提高托辊径向圆跳动的工艺方法

提高托辊径向圆跳动的工艺方法
提高托辊径向圆跳动的工艺方法

提高托辊径向圆跳动的工艺方法

1-辊皮车胎;2-辊皮

图1 小倒角定位辊皮车止口示意图

②根据实际情况,止口车完后其椭圆度很难控制,故对止口径向尺寸的检查采用“十字线”测量取平均值法,并在加工过程中按规定的抽样检测方法。同时还可采用标准轴承座试装,以保证有规定的过盈量。

③管子两端止口与外圆的同心度用壁厚差方法检查,周边壁厚允差为0.3mm。

3、托辊辊体实施缩口工艺

缩口工艺是金属冷塑性变形中的冲压加工基本工序之一,属于压缩类成型工序,它是将管坯或预先拉伸好的圆筒形件通过缩口模将其口部直径缩小的一种成型方法。缩口工艺具有节约原材料、模具结构简单、提高制件的力学性能等优点,广泛应用在国防、机械、汽车、航空航天、日用品等行业。将缩口工艺应用到托辊辊体的制造过程中,进一步修正了原材料及加工误差带来的不良影响。

下面对Φ89x315托辊辊体工艺进行分析。

工件名称:托辊辊体;生产批量:大批量;材料:Q235-A(有缝管);料厚:3.5mm,缩口止口厚2.5mm。

托辊辊体采用缩口工艺前、后图样要求达到的技术图解如图2、3。

图2 未采用缩口工艺前图样要求达到的技术图解

图3 采用缩口工艺达到的技术图解

托辊辊体采用缩口工艺如上图所示,在辊体端口部缩口变形过程中,辊皮的止口变形区金属受切向和轴向压应力,主要是切向压应力的作用,使其直径减小,壁厚和高度增加,缩口后的止口发生塑性变形,将两轴承座牢牢包住。

通过对以上托辊工艺过程的严格控制,以及在之后的辊体焊接、装配工艺过程中进行的常规工艺过程控制,经检测托辊外径圆跳动合格率达到97%以上,同时也有效减小旋转阻力,改善了托辊使用性能,延长了其寿命。同时托辊两端的弧形缩口,改变了以前端头尖角状态,有效减少了对输送带的磨损,从而节约生产成本和运行费用。此工艺过程对托辊的制造有重要的借鉴意义。

胶带机现场装配工艺

四川东林矿山运输机械有限公司

四川东林矿山运输机械有限公司

带式输送机安装作业指导书 文件编号 发行日期: 一、机械部分检验标准及安装技术要求 1.所有设备应功能完整,技术先进,并能满足人身安全和劳动保护条件。 2.所有设备均应正确设计和制造,在正常工况下均能安全、持续运行,而不应有过度的 应力、振动、温升、磨损、腐蚀、老化等其它问题。 3.设备零部件应采用先进、可靠的加工制造技术,应有良好的表面几何形状及合适的公 差配合。所有外购配套件应有产品检验合格证,列入安全标志管理的应具有安标证。 4.所使用的零件或组件应有良好的互换性。 5.易于磨损、腐蚀、老化或需要调整、检查和更换的部件应提供备用品,并能比较方便 地拆卸、更换和修理。所有重型部件均应设有便于安装和维修的起吊或搬运设施(如吊耳、 环形螺栓等)。 6.所有的材料及零部件(或元器件)应符合GB/T10595、《带式输送机安装验收规范》等有 关规范的要求,且应是新型的和优质的,并能满足当地环境的要求。 7.各转动部件应转动灵活,不得有卡阻现象。润滑部分密封良好,不得有油脂渗漏现象。 轴承温度不得大于80℃。 8.各外露的转动部件均应设置防护罩,且应便于拆卸;人员易于达到的运动部件应设置 防护栏,但不应妨碍维修工作。 9.电动机、制动器、电气元件、设备等均应设置防护,设置的防护罩应便于拆卸。所有 电器设备及元件在当地特定工作环境下均应考虑防水、防雨、防尘、防爆等措施。 10. 所使用的金属材料的化学成分和机械性能应符合相应的标准,必须选用优质钢材。 11.设备标志应采用耐腐蚀的金属板(不得采用铝制品)制造。铭牌应安放在运行人员容 易看到的地方。铭牌上必须有:a.制造厂名称;b.设备型号;c.设备名称;d.出厂日 期;e.出厂检验编码;f.主要技术参数;等相关信息。 12. 所有外露的旋转、移动部件均应设置防护罩、防护栅或防护栏杆。 13. 驱动装置(包含电动滚筒)的布置应满足带式输送机布置图的要求;驱动装置的组成 是整套驱动设备,包括电动机、联轴器、驱动装置架、安全防护装置、控制系统等。

托辊技术要求

1.设备规范 标准和规范 托辊的设计、制造、安装、验收应以中国国家标准(GB)为基础,应满足(但不限于)下列标准和规范:(下列标准按最新版本执行) 火力发电厂设计技术规程DL5000 火力发电厂运煤设计技术规定DLGJ1-93 电力建设施工及验收规范DLJ52 火力发电厂厂用电设计技术规定SDG17-88 埋弧焊焊缝坡口基本形式与尺寸GB986 气焊、手工电弧焊及气体保护焊 焊缝坡口的基本形式与尺寸 GB985 电力建设施工及验收技术规范DL/T5047-95 带式输送机技术条件书GB10595-89 带式输送机基本参数与尺寸GB987 形状与位置公差GB1184 一般公差线性尺寸的未注公差GB/T1804 包装通用技术条件JB/ZQ4286 设备规范 设备名称:锥形自动调心托棍 参数:锥形自动上调心托辊 B=800mm,α=35°,D=108mm,D 1=89mm,D 2 =133mm,轴承型 号4G205 。 锥形自动下调心托辊 B=800mm,α=35°, D 1=108mm,D 2 =159mm,轴承型号4G305 。 设备名称:平下托辊组 参数:平托辊,B=800mm,α=35°,D=108mm,L=315mm,轴承型号4G205 设备名称:V形梳形托辊 参数:V形梳形托辊,B=800mm, D=108mm,L=465mm,轴承型号4G205,图号DTIIGS2105设备名称:摩擦调心托辊 参数:摩擦上调心托辊,B=800mm,D=108mm,L=315mm轴承型号4G205,图号DTII03C1122 摩擦下调心托辊,B=800mm,D=108mm,L=488mm轴承型号4G205,图号DTII04C2822

