导数与数列型不等式
利用导数证明数列不等式(含解析)
利用导数证明数列不等式利用导数证明数列不等式,在高考题中能较好的考查学生灵活运用知识的能力,一方面以函数为背景让学生探寻函数的性质,另一方面体现数列是特殊的函数,进而利用恒成立的不等式将没有规律的数列放缩为为有具体特征的数列,可谓一题多考,巧妙地将函数、导数、数列、不等式结合在一起,也是近年来高考的热门题型. 1、常见类型:(1)利用放缩通项公式解决数列求和中的不等问题 (2)利用递推公式处理通项公式中的不等问题 2、恒成立不等式的来源:(1)函数的最值:在前面的章节中我们提到过最值的一个作用就是提供恒成立的不等式.(2)恒成立问题的求解:此类题目往往会在前几问中进行铺垫,暗示数列放缩的方向.其中,有关恒成立问题的求解,参数范围内的值均可提供恒成立不等式. 3、常见恒成立不等式:(1) 对数→多项式 (2) 指数→多项式4、关于前项和的放缩问题:求数列前项公式往往要通过数列的通项公式来解决,高中阶段求和的方法有以下几种:(1)倒序相加:通项公式具备第项与第项的和为常数的特点.(2)错位相减:通项公式为“等差等比”的形式(例如,求和可用错位相减).(3)等比数列求和公式(4)裂项相消:通项公式可裂为两项作差的形式,且裂开的某项能够与后面项裂开的某项进行相消. 注:在放缩法处理数列求和不等式时,放缩为等比数列和能够裂项相消的数列的情况比较多见,故优先考虑.5、大体思路:对于数列求和不等式,要谨记“求和看通项”,从通项公式入手,结合不等号方向考虑放缩成可求和的通项公式.6、在放缩时要注意前几问的铺垫与提示,尤其是关于恒成立问题与最值问题所带来的恒成立不等式,往往提供了放缩数列的方向.7、放缩通项公式有可能会进行多次,要注意放缩的方向:朝着可求和的通项公式进行靠拢(等比数列,裂项相消等).ln 1x x <-1x e x >+n n k 1n k -+⨯2nn a n =⋅n a8、数列不等式也可考虑利用数学归纳法进行证明(有时更容易发现所证不等式与题目条件的联系).【经典例题】1.(2020·江苏省如皋中学高三三模)已知函数()ln f x kx x x =-,k ∈R . (1)当2k =时,求函数()f x 的单调区间;(2)当01x <≤时,()f x k ≤恒成立,求k 的取值范围; (3)设n N *∈,求证:ln1ln 2ln (1)2314n n n n -+++≤+. 2.(2020·四川省内江市第六中学高三三模)已知函数2()ln(1)(0,0),()2x f x ax x a g x x -=+≥>=+. (1)讨论函数()()y f x g x =-的单调性;(2)若不等式()()1f x g x ≥+在[0,)x ∈+∞时恒成立,求实数a 的取值范围; (3)当1a =时,证明:1111+35721n +++<+…*1()(N )2f n n ∈. 3.(2020·安徽合肥·三模)已知函数()x xf x e e ax -=--(e 为自然对数的底数),其中a ∈R.(1)试讨论函数f (x )的单调性;(2)证明:22132ln 2(1)ni n n i i n n =-->+∑. 4.(2020·安徽相山·淮北一中高三三模)已知函数()||ln (0)f x x a x a =-->. (∈)讨论()f x 的单调性;(∈)比较222222ln 2ln 3ln 23n n++⋯+ 与(1)(21)2(1)n n n -++的大小(n N +∈且)2n >,并证明你的结论.5.(2020·云南高三三模)已知函数()1ln f x x a x =-- (1)讨论()f x 的单调性; (2)证明:()*333ln 2ln3ln 1,222332n n N n n n +++<∈≥---.【精选精练】1.(2020·榆林市第二中学高三三模)已知(),()1(xf x eg x x e ==+为自然对数的底数).(1)求证()()f x g x ≥恒成立;(2)设m 是正整数,对任意正整数n ,2111(1)(1)(1)333n m ++⋅⋅⋅+<,求m 的最小值. 2.(2020·广东广州高三三模·)已知函数()()()3214613x f x x ex x g x a x lnx -⎛⎫=-+-=--- ⎪⎝⎭,.(1)求函数()f x 在()0+∞,上的单调区间; (2)用{}max m n ,表示m n ,中的最大值,()f x '为()f x 的导函数,设函数()()(){}h x max f x g x '=,,若()0h x ≥在()0+∞,上恒成立,求实数a 的取值范围; (3)证明:()*11111ln 312313n N n n n n n+++++>∈++-. 3.(2020·安徽蚌埠·高三三模)已知函数()()ln 1x f x x+=.(1)分析函数()f x 的单调性;(2)证明:2111ln 3ln 212n n n ⎛⎫+⎛⎫+++≤ ⎪ ⎪-⎝⎭⎝⎭,2n ≥. 4.(2020·全国高三三模)已知函数2()2ln 1()f x ax x x a =--∈R . (1) 若1x e=时,函数()f x 取得极值,求函数()f x 的单调区间; (2) 证明:()*11111ln(21)3521221nn n n n +++⋯+>++∈-+N . 5.(2020·辽宁沙河口·辽师大附中高三三模)已知函数()()2ln 11f x p x p x =+-+.(1)讨论函数()f x 的单调性;(2)当1p =时,()f x kx ≤恒成立,求实数k 的取值范围; (3)证明:()()*111ln 1123n n N n+<+++⋯+∈.6.(2020·浙江省宁波市鄞州中学高三三模)已知函数()()2f x ax a a R =+∈. (1)讨论函数()f x 的单调性;(2)若()0f x ≤对任意的1x ≥-恒成立,求a 的取值范围;(32600⋅⋅⋅+<.7.(2020·广东广州·高三三模)已知函数()2ln f x a x x =+,其中a R ∈.(1)讨论()f x 的单调性;(2)当1a =时,证明:()21f x x x ≤+-;(3)试比较22222222ln2ln3ln4ln 234n n++++与()()()12121n n n -++ ()*2n N n ∈≥且的大小,并证明你的结论. 8.(2020·黑龙江南岗·哈师大附中三模)已知函数()()2ln 1f x ax bx x =+-+.(∈)当0a =时,函数()f x 存在极值,求实数b 的取值范围;(∈)当1b =时,函数()f x 在()0,∞+上单调递减,求实数a 的取值范围;(∈)求证:()()1*113ln 2122N 14nk n n k =-+<∈-∑. 9.(2020·黑龙江哈尔滨·三模)已知函数()()()()ln 111f x x k x k R =---+∈ (1)求函数()f x 的单调区间;(2)若()0f x ≤恒成立,试确定实数k 的取值范围;(3)证明:()()*1ln 2ln 3ln ,13414n n n n n n -++⋅⋅⋅+<∈>+N . 10.(2020·浙江三模)已知数列{}n a ,112a =,1ln 1n n a a +=-. (1)求证:11n n a a +<<; (2)求证:123201912020a a a a ⋅⋅⋅⋅⋅⋅<.【经典例题】1.(2020·江苏省如皋中学高三三模)已知函数()ln f x kx x x =-,k ∈R . (1)当2k =时,求函数()f x 的单调区间;(2)当01x <≤时,()f x k ≤恒成立,求k 的取值范围; (3)设n N *∈,求证:ln1ln 2ln (1)2314n n n n -+++≤+. 【答案】(1)单调递增区间为(0,)e ,单调递减区间为(,)e +∞;(2)[1,)+∞;(3)证明见解析.【解析】(1)当2k =时,()2ln f x x x x =-,'()1ln f x x =-,由'()0f x >,解得0x e <<;由'()0f x <,解得x e >,因此函数()f x 单调递增区间为(0,)e ,单调递减区间为(,)e +∞.(2)()ln f x kx x x =-,故'()1ln f x k x --=.当1k时,因为01x <≤,所以10ln k x -≥≥,因此'()0f x ≥恒成立,即()f x 在(]0,1上单调递增,所以()(1)f x f k ≤=恒成立.当1k <时,令'()0f x =,解得1(0,1)k x e -=∈.当1(0,)k x e -∈,'()0f x >,()f x 单调递增;当1(,1)k x e -∈,'()0f x <,()f x 单调递减; 于是1(1))(k f ef k -=>,与()f x k ≤恒成立相矛盾.综上,k 的取值范围为[1,)+∞.(3)由(2)知,当01x <≤时,ln 1x x x -≤. 令x =21n *()n N ∈,则21n +22nln 1n ≤,即22ln 1n n -≤, 因此ln 1n n +≤12n -. 所以ln1ln 2ln 011(1) (2312224)n n n n n --+++≤+++=+. 2.(2020·四川省内江市第六中学高三三模)已知函数2()ln(1)(0,0),()2x f x ax x a g x x -=+≥>=+. (1)讨论函数()()y f x g x =-的单调性;(2)若不等式()()1f x g x ≥+在[0,)x ∈+∞时恒成立,求实数a 的取值范围; (3)当1a =时,证明:1111+35721n +++<+…*1()(N )2f n n ∈.【答案】(1)见解析;(2)[1,+∞);(3)证明见解析. 【解析】(1)求导数可得2224441(2)(1)(2)a ax a y ax x ax x +-'=-=++++, 当1a 时,0y ',∴函数()()y f x g x =-在[)0+∞,上单调递增; 当01a <<时,由0y '>可得x > ∴函数在⎡⎫∞⎪⎢⎪⎣⎭上单调递增,在0⎡⎢⎣上单调递减; (2)由(1)知当1a 时,函数()()y f x g x =-在[)0+∞,上单调递增, ()()(0)(0)1f x g x f g ∴--=,即不等式()()1f x g x +在[)0x ∈+∞,时恒成立, 当01a <<时,函数在0⎡⎢⎣上单调递减,存在00x ⎡∈⎢⎣使得00()()(0)(0)1f x g x f g -<-=, 即不等式00()()1f x g x +不成立, 综上可知实数a 的取值范围为[1,)+∞;(3)由(2)得当1a 时,不等式()()1f x g x >+在(0,)x ∈+∞时恒成立, 即2(1)2x ln x x +>+,12(1)12ln k k∴+>+,*()k N ∈. 即11[(1)]122ln k lnk k <+-+, ∴11(21)32ln ln <-,11(32)52ln ln <-,11(43)72ln ln <-,11[(1)]212ln n lnn n ⋯<+-+, 将上述式子相加可得11111111(1)(1)()357212222lnn ln lnn ln n f n n +++⋯+<-=<+=+ 原不等式得证.3.(2020·安徽合肥·三模)已知函数()x xf x e e ax -=--(e 为自然对数的底数),其中a ∈R.(1)试讨论函数f (x )的单调性;(2)证明:22132ln 2(1)ni n n i i n n =-->+∑. 【答案】(1)答案见解析(2)证明见解析.【解析】(1)因为()x xf x e ea -'=+-,且2x x e e -+≥,所以当2a ≤时,()0f x '≥,所以()f x 在R 上为增函数,当2a >时,由()0f x '>,得0x x e e a -+->,所以2()10x xe ae -+>,所以22()124x a a e ->-,所以2x ae ->或2xa e -<,所以2xa e +>2xa e -<,所以24ln2aa x 或24ln2aa x ,由()0f x '<,得0x x e e a -+-<,解得2244ln22aa aax ,所以()f x 在ln 22a a ⎛⎫⎪ ⎪⎝⎭上递减,在,ln2a ⎛--∞ ⎪⎝⎭和ln 2a ⎛⎫++∞ ⎪ ⎪⎝⎭上递增.(2)由(1)知,当2a =时,()2xxf x e e x -=--在R 上为增函数,所以1()(ln )2ln g x f x x x x==--在(0,)+∞上为增函数, 所以当*n N ∈且2n ≥时,13()(2)22ln 2ln 422g n g ≥=--=-=32ln 04e >, 即12ln 0n n n-->,所以212211ln 1(1)(1)11n n n n n n n >==---+-+, 所以211111ln 2ln 23ln 34ln 4ln ni i i n n==++++∑ 1111111121213131414111n n >-+-+-++--+-+-+-+ 111121n n =+--+2322(1)n n n n --=+, 所以22132ln 2(1)ni n n i i n n =-->+∑.4.(2020·安徽相山·淮北一中高三三模)已知函数()||ln (0)f x x a x a =-->. (∈)讨论()f x 的单调性;(∈)比较222222ln 2ln 3ln 23n n++⋯+ 与(1)(21)2(1)n n n -++的大小(n N +∈且)2n >,并证明你的结论.【答案】(I )见解析;(II )见解析 【解析】(∈)函数()f x 可化为ln ,()ln ,0x x a x af x a x x x a --≥⎧=⎨--<<⎩,当0x a <<时,1()10f x x '=--<,从而()f x 在(0,)a 上总是递减的, 当x a ≥时,11()1x f x x x'-=-=,此时要考虑a 与1的大小.若1a ≥,则()0f x '≥,故()f x 在[,)a +∞上递增,若01a <<,则当1a x ≤<时,()0f x '<,当1x >时,()0f x '>,故()f x 在[,1)a 上递减, 在(1,)+∞上递增,而()f x 在x a =处连续,所以 当1a ≥时,()f x 在(0,)a 上递减,在[,)a +∞上递增; 当01a <<时,()f x 在(0,1)上递减,在[1,)+∞上递增.(∈)由(∈)可知当1a =,1x >时,1ln 0x x -->,即ln 1x x >-,所以ln 11x x x <-.所以 222222ln 2ln 3ln 23n n+++22211111123n <-+-+-222111123n n ⎛⎫=--+++⎪⎝⎭11112334(1)n n n ⎛⎫<--+++⎪⨯⨯+⎝⎭11121n n ⎛⎫=--- ⎪+⎝⎭1(1)2(1)n n n -=--+ 2221(1)(21)2(1)2(1)n n n n n n --+-+==++.5.(2020·云南高三三模)已知函数()1ln f x x a x =-- (1)讨论()f x 的单调性;(2)证明:()*333ln 2ln3ln 1,222332n n N n n n +++<∈≥---. 【答案】(1)当0a 时,()f x 在(0,)+∞内单调递增;当0a >时,()f x 在(0,)a 内单调递减,在(,)a +∞内单调递增.(2)证明见解析 【解析】(1)解:()1ln (0)f x x a x x =-->,()1af x x'∴=-.∈若0a ,则()0f x '>,()f x ∴在(0,)+∞内单调递增;∈若0a >,则()f x '在(0,)+∞内单调递增,且()0f a '=,∴当(0,)x a ∈时,()0f x '<;当(,)x a ∈+∞时,()0f x '>,()f x ∴在(0,)a 内单调递减,在(,)a +∞内单调递增.综上所述,当0a 时,()f x 在(0,)+∞内单调递增;当0a >时,()f x 在(0,)a 内单调递减,在(,)a +∞内单调递增.(2)证明:当1a =时,()1ln =--f x x x .由(1)知()(1)0f x f =,ln 1x x ∴-,当且仅当1x =时,等号成立, 令()*,2x n n N n =∈,ln 1n n ∴<-,33ln 1111(1)1n n n n n n n n n n -∴<==---++. 从而3ln 2112223<--, 3ln 3113334<-- …3ln 111n n n n n <--+, 累加可得333ln 2ln3ln 11223321n n n n ++⋯+<----+, 111212n -<+, 333ln 2ln3ln 122332n n n ∴++⋯+<---,证毕.【精选精练】1.(2020·榆林市第二中学高三三模)已知(),()1(x f x e g x x e ==+为自然对数的底数).(1)求证()()f x g x ≥恒成立;(2)设m 是正整数,对任意正整数n ,2111(1)(1)(1)333n m ++⋅⋅⋅+<,求m 的最小值. 【答案】(1)证明见解析;(2) 2.【解析】(1)令()()()1xF x f x g x e x =-=--,则()1xF x e '=-∴当(),0x ∈-∞时,()0F x '<;当()0,x ∈+∞时,()0F x '>()F x ∴在(),0-∞上单调递减;在()0,∞+上单调递增()()0min 0010F x F e ∴==--=,即()()()0F x f x g x =-≥恒成立 ()()f x g x ∴≥恒成立(2)由(1)知:13113n n e +≤221111113333332111111333n n n e e e e++⋅⋅⋅+⎛⎫⎛⎫⎛⎫∴++⋅⋅⋅+≤⋅⋅⋅⋅= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭又211111111133********13nn n⎛⎫⨯- ⎪⎛⎫⎝⎭++⋅⋅⋅+==⨯-<⎪⎝⎭- 11112322111111333n n e e ⎛⎫⨯- ⎪⎝⎭⎛⎫⎛⎫⎛⎫∴++⋅⋅⋅+≤< ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭又2111111333n m ⎛⎫⎛⎫⎛⎫++⋅⋅⋅+< ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭恒成立 12m e ∴≥ m 为正整数 m ∴的最小值为:22.(2020·广东广州高三三模·)已知函数()()()3214613x f x x ex x g x a x lnx -⎛⎫=-+-=--- ⎪⎝⎭,.(1)求函数()f x 在()0+∞,上的单调区间; (2)用{}max m n ,表示m n ,中的最大值,()f x '为()f x 的导函数,设函数()()(){}h x max f x g x '=,,若()0h x ≥在()0+∞,上恒成立,求实数a 的取值范围; (3)证明:()*11111ln 312313n N n n n n n+++++>∈++-. 【答案】(1)()f x 单调递增区间为()3+∞,;() f x 单调递减区间为()03,;(2)43a ≥;(3)详见解析. 【解析】(1)因为()()3246x f x x ex x -=-+-,所以()()()()3332632x x f x x ex x e --=-+-='-+,令()0f x '=得3x =,当3x >时,()0f x '>,()f x 单调递增; 当03x <<时,()0f x '<,()f x 单调递减;所以函数()f x 在()0+∞,上的单调递增区间为()3+∞,,单调递减区间为()03,; (2)由(1)知()()()332x f x x e-'=-+,当3x ≥时,()0f x '≥恒成立,故()0h x ≥恒成立;当3x <时,()0f x '<,又因为()()(){}0h x max f x g x '=≥,恒成立,所以()0g x ≥在()03,上恒成立, 所以11ln 03a x x ⎛⎫---≥ ⎪⎝⎭,即11ln 3xa x+-≥在()03,上恒成立, 令()()1ln 03x F x x x +=<<,则()13max a F x -≥, 由()()221ln 1ln x xF x x x-+-'==, 令()0F x '=得1x =,易得()F x 在()01,上单调递增,在[)13,上单调递减,所以()()11max F x F ==,所以113a -≥,即43a ≥, 综上可得43a ≥.