广东省肇庆市怀集县2014届九年级中考二模数学试题含答案
2014年广东省中考(初中毕业生学业考试)数学全真模拟试卷二
50100 A . B .C .D .2014年广东省初中毕业生学业考试数学全真模拟试卷(二)说明:1.答题前,请将姓名、准考证号、考场、试室号和座位号用规定的笔写在试卷指定的位置上.2.全卷分两部分,第一部分为选择题,第二部分为非选择题,共8页.考试时间100分钟,满分120分.3.考生必须在试卷上按规定作答;不在指定位置上,其答案一律无效.试卷必须保持清洁,不能折叠.4.本卷选择题(1-10),每小题选出答案后,将答案填写在题后对应的括号内.答非选择题(11-25),答案必须用规定的笔填写在试卷指定位置上.5.考试结束后,请将本试卷交回.第一部分 选择题(共30分)一、选择题(本大题共10小题,每小题3分,满分30分)1.12-的倒数为( )A .12B .2C .2-D .1-2.下列运算正确的是( )A .236·a a a = B .1122-⎛⎫=- ⎪⎝⎭C 4=±D .|6|6-=3.如果把yx x-3的x 与y 同时扩大2倍,那么这个代数式的值( ) A .不变B .扩大2倍C .扩大6倍D .缩小到原来的214.直线32+-=x y 的图象经过( )A .第一象限B .第二象限C .第三象限D .第四象限5.下图的几何体是由三个同样大小的立方体搭成的,其左视图为( )6.若一个正多边形的一个内角是140°,则这个正多边形的边数是( )A .10B .9C .8D .67.下列四边形中,中心对称图形有( )①梯形 ②平行四边形 ③菱形 ④正方形 A .1个B .2个C .3个D .4个8.如图,E 、F 、G 、H 分别是矩形ABCD 各边的中点,若AB=4,AD=3,则四边形EFGH 的周长和面积分别是( ) A .5、6B .10、6C .5、12D .10、129.某校九年级⑴班50名学生积极参加献爱心慈善捐款活动,班长将捐款情况进行统计,并绘制成了统计图。
2014年九年级第二次质量预测数学试题卷(含答案)
主视方向2014年九年级第二次质量预测数学试题卷注意事项:本试卷分试题卷和答题卡两部分.考试时间100分钟,满分120分.考生应首先阅读答题卡上的文字信息,然后再答题卡上作答,在试题卷上作答无效,交卷时只交答题卡.参考公式:二次函数y =ax 2+bx +c (a ≠0)图象的顶点坐标为(24,24b ac b a a--).一、选择题(每小题3分,共24分)在每小题给出的四个选项中,只有一项是符合题目要求的.1. 9的绝对值是( )A .9B .-9C .19D .19-2. 如图是由5个大小相同的正方体组成的几何体,它的主视图是( )A .B .C .D .3. 近年来人们越来越关注健康,我国质检总局规定:针织内衣、被套、床上用品等直接接触皮肤的衣物,每千克衣物上甲醛含量应在0.000 075千克以下,将0.000 075用科学记数法表示为( ) A .0.75×10-4B .7.5×10-4C .75×10-6D .7.5×10-54. 下面的图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .5. 如图,OA 是⊙O 的半径,弦BC ⊥OA ,D 是⊙O上一点,若∠ADC =26°,则∠AOB 的度数为( ) A .13° B .26°C .52°D .78°6. 在一次体育达标测试中,九年级(3)班15名男同学的引体向上成绩如下表所示:A .12,13B .12,12C .11,12D .3,47. 小明用一张半径为24cm 的扇形纸板做一个如图所示的圆锥形小丑帽子的侧面(接缝忽略不计),如果做成的圆锥形小丑帽子的底面半径为10cm ,那么这张扇形纸板的面积是( ) A .120πcm 2B .240πcm 2C .260πcm 2D .480πcm 2C'PEDCBA第7题图 第8题图8. 如图,矩形ABCD 中,AB =3,BC =5,点P 是BC 边上的一个动点(点P 不与点B ,C 重合),现将△PCD 沿直线PD 折叠,使点C 落在点C ′处,作 ∠BPC ′的角平分线交AB 于点E ,设BP =x ,BE =y ,则下列图象中,能表示y 与x 函数关系的图象大致是( )A . 二、填空题(每小题3分,共21分) 9. 计算:2(1) =___________.10. 如图,一把矩形直尺沿直线断开并错位,点E ,D ,B ,F 在同一条直线上,若∠ADE =128°,则∠DBC 的度数为___________.FED C BA11. 一位园艺设计师计划在一块形状为直角三角形且有一个内角为60°的绿化区域上种植四种不同的花卉,要求种植的四种花卉分别组成面积相等、形状完全相同的几何图形图案.某同学为此提供了如图所示的4种设计方案,其中可以满足园艺设计师要求的有___________种.12. 农历5月5日是中华民族的传统节日端午节,有吃粽子的习俗.端午节早上,妈妈给小华准备了4个粽子:1个肉馅,1个豆沙馅,2个红枣馅.4个粽子除内部馅料不同外其他一切均相同,小华喜欢吃红枣馅的粽子,小华吃了一个粽子刚好是红枣馅的概率是___________.13. 若一次函数(2)(2)y a x a =-++不经过第三象限,则a 的取值范围为_______. 14. 如图,在平面直角坐标系中,正方形的中心在原点O ,且正方形的一组对边与x 轴平行,点(2)P a a ,是反比例函数2y x=的图象与正方形的一个交点,则图中阴影部分的面积是___________.864第15题图15. 在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为4,6,8,则原直角三角形纸片的斜边长是___________. 三、解答题(本大题共8个小题,共75分)16. (本题8分)有三个代数式:①a 2-2ab +b 2,②2a -2b ,③a 2-b 2,其中a ≠b ;(1)请你从①②③三个代数式中任意选取两个代数式,分别作为分子和分母构造成一个分式;(2)请把你所构造的分式进行化简;(3)若a ,b 为满足不等式0<x <3的整数解,且a >b ,请求出化简后的分式的值.17. (本题9分)郑州地铁1号线在2013年12月28日通车之前,为了解市民对地铁票的定价意向,市物价局向社会公开征集定价意见.某学校课外小组也开展了“你认为郑州地铁起步价定为多少合适?”的问卷调查,征求市民的意见,并将某社区市民的问卷调查结果整理后制成了如下统计图:票价10%15%5元4元3元2元根据统计图解答:(1)同学们一共随机调查了________人; (2)请你把条形统计图补充完整;(3)假定该社区有1万人,请估计该社区支持“起步价为3元”的市民大约有多少人?18. (本题9分)已知命题:“如图,点A ,D ,B ,E 在同一条直线上,且AD =BE ,AC ∥DF ,则△ABC ≌△DEF .”