齿轮径向跳动

齿轮齿圈径向跳动的测量 一、实验目的 1.熟悉齿圈径向跳动的测量方法; 2.了解齿圈径向跳动对齿轮传动的影响; 3.练习齿轮公差表格的查阅。 二、实验设备 齿轮径向跳动测量仪结构图 1-底座; 2-工作台固紧螺丝; 3-顶针固紧螺丝; 4-被测齿轮; 5-升降螺母 6-指示表抬起手柄; 7-指示表; 8-测量头; 9-中心顶针; 该测量仪的主要技术参数:型号为DD300——89,被测齿轮模数范围为1~6 mm ,被测工件最大直径为300 mm ,两顶针间最大距离为418 mm 。 三、测量原理 齿圈径向跳动r F 是指在齿轮一转范围内,测头在齿槽内或齿轮上,于齿高中部双面接触,测头相对于齿轮轴心线的最大变动量。它主要是由齿轮加工中毛坯安装的几何偏心和齿轮机床工作台的跳动或插齿刀的偏心等引起的。这种误差将使齿轮传动一周范围内传动比发生变化,属于长周期误差。 为了测量各种不同模数的齿轮,仪器备有大小不同可换的球形测量头,此外仪器还备有两支杠杆。 外接触杠杆——成直角三角形,用于测量端面及伞齿轮; 内接触杠杆——成直角形,用于测量内孔的跳动及内齿轮的跳动。 本实验因是测量圆柱直齿轮齿圈径向跳动,不需要选用内外接触杠杆。测量时直接把球形侧头接在指示表的量杆下即可。 四、测量步骤 1.查阅仪器附件盒表格,根据被测齿轮模数的不同选择合适的球形测量头; 2.擦净测头并把它装在指示表量杆的下端; 3.把擦净的被测齿轮装在仪器的中心顶尖上,安装后齿轮不应有轴向窜动!借助升降螺母5与抬起手柄6调整指示表,使指示表有一到二圈的压缩量; 4.依次顺序测量各个齿面,把指示表的读数记下,并绘制出齿圈径向跳动;

最新径向跳动和公差

径向跳动和公差

径向圆跳动与径向全跳动 径向圆跳动的公差带是垂直于基准轴线的任意的测量平面 内半径差为公差值t,且圆心在基准轴线上的两个同心圆之 间的区域(见图10a),其公差带限制在两坐标(平面坐标)范围 内。 径向全跳动的公差带是半径为公差值t,且与基准轴线同轴的两圆柱面之间的区域(见图10b),其公差带限制在三坐标(空间坐标)范围内。 图10 径向圆跳动与径向全 跳动 图11 端面圆跳动与端面全 跳动 图12 用端面圆跳动控制端 面全跳动 图13斜向圆跳动

由于径向全跳动测量比较复杂,所以经常用测量径向圆跳 动来限制径向全跳动。必须指出,在用测量径向圆跳动代 替径向全跳动时,应保证被测量圆柱面上的母线对基准轴 线的平行度,或者是被测量圆柱面的轴向尺寸较小,并借 助于工艺方法可以保证母线对基准轴线平行度误差不大 时,方可应用。为确保产品质量,应使径向圆跳动误差值 与母线对基准轴线的平行度误差之和小于或等于所要求的 径向全跳动公差值。 2端面圆跳动与端面全跳动 端面圆跳动的公差带是在与基准轴线同轴的任一直径位置 的测量圆柱面上沿母线方向宽度为t的圆柱面区域(见图 11a)。 端面全跳动的公差带是垂直于基准轴线,距离为公差值t的两平行平面之间的区域(见图11b)。 显然端面圆跳动仅仅是端面全跳动的一部分,两者作用效 果是不同的。应该根据功能要求来确定是标注端面全跳动 还是端面圆跳动。通常,只有当端面的平面度足够小时, 才能用端面圆跳动代替端面全跳动。例如,对于安装轴承 的轴肩,因其径向尺寸(d1-d2)较小,可以用控制端面圆跳 动误差来达到控制端面全跳动的目的(见图12)。 3径向圆跳动与斜向圆跳动

托辊皮带机安装通用技术规范

托辊带式输送机 安装通用技术规范河南天隆输送装备有限公司

目录 一、测量、放线、 二、头架、尾架、中间架、支腿、上托辊组安装及缓冲床安装 三、传动滚筒、改向滚筒、增面滚筒安装(包括电动滚筒) 四、垂直张紧装置安装 ] 五、驱动装置安装 六、尾部拉紧小车安装(包括重锤塔架、改向绳轮、钢丝绳) 七、回程托辊安装 八、拉装皮带 九、皮带粘接 十、料斗及导料槽安装,犁式卸料器、清扫器安装 十一、各种护罩安装 十二、对现场焊接的基本要求 十三、对现场补漆的要求 十四、各类保护开关的安装