(3)证明:设()()10xm x e x x =-->,则()10xm x e '=->,所以()m x 在()0+∞,上单调递增,所以()()00m x m >=,即1x e x >+, 所以1111111111312312333112313n n n nn n n nn n n n n ee eeen n n n n++++++++++++=⋅⋅⋅⋅⋅⋅⋅>⋅⋅⋅⋅⋅⋅⋅⋅++- 123331231n n n nn n n n +++>⋅⋅⋅⋅⋅⋅⋅=++-,所以11111ln 312313n n n n n+++++>++-. 3.(2020·安徽蚌埠·高三三模)已知函数()()ln 1x f x x+=.(1)分析函数()f x 的单调性;(2)证明:2111ln 3ln 212n n n ⎛⎫+⎛⎫+++≤ ⎪ ⎪-⎝⎭⎝⎭,2n ≥. 【答案】(1)()f x 在区间()–1,0和()0,∞+上单调递减;(2)证明见解析. 【解析】(1)由题意得:()f x 的定义域为()()–1,00,+∞,且()()2ln 11xx x f x x -++'=,令()()ln 11x g x x x=-++则()()21x g x x -'=+,()–1,0x ∈时,()0g x '>; ()0,x ∈+∞时,()0g x '<.即()g x 在()–1,0上单调递增,在()0,∞+上单调递减.因为()00g =,则在()–1,0和()0,∞+上()0g x <. 因为20x >,所以在()–1,0和()0,∞+上()0f x '<, 即函数()f x 在区间()–1,0和()0,∞+上单调递减. (2)由(1)可知,当02x <≤时,()()ln 322x f f =≥,即()ln 3ln 12x x +≥, 当2n ≥时,2021n <≤-,则2ln 3ln 111n n ⎛⎫+≥⎪--⎝⎭, 即()()2ln 3ln 1ln 1ln 111n n n n ⎛⎫+=+--≥ ⎪--⎝⎭, 所以()()()ln 1ln 1ln ln 2ln 4ln 2ln3ln1n n n n +--+--++-+-111ln 31122n n ⎛⎫≥++++ ⎪--⎝⎭整理得:()111ln 1ln ln 2ln1ln 31122n n n n ⎛⎫++--≥++++⎪--⎝⎭, 即2111ln 3ln 212n n n ⎛⎫+⎛⎫+++≤ ⎪ ⎪-⎝⎭⎝⎭,2n ≥,不等式得证.4.(2020·全国高三三模)已知函数2()2ln 1()f x ax x x a =--∈R . (1) 若1x e=时,函数()f x 取得极值,求函数()f x 的单调区间; (2) 证明:()*11111ln(21)3521221nn n n n +++⋯+>++∈-+N . 【答案】(1)见解析;(2)见解析【解析】(1)由题意可得,()'222(0,)f x ax lnx x a R =-->∈,由1x e =时,函数()f x 取得极值知12'220af e e ⎛⎫=+-= ⎪⎝⎭,所以0a =. 所以()()21,'22(0)f x xlnx f x lnx x =--=-->, 所以10x e <<时,()'0f x >;1x e>时,()'0f x <; 所以()f x 的单调增区间10e ⎛⎫ ⎪⎝⎭,,单调减区间为1e⎛⎫+∞ ⎪⎝⎭,. (2)当1a =时,()221f x x xlnx =--,所以()()'22221f x x lnx x lnx =--=--,令()ln 1g x x x =--,则()11'1x g x x x-=-=,当01x <<时,()'0g x <;当1x >时,()'0g x >,()g x 的单调减区间为()01,,单调增区间为()1+∞,, 所以()()10g x g ≥=,所以()'0f x ≥,()f x 是增函数,所以1x >时,()()22ln 110f x x x x f =-->=,所以1x >时,12ln x x x->, 令*211,21n x n N n +=>∈-,得2121212ln 212121n n n n n n +-+->-+- 即2221112ln 212121n n n n +⎛⎫+--> ⎪-+-⎝⎭ 所以1121111ln 2122122121n n n n n +⎛⎫>+- ⎪---+⎝⎭上式中123n =,,,…,n ,然后n 个不等式相加, 得到()11111...ln 213521221nn n n ++++>++-+ 5.(2020·辽宁沙河口·辽师大附中高三三模)已知函数()()2ln 11f x p x p x =+-+.(2)当1p =时,()f x kx ≤恒成立,求实数k 的取值范围; (3)证明:()()*111ln 1123n n N n+<+++⋯+∈. 【答案】(1) 见详解;(2)1k;(3)证明见解析.【解析】(1)()f x 的定义域为()0 +∞,,()()()221'21p x p p f x p x x x-+=+-=,当1p >时,()'0f x >,故()f x 在()0,∞+单调递增; 当0p ≤时,()'0f x <,故()f x 在()0,∞+单调递减;当10p -<<时,令()'0f x =,解得x =则当x ⎛∈ ⎝时,()'0f x >; x ⎫∈+∞⎪⎪⎭,时,()'0f x <.故()f x 在⎛ ⎝单调递增,在 ⎫+∞⎪⎪⎭,单调递减. (2)因为0x >,所以:当1p =时,()f x kx ≤恒成立11ln ln kx xx k x+⇔+≤⇔≥, 令()1ln xh x x +=,则()max k x h ≥, 因为()2ln 'xh x x-=,由()'0h x =得x =1, 且当()0,1x ∈时,()'0h x >;当()1,x ∈+∞时,()'0h x <.所以()h x 在()0,1上递增,在()1,+∞上递减,所以()()max 11h x h ==, 故1k .(3)取,则代入由题设可得,取,并将上述各不等式两边加起来可得()()*111ln 1123n n N n+<+++⋯+∈.6.(2020·浙江省宁波市鄞州中学高三三模)已知函数()()2f x ax a a R =+∈.(2)若()0f x ≤对任意的1x ≥-恒成立,求a 的取值范围;(32600⋅⋅⋅+<. 【答案】(1)()f x 在211,14a ⎛⎫-- ⎪⎝⎭上单增;在211,4a ⎛⎫-+∞ ⎪⎝⎭上单减;(2)1,2⎛⎤-∞- ⎥⎝⎦;(3)证明见解析. 【解析】()'f x a =+.(1)当0a ≥时,()'0f x ≥,所以()f x 在()1,-+∞上单调递增; 当0a <时,由()'0f x >解得21114x a -<<-, 所以()f x 在211,14a ⎛⎫-- ⎪⎝⎭上单调递增;在211,4a ⎛⎫-+∞ ⎪⎝⎭上单调递减.(2)当0a ≥时,()()2000f x a x =+≥+=,故不合题意;当0a <时,由(∈)知()max 21104x f f a ⎛⎫=-≤ ⎪⎝⎭,211(21)(21)20141244a a f a a a a a a +-⎛⎫=-+- ⎪⎝-+=≤⎭102a a <∴≤-,综上,a 的取值范围为1,2⎛⎤-∞- ⎥⎝⎦.(3)由(2)知,取12a =-112x ≤+成立.当()1,2,3,,20482020kx k ==时,1111220204040k k =≤⨯+=⨯+,⋅⋅⋅+()11234204820484040++++++<20491024204826004040⨯=+<.7.(2020·广东广州·高三三模)已知函数()2ln f x a x x =+,其中a R ∈. (1)讨论()f x 的单调性;(2)当1a =时,证明:()21f x x x ≤+-;(3)试比较22222222ln2ln3ln4ln 234n n++++与()()()12121n n n -++ ()*2n N n ∈≥且的大小,并证明你的结论. 【答案】(1)见解析;(2)见解析;(3)见解析【解析】(1)函数()f x 的定义域为:()0,∞+,()'f x = 222a a x x x x++=∈当0a ≥时,()'0f x >,所以()f x 在()0,∞+上单调递增∈当0a <时,令()'0f x =,解得x =当0x <<时,220a x +<,所以()'0f x <, 所以()f x 在⎛ ⎝上单调递减;当x >220a x +>,所以()'0f x >,所以()f x 在⎫+∞⎪⎪⎭上单调递增. 综上,当0a ≥时,函数()f x 在()0,∞+上单调递增;当0a <时,函数()f x 在⎛ ⎝上单调递减,在⎫+∞⎪⎪⎭上单调递增. (2)当a 1=时,()2ln f x x x =+,要证明()21f x x x ≤+-,即证ln 1x x ≤-,即证:ln 10x x -+≤. 设()g ln 1x x x =-+,则()g'x =1xx-,令()0g x '=得,1x =. 当()0,1x ∈时,()0g x '>,当()1,x ∈+∞时,()0g x '<. 所以1x =为极大值点,且()g x 在1x =处取得最大值.所以()()10g x g ≤=,即ln 10x x -+≤.故()21f x x x ≤+-.(3)证明:ln 1x x ≤-(当且仅当1x =时等号成立),即11lnx x x≤-, 则有2222ln +22222222223111111111n 132323ln lnn n n n ⎛⎫+⋯+<-+-+⋯+-=--++⋯+ ⎪⎝⎭()111n 123341n n ⎛⎫<--++⋯+ ⎪ ⎪⨯⨯+⎝⎭ ()()()12111111111n 1n 1233412121n n n n n n -+⎛⎫⎛⎫=---+-+⋯+-=---=⎪ ⎪+++⎝⎭⎝⎭, 故:2222ln +()()()22221213321n n ln lnn n n -++⋯+<+ 8.(2020·黑龙江南岗·哈师大附中三模)已知函数()()2ln 1f x ax bx x =+-+.(∈)当0a =时,函数()f x 存在极值,求实数b 的取值范围;(∈)当1b =时,函数()f x 在()0,∞+上单调递减,求实数a 的取值范围;(∈)求证:()()1*113ln 2122N 14nk n n k =-+<∈-∑. 【答案】(∈)0b >;(∈)12a ≤-;(∈)证明见解析. 【解析】(∈)当0a =时,()()()ln 11f x bx x x =-+>-,()()1111bx b f x b x x --'=-=++, ∈当0b ≤时,()0f x '<,则()f x 在()1,-+∞递减,无极值; ∈当0b >时,令()1'0,11f x x b==->-, 1()0,(1,1),()f x x f x b '<∈--单调递减,1()0,(1,),()f x x f x b '>∈-+∞单调递增,所以11,()x f x b=-取得极小值.综上可知:0b >.(∈)当1b =时,()()()2ln 10f x ax x x x =+-+>,()1212011x f x ax ax x x '=+-=+≤++恒成立 121a x ⇔-≥+对一切()0,x ∈+∞恒成立, ∈11x +>,∈1011x <<+,∈21a -≥,∈12a ≤-.(∈)由(∈)知:当12a =-时,()()21ln 12f x x x x =-+-+在()0,∞+递减,∈()()00f x f ≤=,即:()2ln 12x x x -+<,令221x n =-,则()22212ln 212121n n n n +-<---, 当2n ≥时,()2222122ln 212144121n n n n n n +-<=---+- ()21114121n n n n ⎛⎫<=- ⎪--⎝⎭,∈23ln 2ln 311-=- 2511ln 13322⎛⎫-<- ⎪⎝⎭ 27111ln 55223⎛⎫-<- ⎪⎝⎭……221111ln 212121n n n n n +⎛⎫-<- ⎪---⎝⎭累加得,()11112ln 212ln 31212nk n k n =⎛⎫⋅-+<-+- ⎪-⎝⎭∑ 5153ln3ln32222n =--<-<, 当1n =时,131ln 324-<,即:1ln 32>,综上,()1113ln 212124nk n k =-+<-∑. 9.(2020·黑龙江哈尔滨·三模)已知函数()()()()ln 111f x x k x k R =---+∈ (1)求函数()f x 的单调区间;(2)若()0f x ≤恒成立,试确定实数k 的取值范围;(3)证明:()()*1ln 2ln 3ln ,13414n n n n n n -++⋅⋅⋅+<∈>+N . 【答案】(1)答案不唯一,具体见解析;(2)[)1,+∞;(3)证明见解析. 【解析】(1)函数()()()ln 111f x x k x =---+的定义域为()1,+∞,且()11f x k x '=--. ∈当0k ≤时,()0f x '>恒成立,故函数()y f x =在()1,+∞上为增函数; ∈当0k >时,令()0f x '<,得1k x k +>时,即函数()y f x =在1,k k +⎛⎫+∞⎪⎝⎭上单调递减, 令()0f x '>,得11k x k +<<时,即函数()y f x =在11,k k +⎛⎫⎪⎝⎭上单调递增.综上:当0k ≤时,函数()y f x =在()1,+∞上为增函数; 当0k >时,函数()y f x =在11,k k +⎛⎫ ⎪⎝⎭上为增函数,在1,k k +⎛⎫+∞⎪⎝⎭上为减函数; (2)当0k ≤时,()211f k =-+≥,显然()0f x ≤不恒成立; 当0k >时,()max 11ln 0k f x f k k +⎛⎫==≤⎪⎝⎭,即1k .综上:实数k 的取值范围是[)1,+∞;(3)由(2)可知,当1k =时()0f x ≤恒成立,即()ln 12x x -<-,()ln 121x x x-∴<-, ()()22ln ln 11121212n n n n n n n --=<=+++,可得出ln 2132<,ln 3242<,,ln 112n n n -<+, ()()*1ln 2ln 3ln 121,23412224n n n n n N n n --∴+++<+++=∈≥+. 10.(2020·浙江三模)已知数列{}n a ,112a =,1ln 1n n a a +=-. (1)求证:11n n a a +<<; (2)求证:123201912020a a a a ⋅⋅⋅⋅⋅⋅<. 【答案】(1)证明见解析;(2)证明见解析. 【解析】(1)∈先利用数学归纳法证明1n a <. (∈)当1n =时,1112a =<成立; (∈)假设n k =时1k a <成立,则1ln 10k k a a +=-<,11k a +∴<. 综上所述,对任意的n *∈N ,1n a <; ∈利用导数证明1x e x -≥,设()1x f x ex -=-,则()1e 1x f x -'=-,当1x <时,()0f x '<,此时函数()y f x =单调递减; 当1x >时,()0f x '>,此时函数()y f x =单调递增.所以,()()0110f x f e ≥=-=,即1x e x -≥,当且仅当1x =时,等号成立.1n a <,()()10n f a f ∴>=,即1n a n e a ->,1ln 1n n a a +=-,11n a n n a e a -+∴=>,综合∈∈可知11n n a a +<<;(2)利用数学归纳法证明1n n a n ≤+. ∈当1n =时,112a =满足1n n a n ≤+;∈假设n k =时成立,即1k ka k ≤+,则由1ln 1n n a a +=-,得111111k k a k k k a eee---+++==≤,要证1112k k ek -++<+,令11,012t k ⎛⎫-=∈- ⎪+⎝⎭,则要证11012t e t t ⎛⎫<-<< ⎪-⎝⎭,21 / 21 构造()11x f x e x =+-,1,02x ⎛⎫∈- ⎪⎝⎭,()()()()22211111x x e x f x e x x --'=-=--,令()()211x h x e x =--,1,02x ⎛⎫∈- ⎪⎝⎭,则()()()()2212110x x x h x e x e x e x '=-+⋅-=-<, 所以,函数()y f x '=在1,02⎛⎫- ⎪⎝⎭上单调递减,()()00f x f ''∴>=,所以,函数()y f x =在1,02⎛⎫- ⎪⎝⎭上单调递增,()()00f x f ∴<=,即11x e x <-成立,即1112k k e k -++<+,112k k a k ++∴<+, 综上1n na n ≤+,当且仅当1n =时等号成立,由于1ln 1n n a a +=-,可知0n a >, 所以,1102a <≤,2203a <<,,2019201902020a <<,1220191232019123420202020a a a ⋅⋅⋅⋅<⨯⨯⨯⋅⋅⨯=.。
导数数列不等式
导数数列不等式导数数列不等式,也称前验不等式,是一种数学不等式,它通过研究一个数列对应的模型来验证它们之间的关系。
导数数列不等式属于一类定性性质,能够准确地描述一个数列函数的变化情况。
首先,我们介绍一类特殊的数列,叫做几何数列。
几何数列是一种有规律而递增的数列,每一项的值是前一项的系数乘上某个正值的数字。
几何数列的导数数列不等式,可以用另一种形式表示:begin{eqnarray}t_n leq t_1 cdot r^nend{eqnarray}其中,$t_n$为几何数列的某一项,$t_1$为几何数列的第一项,而$r$为几何数列系数,它也是确定数列每一项和下一项关系的一个基本参数。
换言之,几何数列变化情况可以用该不等式来表示,所以几何数列可以称为导数数列。
几何数列的导数数列不等式是非常重要的,它是用来验证某个几何数列中每一项和下一项系数之间大小关系的一个特殊性质。
当然,几何数列不是唯一一种可以使用导数数列不等式来验证的数字。
除了几何数列,其他类型的数列也可以使用该不等式来进行检验。
比如抛物线数列,导数数列不等式可以用如下方式表示:begin{eqnarray}t_n leq t_1 cdot (1+n/n)^nend{eqnarray}其中,$t_n$为抛物线数列的某一项,$t_1$为抛物线数列的第一项,而$n$为抛物线数列的项数。
抛物线数列也可以用该不等式来验证它们之间的大小关系,所以抛物线数列也可以称为导数数列。
此外,对于其他类型的数列,也可以使用导数数列不等式来验证它们之间的关系。
例如,线性数列的导数数列不等式可以用如下方式表示:begin{eqnarray}t_n leq t_1 cdot (1+n/n) cdot nend{eqnarray}其中,$t_n$为线性数列的某一项,$t_1$为线性数列的第一项,而$n$为线性数列的项数。
线性数列也可以用该不等式来验证它们之间的大小关系,所以线性数列也可以称为导数数列。
高考中利用导数证明不等式的一些策略
高考中利用导数证明不等式的一些策略1与lnx分开来考虑,即将f(x)分解为两个函数的和:f(x)=lnx+2ex-1.然后分别对这两个函数求导,得到f'(x)=1/x+2ex>0,说明f(x)在定义域上单调递增,且f(0)=1,因此f(x)>1成立。
评注:对于这种需要分离成两个函数的不等式,可以先观察不等式的特征,尝试将其分解为两个函数的和或差,然后分别对这些函数求导来证明不等式。
类型三、需要构造辅助函数的不等式1.利用辅助函数构造上下界例3(2016年全国卷1第23题改编)已知a,b,c>0,证明:(a+b+c)(1/a+1/b+1/c)≥9分析:将(a+b+c)(1/a+1/b+1/c)展开,得到a/b+b/a+a/c+c/a+b/c+c/b+3≥9.观察不等式中的每一项,可以发现这些项都可以表示为三个数的和,因此可以构造辅助函数f(x)=ln(x)+1/x-1,然后对f(x)求导,得到f'(x)=1/x^2-1,f'(x)>0当且仅当x1,因此f(x)在(0,1)和(1,∞)上分别是减函数和增函数。