这个命题是真命题还是假命题?如果是真命题,请给出证明;如果是假命题,请添加一个适当的条件,使它成为真命题,并加以证明.FEC19. (本题9分)“城市发展,交通先行”,我市启动了缓堵保畅的高架桥快速通道建设工程,建成后将大大提升道路的通行能力.研究表明,某种情况下,高架桥上的车流速度V (单位:千米/时)是车流密度x (单位:辆/千米)的函数,且当028≤x <时,V =80;当28188≤x <时,V 是x 的一次函数.函数关系如图所示.(1)求当28188≤x <时,V 关于x 的函数表达式;(2)请你直接写出车流量P 和车流密度x 之间的函数表达式;当x 为多少时,车流量P (单位:辆/时)达到最大,最大值是多少?(注:车流量是单位时间内通过观测点的车辆数,计算公式为:车流量=车流速度×车流密度)(辆/千米)20. (本题9分)在某飞机场东西方向的地面l 上有一长为1km 的飞机跑道MN(如图),在跑道MN 的正西端14.5千米处有一观察站A .某时刻测得一架匀速直线降落的飞机位于点A 的北偏西30°,且与点A 相距15千米的B 处;经过1分钟,又测得该飞机位于点A 的北偏东60°,且与点A 相距千米的C 处.(1)该飞机航行的速度是多少千米/小时?(结果保留根号)(2)如果该飞机不改变航向继续航行,那么飞机能否降落在跑道MN 之间?请说明理由.北东21. (本题10分)某学校开展“我的中国梦”演讲比赛,学校准备购买10支某种品牌的水笔,每支水笔配x (x ≥2)支笔芯,作为比赛获得一等奖学生的奖品.A ,B 两家文具店都有这种品牌的水笔和笔芯出售,且每支水笔的标价均为30元,每支笔芯的标价为3元.目前两家文具店同时在做促销活动:A 文具店:所有商品均打九折(按标价的90%)销售;B 文具店:买一支水笔送2支笔芯.设在A 文具店购买水笔和笔芯的费用为y A (元),在B 文具店购买水笔和笔芯的费用为y B (元).请解答下列问题: (1)分别写出与y A ,y B 与x 之间的函数表达式;(2)若该校只在一家文具店购买奖品,你认为在哪家文具店购买更优惠? (3)若每支水笔配15支笔芯,请你帮助学校设计出最省钱的购买方案.22. (本题10分)如图1,点P ,Q 分别是边长为4cm 的等边△ABC 边AB ,BC上的动点,点P 从顶点A ,点Q 从顶点B 同时出发,且它们的速度都为1cm/s. (1)连接AQ ,CP 交于点M ,在点P ,Q 运动的过程中,∠CMQ 的大小变化吗?若变化,则说明理由,若不变,请直接写出它的度数;(2)点P ,Q 在运动过程中,设运动时间为t ,当t 为何值时,△PBQ 为直角三角形?(3)如图2,若点P ,Q 在运动到终点后继续在射线AB ,BC 上运动,直线AQ ,CP 交点为M ,则∠CMQ 的大小变化吗?若变化,则说明理由;若不变,请求出它的度数。
广东中考第二次模拟检测《数学试题》含答案解析
广东数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________ 一.选择题(共12小题)1.﹣34的绝对值是( )A. ﹣34B.34C. ﹣43D.432.如图的几何体由6个相同的小正方体搭成,它的主视图是( )A. B. C. D.3.如图,直线AB∥CD,直线EF分别交AB、CD于E、F两点,EG平分∠AEF,如果∠1=32°,那么∠2的度数是()A. 64°B. 68°C. 58°D. 60°4.下列运算正确的是( )A. 2m3+3m2=5m5B. m3÷m2=mC. m•(m2)3=m6D. (m﹣n)(n﹣m)=n2﹣m25.学校机房今年和去年共购置了100台计算机,已知今年购置计算机数量是去年购置计算机数量的3倍,则今年购置计算机的数量是( )A. 25台B. 50台C. 75台D. 100台6.小明将一正方形纸片画分成16个全等的小正方形,且如图所示为他将其中四个小正方形涂成灰色的情形.若小明想再将一小正方形涂成灰色,使此纸片上的灰色区域成为线对称图形,则此小正方形的位置为何?( ).A. 第一列第四行B. 第二列第一行C. 第三列第三行D. 第四列第一行7.某青少年篮球队有12名队员,队员的年龄情况统计如下: 年龄(岁) 12 13 14 15 16 人数 31251则这12名队员年龄的众数和中位数分别是( ) A. 15岁和14岁 B. 15岁和15岁 C. 15岁和14.5岁 D. 14岁和15岁8.已知下列命题: ①若a >b ,则ac >bc; ②若a=1a ③内错角相等;④90°的圆周角所对的弦是直径.其中原命题与逆命题均为真命题的个数是( ) A. 1个B. 2个C. 3个D. 4个9.如图,将ABC ∆沿BC 边上的中线AD 平移到A B C '''∆的位置.已知ABC ∆的面积为16,阴影部分三角形的面积9.若1AA '=,则A D '等于( )A. 2B. 3C. 4D. 3 210.如图,AB是⊙O的直径,EF,EB是⊙O的弦,且EF=EB,EF与AB交于点C,连接OF,若∠AOF=40°,则∠F的度数是()A 20° B. 35° C. 40° D. 55°11.如图,在平面直角坐标系中,菱形ABCD在第一象限内,边BC与x轴平行,A,B两点纵坐标分别为4,2,反比例函数ykx(x>0)的图象经过A,B两点,若菱形ABCD的面积为25,则k的值为( )A. 2B. 3C. 4D. 612.如图,以矩形ABCD对角线AC为底边作等腰直角△ACE,连接BE,分别交AD,AC于点F,N,CD=AF,AM平分∠BAN.下列结论:①EF⊥ED;②∠BCM=∠NCM;③AC=2EM;④BN2+EF2=EN2;⑤AE•AM =NE•FM,其中正确结论的个数是( )A 2 B. 3 C. 4 D. 5二.填空题(共4小题)13.把多项式9m 2﹣36n 2分解因式的结果是_____.14.在平面直角坐标系中,如果点P 坐标为(m ,n ),向量OP 可以用点P 的坐标表示为OP =(m ,n ),已知:OA =(x 1,y 1),OB =(x 2,y 2),如果x 1•x 2+y 1•y 2=0,那么OA 与OB 互相垂直,下列四组向量:①OC =(2,1),OD =(﹣1,2);②OE =(cos30°,tan45°),OF =(﹣1,sin60°);③OG =(3﹣2,﹣2),OH =(3+2,12);④OC =(π0,2),ON =(2,﹣1).其中互相垂直的是______(填上所有正确答案的符号).15.如图,一次函数y 1=kx +b (k ≠0)的图象与反比例函数y 2=mx(m 为常数且m ≠0)的图象都经过A (﹣1,2),B (2,﹣1),结合图象,则关于x 的不等式kx +b >mx的解集是_____.16.