一、测量、放线 皮带基础中心线的测量是一项十分重要的工作,中心线的偏差直接影响皮带机的整体安装精度,因此在测量时至少进行三次重复测量,确保基础中心线的直线度符合安装要求。 直线度应为上述数据的2/3,测量所作的标记应清晰,不易被损坏且便于复核。 二、头尾架、中间架、支腿、托辊组、缓冲床安装: 1.应根据预埋铁,预留漏斗孔等位置确定头、尾架安装位置,头尾架中心线与基础中心线的左右位置偏差不得大于2mm。滚筒安装平面的水平度用水平仪测量。 2.每个支腿的中心线与基础中心线的安装偏差不得大于2 mm。 3.中间架安装的水平度,在任意位置上,用水平尺测量,水泡均应居中,偏差不得超过 0.5刻度格。 4.上托辊组与缓冲床等在中间架上安装时,应按工艺图要求,正确安装,每个托辊均应检查其灵活度,发现不合格托辊应立即更换。托辊横梁固定螺栓必须紧固,不得有松动现象。缓冲床应保证部件齐全,调整弹簧压紧状态,使缓冲床上平面与托辊上平面保持一致。 三、传动滚筒、改向滚筒、增面滚筒、电动滚筒安装: 每个滚筒在安装时,均应用水平尺检查滚筒外缘的水平度,必须保证水平尺水泡居中并检查滚筒轴线与基础中心线的垂直度,轴承座紧固螺栓必须符合安装求,不得过长或过短,螺栓头部露出螺母2~3扣螺纹。轴承座安装不歪斜,检查轴承座透盖与轴周间隙应一致,用手转动滚筒,转动应灵活,不得有异常声音或转动不灵活现象。 注意:在安装传动滚筒,尾部改向滚筒及两头托辊时应检查是否符合理论带面安装高度,发生偏差应根据现场情况可分别对头尾架或中间架的安装高度进行调整。 四、垂直张紧装置安装: 垂直张紧上部改向滚筒支架的安装高度,应保证改向滚筒上平面与回程托辊上平面一致,特别是不能低于回程托辊上平面。上部两改向滚筒的轴线应平行并且与基础中心 线垂直。检测方法:○1在基础中心线上任选一点,测量滚筒皮两侧直线长度在3mm以内。 ○2两滚筒的平行度用直尺测量,滚筒全长范围控制在3 mm以内。○3两滚筒的水平度用水 平尺测量,水泡应居中。 立柱安装: 两立柱必须保证与皮带机中心线对称,每根立柱与中心线的尺寸偏差≯5㎜,两立柱中心距尺寸应能保证重锤箱导向槽与立柱之间隙在5~10㎜之间,两立柱应与水平面垂直,以确保重锤箱上下运动灵活。 五、驱动装置安装: 驱动装置是给皮带机提供动力的关键部件,安装质量直接影响到整个皮带机的正常运行。一般情况下,首先将减速机位置固定,调整驱动架的位置,使减速机输出轴端联轴器半体与传动滚筒轴端联轴器半体的端面间隙控制在2~4mm之间,同轴度≯0.1mm。 减速机输入轴端联轴器与电机或偶合器输出端联轴器的端面间隙控制在1~3mm之间,

酸轧工艺流程及流程说明

酸轧工艺流程 1#张力辊 2#张力辊 1#纠偏辊 入口活套(2#、3#纠偏辊) 3#张力辊 破鳞拉矫机 4#张力辊 酸洗槽 4#纠偏辊 漂洗槽 烘干机 5#张力辊 5#纠偏辊 酸洗出口活套 6#纠偏辊 月牙剪 7#纠偏辊 切边剪(碎边剪) 6#张力辊 去毛刺辊 8#纠偏辊 联机活套(9#纠偏辊) 10#纠偏辊 7#张力辊 11#纠偏辊 8#张力辊 入口液压剪 三辊稳定辊 1#---5#轧机 板形仪 出口夹送辊 转鼓式飞剪 卡罗塞尔卷取机 出口步进梁 打捆 称重 标识 步进梁 双切剪 矫直机 激光焊机 开卷机 轧后库 成品卷

酸轧工艺说明 钢卷运输 在酸洗入口段,钢卷的运输由步进梁、托辊站、钢卷旋转装置、No.1/ No.2 上卷小车等组成。平行于酸轧机组中心线。No.1/ No.2 上卷小车分别垂直于酸轧机组中心线。 用车间行车将原料库内存放的热轧钢卷吊放到步进梁运输机上,钢卷经过测量宽度、对中、拆除捆带、旋转等操作后,由步进梁将钢卷运到入口 No.1 固定鞍座上,入口往返小车根据生产情况可以将钢卷从入口 No.1 固定鞍座送到No.2 固定鞍座上。上卷小车根据开卷状况进行接卷。然后钢卷由上卷小车输送到等待位置。在等待位置,上卷小车调整钢卷中心与开卷机芯轴中心重合后,再将钢卷运到开卷机卷筒上。钢卷带头由夹送穿带装置送到夹送矫直机矫平后,带头送至入口分切剪进行切头,当前一个钢卷还在生产时,带头将自动停留在 No.2 转向夹送辊前的等待位置。 入口段 在上一个钢卷的带尾快要甩尾之前,开卷机上的自动停车装置将及时对入口段进行减速,当达到甩尾速度时,处理器的矫直辊压下,同时焊机后 No.1 张力辊的压辊也压下。一旦带尾离开开卷机,其卷筒立即收缩,同时夹送辊和矫直机抬起。然后,如前所述,可以进行下一个钢卷相同的穿带程序。被矫直的带尾送进入口分切剪,切去不合格部分。通过分切剪前的对中装置,可以进行直角剪切。矫直辊压下深度根据来料钢种和规格自动设定,并可人工干预。然后带尾进入焊机,在带尾停止之前,焊机出口夹送辊与No.1张力辊之间形成活套之后在焊机内完成带尾的定位、对中及夹紧等操作。在分切剪剪切过程中,分切剪前的废料夹送辊上辊压下,然后将废板送到废料运输机上运到厂房外的废料斗中。当上一卷带钢的带尾离开 No.2 转向夹送辊,已经在 No.2 转向夹送辊前等待位置的另一个通道已切好的带头向前送入焊机。在带头到达焊机内的挡块位置后,将与带尾一样进行自动定位、对中及夹紧。带头、带尾相互对齐后,焊机将启动自动剪切和焊接,包括焊缝检查、冲月牙等。 焊机焊接操作全部完成后发出信号,在入口段准备就绪后启动入口段运行。当入口段开始加速时,No.1 张力辊的压辊抬起,然后加速到设定的充套速度快速充套。活套充满后入口段降速至工艺段正常生产速度。 No.1 纠偏辊用来纠正入口段的带钢跑偏,使带钢对中进入入口活套。活套内的带钢跑偏通过 No.2 纠偏辊纠正,活套出口的 No.3 纠偏辊保证带钢对中进入拉伸破鳞机前的传动转向辊。带压辊的传动转向辊用来补偿由于加减速而引起的张力波动,这样可以保证拉伸破鳞机前的入口带钢张力保持恒定。除尘系统用来抽掉处理器和拉伸破鳞机的氧化铁皮粉尘,以减少车间内的灰尘含量。 工艺段 临时停车,酸洗槽的酸液可自动排放到循环罐内。酸洗槽酸液的串级逆流也是通过循环罐实现的。 各个酸洗槽内的酸洗工作条件如下: 总酸量游离酸Fe2+工艺温度 1#酸洗槽200g/l 30~50g/l 110~130g/l 70-85℃ 2#酸洗槽200g/l 80~100g/l 80~100g/l 70-85℃