接着,将a/b+b/a+a/c+c/a+b/c+c/b分别表示为f(ab)+f(ac)+f(bc)+3,然后应用均值不等式,得到f(ab)+f(ac)+f(bc)≥3f((abc)^(2/3))=3ln(abc)+3/(abc)^(2/3)-3.将此式代入原不等式中,得到3ln(abc)+3/(abc)^(2/3)≥6,即ln(abc)+(1/3)/(abc)^(2/3)≥2/3.再次利用辅助函数,构造g(x)=lnx+(1/3)x^(-2/3)-2/3,对其求导得到g'(x)=1/x-(2/9)x^(-5/3),g'(x)>0当且仅当x9/4,因此g(x)在(0,9/4)和(9/4,∞)上分别是减函数和增函数。
由于a,b,c>0,因此abc>0,因此可将不等式中的abc替换为x,得到g(abc)≥0,即ln(abc)+(1/3)/(abc)^(2/3)-2/3≥0,即ln(abc)+(1/3)/(abc)^(2/3)≥2/3,因此原不等式成立。
求解数列不等式证明问题的方法
解题宝典证明数列不等式问题是一类综合性较强且难度较大的问题,不仅考查了数列知识,还考查了证明不等式的技巧.本文主要介绍三种证明数列不等式问题的方法,以供大家参考.一、利用数列的单调性我们知道,数列具有单调性.因此在证明数列不等式问题时,我们可以利用数列的单调性来讨论数列的变化趋势,进而证明不等式.利用数列的单调性解题的关键在于观察数列的特征,通过作差、作商等方法,构造出新数列,利用数列的单调性证明结论.例1.已知数列{}a n各项均为正数,前n项和S1>1,满足关系式6S n=(a n+1)(a n+2),n∈N*.设数列{}bn满足关系式an(2b n-1)=1,令T n为数列{}b n的前n项和,求证:3T n+1>log2(a n+3),n∈N*.证明:根据前n项和关系式可得a n=3n-1,将其代入到an(2b n-1)=1中可得b n=log23n3n-1,Tn=b1+b2+⋯+b n=log2(32×65×⋯×3n3n-1),则3T n+1-log2(a n+3)=log2éë(32×65×⋯×3n3n-1)3ùû×23n+2.设f(n)=(32×65×⋯×3n3n-1)3×23n+2,则f(n+1)f(n)=(3n+3)3(3n+5)(3n+2)2,变形得(3n+3)3-(3n+5)(3n+2)2=9n+7>0,则数列{}f(n)单调递增.因此f(n)≥f(1)>1,则3T n+1-log2(a n+3)=log2f(n)>0,所以3T n+1>log2(a n+3).本题的难度较大,欲证明此题,首先需要从结论出发,构造数列f(n),然后根据新数列的形式,利用作差法、作商法证明数列具有单调性,再利用其单调性证明结论.很多时候,我们并不能直接发现数列的单调性,往往需要对数列的递推式进行多次转换、变形,构造出新数列才能发现其单调性.二、放缩法放缩法是解答不等式问题的基本方法之一.在运用放缩法证明数列不等式问题时,我们必须紧紧围绕着放缩目标,掌握好放缩的尺度,灵活运用不等式的传递性证明不等式.常见的放缩技巧有添加或删除某些项、先放缩再求和(先求和再放缩)、先裂项再放缩(先放缩再裂项)等.但无论运用哪种放缩技巧,都需要把控放缩的尺度,否则容易得出错误的答案.例2.已知数列{}a n满足条件:a1=1,a n+1=2a n+1(n∈N*),试证明:n2-13<a1a2+a2a3+⋯+a n an+1<n2.证明:由a n+1=2a n+1,(n∈N*),可得a n=2n-1,则akak+1=2k-12k+1-1=2k-12(2k-12)<2k-12(2k-1)=12,所以a1a2+a2a3+⋯+anan+1<12+12+⋯+12=n2.故akak+1=2k-12k+1-1=12·2k+1-22k+1-1=12(1-12k+1-1)=12-13×2k+2k-2≥12-13×12k(k=1,2,3,⋯),即a1a2+a2a3+⋯+anan+1≥12-13(12+122+⋯+12n)=n2-13(1-12n)>n2-13.综合上述分析,即可证明不等式n2-13<a1a2+a2a3+⋯+a n a n+1<n2成立.本题主要运用了放缩法,首先结合数列不等式的表达式,对不等式进行缩放,构造出anan+1,再借助不等式的传递性证明了结论.三、导数法对于综合性较强的数列不等式问题,我们往往采用导数法来求解.首先结合不等式构造出函数模型,对函数求导,通过研究其导函数得到函数的单调性、最储文海42解题宝典值,进而证明不等式成立.例3:试证明12+13+14+⋯+1n <ln n <1+12+13+14+⋯+1n +1(n ∈N*).证明:令a n =1n +1、b n =1n ,于是当n ≥2时,S n -1=ln n 、S n =ln(n +1).则S n -S n -1=ln(n -1)-ln n =ln n +1n.欲证明原不等式成立,需要证明1n +1<ln n +1n<1n ,即证明1x +1<ln x +1x <1x ,x ≥1.设函数f (x )=ln x +1x -1x +1,对其进行求导可得到f ′(x )=1x +1-1x +1(x +1)2=-1x (x +1)2<0.令x +1x =t ,则1x =t -1,t -1t<ln t <t -1,(t >1).设函数h (t )=ln t -t -1t ,则h ′(t )=t -1t2>0,则函数h (t )在(1,+∞)单调递增,所以h (t )>h (1)=0,h (t )=ln t -t -1t>0,即是ln t >t -1t.同理可以证得ln t <t -1,即是ln t +1t <1t.综上可得,1t +1<ln t +1t <1t ,当t 分别取1,2,3,…,n -1时,12+13+14+⋯+1n <ln n <1+12+13+14+⋯+1n +1.运用导数法的根本目的是判断数列的单调性,求得数列的最值.这里首先构造出两个数列以及两个数列的和式,然后结合目标不等式的形式构造出函数模型,通过分析导函数确定函数的单调性,从而证明不等式.从上述分析我们不难看出,证明数列不等式问题的难度系数较大.在解答此类问题时,我们需要仔细分析数列不等式的特点,将其进行适当的变形、转化,并要学会联想,将其与不等式的性质、重要结论以及函数、导数的性质关联起来,才能将难题破解.(作者单位:江苏省华罗庚中学)立体几何是高考数学考查的重点.解答立体几何问题常用的方法是几何法和向量法.这两种方法是分别从几何和代数两个角度入手的,有着各自的优势.本文重点探讨这两种方法在解题中的应用.一、几何法几何法是指运用几何知识解答问题的方法.在解答立体几何问题时,我们需要根据题意绘制相应的图形,探寻空间中点、线、面之间的位置关系,通过延长线段,平移、变换、旋转图形,添加辅助线等方式,建立结论与已有条件之间的联系,灵活运用各种定理、定义、性质,对条件进行转化,顺利解答问题.例1.如图1,在三棱台ABC-DEF 中,已知平面BCEF ⊥平面ABC ,∠ACB -90°,BE =EF =FC =1,BC =2,AC =3,(1)求证:BF ⊥平面ACFD (2)求二面角B -AD -C 的余弦值.李鹏飞图143。
高中数学:利用导数证明不等式的常见题型
利用导数证明不等式的常见题型题型一构造函数法把不等式的证明转化为利用导数研究函数的单调性或求最值的问题,从而证明不等式,而如何根据不等式的结构特征构造一个可导函数是利用导数证明不等式的关键.这四道题比较简单,证明过程略.概括而言,这四道题证明的过程分三个步骤:一是构造函数;二是对函数求导,判断函数的单调性;三是求此函数的最值,得出结论.【启示】证明分三个步骤:一是构造函数;二是对函数求导,判断函数的单调性;三是求此函数的最值,得出结论。
题型二通过对函数的变形,利用分析法,证明不等式【启示】解答第一问用的是分离参数法,解答第二问用的是分析法、构造函数,对函数的变形能力要求较高,大家应记住下面的变形:题型三求最值解决任意、存在性变量问题解决此类问题,关键是将问题转化为求函数的最值问题,常见的有下面四种形式:题型四分拆成两个函数研究【注意】(2)如果按题型一的方法构造函数求导,会发现做不下去,只好半途而废,所以我们在做题时需要及时调整思路,改变思考方向.【启示】掌握下列八个函数的图像和性质,对我们解决不等式的证明问题很有帮助,这八个函数分别为要求会画它们的图像,以后见到这种类型的函数,就能想到它们的性质题型五设而不求当函数的极值点(最值点)不确定时,可以先设出来,只设不解,把极值点代入,求出最值的表达式而证明.【启示】设而不求,整体代换是一种常用的方法,在解析几何中体现很多.在本例第(2)问中,只设出了零点而没有求出零点,这是一种非常好的方法,同学们一定要认真体会,灵活应用.题型六估值法题型七利用图象的特点,证明不等式题型八证明数列不等式题型九利用放缩法证明不等式【注意】在解决第(2)问时,用构造函数法证不出来,又试着分开两个函数仍然不行,正当我一筹莫展时,忽然想到与第一问题的切线联系,如果左边的函数的图像在切线的上方,右边函数的图像在切线的下方,这样问题不就得证了吗?心里非常高兴,马上付诸行动。
数列不等式的放缩与导数不等式的证明
数列不等式的放缩与导数不等式的证明一、数列不等式的放缩1.假设法:假设数列的每一项满足其中一条件,通过推导得到结论。
2.数学归纳法:采用数学归纳法来证明数列不等式,即证明当n=k时不等式成立,然后证明当n=k+1时不等式也成立。
3.应用数学方法和技巧:通过使用数学方法和技巧,如均值不等式、柯西-施瓦茨不等式等,对数列不等式进行放缩。
例如,我们考虑数列 a1,a2,...,an,其中 ai > 0(i=1,2,...,n),证明以下不等式成立:(a1 + a2 + … + an)/n ≥ √(a1a2…an)证明:我们使用均值不等式来放缩。
根据均值不等式,有:(a1 + a2 + … + an)/n ≥ √(a1a2…an)即证明得到结论。
导数不等式是通过研究函数的导数,来证明函数的不等式性质。
常用的方法有以下几种:1.函数的单调性:通过研究函数的单调性来证明函数不等式,即证明函数在一些区间内是单调递增或单调递减的。
2.极值点与函数的变化趋势:通过研究函数的极值点和极限,来推导函数的不等式性质。
3.利用导数的性质:通过应用导数的性质,如凹凸性、拐点等,来证明函数的不等式。
例如,我们考虑函数f(x)=x^2,证明以下不等式成立:f(b)-f(a)≥(b-a)(f(b)+f(a))/2证明:首先我们求出函数f(x)的导数f'(x)=2x。
由于f'(x)是正值,因此f(x)是单调递增的。
根据函数f(x)的单调性,对于任意的a<b,有f(b)-f(a)≥0。
同时,由于f(x)是凹函数,根据凹函数的性质,有:f(t)≤f(a)+(t-a)f'(a)f(u)≤f(b)+(u-b)f'(b)其中a<t<b<u。
将两个不等式相加,得到:f(t)+f(u)≤f(a)+f(b)+(t-a)f'(a)+(u-b)f'(b)将f(t)+f(u)替换为2f((t+u)/2),得到:2f((t+u)/2)≤f(a)+f(b)+(t-a)f'(a)+(u-b)f'(b)即证明得到结论。
导数解答题中数列不等式的证明思路策略
导数解答题中数列不等式的证明思路策略张国飞(安徽省桐城中学ꎬ安徽桐城231400)摘㊀要:导数解答题中最后一问设置数列不等式的证明ꎬ是高考函数与导数知识模块中命题时比较常见的一个压轴题型.文章结合实例ꎬ就导数解答题中数列不等式的几个常见的证明思路策略加以剖析ꎬ阐述基本证明思路与技巧方法ꎬ总结证明归纳与策略ꎬ引领并指导数学教学与复习备考.关键词:导数ꎻ数列ꎻ不等式ꎻ证明ꎻ思路ꎻ策略中图分类号:G632㊀㊀㊀文献标识码:A㊀㊀㊀文章编号:1008-0333(2023)30-0038-03收稿日期:2023-07-25作者简介:张国飞(1980.7-)ꎬ男ꎬ安徽省安庆人ꎬ本科ꎬ中学一级教师ꎬ从事高中数学教学研究.㊀㊀在函数与导数的综合应用解答题中ꎬ经常会有证明数列不等式ꎬ形如ðni=1ai<g(n)或ðni=1ai<A(A为常数)等形式成立的数列不等式设置.此类数列不等式的证明问题往往前后联系ꎬ与前面小题中的函数与导数的综合应用等着直接或间接的联系ꎬ需要借助函数的单调性㊁导数的基本性质以及不等式的性质等来应用ꎬ综合性强ꎬ时常是压轴题的首选ꎬ倍受各方关注.下面结合实例ꎬ就证明导数解答题中的数列不等式的思路策略加以剖析与应用ꎬ抛砖引玉[1].1抓住常用思路ꎬ进行逐项比较对于数列不等式ðni=1ai<g(n)ꎬ其中不等式的一边是某个数列的前n项和ꎬ而另一边g(n)如果可以看作另一个数列的前n项和ꎬ此时可以采用计算该数列的通项公式bnꎬ借助an<bn的转化ꎬ通过逐项比较ꎬ利用累加法加以分析与证明.例1㊀求证:对于任意的xɪ(0ꎬ+ɕ)ꎬ有x1+x<ln(1+x)<x恒成立.根据这个不等式证明:ln(n+1)<1+12+ +1n<lnn+1(nɪN∗).解析㊀令函数f(x)=ln(1+x)-x(x>0)ꎬ则fᶄ(x)=11+x-1=-x1+x<0ꎬ则知函数f(x)在(0ꎬ+ɕ)上单调递减ꎬ可得f(x)<f(0)=0ꎬ即ln(1+x)<x成立ꎻ令函数g(x)=x1+x-ln(1+x)(x>0)ꎬ则gᶄ(x)=1(1+x)2-11+x=-x(1+x)2<0ꎬ则知函数g(x)在(0ꎬ+ɕ)上单调递减ꎬ可得g(x)<g(0)=0ꎬ即x1+x<ln(1+x)成立ꎻ综上分析ꎬ可得对于任意的xɪ(0ꎬ+ɕ)ꎬ有x1+x<ln(1+x)<x恒成立.取x=1nꎬ可得x1+x=1n1+1n=1n+1<ln(1+x)=ln(1+1n)=lnn+1n=ln(n+1)-lnn<x=1nꎬ即831n+1<ln(n+1)-lnn<1nꎬ令n=1ꎬ2ꎬ ꎬ对应不等式累加可得12+13+ +1n+1<ln(n+1)<1+12+ +1nꎬ即ln(n+1)<1+12+ +1n<lnn+1(nɪN∗).点评㊀由函数不等式过渡到数列不等式的处理ꎬ就是合理对变量进行赋值处理ꎬ进而实现逐项比较的目的ꎬ同时在累加处理时ꎬ还要对不等式的形式进行巧妙处理ꎬ这里由12+13+ +1n+1<ln(n+1)可得1+12+13+ +1n<lnnꎬ进而得到1+12+ +1n<lnn+1.注意递推不等式的结构特征与应用.2融合可选思路ꎬ利用数列单调(性)对于数列不等式ðni=1ai<g(n)ꎬ通过恒等变形转化为证明bn=ðni=1ai-g(n)<0ꎬ先验证b1<0ꎬ接下来验证bn+1-bn<0恒成立ꎬ利用数列的单调性(单调递减)实现数列不等式的证明与应用[2].例2㊀设函数f(x)=(x-1)2+blnxꎬ其中b为常数.(1)判断函数f(x)在定义域上的单调性ꎻ(2)求证:132+142+ +1n2<ln(n+1)(nȡ3ꎬnɪN∗).㊀解析㊀由函数f(x)=(x-1)2+blnx(x>0)ꎬ则fᶄ(x)=2(x-1)+bx=2(x-12)2+b-12xꎬ所以当bȡ12时ꎬfᶄ(x)ȡ0ꎬ函数f(x)在(0ꎬ+ɕ)上单调递增ꎻ当b<12时ꎬ令fᶄ(x)=0ꎬ解得x1=12-1-2b2或x2=12+1-2b2ꎬ①当bɤ0时ꎬx1ɤ0舍去ꎬ而x2ȡ1ꎬ此时fᶄ(x)ꎬf(x)随x在定义域上的变化情况如下表:表1㊀函数单调性与导数关系x(0ꎬx2)x2(x2ꎬ+ɕ)fᶄ(x)-0+f(x)↘极小值↗x(0ꎬx1)x1(x1ꎬx2)x2(x2ꎬ+ɕ)fᶄ(x)+0-0+f(x)↗极大值↘极小值↗㊀㊀②当0<b<12时ꎬ0<x1<x2ꎬ此时fᶄ(x)ꎬf(x)随x在定义域上的变化情况如下表:综上分析ꎬ当bȡ12时ꎬ函数f(x)在(0ꎬ+ɕ)上单调递增ꎻ当0<b<12时ꎬ函数f(x)在(0ꎬ12-1-2b2)ꎬ(12+1-2b2ꎬ+ɕ)上单调递增ꎬ在(12-1-2b2ꎬ12+1-2b2)上单调递减ꎻ当bɤ0时ꎬ函数f(x)在(0ꎬ12+1-2b2)上单调递减ꎬ在(12+1-2b2ꎬ+ɕ)上单调递增.(2)设bn=132+142+ +1n2-ln(n+1)ꎬnȡ3ꎬnɪN∗ꎬ则b3=19-ln4<0显然成立ꎻ当nȡ3ꎬnɪN∗时ꎬbn+1-bn=1(n+1)2-ln(n+2)+ln(n+1)=1(n+1)2-lnn+2n+1ꎬ设x=n+2n+1=1+1n+1ɪ(1ꎬ54]ꎬ那么要证bn+1-bn<0ꎬ只需证(x-1)2-lnx<0ꎬ取b=-1ꎬ由(1)知函数f(x)在(0ꎬ1+32)上单调递减ꎬ而54<1+32ꎬ则知当xɪ(1ꎬ54]时ꎬf(x)=93(x-1)2-lnx<f(1)=0ꎬ从而bn+1-bn<0成立ꎬ即数列{bn}单调递减ꎬ则有bnɤb3<0ꎬ原数列不等式得证.点评㊀这里利用数列的单调性来证明相关的数列不等式成立时ꎬ其证明过程与逐项比较写的过程有点差异ꎬ但本质上两种方法之间有着异曲同工之妙.注意证明数列的单调性时ꎬ往往要回归题目前面部分所涉及的函数不等式问题ꎬ合理应用.3借助性质思路ꎬ合理放缩处理对于数列不等式ðni=1ai<Aꎬ经常可以借助函数的单调性质㊁不等式的基本性质等来加强命题ðni=1ai<g(n)且g(n)<Aꎬ通过合理的放缩与变形处理来巧妙转化与应用.放缩的关键是数列的求和与放缩ꎬ以及不等式性质的应用等[3].例3㊀已知函数f(x)=x-mlnx-1(mɪR)在x=1处取得极值A.(1)求出实数m的值ꎬ并判断A是函数f(x)的最大值还是最小值ꎻ(2)证明:对于任意正整数nꎬ不等式(1+12)(1+122) (1+12n)<e恒成立ꎬ其中e=2.71828 是自然对数的底数.解析㊀(1)由函数f(x)=x-mlnx-1(x>0)ꎬ则fᶄ(x)=1-mxꎬ由于x=1是函数f(x)的极值点ꎬ则有fᶄ(1)=0ꎬ即1-m1=0ꎬ解得m=1ꎬ此时函数f(x)=x-lnx-1ꎬfᶄ(x)=1-1x=x-1xꎬ则知当0<x<1时ꎬfᶄ(x)<0ꎬ函数f(x)单调递减ꎻ当x>1时ꎬfᶄ(x)>0ꎬ函数f(x)单调递增ꎬ所以函数f(x)在x=1处取得极值A=f(1)=0是最小值ꎻ(2)由(1)知ꎬ当x>1时ꎬf(x)>f(1)=0ꎬ即x-1>lnxꎬ不妨令x=1+12nꎬnɪN∗ꎬ则有ln(1+12n)<12nꎬnɪN∗ꎬ所以ln(1+12)+ln(1+122)++ln(1+12n)<12+122+ +12n=12(1-12n)1-12=1-12n<1ꎬ即ln[(1+12)(1+122) (1+12n)]<1=lneꎬ所以不等式(1+12)(1+122) (1+12n)<e恒成立.点评㊀在解决导数解答题中数列不等式的证明问题时ꎬ往往要先从前面小题的过程或结论中选取合适的函数不等式加以应用ꎬ这非常考验考生的观察能力.而在对数列不等式进行累加求和处理后ꎬ合理的放缩是正确证明的关键ꎬ要注意观察所要证明的数列不等式的结构特征加以巧妙放缩处理.在解决导数解答题中数列不等式的证明时ꎬ除了以上三种基本的证明思路策略ꎬ还可以借助推理与证明思维进一步加以综合与应用ꎬ利用可行的思路方法与技巧策略来剖析ꎬ有时在证明数列不等式时还可以多种证明思路策略联合应用ꎬ实现问题的综合应用与巧妙解决[4].参考文献:[1]韩文美.突出四个 基本点 ꎬ强化导数及应用[J].中学生数理化(高二数学)ꎬ2023ꎬ974(06):22-24ꎬ26.[2]白亚军.求解数列不等式的常见放缩技巧[J].高中数学教与学ꎬ2023(09):21-22ꎬ20.[3]蔡雯.例析高考中函数与数列不等式证明问题的突破[J].高中数理化ꎬ2023(07):26-27.[4]刘海涛.由一道高考题引发的对证明数列不等式的思考[J].中学数学月刊ꎬ2021(04):63-64.[责任编辑:李㊀璟]04。
专题17 函数与导数压轴解答题常考套路归类(精讲精练)(原卷版)