如图,Rt △ABC ,AB =3,AC =4,点D 在以C 为圆心3为半径的圆上,F 是BD 的中点,则线段AF 的最大值是_____.三.解答题(共7小题)17.计算:3016sin 45227()(20192019)2-︒+-+.18.先化简2728333x x x x x -⎛⎫+-÷⎪--⎝⎭,再从04x ≤≤中选一个适合的整数代入求值.19.为响应市政府关于”垃圾不落地市区更美丽”的主题宣传活动,郑州外国语中学随机调查了部分学生对垃圾分类知识的掌握情况,调查选项分为”A:非常了解;B:比较了解;C:了解较少;D:不了解“四种,并将调查结果绘制成以下两幅不完整的统计图请根据图中提供的信息,解答下列问题;()1求m=______,并补全条形统计图;()2若我校学生人数为1000名,根据调查结果,估计该校”非常了解”与”比较了解”的学生共有______名;()3已知”非常了解”是3名男生和1名女生,从中随机抽取2名向全校做垃圾分类的知识交流,请画树状图或列表的方法,求恰好抽到1男1女的概率.20.小明想测量湿地公园内某池塘两端A,B两点间的距离.他沿着与直线AB平行的道路EF行走,当行走到点C处,测得∠ACF=40°,再向前行走100米到点D处,测得∠BDF=52.44°,若直线AB与EF之间的距离为60米,求A,B两点的距离(结果精确到0.1)(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,sin52.44°≈0.79,cos52.44°≈0.61,tan52.44°≈1.30)21.仙桃是遂宁市某地的特色时令水果.仙桃一上市,水果店的老板用2400元购进一批仙桃,很快售完;老板又用3700元购进第二批仙桃,所购件数是第一批的32倍,但进价比第一批每件多了5元.(1)第一批仙桃每件进价是多少元?(2)老板以每件225元的价格销售第二批仙桃,售出80%后,为了尽快售完,剩下的决定打折促销.要使得第二批仙桃的销售利润不少于440元,剩余的仙桃每件售价至少打几折?(利润=售价﹣进价)22.如图,AB是⊙O直径,点C是AB的中点,连接AC并延长至点D,使CD=AC,点E是OB上一点,且23OEEB=,CE的延长线交DB的延长线于点F,AF交⊙O于点H,连接BH.(1)求证:BD是⊙O的切线;(2)当OB=2时,求BH的长.23.如图,抛物线y=ax2+bx(a≠0)与x轴交于原点及点A,且经过点B(4,8),对称轴为直线x=﹣2,顶点为D.(1)填空:抛物线的解析式为,顶点D的坐标为,直线AB的解析式为;(2)在直线AB左侧抛物线上存在点E,使得∠EBA=∠ABD,求E的坐标;(3)连接OB,点P为x轴下方抛物线上一动点,过点P作OB的平行线交直线AB于点Q,当S△POQ:S△BOQ =1:2时,求出点P的坐标.答案与解析一.选择题(共12小题)1.﹣34的绝对值是( )A. ﹣34B.34C. ﹣43D.43【答案】B 【解析】【分析】根据负数的绝对值等于它的相反数即可得出34的绝对值.【详解】解:|-34|=34,故选:B.【点睛】本题考查求一个数的绝对值.理解一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0是解决此题的关键.2.如图的几何体由6个相同的小正方体搭成,它的主视图是( )A. B. C. D.【答案】A【解析】分析】根据从正面看得到的视图是主视图,可得答案.【详解】从正面看有三列,从左起第一列有两个正方形,第二列有两个正方形,第三列有一个正方形,故A 符合题意,故选A.【点睛】本题考查了简单组合体的三视图,从正面看得到的视图是主视图.3.如图,直线AB∥CD,直线EF分别交AB、CD于E、F两点,EG平分∠AEF,如果∠1=32°,那么∠2的度数是()A. 64°B. 68°C. 58°D. 60°【答案】A【解析】【分析】首先根据平行线性质得出∠1=∠AEG,再进一步利用角平分线性质可得∠AEF的度数,最后再利用平行线性质进一步求解即可.【详解】∵AB∥CD,∴∠1=∠AEG.∵EG平分∠AEF,∴∠AEF=2∠AEG,∴∠AEF=2∠1=64°,∵AB∥CD,∴∠2=64°.故选:A.【点睛】本题主要考查了角平分线性质以及平行线的性质,熟练掌握相关概念是解题关键.4.下列运算正确的是( )A. 2m3+3m2=5m5B. m3÷m2=mC. m•(m2)3=m6D. (m﹣n)(n﹣m)=n2﹣m2【答案】B【解析】【分析】根据合并同类项、幂的乘法除法、幂的乘方、完全平方公式分别计算即可.【详解】A.2m3+3m2,不是同类项,不能合并,故错误;B.m3÷m2=m,正确;C.m•(m2)3=m7,故错误;D.(m﹣n)(n﹣m)=﹣(m﹣n)2=﹣n2﹣m2+2mn,故错误.故选B.【点睛】本题考查了整式的运算,熟练掌握合并同类项、幂的乘除法、幂的乘方、完全平方公式是解题的关键.5. 学校机房今年和去年共购置了100台计算机,已知今年购置计算机数量是去年购置计算机数量的3倍,则今年购置计算机的数量是( )A. 25台B. 50台C. 75台D. 100台【答案】C【解析】试题分析:首先设去年购置计算机数量为x台,则今年购置计算机的数量为3x台,根据题意可得:x+3x=100,解得:x=25,则3x=3×25=75(台),即今年购置计算机的数量为75台.考点:一元一次方程的应用.6.小明将一正方形纸片画分成16个全等的小正方形,且如图所示为他将其中四个小正方形涂成灰色的情形.若小明想再将一小正方形涂成灰色,使此纸片上的灰色区域成为线对称图形,则此小正方形的位置为何?( ).A. 第一列第四行B. 第二列第一行C. 第三列第三行D. 第四列第一行【答案】B【解析】【分析】根据轴对称图形的性质和纸片上的四个灰色小正方形,确定出对称轴,即可得出小正方形的位置.【详解】解:根据题意得:涂成灰色的小方格在第二列第一行.故选B.点评:此题考查了利用轴对称设计图案,解答此题的关键是根据题意确定出对称轴,画出图形.7.某青少年篮球队有12名队员,队员的年龄情况统计如下:年龄(岁) 12 13 14 15 16人数 3 1 2 5 1则这12名队员年龄的众数和中位数分别是( )A. 15岁和14岁B. 15岁和15岁C. 15岁和14.5岁D. 14岁和15岁【答案】C【解析】【分析】众数就是出现次数最多的数,而中位数就是大小处于中间位置的数,根据定义即可求解.【详解】在这12名队员的年龄数据里,15岁出现了5次,次数最多,因而众数是1512名队员的年龄数据里,第6和第7个数据的平均数14152=14.5,因而中位数是14.5.故选C.