电力电子课设word版

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电力电子课程设计

题目单相交直交变频电路设计

学院

专业

班级

姓名

指导教师

年月日

1 总体原理图 (3)

1.1方框图 (4)

1.2电路原理图 (4)

1.2.1 主回路电路原理图 (4)

1.2.2 整流电路 (4)

1.2.3 滤波电路 (5)

1.2.4 逆变电路 (6)

2 电路组成 (8)

2.1控制电路 (8)

2.2驱动电路 (9)

2.3主电路 (10)

3 仿真结果 (11)

3.1仿真环境 (11)

3.2仿真模型使用模块提取的路径及其单数设置 (11)

3.3具体仿真结果 (14)

3.3.1仿真电路图 (14)

3.3.2整流滤波输出电压计算与仿真 (15)

3.3.3逆变输出电压计算与仿真 (16)

4 小结心得 (18)

5 参考文献 (19)

任务书

学生姓名:专业班级:

指导教师:工作单位:

题目: 单相交直交变频电路

初始条件:

输入为单相交流电源,有效值220V。

要求完成的主要任务:

(1)掌握单相交直交变频电路的原理;

(2)设计出系统结构图,并采用matlab对单相交流调压电路进行仿真;

(3)采用protel设计出单相交直交变频电路主电路、驱动电路、控制电路

时间安排:

2012年7月9日至2012年7月13日,历时一周,具体进度安排见下表

参考文献:

[1]王兆安,刘进军.《电力电子技术》第5版.北京:机械工业出版社,2011

指导教师签名: 年 月 日 系主任(或责任教师)签名: 年 月 日 1 总体原理图

1.1 方框图

图1 总体方框图

1.2 电路原理图

1.2.1 主回路电路原理图

图2 主回路原理图

如图所示,交直流变换电路为不可控整流电路,输入的交流电通过变压器和

桥式整流电路转化为直流电,滤波电路用电感和电容滤波,逆变部分采用四只IGBT管组成单项桥式逆变电路,采用双极性调制方式,输出经LC低通滤波器滤波,滤除高次谐波,得到频率可调的交流电输出。

1.2.2 整流电路

整流电路的功能是把交流电源转换成直流电源。整流电路一般都是单独的一块整流模块。大多数整流电路由变压器、整流主电路和滤波器等组成,主电路多用硅整流二极管和晶闸管组成,滤波器接在主电路与负载之间,用于滤除脉动直流电压中的交流成分,变压器设置与否视具体情况而定。变压器的作用是实现交流输入电压与直流输出电压间的匹配以及交流电网与整流电路之间的电隔离。

此部分结构简单、工作可靠,其性能满足实验的需要,故采用桥式整流电路。其作用是将固定频率和电压的交流电能整流为直流电能。

此外整个电路需要辅助的正负5V的电源,故通过降压,整流,滤波,稳压得到稳定的正负5V电压。

电路如下:

图3 整流滤波电路和辅助电源

1.2.3 滤波电路

滤波电路的原理及作用:滤波电路常用于滤去整流输出电压中的纹波,一般

由电抗元件组成,如在负载电阻两端并联电容器C,或与负载串联电感器L,以及由电容,电感组成而成的各种复式滤波电路。

在交流电源转换直流电源后,电路会有电压波动,为抑制电压的波动,采用简单的电容滤波。当流过电感的电流变化时,电感线圈中产生的感生电动势将阻止电流的变化。当通过电感线圈的电流增大时,电感线圈产生的自感电动势与电流方向相反,阻止电流的增加,同时将一部分电能转化成磁场能存储于电感之中;当通过电感线圈的电流减小时,自感电动势与电流方向相同,阻止电流的减小,同时释放出存储的能量,以补偿电流的减小。因此经电感滤波后,不但负载电流及电压的脉动减小,波形变得平滑,而且整流二极管的导通角增大,在电感线圈不变的情况下,负载电阻愈小,输出电压的交流分量愈小。只有在RL>>ωL 时才能获得较好的滤波效果。L愈大,滤波效果愈好。另外,由于滤波电感电动势的作用,可以使二极管的导通角接近π,减小了二极管的冲击电流,平滑了流过二极管的电流,从而延长了整流二极管的寿命。

1.2.4 逆变电路

逆变电路同整流电路相反,逆变电路是将直流电压装换为所要频率的交流电压,逆变电路是与整流电路相对应,将低电压变为高电压,把直流电变成交流电的电路。逆变电路是通用变频器核心部件之一,起着非常重要的作用。它的基本作用是在控制电路的控制下将中间直流电路输出的直流电源转换为频率和电压都任意可调的交流电源,将直流电能变换为交流电能的变换电路。

本方案中的逆变部分,采用单相桥式逆变电路,PWM 控制,输出电压的大小及频率均可通过PWM 控制进行调节。电路如下:

图4 主电路

A 变频器的工作原理

以单相桥式逆变电路为例,S1-S4是桥式电路的4个臂,由电力电子器件及辅助电路组成。用可控开通,可控关断的电力电子开关,切换电流方向,将直流电能转换成交流电能。

图5 开关示意图

S1、S4闭合,S2、S3断开时,负载电压u o为正

S1、S4断开,S2、S3闭合时,负载电压u o为负

B 脉宽调制原理

脉宽调制技术:通过对一系列脉冲的宽度进行调制,来等效的获得所需要的波形(含形状和幅值)。

PWM 控制的方法可分为3三类,即计算法、调制法和跟踪控制法。其中,调制法是较为常用的也是基本的一类方法,而调制法中最基本的是利用三角载波与正弦信号波进行比较的调制方法,分为单极性调制和双极性调制。本实验采用的单相桥式逆变电路既可以采用单极性调制,也可以采用双极性调制。在本实验装置中,采用了双极性PWM 调制技术。以下是双极性PWM 调制的原理。

双极性PWM 控制原理示意图如下图所示。采用双极性PWM 调制技术时,以希望得到的交流正弦输出波形作为信号波,采用三角波作为载波,将信号波与载波进行比较,在信号波与载波的交点时刻控制各开关的通断。在信号波的一个周期内,载波有正有负,调制出来的输出波形也是有正有负,其输出波形有±Ud 两种电平。用u r 表示信号波, u c 表示载波。当u r > u c 时,给V1 、V4 施加开通驱动信号,给V2 、V3 施加关断驱动信号,此时如果i o > 0 则V1 、V4 开通,如果i o < 0则VD1 、VD4 开通,但输出电压均为u o = U d 。反之,则V2 、V3 或VD2 、VD3 开通, uo = - U d 。图中,uof是输出电压uo 的基波分量。

图6 PWM调制示意图

相关文档
最新文档