要 针 对 内圆磨 削 中 , 内表 面 粗糙 、 件 变形 和 喇 叭 形缺 陷 , 析 形 成 原 因 , 出消 除 方 法 。 孔 工 分 提 关 键 词 : 削 圆 孔 磨 缺 陷 分 析 消 除
于 以下 原 因容 易 引起 孔 的偏斜 , 孔 和盲孔 尤甚 。 长 因
为:
( ) 头 的两条切 削 刃不 易磨对 称 , 易使孔偏 1钻 容 斜 ; 2 钻 头导 向部分 只有 两条 韧 带 , 有倒 锥 , 使 () 且 易 孔 偏 斜 ;3 钻孔 排 屑不 畅 , 屑 的摩擦 和 阻碍 作用 () 铁 也 容 易使孔偏 斜 ;4 钻 孔发 热 量大 , () 热量 不 易散失 ,
较深 , 且孔 壁 出现拉 毛 等现象 , 中表 面粗 糙包 括 表 其
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
孔的加工及其达到的精度
孔的加工及其达到的精度
一、钻孔
1. 工艺特点
1)钻孔是孔的粗加工方法;
2)可加工直径0.05~125mm的孔;
3)孔的尺寸精度在IT10以下;
4)孔的表面粗糙度一般只能控制在Ra12.5μm。
对于精度要求不高的孔,如螺栓的贯穿孔、油孔以及螺纹底孔,可直接采用钻孔。
二、扩孔
工艺特点
1)扩孔是孔的半精加工方法;
2)一般加工精度为IT10~IT9;
3)孔的表面粗糙度可控制在Ra6.3 ~3.2μm。
当钻削dw>30mm直径的孔时,为了减小钻削力及扭矩,提高孔的质量,一般先用(0.5~0.7)dw大小的钻头钻出底孔,再用扩孔钻进行扩孔,则可较好地保证孔的精度和控制表面粗糙度,且生产率比直接用大钻头一次钻出时还要高。
三、铰孔
铰削过程的实质
铰削过程不完全是一个切削过程,而是包括切削、刮削、挤压、熨平和摩擦等效应的一个综合作用过程。
铰削用量
1)铰削余量粗铰余量为0.10mm~0.35 mm;精铰余量为0.04mm~0.06mm。
2)切削速度和进给量铰削速度为1.5m/min ~5m/min;铰削钢件时,进给量为0.3mm/r ~2mm/r;铰削铸铁件时,进给量为0.5mm/r ~3mm/r。
工艺特点
1)铰孔是孔的精加工方法;
2)可加工精度为IT7、IT8、IT9的孔;
3)孔的表面粗糙度可控制在Ra3.2 ~0.2μm;
4)铰刀是定尺寸刀具;
5)切削液在铰削过程中起着重要的作用。
四、镗孔
工艺特点
1)镗孔可不同孔径的孔进行粗、半精和精加工;
2)加工精度可达为IT7~IT6;
3)孔的表面粗糙度可控制在Ra6.3 ~0.8μm。
4)能修正前工序造成的孔轴线的弯曲、偏斜等形状位置误差;
五、拉孔
工艺特点
1) 拉削生产率高。
2) 拉削精度高,质量稳定。
拉削精度一般可达IT9-IT7级,表面粗糙度一般可控制到Ra1.6mm~Ra0.8mm,拉削表面的形状、尺寸精度和表面质量主要依靠拉刀设计、制造及正确使用保证。
3) 拉削成本低,经济效益高。
4) 拉刀是定尺寸、高精度、高生产率专用刀具,制造成本很高,所以,拉削加工只适用于批量生产,最好是大批大量生产,一般不宜用于单件、小批生产。
六、内圆磨削
工艺特点
1)磨削是零件精加工的主要方法之一;
2)对长径比小的,内孔磨削的经济精度可达IT5~IT6,表面粗糙度可控制到Ra0.8mm~Ra0.2mm;
3)可加工较硬的金属材料和非金属材料,如淬火钢、硬质合金和陶瓷等。
内圆磨削与外圆磨削相比,存在如下一些主要问题:
1) 内圆磨削的表面较外圆磨削的粗糙。
2) 生产率较低。
3) 磨削接触区面积较大,砂轮易堵塞,散热和切削液冲刷困难。
因此内孔磨削一般仅适用于淬硬工件的精加工,在单件、小批生产中和在大批大量生产中都有应用。
七、总结
(一)小批量加工
1.钻IT13~IT11 Ra 25
2.钻→铰IT9 Ra 6.3~
3.2
3.钻→粗铰→精铰IT8~IT7 Ra 3.2~1.6
4.钻→扩IT11 Ra 25~12.5
5.钻→扩→铰IT9~IT7 Ra
6.3~3.2
6.钻→扩→粗铰→精铰IT7 Ra 3.2~1.6
7.钻→扩→机铰→手铰IT7~IT6 Ra 0.8~0.2
8.钻→扩→拉IT9~IT7 Ra 3.2~0.2
(二)大批大量生产
9.粗镗(或扩孔)IT13~IT11Ra 25~12.5
10.粗镗(粗扩)→半精镗(精扩)IT9~IT8 Ra 6.3~3.2
11.粗镗(粗扩)→半精镗(精扩)→精镗(铰)IT8~IT7Ra 3.2~1.6
12.粗镗→半精镗→精镗→浮动镗刀精镗IT7~IT6 Ra
1.6~0.8
13.粗镗→半精镗→精镗→浮动镗刀精镗→挤压IT7~IT6 Ra 1.6~0.4
14.粗镗→半精镗→磨孔IT8~IT7 Ra 1.6~0.4
15.粗镗→半精镗→粗磨→精磨IT7~IT6 Ra 0.4~0.2
16.粗镗→半精镗→精镗→金刚镗IT7~IT6 Ra 0.8~0.1
17.钻→扩→粗铰→精铰→珩磨IT7~IT6 Ra 0.4~0.05
18.钻→扩→拉→珩磨IT7~IT6 Ra 0.4~0.05
19.粗镗→半精镗→精镗→珩磨
20.钻→扩→粗铰→精铰→研磨
21.钻→扩→拉→研磨IT6以上Ra 0.2~0.012
22.粗镗→半精镗→精镗→研磨。