【点睛】本题考查了众数和中位数的概念:一组数据中出现次数最多的数据叫做众数;注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.8.已知下列命题:①若a>b,则ac>bc;②若a=1,则a =a;③内错角相等;④90°的圆周角所对的弦是直径.其中原命题与逆命题均为真命题的个数是( )A. 1个B. 2个C. 3个D. 4个【答案】A【解析】【分析】先对原命题进行判断,再判断出逆命题的真假即可.【详解】解:①若a >b ,则ac >bc 是假命题,逆命题是假命题;②若a=1,则a =a 是真命题,逆命题是假命题;③内错角相等是假命题,逆命题是假命题;④90°的圆周角所对的弦是直径是真命题,逆命题是真命题;其中原命题与逆命题均为真命题的个数是1个;故选A .点评:主要考查命题与定理,用到的知识点是互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题,判断命题的真假关键是要熟悉课本中的性质定理.9.如图,将ABC ∆沿BC 边上的中线AD 平移到A B C '''∆的位置.已知ABC ∆的面积为16,阴影部分三角形的面积9.若1AA '=,则A D '等于( )A. 2B. 3C. 4D. 32【答案】B【解析】【分析】由 S △ABC =16、S △A ′EF =9且 AD 为 BC 边的中线知 1922A DE A EF S S '∆'∆==,182ABD ABC S S ∆∆== ,根据△DA ′E ∽△DAB 知2A DE ABD S A D AD S ∆∆'⎛⎫=' ⎪⎝⎭,据此求解可得. 【详解】16ABC S ∆=、9A EF S ∆'=,且AD 为BC 边的中线,1922A DE A EF S S ∆∆''∴==,182ABD ABC S S ∆∆==, 将ABC ∆沿BC 边上的中线AD 平移得到A B C '''∆,//A E AB ∴',DA E DAB '∴∆~∆,则2A DE ABD S A D AD S ∆∆'⎛⎫=' ⎪⎝⎭,即22991816A D A D ⎛⎫== '⎪+⎝⎭', 解得3A D '=或37A D '=-(舍), 故选.【点睛】本题主要平移的性质,解题的关键是熟练掌握平移变换的性质与三角形中线的性质、相似三角形的判定与性质等知识点.10.如图,AB 是⊙O 的直径,EF ,EB 是⊙O 的弦,且EF=EB ,EF 与AB 交于点C ,连接OF ,若∠AOF=40°,则∠F 的度数是( )A. 20°B. 35°C. 40°D. 55°【答案】B【解析】【分析】 连接FB ,由邻补角定义可得∠FOB=140°,由圆周角定理求得∠FEB=70°,根据等腰三角形的性质分别求出∠OFB 、∠EFB 的度数,继而根据∠EFO =∠EBF-∠OFB 即可求得答案.【详解】连接FB ,则∠FOB=180°-∠AOF=180°-40°=140°,∴∠FEB=12∠FOB=70°,∵FO=BO,∴∠OFB=∠OBF=(180°-∠FOB)÷2=20°,∵EF=EB,∴∠EFB=∠EBF=(180°-∠FEB)÷2=55°,∴∠EFO=∠EBF-∠OFB=55°-20°=35°,故选B.【点睛】本题考查了圆周角定理、等腰三角形的性质等知识,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.11.如图,在平面直角坐标系中,菱形ABCD在第一象限内,边BC与x轴平行,A,B两点的纵坐标分别为4,2,反比例函数ykx(x>0)的图象经过A,B两点,若菱形ABCD的面积为25,则k的值为( )A. 2B. 3C. 4D. 6【答案】C【解析】【分析】过点A作x轴的垂线,交CB的延长线于点E,根据A,B两点的纵坐标分别为4,2,可得出横坐标,即可求得AE,BE的长,根据菱形的面积为5AE的长,在Rt△AEB中,即可得出k的值.【详解】过点A作x轴的垂线,交CB的延长线于点E,∵A,B 两点在反比例函数y k x =(x >0)的图象,且纵坐标分别为4,2, ∴A (4k ,4),B(2k ,2), ∴AE=2,BE 12=k 14-k 14=k , ∵菱形ABCD 的面积为25,∴BC×AE=25,即BC 5=, ∴AB=BC 5=,在Rt△AEB 中,BE 22AB AE =-=1 ∴14k =1, ∴k=4.故选C .【点睛】本题考查了菱形的性质以及反比例函数图象上点的坐标特征,熟记菱形的面积公式是解题的关键. 12.如图,以矩形ABCD 对角线AC 为底边作等腰直角△ACE ,连接BE ,分别交AD ,AC 于点F ,N ,CD =AF ,AM 平分∠BAN .下列结论:①EF ⊥ED ;②∠BCM =∠NCM ;③AC =2EM ;④BN 2+EF 2=EN 2;⑤AE •AM =NE •FM ,其中正确结论的个数是( )A 2B. 3C. 4D. 5【答案】C【解析】【分析】①正确,只要证明A,B,C,D,E五点共圆即可解决问题;②正确,证明BE平分∠ABC,再证明点M是△ABC的内心即可;③正确,证明∠EAM=∠EMA可得EM=AE,即可解决问题;④正确.如图2中,将△ABN逆时针旋转90°得到△AFG,连接EG.想办法证明△GEF是直角三角形,利用勾股定理即可解决问题;⑤错误.利用反证法证明即可.【详解】解:如图1中,连接BD交AC于O,连接OE.∵四边形ABCD是矩形,∴OA=OC=OD=OB,∵∠AEC=90°,∴OE=OA=OC,∴OA=OB=OC=OD=OE,∴A,B,C,D,E五点共圆,BD直径,∴∠BED=90°,∴EF⊥ED,故①正确,∵CD=AB=AF,∠BAF=90°,∴∠ABF=∠AFB=∠FBC=45°,∴BM平分∠ABC,∵AM平分∠BAC,∴点M是△ABC的内心,∴CM平分∠ACB,∴∠MCB=∠MCA,故②正确,∵∠EAM=∠EAC+∠MAC,∠EMA=∠BAM+∠ABM,∠ABM=∠EAC=45°,∴∠EAM=∠EMA,∴EA=EM,∵△EAC是等腰直角三角形,∴AC=2EA=2EM,故③正确,如图2中,将△ABN绕点A逆时针旋转90°,得到△AFG,连接EG,∵将△ABN绕点A逆时针旋转90°,得到△AFG,∴∠NAB=∠GAF,∠GAN=∠BAD=90°,AG=AN,GF=BN,∵∠EAN=45°,∴∠EAG=∠EAN=45°,∵AE=AE,∴△AEG≌△AEN(SAS),∴EN=EG,∵∠AFG=∠ABN=∠AFB=45°,∴∠GFB=∠GFE=90°,∴EG2=GF2+EF2,∴BN2+EF2=EN2,故④正确,不妨设AE•AM=NE•FM,∵AE=EC,∴EC EN FM AM,∴只有△ECN∽△MAF才能成立,∴∠AMF =∠CEN ,∴CE ∥AM ,∵AE ⊥CE ,∴MA ⊥AE (矛盾),∴假设不成立,故⑤错误,故选:C .