专题17 函数与导数压轴解答题常考套路归类【命题规律】函数与导数是高中数学的重要考查内容,同时也是高等数学的基础,其试题的难度呈逐年上升趋势,通过对近十年的高考数学试题,分析并归纳出五大考点:(1)含参函数的单调性、极值与最值; (2)函数的零点问题;(3)不等式恒成立与存在性问题; (4)函数不等式的证明. (5)导数中含三角函数形式的问题其中,对于函数不等式证明中极值点偏移、隐零点问题、含三角函数形式的问题探究和不等式的放缩应用这四类问题是目前高考函数与导数压轴题的热点.【核心考点目录】核心考点一:含参数函数单调性讨论 核心考点二:导数与数列不等式的综合问题 核心考点三:双变量问题 核心考点四:证明不等式 核心考点五:极最值问题 核心考点六:零点问题核心考点七:不等式恒成立问题核心考点八:极值点偏移问题与拐点偏移问题 核心考点九:利用导数解决一类整数问题 核心考点十:导数中的同构问题 核心考点十一:洛必达法则核心考点十二:导数与三角函数结合问题【真题回归】1.(2022·天津·统考高考真题)已知a b ∈R ,,函数()()sin ,x f x e a x g x =-=(1)求函数()y f x =在()()0,0f 处的切线方程; (2)若()y f x =和()y g x =有公共点, (i )当0a =时,求b 的取值范围; (ii )求证:22e a b +>.2.(2022·北京·统考高考真题)已知函数()e ln(1)x f x x =+. (1)求曲线()y f x =在点(0,(0))f 处的切线方程; (2)设()()g x f x '=,讨论函数()g x 在[0,)+∞上的单调性; (3)证明:对任意的,(0,)s t ∈+∞,有()()()f s t f s f t +>+.3.(2022·浙江·统考高考真题)设函数e()ln (0)2f x x x x=+>. (1)求()f x 的单调区间;(2)已知,a b ∈R ,曲线()y f x =上不同的三点()()()()()()112233,,,,,x f x x f x x f x 处的切线都经过点(,)a b .证明:(ⅰ)若e a >,则10()12e a b f a ⎛⎫<-<- ⎪⎝⎭; (ⅰ)若1230e,a x x x <<<<,则22132e 112e e6e 6e a ax x a --+<+<-. (注:e 2.71828=是自然对数的底数)4.(2022·全国·统考高考真题)已知函数()e e ax x f x x =-. (1)当1a =时,讨论()f x 的单调性;(2)当0x >时,()1f x <-,求a 的取值范围; (3)设n *∈N21ln(1)n n +>++.5.(2022·全国·统考高考真题)已知函数1()(1)ln f x ax a x x=--+. (1)当0a =时,求()f x 的最大值;(2)若()f x 恰有一个零点,求a 的取值范围.6.(2022·全国·统考高考真题)已知函数()ln xf x x a xx e -=+-.(1)若()0f x ≥,求a 的取值范围;(2)证明:若()f x 有两个零点12,x x ,则121x x <.7.(2022·全国·统考高考真题)已知函数()x f x e ax =-和()ln g x ax x =-有相同的最小值. (1)求a ;(2)证明:存在直线y b =,其与两条曲线()y f x =和()y g x =共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列.【方法技巧与总结】1、对称变换主要用来解决与两个极值点之和、积相关的不等式的证明问题.其解题要点如下:(1)定函数(极值点为0x ),即利用导函数符号的变化判断函数单调性,进而确定函数的极值点x 0.(2)构造函数,即根据极值点构造对称函数0()()(2)F x f x f x x =--,若证2120x x x > ,则令2()()()x F x f x f x=-. (3)判断单调性,即利用导数讨论()F x 的单调性.(4)比较大小,即判断函数()F x 在某段区间上的正负,并得出()f x 与0(2)f x x -的大小关系.(5)转化,即利用函数()f x 的单调性,将()f x 与0(2)f x x -的大小关系转化为x 与02x x -之间的关系,进而得到所证或所求.【注意】若要证明122x x f +⎛⎫' ⎪⎝⎭的符号问题,还需进一步讨论122x x +与x 0的大小,得出122x x +所在的单调区间,从而得出该处导数值的正负.构造差函数是解决极值点偏移的一种有效方法,函数的单调性是函数的重要性质之一,它的应用贯穿于整个高中数学的教学之中.某些数学问题从表面上看似乎与函数的单调性无关,但如果我们能挖掘其内在联系,抓住其本质,那么运用函数的单调性解题,能起到化难为易、化繁为简的作用.因此对函数的单调性进行全面、准确的认识,并掌握好使用的技巧和方法,这是非常必要的.根据题目的特点,构造一个适当的函数,利用它的单调性进行解题,是一种常用技巧.许多问题,如果运用这种思想去解决,往往能获得简洁明快的思路,有着非凡的功效2121212ln ln 2x x x xx x -+<-证明极值点偏移:①由题中等式中产生对数; ②将所得含对数的等式进行变形得到1212ln ln x x x x --;③利用对数平均不等式来证明相应的问题.3、 比值代换是一种将双变量问题化为单变量问题的有效途径,然后构造函数利用函数的单调性证明题中的不等式即可.【核心考点】核心考点一:含参数函数单调性讨论 【规律方法】1、导函数为含参一次型的函数单调性导函数的形式为含参一次函数时,首先讨论一次项系数为0,导函数的符号易于判断,当一次项系数不为雩,讨论导函数的零点与区间端点的大小关系,结合导函数图像判定导函数的符号,写出函数的单调区间.2、导函数为含参二次型函数的单调性当主导函数(决定导函数符号的函数)为二次函数时,确定原函数单调区间的问题转化为探究该二次函数在给定区间上根的判定问题.对于此二次函数根的判定有两种情况:(1)若该二次函数不容易因式分解,就要通过判别式来判断根的情况,然后再划分定义域; (2)若该二次函数容易因式分解,令该二次函数等于零,求根并比较大小,然后再划分定义域,判定导函数的符号,从而判断原函数的单调性.3、导函数为含参二阶求导型的函数单调性当无法直接通过解不等式得到一阶导函数的符号时,可对“主导”函数再次求导,使解题思路清晰.“再构造、再求导”是破解函数综合问题的强大武器.在此我们首先要清楚()()()f x f x f x '''、、之间的联系是如何判断原函数单调性的.(1)二次求导目的:通过()f x ''的符号,来判断()f x '的单调性;(2)通过赋特殊值找到()f x '的零点,来判断()f x '正负区间,进而得出()f x 单调性. 【典型例题】例1.(2023春·山东济南·高三统考期中)已知三次函数()()32111212322f x ax a x x =+---.(1)当3a =时,求曲线()y f x =在点()()1,1f 处的切线方程, (2)讨论()y f x =的单调性.例2.(2023·全国·高三专题练习)已知函数()()2122ex f x x a x a -⎡⎤=+-+-⎣⎦,R a ∈,讨论函数()f x 单调性;例3.(2023·全国·高三专题练习)已知函数()()212ln 212f x a x x a x =+-+,a ∈R ,求()f x 的单调区间.例4.(2023·全国·高三专题练习)已知函数()()()22ln 211f x x ax a x a =---+∈R .求函数()f x 的单调区间;核心考点二:导数与数列不等式的综合问题 【规律方法】在解决等差、等比数列综合问题时,要充分利用基本公式、性质以及它们之间的转化关系,在求解过程中要树立“目标意识”,“需要什么,就求什么”,并适时地采用“巧用性质,整体考虑”的方法.可以达到减少运算量的目的.【典型例题】例5.(2023·江苏苏州·苏州中学校考模拟预测)已知函数()1ln f x x a x x=--.(1)若不等式()0f x ≥在()1,+∞上恒成立,求实数a 的取值范围; (2)证明:()()()22211ln 21ni n n i i n n =+-⎛⎫>⎪+⎝⎭∑.例6.(2023春·重庆·高三统考阶段练习)已知函数()e (2)2,x f x x a ax a =-++∈R . (1)当1a =时,求曲线()f x 在点(1,(1))f 处的切线方程; (2)若不等式()0f x ≥对0x ∀≥恒成立,求实数a 的范围; (3)证明:当111,1ln(21)23n n n*∈++++<+N .例7.(2023春·福建宁德·高三校考阶段练习)已知函数()e ax f x x =-(12a ≥). (1)(0,1)x ∈,求证:1sin ln 1x x x<<-;(2)证明:111sin sin sin()23f n n+++<.(ln20.693,ln3 1.099≈≈)核心考点三:双变量问题 【规律方法】破解双参数不等式的方法:一是转化,即由已知条件入手,寻找双参数满足的关系式,并把含双参数的不等式转化为含单参数的不等式;二是巧构函数,再借用导数,判断函数的单调性,从而求其最值;三是回归双参的不等式的证明,把所求的最值应用到双参不等式,即可证得结果. 【典型例题】例8.(2023春·江苏苏州·高三苏州中学校考阶段练习)已知函数()()ln 1R f x x ax a =-+∈. (1)若过原点的一条直线l 与曲线()y f x =相切,求切点的横坐标;(2)若()f x 有两个零点12x x ,,且212x x >,证明:①1228>e x x ; ②2212220+>e x x .例9.(2023春·湖南长沙·高三长郡中学校考阶段练习)已知函数2()e ,2xmx f x m =-∈R . (1)讨论()f x 极值点的个数;(2)若()f x 有两个极值点12,x x ,且12x x <,证明:()()122e f x f x m +<-.例10.(2023·全国·高三专题练习)巳知函数()ln(3)f x x x =+-. (1)求函数f (x )的最大值; (2)若关于x 的方程e ln3,(0)3x a a a x +=>+有两个不等实数根x x ₁,₂,证明: 122e e x xa+>.核心考点四:证明不等式 【规律方法】利用导数证明不等式问题,方法如下:(1)直接构造函数法:证明不等式()()f x g x >(或()()f x g x <)转化为证明()()0f x g x ->(或()()0f x g x -<),进而构造辅助函数()()()h x f x g x =-;(2)适当放缩构造法:一是根据已知条件适当放缩;二是利用常见放缩结论;(3)构造“形似”函数,稍作变形再构造,对原不等式同解变形,根据相似结构构造辅助函数. (4)对数单身狗,指数找基友 (5)凹凸反转,转化为最值问题 (6)同构变形 【典型例题】例11.(2023·全国·高三校联考阶段练习)已知函数()()22ln ,f x x ax bx a b =-+∈R .(1)当0b =时,讨论()f x 的单调性;(2)设12,x x 为()f x 的两个不同零点,证明:当()0,x ∈+∞时,()()12212124sin 2e x x f x x x x +-+<++.例12.(2023·全国·高三校联考阶段练习)已知2()(ln 1)f x x x =+. (1)求()f x 的单调递增区间; (2)若124()()ef x f x +=,且12x x <,证明12ln()ln 21x x +>-.例13.(2023·江苏·高三专题练习)已知函数()ln m x nf x x+=在()()1,1f 处的切线方程为1y =. (1)求实数m 和n 的值;(2)已知()(),A a f a ,()(),B b f b 是函数()f x 的图象上两点,且()()f a f b =,求证:()()ln ln 1a b ab +<+.核心考点五:极最值问题 【规律方法】利用导数求函数的极最值问题.解题方法是利用导函数与单调性关系确定单调区间,从而求得极最值.只是对含有参数的极最值问题,需要对导函数进行二次讨论,对导函数或其中部分函数再一次求导,确定单调性,零点的存在性及唯一性等,由于零点的存在性与参数有关,因此对函数的极最值又需引入新函数,对新函数再用导数进行求值、证明等操作.【典型例题】例14.(2023春·江西鹰潭·高三贵溪市实验中学校考阶段练习)已知函数()31,R 3f x x ax a a =-+∈.(1)当1a =-时,求()f x 在[]22-,上的最值; (2)讨论()f x 的极值点的个数.例15.(2023·江西景德镇·高三统考阶段练习)已知函数21()(2)e e,()2x f x x g x a x x ⎛⎫=-+=- ⎪⎝⎭,其中a 为大于0的常数,若()()()F x f x g x =-. (1)讨论()F x 的单调区间;(2)若()F x 在()1x t t =≠取得极小值,求()g t 的最小值.例16.(2023·浙江温州·统考模拟预测)已知0a >,函数()()()F x f x g x =-的最小值为2,其中1()e x f x -=,()ln()g x ax =.(1)求实数a 的值;(2)(0,)∀∈+∞x ,有(1)1(e )f x m kx k g x +-≥+-≥,求2mk k -的最大值.核心考点六:零点问题 【规律方法】函数零点问题的常见题型:判断函数是否存在零点或者求零点的个数;根据含参函数零点情况,求参数的值或取值范围.求解步骤:第一步:将问题转化为函数的零点问题,进而转化为函数的图像与x 轴(或直线y k =)在某区间上的交点问题;第二步:利用导数研究该函数在此区间上的单调性、极值、端点值等性质,进而画出其图像; 第三步:结合图像判断零点或根据零点分析参数. 【典型例题】例17.(2023·全国·高三专题练习)已知函数()()2e 2x m f x x m =+∈R . (1)若存在0x >,使得()0f x <成立,求m 的取值范围;(2)若函数()()2e e x F x x f x =+-有三个不同的零点,求m 的取值范围.例18.(2023·全国·高三专题练习)设0a >,已知函数()e 2xf x a x =--,和()()ln 22g x x a x =-++⎡⎤⎣⎦.(1)若()f x 与()g x 有相同的最小值,求a 的值;(2)设()()()2ln 2F x f x g x a =++-有两个零点,求a 的取值范围.例19.(2023春·广西·高三期末)已知函数()()ln e axxf xg x x ax ==-,. (1)当1a =时,求函数()f x 的最大值;(2)若关于x 的方()()f x g x +=1有两个不同的实根,求实数a 的取值范围.核心考点七:不等式恒成立问题 【规律方法】1、利用导数研究不等式恒成立问题的求解策略:(1)通常要构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围; (2)利用可分离变量,构造新函数,直接把问题转化为函数的最值问题;(3)根据恒成立或有解求解参数的取值时,一般涉及分离参数法,但压轴试题中很少碰到分离参数后构造的新函数能直接求出最值点的情况,进行求解,若参变分离不易求解问题,就要考虑利用分类讨论法和放缩法,注意恒成立与存在性问题的区别.2、利用参变量分离法求解函数不等式恒(能)成立,可根据以下原则进行求解: (1)x D ∀∈,()()min m f x m f x ≤⇔≤; (2)x D ∀∈,()()max m f x m f x ≥⇔≥; (3)x D ∃∈,()()max m f x m f x ≤⇔≤; (4)x D ∃∈,()()min m f x m f x ≥⇔≥.3、不等式的恒成立与有解问题,可按如下规则转化:一般地,已知函数()y f x =,[],x a b ∈,()y g x =,[],x c d ∈. (1)若[]1,x a b ∀∈,[]2,x c d ∀∈,有()()12f xg x <成立,则()()maxmin f x g x <; (2)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f xg x <成立,则()()maxmax f x g x <;(3)若[]1,x a b ∃∈,[]2,x c d ∃∈,有()()12f xg x <成立,则()()minmax f x g x <;(4)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f xg x =成立,则()f x 的值域是()g x 的值域的子集.【典型例题】例20.(2023·广西南宁·南宁二中校考一模)已知函数()ln 1f x x =+.(1)若函数()()1g x mf x x =+-的图象在1x =处的切线与直线2y x =平行,求函数()g x 在1x =处的切线方程;(2)求证:当12a ≤时,不等式()1af x a +≤在[1,e]上恒成立.例21.(2023·上海·高三专题练习)已知函数()(1)e (R x f x x ax a =--∈且a 为常数). (1)当0a =,求函数()f x 的最小值;(2)若函数()f x 有2个极值点,求a 的取值范围;(3)若()ln e 1x f x x ≥-+对任意的,()0x ∈+∞恒成立,求实数a 的取值范围.例22.(2023·全国·高三专题练习)已知函数()()()e 1ln ln 0x f x a x a x a =+--⋅>.(1)若e a =,求函数()f x 的单调区间; (2)若不等式()1f x <在区间()1,+∞上有解,求实数a 的取值范围.核心考点八:极值点偏移问题与拐点偏移问题 【规律方法】1、极值点偏移的相关概念所谓极值点偏移,是指对于单极值函数,由于函数极值点左右的增减速度不同,使得函数图像没有对称性.若函数)(x f 在0x x =处取得极值,且函数)(x f y =与直线b y =交于),(),,(21b x B b x A 两点,则AB 的中点为),2(21b x x M +,而往往2210x x x +≠.如下图所示.图1 极值点不偏移 图2 极值点偏移极值点偏移的定义:对于函数)(x f y =在区间),(b a 内只有一个极值点0x ,方程)(x f 的解分别为21x x 、,且b x x a <<<21,(1)若0212x x x ≠+,则称函数)(x f y =在区间),(21x x 上极值点0x 偏移;(2)若0212x x x >+,则函数)(x f y =在区间),(21x x 上极值点0x 左偏,简称极值点0x 左偏;(3)若0212x x x <+,则函数)(x f y =在区间),(21x x 上极值点0x 右偏,简称极值点0x 右偏.【典型例题】例23.(2022•浙江期中)已知函数()f x x lnx a =--有两个不同的零点1x ,2x . (1)求实数a 的取值范围; (2)证明:121x x a +>+.例24.(2021春•汕头校级月考)已知,函数()f x lnx ax =-,其中a R ∈. (1)讨论函数()f x 的单调性; (2)若函数()f x 有两个零点, ()i 求a 的取值范围;()ii 设()f x 的两个零点分别为1x ,2x ,证明:212x x e >.例25.(2022•浙江开学)已知a R ∈,()ax f x x e -=⋅(其中e 为自然对数的底数). (ⅰ)求函数()y f x =的单调区间;(ⅰ)若0a >,函数()y f x a =-有两个零点x ,2x ,求证:22122x x e +>.核心考点九:利用导数解决一类整数问题 【规律方法】分离参数、分离函数、半分离 【典型例题】例26.已知函数()ln 2f x x x =--. (1)求函数在()()1,1f 处的切线方程(2)证明:()f x 在区间()3,4内存在唯一的零点;(3)若对于任意的()1,x ∈+∞,都有()ln 1x x x k x +>-,求整数k 的最大值.例27.已知函数211()ln 2f x x x x a a ⎛⎫=+-+ ⎪⎝⎭,(0)a ≠. (1)当12a =时,求函数()fx 在点()()1,1f 处的切线方程;(2)令2()()F x af x x =-,若()12F x ax <-在()1,x ∈+∞恒成立,求整数a 的最大值.(参考数据:4ln 33<,5ln 44<).例28.已知函数()ln 2f x x x =--.(1)证明:()f x 在区间()3,4内存在唯一的零点;(2)若对于任意的()1,x ∈+∞,都有()ln 1x x x k x +>-,求整数k 的最大值.