硫化碱生产工艺流程

4.2.1.2 工艺流程说明 本项目对原装置部分使用价值较高的设备进行搬迁,生产工艺流程仍按照搬迁前的进行设计,以焦炭粉为还原剂,采用含铬芒硝和脱水芒硝为原料生产工业低铁硫化碱。生产工序主要包括备料上料工序、煅烧工序、化坯洗渣工序、沉淀洗泥工序、低铁硫化碱制液工序、蒸发工序、制片包装工序。 工艺流程如下: (1) 备料上料工序 由于十水芒硝不能满足硫化碱生产原料的要求,首先要对十水芒硝进行脱水处理。十水芒硝先进入化硝罐,加入热水进行溶解,溶解液体进入蒸发器进行蒸发,蒸发热源采用蒸发工序二次蒸汽,蒸发液送入结晶罐进行冷却结晶,然后再通过皮带输送机送至离心机进行离心分离,分离后的固体为无水芒硝,送至仓库备用,离心母液再返回至蒸发器中进行循环。 原料含铬芒硝和脱水芒硝分别存入专门的储仓,经过破碎后保证进入工艺系统的芒硝粒径不超过50mr,芒硝、焦炭粉分别通过斗式提升机、皮带计量机送至混料机,按一定比例混合,再通过混料皮带输送机送入储料仓,然后经送料螺旋机送入煅烧工序。 (2)煅烧工序 物料在长转炉(①2500 X 45000)内进行还原反应所需的热量由燃 料煤燃烧提供。燃料煤由煤库经皮带输送机送至雷蒙机研磨后,再用斗式提升机送到煤粉仓,由皮带输送机送到炉头煤粉斗,再经下端送料螺

旋机送入送风管道内,由罗茨鼓风机吹入长转炉内燃烧。来自储料仓的芒硝与焦炭粉先进入预热器,然后进入长转炉尾部,燃料煤粉从转炉头部进入,与原料成逆向流动,当炉内温度为1050-1150C时,芒硝与焦炭粉发生如下化学反应: N Q SQ+2C I Na e S+2CO 生成硫化碱; Cr6++SCr3+毒性较大的。严变为无毒稳定的C严; 同时,在有水蒸汽存在条件下,发生副反应 Na2S+CO+H? N S R CQ+HS生成碳酸钠和硫化氢。 物料在转炉内经预热、熔化、沸腾、成熟制得熔体黑灰,从炉头送入热熔罐中,进入化坯洗渣工序,进行热溶。 每台转炉配套一台特制预热器,高温转炉烟气先经过预热器对生料进行预热,然后经降尘室降尘,再用麻石水膜除尘器进行除尘,除尘后进入脱硫塔进行脱硫,达标后排空。回收粉尘经过酸洗后外运至园区指定地点,可用作制砖。 (3) 化坯洗渣工序由煅烧工序来的熔融态黑灰由炉头直接进入热溶罐进行热溶,在搅拌机的作用下,用沉淀洗泥工序的洗渣水(稀卤水)直接制取浓卤碱水,当溶液中N Q S浓度达到23注右时,用浓卤液下泵将其打至沉淀罐,沉淀罐上层清液送至沉淀洗泥工序浓卤储槽。 沉淀泥渣经过一号铰刀输送至一洗罐,在一洗罐中进一步浸取泥渣中含有的Na z S, —洗罐洗净的渣泥经二号绞刀送至二洗罐,当渣泥中碱含量小于1%时,将渣泥进行酸洗后外运至园区指定地点。洗渣用水为沉淀洗泥工序送来的洗泥水(稀卤水) ,洗渣水送至热熔罐循环使用。 化坯过程中,N Q S与H20反应产生少量的HHS气体,故热溶罐为封闭装置,热溶过程中产生的碱雾及H2S气体经喷淋塔洗涤后,由高度为

径向跳动和公差

径向圆跳动与径向全跳动 径向圆跳动的公差带是垂直于基准轴线的任意的测量平面 内半径差为公差值t,且圆心在基准轴线上的两个同心圆之 间的区域(见图10a),其公差带限制在两坐标(平面坐标)范围 内。 径向全跳动的公差带是半径为公差值t,且与基准轴线同轴的两圆柱面之间的区域(见图10b),其公差带限制在三坐标(空间坐标)范围内。 图10 径向圆跳动与径向全 跳动 图11 端面圆跳动与端面全 跳动 图12 用端面圆跳动控制端 面全跳动

图13斜向圆跳动由于径向全跳动测量比较复杂,所以经常用测量径向圆跳动来限制径向全跳动。必须指出,在用测量径向圆跳动代替径向全跳动时,应保证被测量圆柱面上的母线对基准轴线的平行度,或者是被测量圆柱面的轴向尺寸较小,并借助于工艺方法可以保证母线对基准轴线平行度误差不大时,方可应用。为确保产品质量,应使径向圆跳动误差值与母线对基准轴线的平行度误差之和小于或等于所要求的径向全跳动公差值。 端面圆跳动与端面全跳动 端面圆跳动的公差带是在与基准轴线同轴的任一直径位置的测量圆柱面上沿母线方向宽度为t的圆柱面区域(见图11a)。 端面全跳动的公差带是垂直于基准轴线,距离为公差值t的两平行平面之间的区域(见图11b)。 显然端面圆跳动仅仅是端面全跳动的一部分,两者作用效果是不同的。应该根据功能要求来确定是标注端面全跳动还是端面圆跳动。通常,只有当端面的平面度足够小时,才能用端面圆跳动代替端面全跳动。例如,对于安装轴承的轴肩,因其径向尺寸(d1-d2)较小,可以用控制端面圆跳动误差来

达到控制端面全跳动的目的(见图12)。 3径向圆跳动与斜向圆跳动 对于圆锥表面和对称回转轴线的成形表面一般应标注斜向 圆跳动。只有当锥面锥角较小时(如α≤10°)才可标注径向圆跳 动代替斜向圆跳动,以便于检测。如图13所示,设径向圆跳 动误差为H,斜向圆跳动误差为h,则:h=Hcosα。 五、跳动公差与其他形位公差 4 径向圆跳动、圆度、同轴度 径向圆跳动是一项综合性公差,它不仅控制了同轴度误差, 同时也包含了圆度误差。 当被测圆柱面的轴线与基准线同轴时,由于被测要素存在圆 度误差,因此会出现径向圆跳动误差;当被测要素为理想圆, 但存在同轴度误差时,也会出现径向圆跳动误差。由此可见, 只要存在同轴度或圆度误差,则必然存在径向圆跳动误差, 反之则不一定。 由于径向圆跳动误差检测较方便,因此,在生产中常常 以径向圆跳动代替同轴度公差。对同一被测要素,标注 了径向圆跳动后就不必再标注同轴度或圆度(见图14),否 图15 端则,同轴度公差值必须小于跳动公差值。 面垂直度