【点睛】本题考查矩形的性质,全等三角形的判定和性质,等腰直角三角形的性质,勾股定理,相似三角形的判定和性质,圆等知识.解题的关键是学会添加常用辅助线,构造全等三角形解决问题.二.填空题(共4小题)13.把多项式9m 2﹣36n 2分解因式的结果是_____.【答案】9(m ﹣2n )(m +2n ).【解析】【分析】先提取公因式9,再利用平方差公式(22()()a b a b a b -=+-)因式分解即可.【详解】解:原式=9(m 2﹣4n 2)=9(m ﹣2n )(m +2n ),故答案为:9(m ﹣2n )(m +2n ).【点睛】本题考查综合运用提公因式法和公式法因式分解.一般来说,因式分解时,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.14.在平面直角坐标系中,如果点P 坐标为(m ,n ),向量OP 可以用点P 的坐标表示为OP =(m ,n ),已知:OA =(x 1,y 1),OB =(x 2,y 2),如果x 1•x 2+y 1•y 2=0,那么OA 与OB 互相垂直,下列四组向量:①OC =(2,1),OD =(﹣1,2);②OE =(cos30°,tan45°),OF =(﹣1,sin60°);③OG ,﹣2),OH 12);④OC =(π0,2),ON =(2,﹣1).其中互相垂直的是______(填上所有正确答案的符号).【答案】①③④【解析】分析:根据两个向量垂直的判定方法一一判断即可;详解:①∵2×(−1)+1×2=0,∴OC 与OD 垂直;②∵33cos301tan45sin60322⨯+⋅=+=, ∴OE 与OF 不垂直. ③∵()()()13232202-++-⨯=, ∴OG 与OH 垂直. ④∵()02210π⨯+⨯-=,∴OM 与ON 垂直.故答案为:①③④.点睛:考查平面向量,解题的关键是掌握向量垂直的定义.15.如图,一次函数y 1=kx +b (k ≠0)的图象与反比例函数y 2=m x(m 为常数且m ≠0)的图象都经过A (﹣1,2),B (2,﹣1),结合图象,则关于x 的不等式kx +b >m x的解集是_____.【答案】x <﹣1或0<x <2.【解析】【分析】根据一次函数图象在反比例函数图象上方的x 的取值范围便是不等式m kx b x+>的解集. 【详解】解:由函数图象可知,当一次函数y 1=kx +b (k ≠0)的图象在反比例函数y 2=m x (m 为常数且m ≠0)的图象上方时,x 的取值范围是:x <﹣1或0<x <2,∴不等式kx +b >m x的解集是x <﹣1或0<x <2, 故答案为:x <﹣1或0<x <2.【点睛】本题考查一次函数图象与反比例函数图象的交点问题,主要考查了由函数图象求不等式的解集.利用数形结合思想分析是解题的关键.16.如图,Rt△ABC,AB=3,AC=4,点D在以C为圆心3为半径的圆上,F是BD的中点,则线段AF的最大值是_____.【答案】4【解析】【分析】取BC的中点N,连接AN,NF,DC,根据直角三角形斜边上的中线等于斜边的一半以及三角形的中位线定理求得AN和NF的长,然后确定AF的范围.【详解】解:取BC的中点N,连接AN,NF,DC,∵Rt△ABC,AB=3,AC=4,∴BC22AB AC5,∵N为BC的中点,∴AN=12BC=52,又∵F为BD的中点,∴NF是△CDB的中位线,∴NF=12DC=32,∵52﹣32≤AF ≤52+32,即1≤AF ≤4. ∴最大值为4,故答案为:4.【点睛】本题考查圆的综合问题,三角形中位线定理,直角三角形斜边上的中线,勾股定理.熟练掌握直角三角形中线定理和三角形中位线定理,能正确构造辅助线是解题关键.三.解答题(共7小题)17.计算:3016sin 457()(20192-︒+-+.【解析】【分析】原式利用特殊角的三角函数值,绝对值的代数意义,零指数幂、负整数指数幂法则计算即可求出值.【详解】原式6781=--+= 【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.先化简2728333x x x x x -⎛⎫+-÷ ⎪--⎝⎭,再从04x ≤≤中选一个适合的整数代入求值. 【答案】42x x+;1x =时,原式52=(或当2x =时,原式32=.) 【解析】【分析】根据分式的运算法则进行化简,再选择使分式有意义的值代入. 【详解】解:原式22162833x x x x x --=÷-- (4)(4)332(4)x x x x x x -+-=⋅-- 42x x+= ∵0,3,4x ≠,∴当1x =时,原式52=(或当2x =时,原式32=.) 【点睛】本题考查了分式化简求值.,解题的关键是熟练掌握运算法则.19.为响应市政府关于”垃圾不落地市区更美丽”的主题宣传活动,郑州外国语中学随机调查了部分学生对垃圾分类知识的掌握情况,调查选项分为”A :非常了解;B :比较了解;C :了解较少;D :不了解 “四种,并将调查结果绘制成以下两幅不完整的统计图请根据图中提供的信息,解答下列问题;()1求m =______,并补全条形统计图;()2若我校学生人数为1000名,根据调查结果,估计该校”非常了解”与”比较了解”的学生共有______名;()3已知”非常了解”的是3名男生和1名女生,从中随机抽取2名向全校做垃圾分类的知识交流,请画树状图或列表的方法,求恰好抽到1男1女的概率.【答案】(1)20(2)500(3)12【解析】分析】 ()1先利用A 选项的人数和它所占百分比计算出调查的总人数为50,再计算出B 选项所占的百分比为42%,从而得到m%20%=,即m 20=,然后计算出C 、D 选项的人数,最后补全条形统计图;()2用1000乘以()8%42%+可估计该校”非常了解”与”比较了解”的学生数;()3画树状图展示所有12种等可能的结果数,找出抽到1男1女的结果数,然后根据概率公式求解.【详解】()1调查的总人数为48%50÷=,B 选项所占的百分比为21100%42%50⨯=, 所以m%18%42%30%20%=---=,即m 20=,C 选项的人数为30%5015(⨯=人),D 选项的人数为20%5010(⨯=人),条形统计图为:故答案为20;()()210008%42%500⨯+=,所以估计该校”非常了解”与”比较了解”的学生共有500名;故答案为500;()3画树状图为:共有12种等可能的结果数,其中抽到1男1女的结果数为6,所以恰好抽到1男1女的概率61 122 ==【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率也考查了统计图.20.小明想测量湿地公园内某池塘两端A,B两点间的距离.