核心考点十:导数中的同构问题【规律方法】1、同构式:是指除了变量不同,其余地方均相同的表达式2、同构式的应用:(1)在方程中的应用:如果方程()0f a =和()0f b =呈现同构特征,则,a b 可视为方程()0f x =的两个根(2)在不等式中的应用:如果不等式的两侧呈现同构特征,则可将相同的结构构造为一个函数,进而和函数的单调性找到联系.可比较大小或解不等式.<同构小套路>①指对各一边,参数是关键;②常用“母函数”:()xf x x e =⋅,()xf x e x =±;寻找“亲戚函数”是关键;③信手拈来凑同构,凑常数、x 、参数;④复合函数(亲戚函数)比大小,利用单调性求参数范围. (3)在解析几何中的应用:如果()()1122,,,Ax y B x y 满足的方程为同构式,则,A B 为方程所表示曲线上的两点.特别的,若满足的方程是直线方程,则该方程即为直线AB 的方程(4)在数列中的应用:可将递推公式变形为“依序同构”的特征,即关于(),n a n 与()1,1n a n --的同构式,从而将同构式设为辅助数列便于求解【典型例题】例29.(2022·河北·高三阶段练习)已知函数()ln f x x x =. (1)讨论()f x 的单调性;(2)设a ,b 为两个不相等的正数,且b a a b =,证明:2111e a b<+<.例30.(2022·河南郑州·二模(文))已知函数()e 21e xf x x =⋅-+,()ln 2xg x x=+. (1)求函数()g x 的极值;(2)当x >0时,证明:()()f x g x ≥例31.(2022·河南省浚县第一中学模拟预测(理))已知函数()()e x f x ax a =-∈R .(1)讨论f (x )的单调性.(2)若a =0,证明:对任意的x >1,都有()4333ln f x x x x x ≥-+.核心考点十一:洛必达法则 【规律方法】法则1、若函数()f x 和()g x 满足下列条件: (1)()lim 0x af x →=及()lim 0x ag x →=;(2)在点a 的去心邻域()(),,a a a a εε-⋃+内,()f x 与()g x 可导且()0g x '≠; (3)()()limx af x lg x →'=',那么()()lim x a f x g x →=()()lim x a f x l g x →'='.法则2、若函数()f x 和()g x 满足下列条件:(1)()lim 0x f x →∞=及()lim 0x g x →∞=; (2)0A ∃>,()f x 和()g x 在(),A -∞与(),A +∞上可导,且()0g x '≠; (3)()()limx f x l g x →∞'=',那么()()limx f x g x →∞=()()limx f x l g x →∞'='.法则3、若函数()f x 和()g x 满足下列条件: (1)()lim x af x →=∞及()lim x ag x →=∞;(2)在点a 的去心邻域()(),,a a a a εε-⋃+内,()f x 与()g x 可导且()0g x '≠; (3)()()limx af x lg x →'=', 那么()()limx af xg x →=()()limx af x lg x →'='. 注意:利用洛必达法则求未定式的极限是微分学中的重点之一,在解题中应注意: (1)将上面公式中的x a →,,x x →+∞→-∞,x a +→,x a -→洛必达法则也成立. (2)洛必达法则可处理00,∞∞,0⋅∞,1∞,∞,,∞-∞型.(3)在着手求极限以前,首先要检查是否满足00,∞∞,0⋅∞,1∞,∞,,∞-∞型定式,否则滥用洛必达法则会出错.当不满足三个前提条件时,就不能用洛必达法则,这时称洛必达法则不适用,应从另外途径求极限.(4)若条件符合,洛必达法则可连续多次使用,直到求出极限为止.()()()()()()limlimlimx ax ax a f x f x f x g x g x g x →→→'''==''',如满足条件,可继续使用洛必达法则. 【典型例题】例32.已知函数()=ln (,)f x a x bx a b R +∈在12x =处取得极值,且曲线()y f x =在点(1,(1))f 处的切线与直线10x y -+=垂直.(1)求实数,a b 的值;(2)若[1,)x ∀∈+∞,不等式()(2)mf x m x x≤--恒成立,求实数m 的取值范围.例33.设函数()1x f x e -=-.(1)证明:当1x >-时,()1xf x x ≥+; (2)设当0x ≥时,()1xf x ax ≤+,求a 的取值范围.例34.设函数sin ()2cos xf x x=+.如果对任何0x ≥,都有()f x ax ≤,求a 的取值范围.22sin 2sin 2sin (sin )x x x x x x =-=-核心考点十二:导数与三角函数结合问题 【规律方法】 分段分析法【典型例题】例35.(2023·河南郑州·高三阶段练习)已知函数()1sin e xx f x x -=+,ππ,2x ⎡⎤∈-⎢⎥⎣⎦. (1)求证:()f x 在ππ,2⎡⎤-⎢⎥⎣⎦上单调递增;(2)当[]π,0x ∈-时,()sin e cos sin xf x x x k x --⎡⎤⎣⎦恒成立,求k 的取值范围.例36.(2023春·江苏苏州·高三苏州中学校考阶段练习)已知函数()sin ()cos f x x x a x =-+(a 为常数),函数3211()32g x x ax =+.(1)证明:(i )当0x >时,sin x x >; (ii )当0x <时,sin x x <;(2)证明:当0a ≥时,曲线()y f x =与曲线()y g x =有且只有一个公共点.例37.(2023·全国·高三专题练习)已知函数π()e sin sin ,[0,π]4xf x x x x ⎛⎫=-∈ ⎪⎝⎭.(1)若1a ≤,判断函数()f x 的单调性; (2)证明:e (π)1sin cos x x x x -+≥-.【新题速递】1.(2023·北京·高三专题练习)已知1x =是函数()()ln ln ln 21xf x x ax x=-+++的一个极值点. (1)求a 值;(2)判断()f x 的单调性;(3)是否存在实数m ,使得关于x 的不等式()f x m ≥的解集为()0,∞+?直接写出m 的取值范围.2.(2023春·广东广州·高三统考阶段练习)已知()214ln 2f x x x a x =-+. (1)若函数()f x 在区间(0,)+∞上单调递增,求实数a 的取值范围; (2)若函数()f x 有两个极值点12,x x ,证明:()()1210ln f x f x a +>-+.3.(2023春·广东广州·高三统考阶段练习)已知函数()()2e 21xf x x ax =+-,其中R a ∈,若()f x 的图象在点()()0,0f 处的切线方程为210x by ++=. (1)求函数()f x 的解析式;(2)求函数()f x 在区间[]3,1-上的最值.4.(2023·全国·高三专题练习)已知函数2()1f x x =-,()ln(1)g x m x =-,R m ∈. (1)若直线:20l x y -=与()y g x =在(0,(0))g 处的切线垂直,求m 的值;(2)若函数()()()h x g x f x =-存在两个极值点1x ,2x ,且12x x <,求证:()()1122x h x x h x >.5.(2023·北京·高三专题练习)已知函数()2e x f x =,直线:2l y x b =+与曲线()y f x =相切.(1)求实数b 的值;(2)若曲线()y af x =与直线l 有两个公共点,其横坐标分别为(,)m n m n <. ①求实数a 的取值范围; ②证明:()()1f m f n ⋅>.6.(2023春·陕西西安·高三统考期末)已知函数()()33ln af x x a x x=--+. (1)当0a =时,求函数()f x 的单调区间;(2)若[]1,e x ∀∈,()0f x <,求实数a 的取值范围.7.(2023·四川资阳·统考模拟预测)已知函数()31f x x ax =-+.(1)当1a =时,过点()1,0作曲线()y f x =的切线l ,求l 的方程; (2)当0a ≤时,对于任意0x >,证明:()cos f x x >.8.(2023·四川资阳·统考模拟预测)已知函数()22e xx f x ax +=++. (1)若()f x 单调递增,求a 的取值范围;(2)若()f x 有两个极值点12,x x ,其中12x x <,求证:2133x x a ->-.9.(2023·全国·高三专题练习)已知函数()()43,R,04a f x x ax bx ab a =--∈≠ (1)若0b =,求函数()f x 的单调区间;(2)若存在0R x ∈,使得()()00f x x f x x =+-,设函数()y f x =的图像与x 轴的交点从左到右分别为A ,B ,C ,D ,证明:点B ,C 分别是线段AC 和线段BD 的黄金分割点.(注:若线段上的点将线段分割成两部分,且其中较长部分与全长之比等于较短部分与较长部分之比,则称此点为该线段的黄金分割点)10.(2023·江西景德镇·统考模拟预测)已知函数()()2e e xf x x =-+,()()2112g x a x x ⎛⎫=-- ⎪⎝⎭,()()ln 1ln h x x x a =-+,其中a 为常数,若()()()()F x f x g x h x =-+.(1)讨论()F x 的单调区间;(2)若()F x 在()1x t t =≠取得极小值,且()()f t mh t ≥恒成立,求实数m 的取值范围.11.(2023·全国·高三专题练习)已知抛物线C :24y x =的焦点为F ,过点P (2,0)作直线l 交抛物线于A ,B 两点.(1)若l 的倾斜角为π4,求△F AB 的面积;(2)过点A ,B 分别作抛物线C 的两条切线1l ,2l 且直线1l 与直线2l 相交于点M ,问:点M 是否在某定直线上?若在,求该定直线的方程,若不在,请说明理由.12.(2023春·江西赣州·高三赣州市赣县第三中学校考期中)已知函数()21ln 2f x x ax =-,()()21e 112x g x x ax a x =--+-,(1)求函数()y f x =的单调区间;(2)若对于定义域内任意x ,()()f x g x ≤恒成立,求实数a 的取值范围.。
导数与数列型不等式的整合
中学数学研究
分析:题设条件是一个数列递推武,直接论 证结论比较困难,若能先求出数列通项,则可转 化为证明关于竹的不等式.
证明:由递推式得3¨‘口。+1=3‰。+3净 3“+1口。+l一3%。=3,.‘.{3%。}是以3口l为首 项,3为公差的等差数列’..。3‰。=3盘l+(,2一
“、“
17
万与一丢(愚≥2).当,z=1时,显然成立;当竹
≥2时,毒口t≤4+[(1一丢)十(丢一号)+…+
(击一昙)]-5一吾<5.
②^瓦=蕊了忌而=南一 南,壹厄磊=(詈一号)+(号一号)+
…+(寿与一看h)=2一磊h.
综上,原不等式得证. 例3 过P(1,0)作曲线C:y=≯(工∈ (0,+∞),志∈N’,志>1)的切线,切点为Q1, 设Q1在工轴上的投影为P,,又过P,作曲线
1).两边取对数并利用巴知不等式碍ln口。十t≤
ln(1+杰+去j+ln%由例5(1)知ln(1+
z)≤z,所以ln(1+杰+刍)≤杰+
理‘十聍
Z“
咒‘+,2
去.故1n口。+-一Ino≤i矗≮可+毒(咒≥1).
1n口H=ln口l+(1nn2一lnnl)+(1n口3一ln口2)+…
+(1n口。一ln%,)≤南+焘+…+ 毒‰+丢+壶+...+刍=·一号+号一
பைடு நூலகம்
+c;·23+…+2”>4c:』2咒(,z一1),.·.焉< 果.
赡簟业童警}■}蕾}坐|}簟簟■}誊■章j‘皇重E誓}警}■章坐誊誊蕾}鲁}■}坐坐业坐jI譬警e—}蕾}簟jk■}誓}童}■}簟■}■P
导数与数列型不等式的整合
四川省苍溪中学 (628400)林明成姚智铭
数列型不等式在研究数列的单调性、有界 性、极限的存在性、甚至求极限中,都有特殊的 作用.数列型不等式的证明问题,既需要证明不 等式的基本思路和方法,又要结合数列本身的 结构和特点,有着较强的技巧性,是传统的综合 性问题.将导数内容与传统的综合性问题—— 数列型不等式有机地结合在一起,设计综合题, 充当把关者的角色,体现了导数的工具性作用, 凸显‘了知识的纵横联系,加强了能力的考察力 度,符合新课程高考的方向.一些构思精巧、新 颖别致、极富思考性和挑战性的导数与数列型 不等式整合的命题不断涌现,并已成为近几年 高考的一个新亮点,引人注目,令人回味.本文 通过几例说明“导数与数列型不等式整合”的题 型特征及其解题方法.
导数数列型不等式证明问题
导数数列型不等式的证明涉及到导数的概念、性质和运算,通常需要运用放缩、构造辅助函数、微分中值定理等方法。
以下是一些常见的导数数列型不等式的证明方法:
放缩法:通过放缩不等式,使得不等式的证明变得更加容易。
例如,可以利用导数的性质,将原不等式转化为容易证明的等式或不等式。
构造辅助函数法:根据导数的性质,构造出一个辅助函数,通过研究该函数的性质,证明不等式。
例如,可以构造一个函数,使其在指定区间上单调递增或递减,从而证明不等式。
微分中值定理法:利用微分中值定理,将不等式转化为一个容易证明的等式或不等式。
例如,可以根据微分中值定理,将原不等式转化为一个关于某个变量的函数,然后对该函数求导,证明其单调性,从而证明不等式。
需要注意的是,在证明导数数列型不等式时,需要充分理解导数的性质和运算规则,并能够灵活运用。
同时,还需要注重证明过程中的严谨性和准确性,避免出现错误。
导数与数列不等式结合解题技巧
导数与数列不等式结合是数学中一个重要的解题技巧,它涉及到函数的单调性、极值、最值等概念,以及数列的单调性、不等式性质等知识。
下面是一些导数与数列不等式结合解题的技巧:
1. 构造函数:根据题目条件,通过构造适当的函数,将问题转化为求函数的极值或最值问题。
2. 求导数:对构造的函数求导数,利用导数的性质判断函数的单调性。
3. 利用单调性:根据函数的单调性,结合数列不等式的性质,推导出不等式的结论。
4. 寻找临界点:在求解过程中,寻找函数的临界点,这些点可能是极值点或拐点,对于解决问题至关重要。
5. 转化问题:在解决问题时,有时需要将问题转化为其他形式,例如将不等式问题转化为函数问题,以便更好地利用已知条件和解题技巧。
6. 综合分析:在解题过程中,需要综合运用数学知识,如函数、导数、数列、不等式等,进行全面的分析和推理。
7. 检验结论:在得出结论后,需要进行检验,以确保结论的正确性和合理性。
总之,导数与数列不等式结合解题需要灵活运用各种数学知识和技巧,通过构造函数、求导数、利用单调性等方法,逐步推导出问题的结论。
同时需要注意检验结论的正确性和合理性。
2-3-23函数、导数与不等式、解析几何、数列型解答题
前 n 项和.
数学(理) 第8页 新课标· 高考二轮总复习
[分析] 本题主要考查等比数列的通项公式、 数列求 和及对数运算. 考查灵活运用基本知识解决问题的能力、 运算求解能力和创新思维能力.对于通项公式,可以利 用基本量法求出首项和公比;对于数列求和,可通过对 数运算求出 bn,然后利用裂项法求和.
第二部分
高考题型解读
数学(理) 第1页 新课标· 高考二轮总复习
题型三
解答题
数学(理) 第2页 新课标· 高考二轮总复习
第二十三讲
函数、导数与不等式、
解析几何、数列型解答题
数学(理) 第3页 新课标· 高考二轮总复习
好方法好成绩
1.函数与不等式型解答题一直是高考的压轴题之 一,这类解答题的命题方式灵活多变,其主要特点有两 个:一是涉及的知识面广泛,从简单的一次函数到复杂 的复合后的指数、对数函数及导数等;二是试题中蕴含 着丰富的数学思想方法,考生必须对数学思想方法有较 为深刻的领会,才能做出正确的解答.这类试题中值得 注意的题型是:函数、导数与不等式恒成立问题,利用
1 h(x)>0,可得 2h(x)<0.与题设矛盾. 1-x (ⅲ)设 k≥1.此时 h′(x)>0, h(1)=0, 而 故当 x∈(1, 1 +∞)时,h(x)>0,可得 2h(x)<0.与题设矛盾. 1-x 综合得,k 的取值范围为(-∞,0].
数学(理) 第17页 新课标· 高考二轮总复习
【热点例 3】 (2011· 新课标全国卷)在平面直角坐标 系 xOy 中,已知点 A(0,-1),B 点在直线 y=-3 上, → → → → → → M 点满足MB∥OA,MA· =MB· ,M 点的轨迹为曲 AB BA 线 C. (1)求 C 的方程; (2)P 为 C 上的动点,l 为 C 在 P 点处的切线,求 O 点到 l 距离的最小值.
导数、数列、不等式知识点
导数及其应用一.导数的概念:x x f x x f x f x ∆-∆+=→∆)()(lim )(0'.二.导数的几何意义: (1) 导数的几何意义: 函数在y=f(x)在x 0处的导数,就是曲线y=f(x)在点P(x 0,f(x 0))处的切线的斜率。
也就是说,曲线y=f(x)在点P(x 0, f(x 0))处的切线斜率是)('0x f 。
相应地,切线方程为:))(('000x x x f y y -=-。
注:在导数几何意义的应用过程中,应注意几种关系:① 切点),(00y x P 在曲线上,即)(00x f y =;②切点),(00y x P 也在切线上; ③在切点处的切线斜率为)('0x f k = (2)求曲线过点),(00y x P 的切线方法:①设切点为),(11y x M ;②求导得)('1x f ;③列方程组⎪⎩⎪⎨⎧-=-=)()(')(1011011x x x f y y x f y ,解出x 1 ④点斜式写出切线方程:))(('000x x x f y y -=-注:曲线在P 点处的切线与曲线过点P 的切线不是同一个概念:前者P 点为切点;后者P 点可能是切点也可能不。
一般曲线的切线与曲线可以有两个以上的切点。
三、导数的计算 (1)常见函数的导数: 1.0='C 2.1)(-='n n nx x 3.xx e e =')( 4.a a a x x ln )(=' 5.1(ln )x x'= 6.a x e x x a a ln 1log 1)(log =='7.x x cos )(sin =' 8.x x sin )(cos -='(2)导数的四则运算1.和差:()u v u v '''±=± 2.积:v u v u uv '+'=')( 3.商:2)(v v u v u v u '-'=' 四、判断函数的单调性:设函数y=f(x)在区间(a ,b )内可导(1) 如果恒有0)('>x f ,则函数f(x)在区间(a ,b )内为增函数;(2) 如果恒有0)('<x f ,则函数f(x)在区间(a ,b )内为减函数;(3) 如果f(x)在区间(a ,b )上递增(或递减),则在该区间内0)('≥x f (或0)('≤x f )。
高考数学导数与不等式 导数方法证明不等式
探究点二 双变量不等式的证明
[思路点拨]首先求得导函数的解析式,然后结合导函数的符号即可确定函数的单调性;解: f'(x)=1-ln x-1=-ln x,x∈(0,+∞).当x∈(0,1)时,f'(x)>0,f(x)单调递增;当x∈(1,+∞)时,f'(x)<0,f(x)单调递减.所以f(x)在(0,1)上单调递增,在(1,+∞)上单调递减.
[总结反思]待证不等式的两边含有同一个变量时,一般地,可以直接构造“左减右”的函数,即若证明f(x)>g(x)在区间D上恒成立,则构造函数h(x)=f(x)-g(x),再根据函数h(x)的单调性,证明h(x)>0在区间D上恒成立.
课堂考点探究
课堂考点探究
变式题 [2021·云南师大附中模拟] 已知函数f(x)=aex+b,若f(x)的图像在点(0,f(0))处的切线方程为y=x+1.(1)求a,b的值;
课堂考点探究
例2 [2021·辽宁丹东二模] 已知函数f(x)=ln(ax)-x+a.(2)当0<a≤1时,证明:f(x)≤(x-1)ex-a-x+a.