防水防尘托辊的设计原理及组装工艺

防水防尘托辊的设计原理及组装工艺 托辊是皮带输送机中用量最大、更换频率最高的零部件。托辊的质量直接影响输送机的正常运行、使用寿命和能耗。我国皮带输送机所使用的托辊与国外托辊相比存在的问题主要是:使用寿命短;运行阻力系数大;密封效果不理想,防水防尘效果较差;结构不合理,润滑和受力性能不好;加工制造精度不高。 目前,国际上先进的皮带输送机带速已达到4~6m/s。带速的提高对托辊的转速提出了更高的要求。随着长距离、大运量、高速度、大功率皮带输送机技术的日益广泛应用,迫切需要缩短我国与国际先进工业国之间的差距,而研制新型托辊是关键之一。 1、影响托辊性能的主要因素 (1)密封。为了尽量减小托辊的旋转阻力,目前托辊均采用非接触式迷宫密封。虽然可以尽可能增加迷宫层数,并在迷宫密封腔中填充润滑脂,但托辊的防水防尘性能仍达不到预期效果。当淋水或粉尘严重时,很易侵入托辊的密封,并扩散到整个密封结构。因此,在恶劣环境中使用几百小时就会失效。 (2)筒体偏心。托辊偏心严重时,输送带运行会发出异常噪声,并因离心力作用而产生周期性的振动。偏心原因有两方面:一是制造托辊的钢管壁厚不均匀,二是两端轴承与筒体同轴度偏差较大。 (3)轴承。轴承的使用寿命主要取决于质量、润滑及所受载荷。托辊在高速转动时,由于内摩擦产生热量,从而引起轴承密封腔内温度升高,润滑脂出现汽化现象。托辊停止转动后,轴承温度降低,密封腔内气压下降,托辊吸入外界空气,润滑脂受到污染,油脂变质干化,轴承处于干摩擦状态运行,从而加快轴承的磨损。 (4)润滑脂。托辊一般选用钙基润滑脂。钙基润滑脂抗水性能好,但熔点低,高温时极易凝固,使用一段时间后就变色、变干,从而影响轴承的使用寿命。 (5)载荷。托辊载荷可分为静载荷和动载荷。静载荷主要是所传送物料和输送带的自重,中间托辊受力最大。托辊的动载荷主要包括:托辊转动时偏心产生的动载荷,输送带及物料对托辊产生的冲击等。 2、防水防尘托辊的结构 防水防尘托辊主要由托辊筒体、轴承座、托辊轴、轴承及唇式密封圈构成(见图1)。 1-筒体;2-唇式密封圈;3-挡板;4-托辊轴;5-轴承;6-轴承座 图1 防水防尘托辊的结构 (1)唇式密封。将迷宫式塑料“小七件”密封改为唇式聚氨酯密封,防水、防尘性能有了根本改善。密封的作用是为防止外界灰尘、水分等浸入轴承。非接触式迷宫密封虽然没有磨损,但粉尘颗粒会因托辊“呼吸”,从缝隙侵入密封腔,防水、防尘效果不好。接触式唇式密封采用性能稳定、精度高、耐磨、阻燃抗静电的聚氨酯密封圈。三层唇形密封结构既保证了密封的可靠,又满足了对托辊旋转阻力的要求,从根本上解决了托辊防水、防尘问题。

径向跳动

径向跳动公差及检测 跳动误差的测量 1.径向圆跳动公差 径向圆跳动公差是要素以基准轴线为中心无轴向移动地旋转一周时,在任一测量面内所允许的最大跳动量。圆跳动的测量方向,一般是被测表面的法线方向。 径向圆跳动误差的检测,一般是用两顶尖的连线或V形块来体现基准轴线,在被测表面的法线方向,使指示器的测头与被测表面接触,使被测零件回转一周,指示器最大读数差值即为该截面的径向圆跳动误差。测量若干个截面的径向圆跳动误差,取其中最大误差值作为该零件的径向跳动误差。 外圆跳动分为圆跳动和全跳动两类。跳动测量可用跳动检查仪或V形块和千分表来检测。 测量工具:检验平板、V形块、带指示器的测量架、定位装置。 1.1当零件图中的基准是由两端圆柱轴线建立的公共基准时,采用V形块体现基准轴线。将被测零件放在V形块上,使基准轴线的外母线与V形块工作面接触,并在轴向定位,使指示器测头在被测表面的法线方向与被测表面充分接触; (1)转动被测零件,观察指示器的示值变化,记录被测零件在回转一周过程中的最大与最小读数M1和M2,取其代数差为该截面上的径向圆跳动误差:△=M1-M2 ( 2)按上述方法测量若干个截面,取各截面上测得的跳动量中的最大值作为该零件的径向圆跳动误差。 1.2当零件图中的基准是由两端中心孔轴线建立的公共基准时,采用顶尖体现基准轴线。 将被测零件安装在两顶尖之间。要求没有轴向窜动且转动自如。指示器在被测表面的法线方向与被测表面接触。转动被测零件,在一周过程中指示器读数的最大差值即为该截面上的径向圆跳动误差。测量若干个截面,取各截面上测得的跳动量中的最大值,作为该零件的径向圆跳动误差。 2.径向全跳动误差 2.1概念

(完整版)端面圆跳动和径向全跳动的测量.docx

实验二端面圆跳动和径向全跳动的测量 (一)实验目的 (1)掌握圆跳动和全跳动误差的测量方法。 (2)加深对圆跳动和全跳动误差和公差概念的理解。 (二)实验内容 用百分表在跳动检查仪上测量工件的端面圆跳动和径向全跳动。 (三)计量器具 本实验所用仪器为跳动检查仪,百分表。 (四)测量原理 如图 1-1 所示,图 a 为被测齿轮毛坯简图,齿坯外圆对基准孔轴线 A 的径向全跳动公差值为 t1,右端面对基准孔轴线 A 的端面圆跳动公差值为t2。如图 b 所示,测量时,用心轴模拟基准轴线 A ,测量Φ d 圆柱面上各点到基准轴线的距离,取各点距离中最大差值作为径向 全跳动误差;测量右端面上某一圆周上各点至垂直于基准轴线的平面之间的距离,取各点距离的最大差值作为端面圆跳动误差。 (a) 齿轮毛坯简图(b) 跳动测量示意图 图1-1 (五)测量步骤 (1)图 1-1( b)为测量示意图,将被测工件装在心轴上,并安装在跳动检查仪的两顶 尖之间。 ( 2)调节百分表,使测头与工件右端面接触,并有1~2 圈的压缩量,并且测杆与端面 基本垂直。 (3)将被测工件回转一周,百分表的最大读数与最小读数之差即为所测直径上的端面圆 跳动误差。测量若干直径(可根据被测工件直径的大小适当选取)上的端面圆跳动误差, 取其最大值作为该被测要素的端面圆跳动误差 f ↗。 (4)调节百分表,使测头与工件Φ d 外圆表面接触,测杆穿过心轴轴线并与轴线垂直,且 有 1~2 圈的压缩量。 (5)将被测工件缓慢回转,并沿轴线方向作直线移动,使指示表测头在外圆的整个表 面上划过,记下表上指针的最大读数与最小读数。取两读数之差值作为该被测要素的径向全