他沿着与直线AB平行的道路EF行走,当行走到点C处,测得∠ACF=40°,再向前行走100米到点D处,测得∠BDF=52.44°,若直线AB与EF之间的距离为60米,求A,B两点的距离(结果精确到0.1)(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,sin52.44°≈0.79,cos52.44°≈0.61,tan52.44°≈1.30)【答案】74.7米【解析】【分析】根据题意作出合适的辅助线,画出相应的图形,可以分别求得CM、DN的长,由于AB=CN﹣CM,从而可以求得AB的长.【详解】解:作AM⊥EF于点M,作BN⊥EF于点N,如图所示,由题意可得,AM=BN=60米,CD=100米,∠ACF=40°,∠BDF=52.44°,∴CM=60tan400.84AM≈︒≈71.43(米),DN=60tan52.44 1.3BN︒≈≈46.15(米),∴AB=CD+DN﹣CM=100+46.15﹣71.43≈74.7(米),即A、B两点的距离是74.7米.【点睛】本题考查的知识点是解直角三角形,读懂题目,作出合适的辅助线是解此题的关键.21.仙桃是遂宁市某地的特色时令水果.仙桃一上市,水果店的老板用2400元购进一批仙桃,很快售完;老板又用3700元购进第二批仙桃,所购件数是第一批的32倍,但进价比第一批每件多了5元.(1)第一批仙桃每件进价是多少元?(2)老板以每件225元的价格销售第二批仙桃,售出80%后,为了尽快售完,剩下的决定打折促销.要使得第二批仙桃的销售利润不少于440元,剩余的仙桃每件售价至少打几折?(利润=售价﹣进价)【答案】(1)进价为180元;(2)至少打6折.【解析】分析】(1)根据题意,列出等式24003370025x x⨯=+,解等式,再验证即可得到答案;(2)设剩余的仙桃每件售价打y折,由题意得到不等式,再解不等式,即可得到答案.【详解】解:(1)设第一批仙桃每件进价x元,则24003370025x x⨯=+,解得180x=.经检验,180x=是原方程的根.答:第一批仙桃每件进价为180元;(2)设剩余的仙桃每件售价打y折.则:3700370022580%225(180%)0.13700440 18051805y⨯⨯+⨯⨯-⨯-≥++,解得6y≥.答:剩余的仙桃每件售价至少打6折.【点睛】本题考查分式方程的应用和一元一次不等式的应用,解题的关键是熟练掌握分式方程的应用和一元一次不等式的应用.22.如图,AB是⊙O的直径,点C是AB的中点,连接AC并延长至点D,使CD=AC,点E是OB上一点,且23OEEB=,CE的延长线交DB的延长线于点F,AF交⊙O于点H,连接BH.(1)求证:BD是⊙O的切线;(2)当OB=2时,求BH的长.【答案】(1)证明见解析;(2)BH=125.【解析】【分析】(1)先判断出∠AOC=90°,再判断出OC∥BD,即可得出结论;(2)先利用相似三角形求出BF,进而利用勾股定理求出AF,最后利用面积即可得出结论.【详解】(1)连接OC,∵AB是⊙O的直径,点C是AB的中点,∴∠AOC=90°,∵OA=OB,CD=AC,∴OC是△ABD是中位线,∴OC∥BD,∴∠ABD=∠AOC=90°,∴AB⊥BD,∵点B在⊙O上,∴BD是⊙O的切线; (2)由(1)知,OC∥BD,∴△OCE∽△BFE,∴OC OE BF EB=,∵OB=2,∴OC=OB=2,AB=4,23 OEEB=,∴223 BF=,∴BF=3,在Rt△ABF中,∠ABF=90°,根据勾股定理得,AF=5,∵S△ABF=12AB•BF=12AF•BH,∴AB•BF=AF•BH,∴4×3=5BH,∴BH=125.【点睛】此题主要考查了切线的判定和性质,三角形中位线的判定和性质,相似三角形的判定和性质,求出BF=3是解本题的关键.23.如图,抛物线y=ax2+bx(a≠0)与x轴交于原点及点A,且经过点B(4,8),对称轴为直线x=﹣2,顶点为D.(1)填空:抛物线的解析式为,顶点D的坐标为,直线AB的解析式为;(2)在直线AB左侧抛物线上存在点E,使得∠EBA=∠ABD,求E的坐标;(3)连接OB,点P为x轴下方抛物线上一动点,过点P作OB的平行线交直线AB于点Q,当S△POQ:S△BOQ =1:2时,求出点P的坐标.【答案】(1)y =14x 2+x ;(﹣2,﹣1);y =x +4;(2)(﹣163,169);(3)P (﹣22,2﹣22). 【解析】【分析】 (1)根据对称轴可求得A 点坐标,再根据B 点坐标,利用待定系数法即可求得抛物线以及一次函数解析式,再利用对称轴为x =﹣2可求得抛物线顶点坐标;(2)证明四边形GDHD′为正方形,点D (-2,-1),则点G (-5,-1),则正方形的边长为3,则点D′(-5,2),求得直线BD′的解析式,与抛物线联立即可求解;(3)证明四边形PQHO 为平行四边形,则x Q -x P =x H -x O ,即可求解.【详解】解:(1)对称轴为直线x =﹣2,则点A (﹣4,0),将点A 、B 的坐标代入抛物线表达式得0=1648164a b a b -⎧⎨=+⎩ ,解得141a b ⎧=⎪⎨⎪=⎩. 故抛物线的表达式为:y =14x 2+x …①, 当x=-2时,21(2)(2)14y =⨯-+-=- ∴顶点D 的坐标为:(﹣2,﹣1),设直线AB 的表达式为y kx c =+,将点A 、B 的坐标代入一次函数表达式0484k c k c =-+⎧⎨=+⎩,解得14k c =⎧⎨=⎩, 所以,直线AB 的表达式为:y =x +4…②,故答案为:y =14x 2+x ;(﹣2,﹣1);y =x +4; (2)作点D 关于AB 的对称点D ′,分别过点D 、D ′作x 轴的平行线交直线AB 与点G 、H ,则','DH D H D G DG ,'D GH HGD ,∵直线AB 的解析式为y =x +4,'D H ∥x 轴,GD ∥x 轴,∴'45D HGHAO HGD , ∴''45D GHHGD D HG , ∴'90D GD ,''DH D H D G DG ,则四边形GDHD ′为正方形,根据点D (﹣2,﹣1),可得点G (﹣5,﹣1),所以,正方形的边长为3,则点D ′(﹣5,2),设直线BD ′的表达式为:11y k x c ,所以11112584k c k c =-+⎧⎨=+⎩,解得1123163k c ⎧=⎪⎪⎨⎪=⎪⎩, 所以,直线BD ′的表达式为:y =23x +163…③; 联立①③并解得:x =﹣163或4(舍去), 故点E (﹣163,169); (3)取OB 的中点H (2,4),则S △OQH =12S △OBQ ,而S △POQ :S △BOQ =1:2,故S △OQH =S △POQ ,∵PQ ∥OH ,故PQ =OH (四边形PQHO 为平行四边形),则x Q ﹣x P =x H ﹣x O ,设点P (m ,14m 2+m ), 直线OB 的表达式为:y =2x ,则直线PQ 的表达式为:y =2x +b 1,将点P 的坐标代入上式得21124m m m b +=+,解得2114b m m =-, 所以,直线PQ 的表达式为:y =2x +14m 2﹣m …④, 联立②④并解得:x Q =﹣14m 2+m +4, 而x Q ﹣x P =x H ﹣x O , 即﹣14m 2+m +4﹣m =2,解得:m =-或m =(舍去),故点P (﹣,2﹣).【点睛】本题考查二次函数综合,求一次函数解析式,正方形的性质和判定,平行四边形的性质和判定.(1)能利用对称轴求得A 点坐标是解题关键;(2)中能巧用轴对称的性质,得出作点D 关于AB 的对称点D ′时,∠D ′BA =∠ABD 是解题关键;(3)证明四边形PQHO 为平行四边形是解题关键.。