第7讲 构造函数解不等式(学生版)2023年高考数学重难突破之导数、数列(全国通用)
第七讲构造函数法解决导数不等式思维导图——知识梳理脑洞(常见考法):浮光掠影,抑或醍醐灌顶考法一加减法模型构造函数思维导图-----方法梳理1.对于不等式()k x f >'()0≠k ,构造函数()()bkx x f x g +-=2.形如(x)g(x)f >或(x)g(x)f <的函数不等式,(1).可以构造函数)(-)(x g x f x F =)(,然后求)(x F 的最大值和最小值;(2).如果(x)0g >,我们也可以构造函数()(x)(x)f G xg =,求()G x 的最值.,且为且当A .c a b >>B .c b a >>C .a b c >>D .a c b>>围观(典型例题):一叶障目,抑或胸有成竹例1.(2021·四川广元市·高三三模)已知定义在R 上的偶函数()f x ,其导函数为()f x ',若()2()0xf x f x '->,(3)1f -=,则不等式()19f x x x <的解集是()A.(,3)(0,3)-∞- B.()3,3-C.(3,0)(0,3)-⋃D.(,3)(3,)-∞-⋃+∞例2.(2022·广东·华南师大附中高三阶段练习)设函数()f x '是奇函数()(R)f x x ∈的导函数,(1)0f -=,当0x >时,()()0xf x f x '->,则使得()0f x >成立的x 取值范围是()A .(,1)(1,)-∞-+∞ B .(1,0)(0,1)-⋃C .(,1)(0,1)-∞-⋃D .(1,0)(1,+)-⋃∞例3.(2022·西藏昌都市第四高级中学一模(理))已知函数()f x 是定义在−∞,∪,+∞的奇函数,当()0x ∈+∞,时,()()xf x f x '<,则不等式()()()52+25<0f x x f --的解集为()A .()()33-∞-⋃+∞,,B .()()3003-⋃,,C .()()3007-⋃,,D .−∞,−∪,套路(举一反三):手足无措,抑或从容不迫1.(2021·安徽高二月考(理))设函数()f x 是定义在()0,∞+上的可导函数,其导函数为()'f x ,且有()()2'f x xf x >,则不等式()()()24202120212f x x f ->-的解集为()A .()2021,2023B .()0,2022C .()0,2020D .()2022,+∞2.(2020·广州市育才中学高二月考)函数()f x 的导数为()'f x ,对任意的正数x 都有()()2'f x xf x >成立,则()A .()()9243f f >B .()()9243f f <C .()()9243f f =D .()92f 与()43f 的大小不确定3.(2015新课标Ⅱ)设函数()f x '是奇函数()()f x x R ∈的导函数,(1)0f -=当0x >时,'()()xf x f x -0<,则使得f (x )>0成立的x 的取值范围是()A .()(),10,1-∞- B .()()1,01,-+∞ C .()(),11,0-∞-- D .()()0,11,+∞ 题型二:构造()()nx F x e f x =或()()nxf x F x e =(n Z ∈,且0n ≠)型思维导图-----方法梳理类型一:构造可导积函数1])([)]()(['=+'x f e x nf x f e nx nx 高频考点1:])([)]()(['=+'x f e x f x f e x x 类型二:构造可商函数①])([)()('=-'nxnx ex f e x nf x f 高频考点1:])([)()('=-'xx ex f e x f x f 围观(典型例题):一叶障目,抑或胸有成竹例1.(2021·内蒙古锡林郭勒盟)设函数()'f x 是函数()f x 的导函数,x R ∀∈,()()0f x f x '+>,且(1)2f =,则不等式12()x f x e ->的解集为()A.(1,)+∞B.(2,)+∞C.(,1)-∞D.(,2)-∞例2.(2022·陕西榆林·三模)已知()f x 是定义在R 上的函数,()'f x 是()f x 的导函数,且()()1f x f x '+>,(1)2f =,则下列结论一定成立的是()A .12(2)f +<e eB .1(2)f +<e eC .12(2)f +>e eD .1(2)f +>e e例3.(2021·赤峰二中高三月考)定义在R 上的函数()f x 满足()()1f x f x >-',()06f =,则不等式()51x f x e>+(e 为自然对数的底数)的解集为()A.()0,∞+B.()5,+∞C.()(),05,-∞⋃+∞D.(),0-∞套路(举一反三):手足无措,抑或从容不迫1.(2020·贵州贵阳·高三月考(理))已知()f x '是函数()f x 的导数,且满足()()0f x f x '+>对[]0,1x ∈恒成立,A ,B 是锐角三角形的两个内角,则下列不等式一定成立的是()A .()()sin sin sin sin e eB A f A f B <B .()()sin sin sin sin e e B A f A f B >C .()()sin cos cos sin e e B Af A f B <D .()()sin cos cos sin e e B Af A f B >2.(2022·宁夏·平罗中学高三阶段练习(文))设()f x 是定义在R 上的函数,其导函数为()f x ',若()()1f x f x '+>,()02018f =,则不等式()e e 2017x x f x >+(其中e 为自然对数的底数)的解集为()A .(),0∞-B .()(),02017,-∞⋃+∞C .()2017,+∞D .()0,∞+3.(2022·陕西渭南·高二期末(理))已知定义在R 上的函数()f x 的导函数为()f x ',对任意R x ∈满足()()0f x f x '+<,则下列结论一定正确的是()A .()()23e 2e 3f f >B .()()23e 2e 3f f <C .()()32e 2e 3f f >D .()()32e 2e 3f f <围观(典型例题):一叶障目,抑或胸有成竹例1.(2021·全国高三)定义在R 上的函数()f x 的导函数为()f x ',若对任意实数x ,有()()f x f x '>,且()2022f x +为奇函数,则不等式()20220xf x e +<的解集是()A.(),0-∞B.−∞,l BC.()0,∞+D.()2022,+∞例2.(2020·吉林高三月考(理))已知定义在R 上的可导函数()f x 的导函数为'()f x ,满足'()()f x f x <,且(2)f x +为偶函数,(4)1f =,则不等式()x f x e <的解集为()A .(,0)-∞B .(0,)+∞C .()4,e-∞D .()4,e +∞例3.(河南省多校联盟2022)已知函数()f x 的导函数为()f x ',若对任意的R x ∈,都有()()2f x f x >'+,且()12022f =,则不等式()12020e 2x f x --<的解集为()A .()0,∞+B .1,e ⎛⎫-∞ ⎪⎝⎭C .()1,+∞D .(),1-∞例4.(2021·全国高三)已知定义在R 上的函数()f x 的导函数为()'f x ,且满足()()0f x f x '->,2021(2021)f e =,则不等式31(ln )3f x x <的解集为()A.6063(,)e +∞B.2021(0,)e C.2021(,)e +∞D.6063(0,)e 套路(举一反三):手足无措,抑或从容不迫1.(2022·湖北·襄阳五中高三开学考试)设()f x '是定义在R 上的连续的函数()f x 的导函数,()()2e 0xf x f x '-+<(e 为自然对数的底数),且()224e f =,则不等式()2e x f x x >的解集为()A .()()2,02,-+∞B .()e,+∞C .()2,+∞D .()(),22,∞∞--⋃+2.(2022·陕西·宝鸡市渭滨区教研室高二期末(理))已知()f x 是定义在R 上的函数,其导函数为()f x ',且不等式()()f x f x '>恒成立,则下列不等式成立的是()A .e (1)(2)f f >B .()()e 10f f -<C .()()e 21f f ->-D .()()2e 11f f ->3.(2022·江西省信丰中学高二阶段练习(文))若定义在R 上的函数()f x 的导函数()f x '为,且满足()()f x f x '>,则(2017)f 与e (2016)f ⋅的大小关系为()A .(2017)f <e (2016)f ⋅B .(2017)f =e (2016)f ⋅C .(2017)f >e (2016)f ⋅D .不能确定4.(2022·江苏·涟水县第一中学高三阶段练习)()f x 是定义在R 上的函数,()f x '是()f x 的导函数,已知()()f x f x '>,且(1)e f =,则不等式()2525e 0x f x --->的解集为()A .(),3-∞-B .(),2-∞-C .()2,+∞D .()3,+∞5.(2021·江苏高二月考)已知定义在R 上的函数()f x 的导函数为()f x ',满足()()0f x f x '->,若()()2211x ax e f ax ef x +>-恒成立,则实数a 的取值范围为___________.2.(2022·吉林·长岭县第三中学高三阶段练习)已知奇函数()f x 的定义域为,00,22ππ⎛⎫⎛⎫-⋃ ⎪ ⎪⎝⎭⎝⎭,其导函数是'()f x .当0,2x π⎛⎫∈ ⎪⎝⎭时,'()sin ()cos 0f x x f x x -<,则关于x 的不等式()2sin 6f x f x π⎛⎫< ⎪⎝⎭的解集为()A .,0,266πππ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭B .,,2662ππππ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭C .,00,66ππ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭ D .,0,662πππ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭3.(2022·湖北·高二阶段练习)奇函数()f x 定义域为()(),00,ππ-⋃,其导函数是()f x '.当0πx <<时,有()()sin cos 0f x x f x x '-<,则关于x 的不等式()2sin 4f x f x π⎛⎫< ⎪⎝⎭的解集为()A .(4π,π)B .,,44ππππ⎛⎫⎛⎫--⋃ ⎪ ⎪⎝⎭⎝⎭C .,00,44ππ⎛⎫⎛⎫-⋃ ⎪ ⎪⎝⎭⎝⎭D . ,0,44πππ⎛⎫⎛⎫-⋃ ⎪ ⎪⎝⎭⎝⎭4.(2021·甘肃省武威第二中学高二期中(理))对任意0,2x π⎛⎫∈ ⎪⎝⎭,不等式()()sin cos x f x x f x ⋅⋅'<恒成立,则下列不等式错误的是()A .234f f ππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭>B .()2cos113f f π⎛⎫⋅ ⎪⎝⎭>C .()2cos114f f π⎛⎫⋅ ⎪⎝⎭<D .6426f f ππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭<op上的奇函数,且套路(举一反三):手足无措,抑或从容不迫。
大招4导数与数列不等式
大招4导数与数列不等式 大招总结导数与数列型不等式的交汇问题, 主要用到两个方面的知识点: 第一, 学生要学会找到不等式右边和 的通项; 第二, 要学会运用放缩比较不等式左边的通项与右边的通项的大小. 我们通过几道例题来给大家讲解.数列不等式常用通项求法有如下两种:(1n n n n a S S a -=- 为通项, n S 为前 n 项和 )(1nn n n T a a T -=为通项, n T 为前 n 项积 ) 导数常见放缩技巧:11e 11ln 1$,$e e $,$ln ex x x x x x x x x x +>>--典型例题例1. 设函数()ln(1),()(),0f x x g x xf x x =+=', 其中()f x '是()f x 的导函数. (1) ()*11()(),()(),n n g x g x g x g g x n +==∈N , 求()n g x 的表达式;(2)若()()f x ag x 恒成立,求实数a 的取值范围; (3)设*n ∈N , 比较(1)(2)()g g g n +++与()n f n -的大小, 并加以证明.解:11(1)()ln(1),()(),0,(),(),()()11xf x xg x xf x x f x g x g x g x x x=+='∴'===++ , ()1121()(),(),(), 1 ,()11211n n k xx xx g x g g x g x g x n k g x x x x x ++=∴=====++++假设当时111, (), 1 , () 11(1)1(1)11k k xx x x kx g x n k g x x kx k x k x kx+++==∴=+=+++++++则当时也成立.综上, *(),1n xg x n nx=∈+N . (2) ∵()(),(),ln(1)0,011x ax f x ag x g x x x x x=∴+-++ .令()ln(1),1axh x x x x=+-+ 0 , 易知(0)0h = , 则221(1)1(),01(1)(1)a x x x a h x x x x x +-+-'=-=+++ . 当1a 时, ()0h x '在x 0上恒成立, ∴()h x 在[0,)+∞上单调递增, ()(0)0h x h =, 满足条件; 当1a >时, 令()h x '0> , 解得1x a >- , 令()0h x '< , 解得01x a <- . 于是()h x 在[0,1]a -上单调递减, 在(a - 1,)+∞上单调递增,∴(1)(0)0h a h -<=, 与题设矛盾, 综上可知1a . (3)(1)(2)()()g g g n n f n +++>-,证明:要证12(1)(2)()23g g g n +++=+++111ln(1)1231n n n x n n ⎛⎫=-+++>-+ ⎪++⎝⎭, 只需证111ln(1)231n n ⎛⎫+++<+⎪+⎝⎭ . 在(2)中取1a = ,可得ln(1),01x x x x+>>+ , 令*1,x n n=∈N,则11ln 1n n n +⎛⎫> ⎪+⎝⎭, 故有ln2-111ln1,ln3ln 2,,ln(1)ln 231n n n >->+->+ ,上述各式相加可得 11ln(1)23n ⎛+>++⎝ 11n ⎫+⎪+⎭. 例2.已知函数()ln f x tx t x =--.(1)若函数()f x 在[1,)+∞上为增函数,求实数t 的取值范围; (2) 当2n 且*n ∈N 时, 证明:111ln ln 2ln3ln n n+++>. 解:(1) 实数t 的取值范围为[1,)+∞.(2) 证明: 由 (1) 知, 令1t = , 则()1ln f x x x =--在[1,)+∞上为增函数,()(1)0f x f =,即x 1ln x -, 当且仅当1x =时取等号. 要证明11123ln ln ln ln ln 2ln 3ln 121n n n n ⎛⎫⎛⎫⎛⎫+++>=+++ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭, 只需证1ln ln 1n n n ⎛⎫> ⎪-⎝⎭. 在1ln x x -中取(2)x n n =, 有1ln n n ->, 则11ln 1n n >-; 在1ln x x -中取(2)1n x n n =-, 易知1x >, 则1ln 11n n n ⎛⎫> ⎪--⎝⎭.综上可知1ln ln 1n n n ⎛⎫> ⎪-⎝⎭成立, 则原命题成立. 例3. 已知函数()ln 3(,0)f x a x ax a a =--∈≠R . (1) 求函数()f x 的单调区间;(2) 求证:()*ln 2ln3ln 4ln 12,234n n n n n⨯⨯⨯⨯<∈N . 解(1) 由于(1)()(0)a x f x x x-'=>, ①当0a >时, 易知, 当01x <<时, ()0f x '>, 当1x >时, ()0f x '<; 所以()f x 的单调递增区间为(0,1), 递减区间为(1,)+∞;②当0a <时,同理可知 ()f x 的单调递减区间为 (0,1), 递增区间为 (1,)+∞;(2) 证明: 要证()*ln 2ln3ln 4ln 12,234n n n n n⨯⨯⨯⨯<∈N 成立; 只须证()*ln 12,n n n n n n-<∈N 即证()*ln 12,n n n n <-∈N 下面证明此式.令1a =此时()ln 3f x x x =--, 所以(1)4f =-, 由(1)知()ln 3f x x x =--在(1,)+∞上单调递减, ∴当[1,)x ∈+∞时()(1)f x f <, 即ln 10x x -+<, ∴ln 1x x <-对一切(1,)x ∈+∞成立, ∵*2,,0ln 1n n n n ∈∴<<-N .故结论成立.自我检测1. 已知()ln(1)f x x =+.(1) 若21()()4g x x x f x =-+, 求()g x 在[0,2]上的最大值与最小值; (2) 当0x >时, 求证:1111f x x x⎛⎫<< ⎪+⎝⎭; (3) 当n +∈N 且2n 时, 求证:1111111()1234123f n n n++++<<+++++. 解:2111(1) (1) ()ln(1),()1, 4212(1)x x g x x x x g x x x x '-=-++=-+=++ ∴()g x 在[0,1]上单调递减, 在[1,2]上单调递增. ∵3(0)0,(1)ln 2,(2)1ln34g g g ==-+=-+, ∴()g x 在[0,2]上的最大值为1ln3-+,最小值为3ln 24=-+.(2)证明:函数的定义域为(1,)-+∞, 构造函数1()(),()111xh x f x x h x x x -=-∴'=-=++, ∴ 函数在(1,0)-上单调递增, 在(0,)+∞上单调递减, ∴在0x =处,函数取得极大值,也就是最大值, ∴()(0)0,()(0)0,()h x h f x x h f x x =∴-=∴- .. ∵110,x f x x⎛⎫>∴< ⎪⎝⎭构造函数2()(),()1(1)x x x f x x x x ϕϕ=-∴'=++, ∴ 函数在(1,0)-上单调递减, 在(0,)+∞上单调递增, ∴ 在0x =处,函数取得极小, 也就是最小值, ∴()(0)0,()01xx f x xϕϕ=∴-+,∵111110,,11x f f x x x x x⎛⎫⎛⎫>∴<∴<< ⎪ ⎪++⎝⎭⎝⎭. (3) 证明: ∵1()ln(1),()(1)f x x f n f n f n ⎛⎫=+∴--=⎪⎝⎭, 由 (2) 知: 11111,()(1)11f f n f n n n n nn ⎛⎫<<∴<--< ⎪++⎝⎭, ∴111111(1)(0)1,(2)(1),(3)(31),,()(111221331f f f f f f f n f n n<-<<-<<--<<-++++ 11)n -<. 叠加可得 1111111()1234123f n n n++++<<+++++. 2. 已知函数ln (),()xf x kxg x x==. (1)求函数ln ()xg x x=的单调区间; (2)若不等式()()f x g x 在区间 (0,)+∞上恒成立,求实数k 的取值范围;(3)求证:444ln 2ln 3ln 1232en n +++<.解: (1) ∵ln (),0xg x x x=>, 故其定义域为(0,)+∞, ∴21ln ()xg x x-'=, 令()0g x '>, 解得0e x <<, 令()0g x '<, 解得e x >. 故函数的单调递增区间为(0,e), 单调递减区间为(e,)+∞. (2)∵2ln ln 0,,x x x kxk x x >∴, 令23ln 12ln (),()x xh x h x x x-=∴'=,令()0h x '=, 解得x =当x 在(., )+∞内变化时, (),()h x h x '的变化如下表:由表知, 当x =时函数()h x 有最大值, 且最大值为12e, 所以实数k 的取值范围是1,2e ⎡⎫+∞⎪⎢⎣⎭. (3)证明:由(2)知242444222ln 1ln 11ln 2ln 3ln 1111,(2),2e 2e 232e 23x x nx x x x n n ⎛⎫∴⋅++++++< ⎪⎝⎭111111111111111.2e 1223(1)2e 22312e 2en n n n n ⎛⎫⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+++=-+-++-=-< ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⨯⨯--⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎝⎭ 3. 已知函数2()ln(1)f x ax x =++. (1)当14a =-时,求函数()f x 的单调区间; (2)当[0,)x ∈+∞时,函数()y f x =图象上的点都在0x y x ⎧⎨-⎩所表示的平面区域内,求实数a 的取值范围;(3)求证: ()()124821111e 2335592121n n n -⎡⎤⎛⎫⎛⎫⎛⎫++++<⎢⎥ ⎪⎪⎪⨯⨯⨯++⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦(其中*n ∈N ,是自然数的底数) 解:(1)当14a =-时,21()ln(1),(1)4f x x x x =-++>- ,有(2)(1)(),(1)2(1)x x f x x x +-'=->-+,由()0f x '>解得 11x -<< , 由()0f x '<解得: 1,x >∴ 函数()f x 的单调递增区间是(1,1)-, 单调递 减区间是(1,)+∞;(2) 当[0,)x ∈+∞时, 函数()y f x =的图象上的点都在00x y x ⎧⎨-⎩所表示的平面区域内,即当[0x ∈ , )+∞ 时, 不等式()f x x 恒成立, 即2ln(1)ax x x ++恒成立, 设2()ln(1),(0)g x ax x x x =++-, 只需max ()0g x 即可, [2(21)]()1x ax a g x x +-'=+.①当0a =时, ()1xg x x '=-+, 当0x >时, ()0g x '<, 函数()g x 在(0,)+∞上单调递减, ∴()(0)0g x g =成立.②当 0a > 时, 由 [2(21)]()01x ax a g x x +-'==+, 因 1[0,),12x x a∈+∞∴=-.若1102a -< , 即 12a > 时, 在区间(0,)+∞上, ()0g x '> , 函数 ()g x 在 (0,)+∞ 上单调递增, 函数()g x 在[0,)+∞ 上无最大值, 此时不满足;若1102a - , 即102a <时, 函数()g x 在10,12a ⎛⎫- ⎪⎝⎭上单调递减, 在区间11,2a ⎛⎫-+∞ ⎪⎝⎭上单调递增, 同样函数()g x 在[0,)+∞上无最大值, 此时也不满足; ③当0a <时, 有[2(21)](),[0,),2(21)0,()01x ax a g x x ax a g x x +-'=∈+∞∴+-<∴'<+,故函数()g x 在[0,)+∞上单调递减, ∴()(0)0g x g =恒成立, 综上, 实数a 的取值范围是(,0]-∞.(3) 证明: 当0a =时, ln(1)x x +在[0,)+∞上恒成立.()()11211221212121n n n n n--⎛⎫=- ⎪++++⎝⎭, ∵()()12482ln 11112335592121n n n -⎧⎫⎡⎤⎪⎪⎛⎫⎛⎫⎛⎫++++⎢⎥⎨⎬ ⎪⎪⎪⨯⨯⨯++⎝⎭⎝⎭⎝⎭⎢⎥⎪⎪⎣⎦⎩⎭()()12482ln 1ln 1ln 1ln 12335592121nn n-⎡⎤⎛⎫⎛⎫⎛⎫=++++++++⎢⎥ ⎪ ⎪ ⎪⨯⨯⨯++⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦()()124822335592121nn n-<++++⨯⨯⨯++ 11111111122123352121221n n n -⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-++-=-< ⎪ ⎪ ⎪ ⎪⎢⎥+++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦, ∴()()124821111e 2335592121nn n -⎡⎤⎛⎫⎛⎫⎛⎫++++<⎢⎥ ⎪⎪⎪⨯⨯⨯++⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦.。