圆柱度、圆度、圆跳动、全跳动区别

路漫漫其修远兮,吾将上下而求索- 百度文库 圆柱度公差是限制实际圆柱面相对于理想圆柱面的变动。它表示实际圆柱面必须位于半径公差给定的两个同轴圆柱面之间 径向全跳动是被测表面绕基准轴线连续回转时,在整个圆柱面上所允许的最大跳动量。它表示被测表面绕基准轴线连续回转时,同时百分表相对于圆柱面作轴向移动,在整个圆柱面上的径向跳动量不得大于给定公差值 疑问:假如说一个圆柱面,它的径向全跳动公差和圆柱度公差都是0.05 我是这么想的:既然圆柱度公差0.05表示实际圆柱面必须位于半径公差0.05的两个同轴圆柱面之间,那么它在整个圆柱面上的径向跳动量一定也不会大于0.05.这样的话圆柱度和径向全跳动还有什么区别? 简单地讲圆柱度就是单讲圆柱外表面的实际轮廓与理想轮廓的差异,就是假想用最大极限与最小两个极限两个圆柱来限定实际圆柱的轮廓范围,超出这个范围就不合格。指圆柱外形的要求。 跳动时一项综合性的误差项目,反映被测要素的形状和位置误差。 他们的区别是:全跳动公差带与圆柱度公差带相同,可以利用全跳动公差控制圆柱度误差。还能反映出端面、圆柱面对于基准轴的垂直、平行误差。 总的来讲,全跳动测量比圆柱度测量要全面,甚至可以包括他。 圆跳动和全跳动的差别: 跳动的分类:可分为圆跳动和全跳动. 圆跳动:是指被测实际表面绕基准轴线作无轴向移动的回转时,在指定方向上指示器测得的最大读数差. 全跳动:是指被测实际表面绕基准轴线无轴向移动的回转,同时指示器作平行或垂直于基准轴线的移动,在整个过程中指示器测得的最大读数差. ********圆度与圆跳动的区别,圆柱度与全跳动的区别 圆度是形状误差,只是表达一个表面形状.而跳动给这个形状规定了一个基准,即中心轴线.跳动小的一定圆,圆的跳动可能大.当偏离基准的时候圆的跳动也大.就这样. 圆柱度增加了一个轴向概念,成为一个空间问题. 圆度是任一正截面上半径差为某一数值的两个同心圆区域,它的实际尺寸不能走超出给定的尺寸公差范围,实效尺寸就是零件的最大实体尺寸,这就是通常所说的尺寸公差控制形状误差。而圆跳动是有基准轴线的,任一截面的圆表面位置在 11

关于带式输送机托辊损坏的原因及解决方法

关于带式输送机托辊损坏的原因及解决方法 高志荣 (内蒙古科技大学机械工程学院,内蒙古,包头,014010) 摘要:本文结合多个托辊的使用实例,根据托辊现场使用情况总结托辊的损坏原因,提出解决办法。 关键字:实例;托辊;损坏;解决办法 About belt conveyor roller damage causes and solutions GAO ZHI-RONG (Inner Mongolia university of science and technology Mechanical engineering college,BaoTou,014010,Inner Mongolia) Abstract:This paper combining multiple roller use examples, according to roller field use summary of the roller damage reason and puts forward solutions. Key words: examples;roller;damage;solutions 0 前言 带式输送机托辊是一种结构比较简单的部件. 由于它在使用中的转速不高, 载荷不大, 没有冲击力,如果制造精度达到设计要求,轴承不被污染,长期在良好的润滑状态下工作, 物料也没有严重磨损或腐蚀性,使用寿命应该达到 10—15 万小时.但是在实际工作环境中,由于工作需要及其他原因不可避免的对托辊产生损坏,影响托辊的正常工作生产及其工作寿命。 1 托辊损坏原因的分析及解决方法 1.1、实例: 例如冀东水泥矿山的一条带式输送机上的部分托辊,使用寿命已经达 15 年,至今还在正常运转;句容台泥水泥矿山的带式输送机, 1997 年开始运行, 每日两班生产, 至今还有 80%的托辊在正常运转. 但是,在其它的很多场合,托辊损坏的现象就非常严重,使用寿命只有 1 年左右,半年内损坏的托辊非常普遍,甚至不到 1 千小时就被磨断,或者被磨出一个口子,造成划伤甚至撕裂胶带的严重后果. 1.2、损坏原因分析: 那么,造成托辊损坏的原因究竟有哪些呢?是否有解决的办法呢? 我们从托

烧结作业区工艺流程图

烧结作业区管理流程图 一、管理步骤 来料验收-----卸车储备-----混匀布料、混匀供料-----烧结生产 二、流程图 1、验收 2、储备 3、混匀布料、供料工艺 a、铁料

4、烧结工艺 白灰窑

现作业区以创建“书香型”作业区、全力打造视觉文化为目标,提出“科学管理、管理科学”的全新理念,统筹安排生产工作,坚持纵向贯通、横向协同的管理思路,加强生产协调的核心作用,控制好各生产工序的稳定,服务好其它作业区的保供、做到各工序间的无缝连接,保证产品质量,并与先进行业指标对标挖潜,寻找差距、降低成本、创新工艺、提升产品质量。打造烧结先进的指标,构建和谐顺畅的生产流程,使烧结机利用系数突破1.30 t/㎡·h已达1.482t/㎡·h,年产量163万吨,且各项指标都在接近全国最高指标水平,基本满足高炉正常生产。 先将各流程做一简单的介绍: 1、从PL-2皮带把混匀矿打到配料室1#、2#、3#、4#铁料仓;