2014中考数学模拟试题含答案(精选5套)
2014年中考数学模拟试卷(一)数 学(全卷满分120分,考试时间120分钟)注意事项:1. 本试卷分选择题和非选择题两部分. 在本试题卷上作答无效..........;2. 答题前,请认真阅读答题.......卷.上的注意事项......;3. 考试结束后,将本试卷和答题.......卷一并交回..... 一、选择题(本大题满分36分,每小题3分. 在下列各题的四个备选答案中,只有一个是正确的,请在答题卷上把你认为正确的答案的字母代号按要求用2B 铅笔涂黑) 1. 2 sin 60°的值等于 A. 1B.23C. 2D. 32. 下列的几何图形中,一定是轴对称图形的有A. 5个B. 4个C. 3个D. 2个3. 据2013年1月24日《桂林日报》报道,临桂县2012年财政收入突破18亿元,在广西各县中排名第二. 将18亿用科学记数法表示为A. 1.8×10B. 1.8×108C. 1.8×109D. 1.8×10104. 估计8-1的值在A. 0到1之间B. 1到2之间C. 2到3之间D. 3至4之间 5. 将下列图形绕其对角线的交点顺时针旋转90°,所得图形一定与原图形重合的是 A. 平行四边形 B. 矩形 C. 正方形 D. 菱形 6. 如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是7. 为调查某校1500名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机抽取部分学生进行调查,并结 合调查数据作出如图所示的扇形统计图. 根据统计图提供的 信息,可估算出该校喜爱体育节目的学生共有 A. 1200名 B. 450名C. 400名D. 300名8. 用配方法解一元二次方程x 2+ 4x – 5 = 0,此方程可变形为 A. (x + 2)2= 9 B. (x - 2)2 = 9C. (x + 2)2 = 1D. (x - 2)2=1圆弧 角 扇形 菱形 等腰梯形A. B. C. D.(第9题图)(第7题图)9. 如图,在△ABC 中,AD ,BE 是两条中线,则S △EDC ∶S △ABC = A. 1∶2B. 1∶4C. 1∶3D. 2∶310. 下列各因式分解正确的是A. x 2 + 2x-1=(x - 1)2B. - x 2+(-2)2=(x - 2)(x + 2) C. x 3- 4x = x (x + 2)(x - 2)D. (x + 1)2= x 2 + 2x + 111. 如图,AB 是⊙O 的直径,点E 为BC 的中点,AB = 4, ∠BED = 120°,则图中阴影部分的面积之和为 A. 3 B. 23 C.23 D. 112. 如图,△ABC 中,∠C = 90°,M 是AB 的中点,动点P 从点A出发,沿AC 方向匀速运动到终点C ,动点Q 从点C 出发,沿 CB 方向匀速运动到终点B. 已知P ,Q 两点同时出发,并同时 到达终点,连接MP ,MQ ,PQ . 在整个运动过程中,△MPQ 的面积大小变化情况是 A. 一直增大B. 一直减小C. 先减小后增大D. 先增大后减小二、填空题(本大题满分18分,每小题3分,请将答案填在答题卷上,在试卷上答题无效) 13. 计算:│-31│= . 14. 已知一次函数y = kx + 3的图象经过第一、二、四象限,则k 的取值范围是 . 15. 在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是 .16. 在临桂新区建设中,需要修一段全长2400m 的道路,为了尽量减少施工对县城交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8天完成任务,求原计划每天修路的长度. 若设原计划每天修路x m ,则根据题意可得方程 . 17. 在平面直角坐标系中,规定把一个三角形先沿着x 轴翻折,再向右平移2个单位称为1次变换. 如图,已知等边三角形 ABC 的顶点B ,C 的坐标分别是(-1,-1),(-3,-1),把 △ABC 经过连续9次这样的变换得到△A ′B ′C ′,则点A 的对 应点A ′ 的坐标是 .18. 如图,已知等腰Rt △ABC 的直角边长为1,以Rt △ABC 的斜边AC 为直角边,画第二个等腰Rt △ACD ,再以Rt △ACD 的 斜边AD 为直角边,画第三个等腰Rt △ADE ……依此类推直 到第五个等腰Rt △AFG ,则由这五个等腰直角三角形所构成 的图形的面积为 . 三、解答题(本大题8题,共66分,解答需写出必要的步骤和过程. 请将答案写在答题卷上,在试卷上答题无效)(第11题图)(第12题图) (第17题图)(第18题图)19. (本小题满分8分,每题4分)(1)计算:4 cos45°-8+(π-3) +(-1)3;(2)化简:(1 - n m n+)÷22n m m -.20. (本小题满分6分)21. (本小题满分6分)如图,在△ABC 中,AB = AC ,∠ABC = 72°. (1)用直尺和圆规作∠ABC 的平分线BD 交AC 于点D (保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC 的平分线BD 后,求∠BDC 的度数.22. (本小题满分8分)在开展“学雷锋社会实践”活动中,某校为了解全校1200名学生参加活动的情况,随机调查了50名学生每人参加活动的次数,并根据数据绘成条形统计图如下:(1)求这50个样本数据的平均数、众数和中位数;(2)根据样本数据,估算该校1200名学生共参加了多少次活动. 23. (本小题满分8分)如图,山坡上有一棵树AB ,树底部B 点到山脚C 点的距离BC 为63米,山坡的坡角 为30°. 