无人驾驶汽车的传感器系统设计及技术展望
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、无人驾驶汽车传感器的研究背景和意义
无人驾驶汽车是人工智能的一个非常重要的验证平台,近些年成为国内外研究热点.无人驾驶汽车作为一种陆地轮式机器人,既与普通机器人有着很大的相似性,又存在着很大的不同.首先它作为汽车需保证乘员乘坐的舒适性和安全性,这就要求对其行驶方向和速度的控制更加严格;另外,它的体积较大,特别是在复杂拥挤的交通环境下,要想能够顺利行驶,对周围障碍物的动态信息获取就有着很高的要求。无人驾驶的研究目标是完全或部分取代驾驶员,是人工智能的一个非常重要的实现平台,同时也是如今前沿科技的重要发展方向。当前,无人驾驶技术具有重大的应用价值,生活和工程中,能够在一定程度上减轻驾驶行为的压力;在军事领域内,无人驾驶技术可以代替军人执行侦查、排雷、以及战场上危险环境中的任务;在科学研究的领域,无人驾驶技术可以实现外星球等极端环境下的勘探活动。无人驾驶车辆技术,又称智能车辆,即利用将无人驾驶的技术应用于车辆的控制中。
国外的无人驾驶车辆技术大多通过分析激光传感器数据进行动态障碍物的检测。代表有斯坦福大学的智能车“Junior”,利用激光传感器对跟踪目标的运动几何特征建模,然后用贝叶斯滤波器分别更新每个目标的状态;卡耐基•梅隆大学的“BOSS”智能车从激光传感器数据中提取障碍物特征,通过关联不同时刻的激光传感器数据对动态障碍物进行检测跟踪。牛津大学研制的无人车辆“WildCat”,不使用GPS,使用激光雷达和相机监控路面状况。我国相关技术开展较晚,国防科学技术大学研制的自主车“开路雄狮”,采用三维激光雷达Velodyne作为主要传感器,将Velodyne获取的相邻两激光数据作差,并在获得的差分图像上进行聚类操作,对聚类结果建立方盒模型。
无人驾驶车辆是一项融合了认知科学、人工智能、机器人技术与车辆工程等多学科的技术,涉及到电子电路,计算机视觉,自动控制,信号处理等多学科技术。无人驾驶汽车的出现从根本上改变了传统的“人——车——路”闭环控制方式,将无法用规则严格约束的驾驶员从该闭环系统中请出去,从而大大提高了交通系统的效率和安全性,是汽车工业发展的革命性产物。
二、无人驾驶汽车的传感器系统整体设计
无人驾驶汽车的实现需要大量的科学技术支持,而其中最重要的就是大量的传感器定位。核心技术是包括高精度地图、定位、感知、智能决策与控制等各个模块。其中有几个关键的技术模块,包含精确GPS定位及导航、动态传感避障系统、机械视觉三个大部分,其他的如只能行为规划等不属于传感器范畴,属于算法方面,不做过多设计。传感器系统如图所示。
图1 无人驾驶汽车的传感器系统主要组成
三、精确GPS定位及导航
无人驾驶汽车对GPS定位精度、抗干扰性提出了新的要求。在无人驾驶时GPS导航系统要不间断的对无人车进行定位。在这个过程之中,无人驾驶汽车的GPS导航系统要求GPS定位误差不超过一个车身宽度。
无人驾驶汽车面临的另一个问题面临的另一个挑战,是需要确保他们又完美的导航功能,实现导航的主要技术是现在生活中已经使用非常广泛的GPS技术。由于GPS无积累误差、自动化测量的特点,因此十分适合用于无人驾驶汽车的导航定位。
为了大幅提高GPS测量技术的精度,本系统采用位置差分GPS测量技术。相较于传统的GPS技术,差分GPS技术会在一个观测站对两个目标的观测量、两个观测站对一个目标的观测量或
者一个测站对一个目标的两次测量之间求差,目的在于消去公共误差源,包括电离层和对流层效应等。
位置差分原理是一种最简单的差分方法,任何一种GPS接收机均可改装和组成这种差分系统。
安装在基准站上的GPS接收机观测4颗卫星后便可进行三维定位,解算出基准站的坐标。由于存在着轨道误差、时钟误差、SA影响、大气影响、多径效应以及其他误差,解算出的坐标与基准站的已知坐标是不一样的,存在误差。基准站利用数据链将此改正数发送出去,由用户站接收,并且对其解算的用户站坐标进行改正。
最后得到的改正后的用户坐标已消去了基准站和用户站的共同误差,例如卫星轨道误差、 SA影响、大气影响等,提高了定位精度。以上先决条件是基准站和用户站观测同一组卫星的情况。位置差分法适用于用户与基准站间距离在100km以内的情况。其原理如图1所示。
高精度的汽车车身定位是无人驾驶汽车行驶的先决条件,以现有的技术,利用差分GPS技术可以完成无人驾驶汽车的精确定位,基本满足需求。
图2 差分GPS技术原理图
四、动态传感避障系统
无人驾驶汽车作为一种陆地轮式机器人,既与普通机器人有着很大的相似性,又存在着很大的不同。首先它作为汽车需保证乘员乘坐的舒适性和安全性,这就要求对其行驶方向和速度的控制更加严格;另外,它的体积较大,特别是在复杂拥挤的交通环境下,要想能够顺利行驶,对周围障碍物的动态信息获取就有着很高的要求。国内外很多无人驾驶汽车研究团队都是通过分析激光传感器数据进行动态障碍物的检测。斯坦福大学的自主车“Junior”利用激光传感器对跟踪目标的运动几何特征建模,然后用贝叶斯滤波器分别更新每个目标的状态;卡耐基· 梅隆大学的“BOSS”从激光传感器数据中提取障碍物特征,通过关联不同时刻的激光传感器数据对动态障碍物进行检测跟踪。
在实际应用中,3 维激光传感器因为数据处理工作量较大,存在一个比较小的延时,这在一定程度上降低了无人驾驶汽车对动态障碍物的反应能力,特别是无人驾驶汽车前方区域的运动障碍物,对其安全行驶构成了很大的威胁;而普通的四线激光传感器虽然数据处理速度较快,但是探测范围较小,一般在100°~120°之间;另外,单个的传感器在室外复杂环境中也存在着检测准确率不高的现象。
针对这些问题,本文提出一种利用多激光传感器进行动态障碍物检测的方法,采用 3 维激光传感器对无人驾驶汽车周围的障碍物进行检测跟踪,利用卡尔曼滤波器对障碍物的运动状态进行跟踪与预测,对于无人驾驶汽车前方准确性要求较高的扇形区域,采用置信距离理论融合四线激光传感器数据来确定障碍物的运动信息,提高了障碍物运动状态的检测准确率,最终在栅格图上不仅对无人驾驶汽车周围的动、静态障碍物进行区别标示,而且还根据融合结果对动态障碍物的位置进行了延时修正,来消除传感器处理数据延时所带来的位置偏差。
其流程图如图2所示,最终这些信息都显示在人机交互界面上。