微专题。用导数证明数列型不等式
微专题。
用导数证明数列型不等式方法1:利用不等式1-≤lnx≤x-1,(x>1)证明数列型不等式背景知识:n=2×3×…×n,lnn=ln2+ln3+…+lnn-11.求证:1+1/2+…+1/n<lnn<1+1/2+…+1/n+(1/n+1)+(1/n+2)+…+(1/2n-1),(n≥2,n∈N*)证明:在不等式中令x>1,1-x≤lnx≤x-1,n=2,3,…,n,可得个不等式,相加可以得证。
ln2+ln3+…+lnn-1≤1+1/2+…+1/nln2+ln3+…+lnn-1>1+1/2+…+1/n+(1/n+1)+(1/n+2)+…+(1/2n-1)2.求证:n≥2,n∈N*,时,2×3×…×n<n^n-1证明:2×3×…×n<2×2×…×2=n^(n-1)3.求证:ln(n^2+1)<1+2lnn!(n≥2,n∈N*)证明:由lnx0),令x=n^2+1,则有ln(n^2+1)<2n^2/(n^2+1)2n^2/(n^2+1)<2lnn。
即n^2/(n^2+1)<lnn。
整理得ln(n^2+1)<1+2lnn!4.已知函数f(x)=xlnx,g(x)=x^2+x-a(a∈R)Ⅰ)若直线x=t(t>0)与曲线y=f(x)和y=g(x)分别交于A,B 两点,且曲线y=f(x)在点A处的切线与y=g(x)在点B处的切线相互平行,求a的取值范围;Ⅱ)设Sn=1/2+1/3+…+1/n,证明:ln(2^2+1)+ln(3^2+1)+…+ln(n^2+1)<2Sn解:(Ⅰ)f(x)=xlnx,(x>0),∴f′(x)=1+lnx,∵曲线y=f(x)在点A处的切线与y=g(x)在点B处的切线相互平行,∴f′(t)=g′(t)在(0,+∞)有解,即lnt=a-t在(0,+∞)有解,∵t>0,∴a>0.令x=e,则得t=e,∴a=e-1 Ⅱ)当x∈(0,e)时,F′(x)>0,F(x)单调递增,其中F(x)=ln(x^2+1),则有ln(2^2+1)+ln(3^2+1)+…+ln(n^2+1)<F(2)+F(3)+…+F(n),由于F(x)单调递增,故F(2)+F(3)+…+F(n)<∫(1,n)F(x)dx,又因为F(x)在(0,+∞)上单调递增,故∫(1,n)F(x)dx<∫(1,n)F(n)dx=nF(n)-ln(n^2+1)/2,所以ln(2^2+1)+ln(3^2+1)+…+ln(n^2+1)<nlnn-ln(n^2+1)/2,即ln(2^2+1)+ln(3^2+1)+…+ln(n^2+1)<2(1/2+1/3+…+1/n)=2Sn。
利用导数证明不等式 高考数学大一轮复习(新高考地区)(解析版)
3.5 利用导数证明不等式【题型解读】【知识储备】1.导数证明不等式方法:(1)构造单函数求最值证明不等式; (2)构造双函数比较最值证明不等式; (3)参变分离转化为具体函数最值证明不等式; (4)不等式放缩证明不等式;(5)双变量不等式证明转化为单变量不等式证明。
2.常用不等式的生成在不等式“改造”或证明的过程中,可借助题目的已知结论、均值不等式、函数单调性、与e x 、ln x 有关的常用不等式等方法进行适当的放缩,再进行证明.下面着重谈谈与e x 、ln x 有关的常用不等式的生成. (1)生成一:利用曲线的切线进行放缩设e x y =上任一点P 的横坐标为m ,则过该点的切线方程为()e e m my x m -=-,即()e 1e m m y x m =+-,由此可得与e x 有关的不等式:()e e1e xmm x m ≥+-,其中x ∈R ,m ∈R ,等号当且仅当x m=时成立.特别地,当0m =时,有e 1x x ≥+;当1m =时,有e e x x ≥. 设ln y x =上任一点Q 的横坐标为n ,则过该点的切线方程为()1ln y n x n n -=-,即11ln y x n n=-+,由此可得与ln x 有关的不等式:1ln 1ln x x n n≤-+,其中0x >,0n >,等号当且仅当x n =时成立.特别地,当1n =时,有ln 1x x ≤-;当e n =时,有1ln ex x ≤.利用切线进行放缩,能实现以直代曲,化超越函数为一次函数. 生成二:利用曲线的相切曲线进行放缩由图1可得1ln x x x -≥;由图2可得1ln e x x≥-;由图3可得,()21ln 1x x x -≤+(01x <≤),()21ln 1x x x -≥+(1x ≥);由图4可得,11ln 2x x x ⎛⎫≥- ⎪⎝⎭(01x <≤),11ln 2x x x ⎛⎫≤- ⎪⎝⎭(1x ≥).综合上述两种生成,我们可得到下列与e x 、ln x 有关的常用不等式: 与e x 有关的常用不等式: (1)e 1x x ≥+(x ∈R ); (2)e e x x ≥(x ∈R ). 与ln x 有关的常用不等式:(1)1ln 1x x x x -≤≤-(0x >); (2)11ln e ex x x -≤≤(0x >);(3)()21ln 1x x x -≤+(01x <≤),()21ln 1x x x -≥+(1x ≥);(4)11ln 2x x x ⎛⎫≥- ⎪⎝⎭(01x <≤),11ln 2x x x ⎛⎫≤- ⎪⎝⎭(1x ≥).用1x +取代x 的位置,相应的可得到与()ln 1x +有关的常用不等式.【题型精讲】【题型一 构造单函数证明不等式】方法技巧 构造单函数证明不等式待证不等式的两边含有同一个变量时,一般地,可以直接构造“左减右”的函数,有时对复杂的式子要进行变形,利用导数研究其单调性和最值,借助所构造函数的单调性和最值即可得证. 例1 (2022·山东济南历城二中高三月考)已知函数f (x )=ln x +ax 2+(2a +1)x . (1)讨论f (x )的单调性; (2)当a <0时,证明f (x )≤-34a-2. 【解析】(1)f ′(x )=2ax 2+(2a +1)x +1x =(2ax +1)(x +1)x .当a ≥0时,f ′(x )≥0,则f (x )在(0,+∞)单调递增.若a <0,则f (x )在⎝⎛⎭⎫0,-12a 单调递增,在⎝⎛⎭⎫-12a ,+∞单调递减. (2)第一次构造辅助函数g (x )=f (x )+34a+2. 要证原不等式成立,需证g (x )max ≤0,即证f (x )max +34a +2≤0.由(1)知,当a <0时,f (x )max =f ⎝⎛⎭⎫-12a .即证ln ⎝⎛⎭⎫-12a +12a+1≤0 不妨设t =-12a >0,则证ln t -t +1≤0,令h (t )=ln t -t +1,求导得h ′(t )=1t -1.h ′(t )>0时,t ∈(0,1);h ′(t )<0时,t ∈(1,+∞).所以h (t )在(0,1)单调递增,在(1,+∞)单调递减,则h (t )max =h (1)=0.故f (x )≤-34a -2.【题型精练】1.(2022·天津·崇化中学期末)已知函数()ln 1a x bf x x x=++,曲线()y f x =在点()()1,1f 处的切线方程为230x y +-=.(1)求a 、b 的值;(2)证明:当0x >,且1x ≠时,()ln 1xf x x >-. 【解析】(1)()()221ln 1x a x bx f x x x +⎛⎫- ⎪⎝⎭'=-+. 由于直线230x y +-=的斜率为12-,且过点()1,1,所以()()11112f f ⎧=⎪⎨'=-⎪⎩,即1122b a b =⎧⎪⎨-=-⎪⎩,解得1a =,1b =. (2)由(1)知()ln 11x f x x x =++,所以()ln ln 1ln 111x x xf x x x x x >⇔+>-+- ()222ln 12110ln 0112x H x x x x x x x ⎡⎤⎛⎫⇔+>⇔=--> ⎪⎢⎥--⎝⎭⎣⎦.构造函数()11ln 2h x x x x ⎛⎫=-- ⎪⎝⎭(0x >),则()()22211111022x h x x x x -⎛⎫'=-+=-≤ ⎪⎝⎭,于是()h x 在()0,+∞上递减.当01x <<时,()h x 递减,所以()()10h x h >=,于是()()2101H x h x x=>-;当1x >时,()h x 递减,所以()()10h x h <=,于是()()2101H x h x x=>-.综上所述,当0x >,且1x ≠时,()ln 1xf x x >-. 2. (2022·山东济南高三期末)设函数()f x alnx x=,a R ∈.(1)讨论函数()f x 的单调性;(2)当1a =且1x >时,证明:213()2x x f x -+>.【解析】解:(1)函数()f x alnx x=+,定义域为(0,)+∞,1()a x f x x x-'=,① 当a ≤0时,()0f x '<,则()f x 在(0,)+∞上单调递减; ②当0a >时,令()0f x '=,解得21x a =, 当21(0,)x a ∈时,()0f x '<, 当21(x a∈,)+∞时,()0f x '>, 所以()f x 的单调递增区间为21(a ,)+∞,递减区间为21(0,)a . 综上所述,当a ≤0时,()f x 的单调递减区间为(0,)+∞; 当0a >时,()f x 的单调递增区间为21(a ,)+∞,递减区间为21(0,)a . (2)证明:当1a =时,令21()3(1)2h x lnx x x x x =+-+->, 则2211(1)(1)()1x x x x xx x x x h x x x x xx xx x--+---'=--+==,因为1x >,则()0h x '<,所以()h x 在(1,)+∞上单调递减, 故()h x h <(1)102=-<,则21302lnx x x x +-+-<,故213()2x x f x -+>. 【题型二 构造双函数比较最值证明不等式】方法技巧 构造双函数比较最值证明不等式若直接求导比较复杂或无从下手时,可将待证式进行变形,构造两个函数,从而找到可以传递的中间量,达到证明的目标.本例中同时含ln x 与e x ,不能直接构造函数,把指数与对数分离两边,分别计算它们的最值,借助最值进行证明.例2(2022·山东青岛高三期末)设函数1()ln x xbe f x ae x x-=+,曲线()y f x =在点(1,(1))f 处的切线方程为(1) 2.y e x =-+(I )求,;a b (II )证明:() 1.f x >【解析】(1)因为()1e f '=,()12f =,而()()12e e e ln x x a x bx bf x a x x-+-'=+,所以()()1e e 12f a f b '⎧==⎪⎨==⎪⎩,解得1a =,2b =.(2)由(1)知,()12e e ln x xf x x x -=+,于是()12e 1e ln 1x xf x x x ->⇔+>,将不等式改造为2ln e ex x x x +>. 令()2ln e m x x x =+,则()1ln m x x '=+.由()0m x '>可得1e x >,由()0m x '<可得10ex <<,所以()m x 在10,e ⎛⎫ ⎪⎝⎭上递减,在1,e⎛⎫+∞ ⎪⎝⎭上递增,所以()min11e em x m ⎛⎫⎡⎤== ⎪⎣⎦⎝⎭.令()e x x n x =,则()1ex xn x -'=.由()0n x '<可得1x >,由()0n x '> 可得01x <<,所以()n x 在()0,1上递增,在()1,+∞上递减,所以()()max11en x n ⎡⎤==⎣⎦. 两个函数的凸性相反.此时,我们可以寻找与两个曲线都相切的公切线1ey =,将两个函数进行隔离,又因为等号不能同时成立,所以2ln e e xx x x +>. 【题型精练】1.(2022·天津市南开中学月考)已知函数f (x )=a ln x +x . (1)讨论f (x )的单调性; (2)当a =1时,证明:xf (x )<e x .【解析】(1) f (x )的定义域为(0,+∞), f ′(x )=ax +1=x +a x .当a ≥0时,f ′(x )>0,所以f (x )在(0,+∞)上单调递增.当a <0时,若x ∈(-a ,+∞),则f ′(x )>0; 若x ∈(0,-a ),则f ′(x )<0.所以f (x )在(-a ,+∞)上单调递增,在(0,-a )上单调递减. 综上所述,当a ≥0时,f (x )在(0,+∞)上单调递增;当a <0时,f (x )在(-a ,+∞)上单调递增,在(0,-a )上单调递减. (2)当a =1时,要证xf (x )<e x , 即证x 2+x ln x <e x ,即证1+ln x x <e x x 2.令函数g (x )=1+ln x x,则g ′(x )=1-ln xx 2.令g ′(x )>0,得x ∈(0,e);令g ′(x )<0,得x ∈(e ,+∞).所以g (x )在(0,e)上单调递增,在(e ,+∞)上单调递减, 所以g (x )max =g (e)=1+1e ,令函数h (x )=e xx 2,则h ′(x )=e x (x -2)x 3.当x ∈(0,2)时,h ′(x )<0;当x ∈(2,+∞)时,h ′(x )>0. 所以h (x )在(0,2)上单调递减,在(2,+∞)上单调递增, 所以h (x )min =h (2)=e 24.因为e 24-⎝⎛⎭⎫1+1e >0,所以h (x )min >g (x )max ,即1+ln x x <e xx2,从而xf (x )<e x 得证.2. (2022·安徽省江淮名校期末)已知函数f (x )=eln x -ax (a ∈R ). (1)讨论函数f (x )的单调性;(2)当a =e 时,证明:xf (x )-e x +2e x ≤0. 【解析】(1)f ′(x )=ex-a (x >0),①若a ≤0,则f ′(x )>0,f (x )在(0,+∞)上单调递增; ②若a >0,则当0<x <ea 时,f ′(x )>0;当x >ea时,f ′(x )<0.故f (x )在⎝⎛⎭⎫0,e a 上单调递增,在⎝⎛⎭⎫ea ,+∞上单调递减. (2)因为x >0,所以只需证f (x )≤e xx-2e ,当a =e 时,由(1)知,f (x )在(0,1)上单调递增,在(1,+∞)上单调递减. 所以f (x )max =f (1)=-e.设g (x )=e xx -2e(x >0),则g ′(x )=(x -1)e x x 2,所以当0<x <1时,g ′(x )<0,g (x )单调递减; 当x >1时,g ′(x )>0,g (x )单调递增, 所以g (x )min =g (1)=-e. 综上,当x >0时,f (x )≤g (x ),即f (x )≤e xx-2e.故不等式xf (x )-e x +2e x ≤0得证. 【题型三 放缩法证明不等式】方法技巧 放缩法证明不等式导数方法证明不等式中,最常见的是e x 和ln x 与其他代数式结合的问题,对于这类问题,可以考虑先对e x 和ln x 进行放缩,使问题简化,简化后再构建函数进行证明.常见的放缩公式如下:(1)e x ≥1+x ,当且仅当x =0时取等号.(2)ln x ≤x -1,当且仅当x =1时取等号. 例3 (2022·河南高三期末)已知函数f (x )=a e x -1-ln x -1. (1)若a =1,求f (x )在(1,f (1))处的切线方程; (2)证明:当a ≥1时,f (x )≥0.【解析】(1)当a =1时,f (x )=e x -1-ln x -1(x >0), f ′(x )=e x -1-1x,k =f ′(1)=0,又f (1)=0,∴切点为(1,0).∴切线方程为y -0=0(x -1),即y =0. (2)∵a ≥1,∴a e x -1≥e x -1,∴f (x )≥e x -1-ln x -1. 方法一 令φ(x )=e x -1-ln x -1(x >0),∴φ′(x )=e x -1-1x ,令h (x )=e x -1-1x ,∴h ′(x )=e x -1+1x 2>0,∴φ′(x )在(0,+∞)上单调递增,又φ′(1)=0,∴当x ∈(0,1)时,φ′(x )<0;当x ∈(1,+∞)时,φ′(x )>0, ∴φ(x )在(0,1)上单调递减,在(1,+∞)上单调递增, ∴φ(x )min =φ(1)=0,∴φ(x )≥0,∴f (x )≥φ(x )≥0,即f (x )≥0. 方法二 令g (x )=e x -x -1,∴g ′(x )=e x -1.当x ∈(-∞,0)时,g ′(x )<0; 当x ∈(0,+∞)时,g ′(x )>0,∴g (x )在(-∞,0)上单调递减,在(0,+∞)上单调递增, ∴g (x )min =g (0)=0,故e x ≥x +1,当且仅当x =0时取“=”. 同理可证ln x ≤x -1,当且仅当x =1时取“=”. 由e x ≥x +1⇒e x -1≥x (当且仅当x =1时取“=”), 由x -1≥ln x ⇒x ≥ln x +1(当且仅当x =1时取“=”), ∴e x -1≥x ≥ln x +1, 即e x -1≥ln x +1,即e x -1-ln x -1≥0(当且仅当x =1时取“=”),即f (x )≥0. 【题型精练】1.(2022·广东·高三期末)已知函数1()1x e f x lnx-=+.(1)求函数()f x 的单调区间; (2)解关于x 的不等式11()()2f x x x>+【解析】(1)函数1()1x e f x lnx -=+.定义域为:11(0,)(,)ee+∞. 121(1)()(1)x e lnx x f x lnx -+-'=+,f '(1)0=. 令1()1g x lnx x =+-,211()0g x x x'=+>, ∴函数()g x 在定义域上单调递增. ∴10x e <<,11x e<<.()0f x '<,函数()f x 单调递减.1x >时,()0f x '>,函数()f x 单调递增. (2)不等式11()()2f x x x>+,即111()12x e x lnx x ->++.10x e <<,()0f x <,舍去.当1x =时,不等式的左边=右边,舍去.1x e∴>,且1x ≠.①11x e <<时,由1x e x ->,要证不等式111()12x e x lnx x ->++.可以证明:11()12x x lnx x >++.等价于证明:22211x lnx x >++.令222()(1)1x F x lnx x =-++. 2222(1)()0(1)x F x x x --'=<+,∴函数()F x 在1(,1)e上单调递减,()F x F ∴>(1)0=. ②当1x >时,不等式⇔12211x e lnxx x -+>+. 令122()1x e h x x -=+,1()lnxu x x+=. 12222(1)()0(1)x e x h x x --'=>+,函数()h x 在(1,)+∞上单调递增, ()h x h ∴>(1)1=.由1lnx x <-,()1u x ∴<.∴不等式12211x e lnxx x-+>+成立. 