2、从白灰窑把-3mm粒级大于85%以上的生石灰通过手动葫芦吊打入配 料室11#生石灰仓; 3、通过PL-6皮带将-3mm粒级大于85%的石灰石打入配料室9#、10#仓; 4、通过PL-3皮带将-3mm粒级在80%-85%的焦粉打入配料室7#、8#仓; 5、按正常配比将混匀矿、焦粉、石灰石、生石灰、烧结返矿通过PL-12、 Z4-1、H-1运输到一次混合机里面,在混合机加水、混匀通过ZL-1皮带运输到制粒机,在制粒机配加蒸汽以提高料温;物料(混合料)在制粒机里面混匀制粒6分钟通过Z5-1、S-1皮带,在通过梭布小车均匀布料到烧结小矿槽。 6、在烧结机上先布一层粒级10-20mm的烧结矿10mm作为底料,混合料 在通过圆辊及六辊布料到烧结机,料层布到650mm,在通过圧料器把料通过点火器点火烧结。 7、混合料在烧结机上烧结50分钟左右,通过单齿辊破碎到环冷机,在环冷 机冷却1个小时左右,通过Z6-1、LS-1在成品筛分室通过振动筛将-5mm烧结返矿通过Z2-1、PL-9、PL-10皮带运输到配料室5#、6#仓内;将10-20mm烧结矿通过Z5-2、Z7-1、S-2皮带打到底料仓;将大于20mm粒级烧结矿通过Z8-1输送到高炉 8、在烧结上料之前先开启机头、机尾电场及主抽风机。

齿轮径向跳动测量

齿轮径向跳动检测 一、实验目的、 1、了解卧式径向检查仪工作原理及使用方法。 2、学会使用卧式径向检查仪检测齿轮径向跳动。 二、实验原理 图2-1 1-底座;2-工作台固紧螺丝;3-顶针固紧螺丝; 4-被测齿轮;5-升降螺母 6-指示表抬起手柄;7-指示表;8-测量头;9-中心顶针; 图2-2 齿圈径向跳动误差ΔFr是在齿轮一转范围内,处于齿槽内或轮齿上、与齿高中部双面接触的测头在齿槽内或齿轮上,于齿高中部双面接触,测头相对于齿轮轴心线的最大变动量。 见图2-2a,以齿轮基准孔的轴线o为中心,转动齿轮,使齿槽在正上方,再将球形测头(或用圆柱)插入齿槽与左右齿面接触,从千分表上读数,依次测量所有齿。将各次读数记在坐标图上,如图2-2b所示,取最大读数与最小读数之差作为齿圈径向跳动误差。 三、实验步骤 1、查阅仪器附件盒表格,根据被测齿轮选取球形测头,并将测头装入表的 测杆下端。

2、 把擦净的被测齿轮装在仪器的中心顶尖上,安装后齿轮不应有轴向窜动! 借助升降螺母5与抬起手柄6调整指示表,使指示表有一到二圈的压缩量; 3、 球形测头伸入齿槽最下方即可读数,读完数,向后扳拨杆,抬起千分表转过一齿,再放下,开始测第二齿。如此依次测量各个齿面,把指示表的读数记下,并绘制出齿圈径向跳动图,取最大读数与最小读数之差,算出齿圈 径向跳动误差ΔFr(r F ?=m ax r -min r )。 4、 根据齿轮的技术要求,查出齿圈径向跳动公差F r,判断合格性: 合格条件:r F ?≤r F 为合格 四、 实验数据记录及处理 1、齿轮齿数Z=30,齿顶圆da=48.02mm 2、根据da=(2h a * +z )m,得m标准值为1.5mm ∴d=mz=45mm 4、∴ r ma x=4.2um r min =-3.2um 5、所以 r F ?=m ax r -min r =7.4u m 6、查表,得F r=23um ∴ r F ?≤r F 检验合格

防水防尘托辊的设计原理及制造工艺

托辊是带式输送机中用量最大、更换频率最高的零部件。托辊的质量直接影响带式输送机整机的正常运行、使用寿命和能耗。我国带式输送机所使用的托辊与国外托辊相比存在的问题主要是:使用寿命短;运行阻力系数大;密封效果不理想,防水防尘效果较差;结构不合理,润滑和受力性能不好;加工制造精度不高。 目前,国际上先进的带式输送机带速已达到 4~6m /s 。带速的提高对托辊的转速提出了更高的要 求。随着长距离、大运量、高速度、大功率带式输送机技术的日益广泛应用,迫切需要缩短我国与国际先进工业国之间的差距,而研制新型托辊是关键之一。 1影响托辊性能的主要因素 (1)密封。为了尽量减小托辊的旋转阻力,目前 托辊均采用非接触式迷宫密封。虽然可以尽可能增加迷宫层数,并在迷宫密封腔中填充润滑脂,但托辊的防水防尘性能仍达不到预期效果。当淋水或粉尘严重时,很易侵入托辊的密封,并扩散到整个密封结构。因此,在恶劣环境中使用几百小时就会失效。 (2)筒体偏心。托辊偏心严重时,胶带运行会发出异常噪声,并因离心力作用而产生周期性的振动。偏心原因有两方面:一是制造托辊的钢管壁厚不均匀,二是两端轴承与筒体同轴度偏差较大。 (3)轴承。轴承的使用寿命主要取决于质量、润滑及所受载荷。托辊在高速转动时,由于内摩擦产生热量,从而引起轴承密封腔内温度升高,润滑脂出现汽化现象。托辊停止转动后,轴承温度降低,密封腔内气压下降,托辊吸入外界空气,润滑脂受到污染,油脂变质干化,轴承处于干摩擦状态运行,从而加快轴承的磨损。 (4)润滑脂。煤矿井下用托辊一般选用钙基润滑脂。钙基润滑脂抗水性能好,但熔点低,高温时极易凝固,使用一段时间后就变色、变干,从而影响轴承的使用寿命。 (5)载荷。托辊载荷可分为静载荷和动载荷。静载荷主要是所传送物料和输送带的自重,中间托辊受力最大。托辊的动载荷主要包括:托辊转动时偏心产生的动载荷,输送带及物料对托辊产生的冲击等。 2 防水防尘托辊的结构、组装及特点 2.1 防水防尘托辊的结构原理 防水防尘托辊主要由托辊筒体、轴承座、托辊 轴、轴承及唇式密封圈构成(见图1)。 2.1.1唇式密封 将迷宫式塑料“小七件”密封改为唇式聚氨酯密封,防水、防尘性能有了根本改善。密封的作用是为防止外界灰尘、水分等浸入轴承。非接触式迷宫密封 文章编号:1008-3731(2008)04-0073-02 摘要:介绍了防水防尘托辊的设计原理和制造工艺。通过对影响托辊性能主要因素的分析, 提出了采用唇式密封结构,以解决托辊工作过程中因存在“呼吸”现象而使润滑油脂被污染,导致托辊失效损坏的问题。同时,改进托辊的生产工艺,设计专用卡具和设备,提高托辊的加工精度。现场使用情况证明,新型托辊在受力状况、径向跳动、密封效果及使用寿命等方面,比老式托辊有了较大改善。 关键词:托辊;唇式密封;防水防尘;摩擦;润滑中图分类号:TD528+.1 文献标识码:B 煤炭科技 COAL SCIENCE &TECHNOLOGY MAGAZINE 2008年第4期No.4 2008 73

同轴度与径向跳动的关系

同轴度与径向跳动的关系 在形位误差测量中,同轴度与径向跳动的关系往往易混淆。如图1所示的工件,有人认为一当被测表面的形状误差很小时,可采用测量径向跳动的方法,在数值上取径向跳动的一半作为同轴度误差。我们认为这一提法是不妥的,理由如下: 一、同轴度与径向跳动的公差带 1、同轴度 同轴度公差带是直径为公差值t,且与基准轴线同轴的圆柱面内的区域。如图1所示。它控制了被测轴线对基准轴线的平移、倾斜或弯曲。 图1 2、径向跳动 径向跳动公差带是在垂直于基准轴心线的任一测量平面内,两个半径差为公差值t,且圆心在基准轴心线上灼同心圆之间的区域。如图2,Φd圆柱面绕基准轴线作无轴向回转时,在任一测量平面内的径向跳动量均不得太于公差值0.05mm。 图2 所以,同轴度与径向跳动的概念不同,但又有密切关系。同轴度是限制被测轴线偏离基准轴线的一项指标,径向跳动是一项综合性公差,它不仅控制了同轴度误差,同时t包含被测表面哦度误差。下面讨论一下两者在测量中反映的相互关系。

二、同轴度与径向跳动的关系 1、被测圆柱面轴线与基准圆柱面轴线同轴。 被测圆柱面轴线与基准圆柱面轴线同轴时,测量径向跳动反映被测件圆度误差。如图3,把图1零件安装在两顶尖之间,在被潮件回转一周过程中,指示器最大与最小值读数差即为单个测量平面上的径向跳动,接此方法,测量若干个截面,取各截面上测得的跳动量中的最大值作为该零件的径向跳动误差δ跳。 图3 根据同轴度误差概念,作出公差带图4,得δ圆=0,δ跳=δ圆 图4 2、被测圆柱面轴面线与基准圆栏轴线不同轴,如平移(被测表面形状误差很小,可略不计)。 测量方法如图5所示。将工件安装在两顶尖之间,在被测圆柱面对径方向上安装两指示器a1和a2,工件旋转一周,在某一横截面上读取两指示器的差值,即为该横截面上的同轴度误差。

输送带托辊压紧装配机构设计

输送带托辊压紧装配机构设计 任务书 1.课题意义及目标 学生应通过本次毕业设计,综合运用所学过的基础理论知识,深入了解常用机械加工设备应用以及多种机械结构原理、熟练掌握机械及相关产品及其零部件结构等方面的设计方法及设计思想等内容,为学生在毕业后从事结构设计等方面的工作打好基础。 2.主要任务 (1)根据已有的托辊结构特点,通过熟悉各种机械机构,确定托辊压紧装配机构的方案,并绘制该方案的结构总体图。 (2)设计结构总体图中所有非标零部件结构图。 (3)制作出压紧装配机构的工作仿真过程。 (4)针对以上设计过程,完成设计说明书一本。 3.主要参考资料 [1]. 王伯平. 互换性与测量技术基础[M]. 北京: 机械工业出版社,2013 [2]. 王运炎. 机械工程材料 [M]. 北京: 机械工业出版社,2014 [3]. 濮良贵. 机械设计 [M]. 北京: 高等教育出版社,2006年 [4]. 张世昌. 机械制造技术基础 [M]. 北京: 高等教育出版社 2006 4.进度安排 审核人:2014年12 月30 日

输送带托辊压紧装配机构设计 摘要:输送带托辊压紧装配机构是在托辊生产环节过程中用来压装托辊两端端盖的一种机床。本课题研究的目的就是为提高托辊的组装效率和减轻工人的劳动强度。 首先,对托辊压紧装配机构的压装头进行总体方案的设计,主要分为两方面的设计:压装头的结构设计和动力系统的设计。 结构设计采用前人的设计方法,各部分结构在强度、稳定性方面均达到要求。动力系统的设计方面,由于液压系统动作易实现,且动作准确,因此本设计采用液压传动系统来实现压装头的动作要求,在其设计中主要对液压系统、液压缸和液压站进行了设计。 通过对液压系统的优化设计可以提高托辊压装机的压装精度,从而提高了托辊的质量。由此可得,随着机械工业的发展,现代机床开始装备大量原件,包括电器元件,液压元件和气动元件,其中元件的选择和质量是决定主机工作质量的重要因素。 关键词:液压传动;准确;可靠;合理 Design of assembly mechanism for roller pressing roller in conveyer belt Abstrct: Carrier roller press is an important tool in the process of roller production process used to press the bearing and seal ring. The purpose of this research is to improve the pressure accuracy of the bearing and sealing device in the roller bearing.. Firstly, the overall design of the press fit head of the roller pressing assembly mechanism is mainly divided into two aspects: the structural design of the pressure head and the design of the power system.. The structure design uses the traditional design method, each part of the structure in the intensity, the stability and so on the aspect all achieves the request. With regard to the design of a power system, due to the hydraulic system, action is easy to achieve, and accurate action, so the design by hydraulic drive system to realize the pressing head movements required, in its design mainly on the hydraulic system, the hydraulic cylinder and the hydraulic station design. By optimizing the design of the hydraulic system can improve the loading precision of carrier roller press pressure, so as to improve the quality of roller. Therefore, with the

相关文档
最新文档