综上可得:不等式11()()2f x x x >+的解集为:1(,1)(1,)e +∞.【题型四 双变量不等式证明】方法技巧 双变量不等式证明对于两个未知数的函数不等式问题,其关键在于将两个未知数化归为一个未知数,常见的证明方法有以下4种:方法1:利用换元法,化归为一个未知数方法2:利用未知数之间的关系消元,化归为一个未知数 方法3:分离未知数后构造函数,利用函数的单调性证明 方法4:利用主元法,构造函数证明例4 (2022·黑龙江工农·鹤岗一中高三期末)已知函数()1ln f x x a x x=-+. ⑴讨论()f x 的单调性;⑵若()f x 存在两个极值点1x ,2x ,证明:()()12122f x f x a x x -<--.【解析】(1)定义域为()0,+∞,()222111a x ax f x x x x -+'=--+=-. ①若0a ≤,则()0f x '<,()f x 在()0,+∞上递减.②若240a ∆=-≤,即02a <≤时,()0f x '≤,()f x 在()0,+∞上递减.③若240a ∆=->,即2a >时,由()0f x '>2244a a a a x --+-<,由()0f x '<,可得240a a x --<<或24a a x +->,所以()f x 在24a a ⎛-- ⎝⎭,24a a ⎫+-+∞⎪⎪⎝⎭上递减,在2244a a a a --+-⎝⎭上递增.综上所述,当2a ≤时,()f x 在()0,+∞上递减;当2a >时,()f x 在24a a ⎛-- ⎝⎭,24a a ⎫+-+∞⎪⎪⎝⎭上递减,在2244a a a a --+-⎝⎭上递增.【证明】(2)法1:由(1)知,()f x 存在两个极值点,则2a >.因为1x ,2x 是()f x 的两个极值点,所以1x ,2x 满足210x ax -+=,所以12x x a +=,121x x =,不妨设1201x x <<<.()()11221212121211ln ln x a x x a x f x f x x x x x x x ⎛⎫⎛⎫-+--+ ⎪ ⎪-⎝⎭⎝⎭==-- ()()()()21121212121212121212ln ln ln ln ln ln 112x x x x a x x a x x a x x x x x x x x x x x x ---+---=--+=-+---,于是()()()121212212121222ln ln ln ln 2ln 222111f x f x a x x x x x a a x x x x x x x x ----<-⇔-+<-⇔<⇔<⇔----22212ln 0x x x +-<.构造函数()12ln g x x x x =+-,1x >,由(1)知,()g x 在()1,+∞上递减,所以()()10g x g <=,不等式获证.法2:由(1)知,()f x 存在两个极值点,则2a >.因为1x ,2x 是()f x 的两个极值点,所以1x ,2x 满足210x ax -+=,不妨设1201x x <<<,则2214x x a --,121x x =.()()11221212121211ln ln x a x x a x f x f x x x x x x x ⎛⎫⎛⎫-+--+ ⎪ ⎪-⎝⎭⎝⎭==-- ()22111122122*********ln ln ln14124a a x x x x a x x a a x x x x a a x x x x x x a -----++-=--+=----,于是()()22212222124ln44222444a a a f x f x a a a a a a a x x a a a ---+-+-<-⇔-<-⇔----- 22222444ln 4ln 222a a a a a a ⎛-+--⇔-< ⎪⎝⎭.设242a t -=,则244a t +,构造函数())2ln1t t t tϕ=-+,0t >,则()22212111011t t t t t ϕ++'==->+++,所以()t ϕ在()0,+∞上递增,于是()()00t ϕϕ>=,命题获证.法3:仿照法1,可得()()12121212ln ln 21f x f x x x a x x x x --<-⇔<--,因为121x x =,所以1212121121212122211212ln ln ln ln 1ln ln ln x x x x x x xx x x x x x x x x x x x x --<⇔⇔->⇔>--令()120,1x t x =,构造函数()12ln h t t t t=+-,由(1)知,()h t 在()0,1上递减,所以()()10h t h >=,不等式获证.【题型精练】1.(2022·全国高三课时练习)已知函数f (x )=ln x -2(x -1)x +1,g (x )=x ln x -m (x 2-1)(m ∈R ). (1)若函数f (x ),g (x )在区间(0,1)上均单调且单调性相反,求实数m 的取值范围; (2)若0<a <b ,证明:ab <a -b ln a -ln b<a +b2.【解析】 (1)f ′(x )=1x -4(x +1)2=(x -1)2x (x +1)2>0,所以f (x )在(0,1)上单调递增.由已知f (x ),g (x )在(0,1)上均单调且单调性相反,得g (x )在(0,1)上单调递减. 所以g ′(x )=ln x +1-2mx ≤0在(0,1)上恒成立,即2m ≥ln x +1x,令φ(x )=ln x +1x (x ∈(0,1)),φ′(x )=-ln xx 2>0,所以φ(x )在(0,1)上单调递增,φ(x )<φ(1)=1,所以2m ≥1,即m ≥12.(2)由(1)f (x )=ln x -2(x -1)x +1在(0,1)上单调递增,f (x )=ln x -2(x -1)x +1<f (1)=0,即ln x <2(x -1)x +1,令x =a b ∈(0,1)得ln a b <2⎝⎛⎭⎫a b -1a b +1=2(a -b )a +b ,∵ln ab <0,∴a -b ln a -ln b<a +b 2.在(1)中,令m =12,由g (x )在(0,1)上均单调递减得g (x )>g (1)=0,所以x ln x -12(x 2-1)>0,即ln x >12⎝⎛⎭⎫x -1x , 取x =ab∈(0,1)得ln a b >12⎝⎛⎭⎫a b-b a ,即ln a -ln b >a -b ab, 由ln a -ln b <0得:ab <a -b ln a -ln b ,综上:ab <a -b ln a -ln b <a +b2.总结提升 两个正数a 和b 的对数平均定义:(),(, )ln ln ().a ba b L a b a b a a b -⎧≠⎪=-⎨⎪=⎩(, )2a bab L a b +≤≤(此式记为对数平均不等式) 取等条件:当且仅当a b =时,等号成立.2. (2022·全国高三课时练习)已知函数f (x )=ax 2-x -ln 1x.(1)若f (x )的图象在点(1,f (1))处的切线与直线y =2x +1平行,求f (x )的图象在点(1,f (1))处的切线方程; (2)若函数f (x )在定义域内有两个极值点x 1,x 2,求证:f (x 1)+f (x 2)<2ln2-3.【解析】(1)∵f (x )=ax 2-x -ln 1x =ax 2-x +ln x ,x ∈(0,+∞),∴f ′(x )=2ax -1+1x ,∴k =f ′(1)=2a .∵f (x )的图象在点(1,f (1))处的切线与直线y =2x +1平行,∴2a =2,即a =1. ∴f (1)=0,故切点坐标为(1,0).∴切线方程为y =2x -2. (2)∵f ′(x )=2ax -1+1x =2ax 2-x +1x,∴由题意知方程2ax 2-x +1=0在(0,+∞)上有两个不等实根x 1,x 2, ∴Δ=1-8a >0,x 1+x 2=12a >0,x 1x 2=12a >0,∴0<a <18.f (x 1)+f (x 2)=ax 21+ax 22-(x 1+x 2)+ln x 1+ln x 2=a (x 21+x 22)-(x 1+x 2)+ln(x 1x 2)=a [(x 1+x 2)2-2x 1x 2]-(x 1+x 2)+ln(x 1x 2)=ln 12a -14a-1,令t =12a ,g (t )=ln t -t 2-1,则t ∈(4,+∞),g ′(t )=1t -12=2-t 2t<0,∴g (t )在(4,+∞)上单调递减.∴g (t )<ln4-3=2ln2-3,即f (x 1)+f (x 2)<2ln2-3. 【题型五 数列不等式证明】例5 (2022·辽宁省实验中学分校高三期末)已知函数()1ln f x x a x =--.(1)若()0f x ≥,求a 的值(2)设m 为整数,且对于任意正整数,2111111222n m ⎛⎫⎛⎫⎛⎫+++< ⎪⎪⎪⎝⎭⎝⎭⎝⎭,求m 的最小值. 【解析】(1)()f x 的定义域为()0,+∞. ①当1x =时,有()10f =,成立.②当1x >时,11ln 0ln x x a x a x ---≥⇔≤,令()1ln x h x x-=,则()21ln 1ln x x h x x -+'=,令()1ln 1k x x x=-+,则()210x k x x-'=>,所以()k x 在()1,+∞上递增,于是()()10k x k >=,所以()0h x '>,所以()h x 在()1,+∞上递增.由洛必达法则可得1111lim lim 11ln x x x x x++→→-==,所以1a ≤. ③当01x <<时,11ln 0ln x x a x a x ---≥⇔≥,令()1ln x h x x-=,仿照②可得()h x 在()0,1上递增.由洛必达法则可得1111lim lim 11ln x x x x x--→→-==,所以1a ≥. 综上所述,1a =. (2)当1a =时()1ln 0f x x x =--≥,即ln 1x x ≤-,则有()ln 1x x +≤,当且仅当0x =时等号成立,所以11ln 122k k ⎛⎫+< ⎪⎝⎭,*k ∈N ,于是2111ln 1ln 1ln 1222n ⎛⎫⎛⎫⎛⎫++++++< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭21111112222n n+++=-<,所以2111111e222n ⎛⎫⎛⎫⎛⎫+++< ⎪⎪⎪⎝⎭⎝⎭⎝⎭.当3n =时,23111359135111222224864⎛⎫⎛⎫⎛⎫+++=⨯⨯=> ⎪⎪⎪⎝⎭⎝⎭⎝⎭,于是m 的最小值为3.【题型精练】1. (2022·江苏·昆山柏庐高级中学期末)设函数()()ln 1f x x =+,()()g x xf x '=,0x ≥,其中()f x '是()f x 的导函数. (1)若()()f x ag x ≥恒成立,求实数a 的取值范围;(2)设*n ∈N ,比较()()()12g g g n +++与()n f n -的大小,并加以证明.【解析】(1)()11f x x '=+,所以()1xg x x=+. 法1:(分离参数法)当0x =时,()()f x ag x ≥恒成立.当0x >时,()()f x ag x ≥在()0,+∞上恒成立()()()()()1ln 1f x x x a Fx g x x++⇔≤==在()0,+∞上恒成立.()()2ln 1x x F x x -+'=,令()()ln 1G x x x =-+,则()01xG x x'=>+,所以()G x 在()0,+∞上递增,于是()()00G x G >=,即()0F x '>,所以()F x 在()0,+∞上递增. 由洛必达法则,可得()()()001ln 11ln 1lim lim 11x x x x x x++→→++++==,所以1a ≤,于是实数a 的取值范围为(],1-∞.法2:(不猜想直接用最值法)令()()()()ln 11axh x f x ag x x x=-=+-+,则()()()()22111111a x ax x a h x x x x +--+'=-=+++,令()0h x '=,得1x a =-. ①当10a -≤,即1a ≤时,()0h x '≥在[)0,+∞上恒成立,所以()h x 在[)0,+∞上递增,所以()()00h x h >=,所以当1a ≤时,()0h x ≥在[)0,+∞上恒成立.②当10a ->,即1a >时,()h x 在()0,1a -上递减,在()1,a -+∞上递增,所以当1x a =-时()h x 取到最小值,于是()()1ln 1h x h a a a ≥-=-+.设()ln 1a a a ϕ=-+,1a >,则()110a aϕ'=-<,所以函数()a ϕ在()1,+∞上递减,所以()()10a ϕϕ<=,即()10h a -<,所以()0h x ≥不恒成立.综上所述,实数a 的取值范围为(],1-∞. (2)()()()1212231ng g g n n +++=++++,()()ln 1n f n n n -=-+,比较结果为:()()()()12g g g n n f n +++>-.证明如下.上述不等式等价于()111ln 1231n n +>++++.为证明该式子,我们首先证明11ln 1i i i +>+. 法1:在(1)中取1a =,可得()ln 11x x x +>+,令1x i =,可得11ln 1i i i +>+.令1,2,,i n =可得21ln 12>,31ln 23>,…,11ln 1n n n +>+,相加可得()111ln 1231n n +>++++,命题获证. 法2:令1t i =,则()11ln ln 111i t t i i t +>⇔+>++,构造函数()()ln 11tF t t t=+-+,01t <<,则()()()22110111t F t t t t '=-=>+++,于是()F t 在()0,1上递增,所以()()00F t F >=,于是11ln 1i i i +>+. 下同法1.。
导数之数列型不等式证明
导数之数列型不等式证明首先,我们需要明确什么是数列的导数。
在数学中,数列的导数是描述数列变化趋势的一个概念。
对于数列${a_n}$,它的导数数列${b_n}$定义为$b_n=a_{n+1}-a_n$。
导数数列可以用来描述原数列的变化速度。
接下来,我们将通过数学推导来证明一个关于数列导数的不等式。
我们假设${a_n}$是一个递增数列,并要证明它的导数数列${b_n}$也是递增数列。
即$b_n<b_{n+1}$。
证明过程如下:假设数列${a_n}$是一个递增数列,则对于任意的$n$,都有$a_n<a_{n+1}$成立。
我们来观察导数数列${b_n}$,根据导数数列的定义,我们可以得到$b_n=a_{n+1}-a_n$。
要证明导数数列也是递增数列,即证明$b_n<b_{n+1}$成立。
首先,我们将$b_n$表示成数列${a_n}$的形式,即$b_n=a_{n+1}-a_n$。
然后将$b_{n+1}$表示成数列${a_n}$的形式,即$b_{n+1}=a_{n+2}-a_{n+1}$。
然后,我们可以得到$b_{n+1}-b_n=(a_{n+2}-a_{n+1})-(a_{n+1}-a_n)=a_{n+2}-2a_{n+1}+a_n$。
根据数列${a_n}$是递增数列的假设,我们可以得到$a_{n+2}>a_{n+1}$且$a_{n+1}>a_n$。
将这两个不等式代入上面的等式中,我们可以得到$b_{n+1}-b_n=a_{n+2}-2a_{n+1}+a_n>0$。
由此可得,$b_{n+1}>b_n$,即导数数列${b_n}$是递增数列。
综上所述,我们通过数学推导证明了当数列${a_n}$是一个递增数列时,它的导数数列${b_n}$也是一个递增数列。
总结起来,数列导数之不等式证明是通过对数列的导数进行数学推导与证明,验证数列导数的性质。
通过上述证明过程,我们得出了当数列是递增数列时,其导数数列也是递增数列的结论。
导数与数列型不等式的整合
导数与数列型不等式的整合作者:***
来源:《中学生数理化·高考数学》2024年第05期
數列型不等式问题巧妙融合了函数、数列、不等式等相关知识,是知识交汇融合的一个重要场景,是高考数学命题中的一个热点。
特别地,涉及数列型不等式的证明问题,经常还要借
助导数思维来综合与应用,这是综合性问题中最为常见的一种形式。
此类问题在考查众多数学知识的同时,也充分体现了导数的工具性作用,展示了知识的交汇融合,加强了对同学们数学能力的考查力度,充分体现了由知识立意向能力立意转变的命题方向,令人回味。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
关于导数与数列型不等式的解法
导数与数列型不等式的交汇问题,体现了导数的工具性,凸显了知识之间的纵横联系,一些题构思精巧、新颖,加强对能力的考察,逐渐成为高考的新亮点。
本文就2014年高考陕西理数第21题谈起,总结解决此类问题的一般思路和方法。
例1 (2014年高考陕西卷 理21)设函数()ln(1)f x x =+,()'()g x xf x =,0x ≥,其中'()f x 是()f x 的导函数.
(1)11()(),()(()),n n g x g x g x g g x n N ++==∈,求()n g x 的表达式;
(2)若()()f x ag x ≥恒成立,求实数a 的取值范围;
(3)设n N +∈,比较(1)(2)()g g g n +++与()n f n -的大小,并加以证明.
解:(1))1ln()(x x f += ,)(')(x xf x g =,0≥x ,x x f +=
∴11)(',x
x x g +=1)(, )()(1x g x g = ,))(()(1x g g x g n n =+,x x x g +=1)(∴1,x x x
x x x
x g 21111)(2+=+++=, 假设当1≥k n =时,kx x x g k +=1)(,则x k x kx x kx x
x g k )1(1111)(1++=+++=+ ∴当1+=k n 时,x k x x g k )1(1)(1++=
+也成立. 综上,nx
x x g n +=1)(,+N n ∈ (2))(≥)(x ag x f ,x x x g +=
1)(,0≥1)1ln(∴x ax x +-+,0≥x . 令x
ax x x h +-+=1)1ln()(,0≥x ,易知0)0(=h ,则22)1(1)1()1(11)('x a x x x x a x x h +-+=+-+-+=,0≥x . 当1≤a 时,0)('≥x h 在0≥x 上恒成立,∴)(x h 在),0[+∞上单调递增,0)0()(=≥h x h ,满足条件; 当1>a 时,令0)('>x h ,解得1->a x ,令0)('<x h ,解得10-<≤a x .
于是)(x h 在]1,0[-a 上单调递减,在),1(+∞-a 上单调递增,0)0()1(=<-∴h a h ,与题设矛盾, 综上可知1≤a .
(3))()()2()1(n f n n g g g ->+++ ,证明如下: 要证)1ln()113121(13221)()2()1(+->++++-=++++=
+++x n n n n n n g g g , 只需证)1ln()1
13121(+<++++n n .
在(2)中取1=a ,可得x
x x +>
+1)1ln(,0>x , 令n x 1=,*N n ∈,则n
n n +>+11)1ln(, 故有211ln 2ln >-,312ln 3ln >-,…,1
1ln )1ln(+>-+n n n , 上述各式相加可得)113121()1ln(++++>+n n . 从上面的解答方法可以看出,解决问题的方法为由函数得到函数不等式,进而对x 取值,再得到数列不等式,达到解决问题的目的。
在此过程中有两个关键步骤:其一是如何得到函数不等式,其二是如何由函数不等式过渡到数列不等式。
下面通过几道例题来感受一下:
例2 已知函数kx x f =)(,x x x g ln )(=
, (1)求函数x
x x g ln )(=的单调区间; (2)若不等式)()(x g x f ≥在区间),0(+∞上恒成立,求实数k 的取值范围;
(3)求证:
e
n n 21ln 33ln 22ln 444<+++ . 解:(1)函数x
x x g ln )(=的单调增区间为),0(e ,单调减区间为),(+∞e . (2)0>x ,x x kx ln ≥,2ln x x k ≥∴. 令2ln )(x x x h =,3ln 21)('x x x h -=, 令0)('>x h ,解得e x <<0;令0)('<x h ,解得e x >.
则)(x h 在),0(e 单调递增,在),(+∞e 单调递减,故e e h x h 21)()(=
≤,则e k 21≥. (3)由(2)知e x x 21ln 2≤,)2(121ln 2
4≥⋅≤x x e x x , e n e n n e n e n n 21)11(21))1(1321211(21)13121(21ln 33ln 22ln 222444<-=-++⨯+⨯<+++<+++∴ . 例3 已知函数x t tx x f ln )(--=.
(1)若函数)(x f 在),1[+∞上为增函数,求实数t 的取值范围;
(2)当2≥n 且*N n ∈时,证明:n n
ln ln 13ln 12ln 1>+++ . 解:(1)实数t 的取值范围为),1[+∞.
(2)由(1)知,令1=t ,则x x x f ln 1)(--=在),1[+∞上为增函数,0)1()(=≥f x f , 即x x ln 1≥-,当且仅当1=x 时取等号. 要证明
)1ln()23ln()12ln(ln ln 13ln 12ln 1-+++=>+++n n n n ,只需证)1
ln(ln 1->n n n .
在x x ln 1≥-中取)2(≥=n n x ,有n n ln 1>-,则
1
1ln 1->n n ; 在x x ln 1≥-中取)2(1≥-=n n n x ,易知1>x ,则)1
ln(11->-n n n . 综上可知)1ln(ln 1->n n n 成立,则原命题成立.。