小宁在山脚的平地F 处测量这棵树的高,点 C 到测角仪EF 的水平距离CF = 1米,从E 处测得树 顶部A 的仰角为45°,树底部B 的仰角为20°,求树 AB 的高度.(参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)24. (本小题满分8分)如图,PA ,PB 分别与⊙O 相切于点A ,B ,点M 在PB 上,且OM ∥AP ,MN ⊥AP ,垂足为N. (1)求证:OM = AN ;(2)若⊙O 的半径R = 3,PA = 9,求OM 的长.3121--+x x ≤1, ……① 解不等式组:3(x - 1)<2 x + 1. ……②(第21题图)(第23题图)(第24题图)°25. (本小题满分10分)某中学计划购买A 型和B 型课桌凳共200套. 经招标,购买一套A 型课桌凳比购买一套B 型课桌凳少用40元,且购买4套A 型和5套B 型课桌凳共需1820元. (1)求购买一套A 型课桌凳和一套B 型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A 型课桌凳的数量不能超过B 型课桌凳数量的32,求该校本次购买A 型和B 型课桌凳共有几种方案?哪种方案的总费用最低?26. (本小题满分12分)在平面直角坐标系中,现将一块等腰直角三角板ABC 放在第二象限,斜靠在两坐标轴上,点C 为(-1,0). 如图所示,B 点在抛物线y =21x 2 -21x – 2图象上,过点B 作BD ⊥x 轴,垂足为D ,且B 点横坐标为-3. (1)求证:△BDC ≌ △COA ;(2)求BC 所在直线的函数关系式;(3)抛物线的对称轴上是否存在点P ,使△ACP 是以AC 为直角边的直角三角形?若存在,求出 所有点P 的坐标;若不存在,请说明理由.2013年初三适应性检测参考答案与评分意见一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12 答案DACBCBDABCAC说明:第12题是一道几何开放题,学生可从几个特殊的点着手,计算几个特殊三角形面积从而降低难度,得出答案. 当点P ,Q 分别位于A 、C 两点时,S △MPQ =21S △ABC ;当点P 、Q 分别运动到AC ,BC 的中点时,此时,S △MPQ =21×21AC. 21BC =41S △ABC ;当点P 、Q 继续运动到点C ,B 时,S △MPQ =21S△ABC,故在整个运动变化中,△MPQ 的面积是先减小后增大,应选C.二、填空题 13.31; 14. k <0; 15. 54(若为108扣1分); 16. x2400-x %)201(2400 = 8;(第26题图)17. (16,1+3); 18. 15.5(或231). 三、解答题19. (1)解:原式 = 4×22-22+1-1……2分(每错1个扣1分,错2个以上不给分) = 0 …………………………………4分(2)解:原式 =(n m nm ++-nm n +)·m n m 22- …………2分= nm m +·m n m n m ))((-+ …………3分= m – n …………4分 20. 解:由①得3(1 + x )- 2(x -1)≤6, …………1分 化简得x ≤1. …………3分 由②得3x – 3 < 2x + 1, …………4分 化简得x <4. …………5分 ∴原不等式组的解是x ≤1. …………6分21. 解(1)如图所示(作图正确得3分)(2)∵BD 平分∠ABC ,∠ABC = 72°, ∴∠ABD =21∠ABC = 36°, …………4分 ∵AB = AC ,∴∠C =∠ABC = 72°, …………5分 ∴∠A= 36°,∴∠BDC =∠A+∠ABD = 36° + 36° = 72°. …………6分 22. 解:(1)观察条形统计图,可知这组样本数据的平均数是 _x =50551841737231⨯+⨯+⨯+⨯+⨯ =3.3, …………1分∴这组样本数据的平均数是3.3. …………2分∵在这组样本数据中,4出现了18次,出现的次数最多, ∴这组数据的众数是4. …………4分∵将这组样本数据按从小到大的顺序排列,其中处在中间的两个数都是3,有233+ = 3. ∴这组数据的中位数是3. ………………6分(2)∵这组数据的平均数是3.3,∴估计全校1200人参加活动次数的总体平均数是3.3,有3.3×1200 = 3900. ∴该校学生共参加活动约3960次. ………………8分23. 解:在Rt △BDC 中,∠BDC = 90°,BC = 63米,∠BCD = 30°, ∴DC = BC ·cos30° ……………………1分 = 63×23= 9, ……………………2分 ∴DF = DC + CF = 9 + 1 = 10,…………………3分 ∴GE = DF = 10. …………………4分 在Rt △BGE 中,∠BEG = 20°, ∴BG = CG ·tan20° …………………5分 =10×0.36=3.6, …………………6分 在Rt △AGE 中,∠AEG = 45°,∴AG = GE = 10, ……………………7分 ∴AB = AG – BG = 10 - 3.6 = 6.4.答:树AB 的高度约为6.4米. ……………8分24. 解(1)如图,连接OA ,则OA ⊥AP. ………………1分∵MN ⊥AP ,∴MN ∥OA. ………………2分 ∵OM ∥AP ,∴四边形ANMO 是矩形.∴OM = AN. ………………3分(2)连接OB ,则OB ⊥AP ,∵OA = MN ,OA = OB ,OM ∥BP , ∴OB = MN ,∠OMB =∠NPM.∴Rt △OBM ≌Rt △MNP. ………………5分 ∴OM = MP.设OM = x ,则NP = 9- x . ………………6分在Rt △MNP 中,有x 2 = 32+(9- x )2.∴x = 5. 即OM = 5 …………… 8分25. 解:(1)设A 型每套x 元,则B 型每套(x + 40)元. …………… 1分 ∴4x + 5(x + 40)=1820. ……………………………………… 2分∴x = 180,x + 40 = 220.即购买一套A 型课桌凳和一套B 型课桌凳各需180元、220元. ……………3分(2)设购买A 型课桌凳a 套,则购买B 型课桌凳(200 - a )套.a ≤32(200 - a ), ∴ …………… 4分 180 a + 220(200- a )≤40880.解得78≤a ≤80. …………… 5分∵a为整数,∴a = 78,79,80∴共有3种方案. ………………6分设购买课桌凳总费用为y元,则y = 180a + 220(200 - a)=-40a + 44000. …………… 7分∵-40<0,y随a的增大而减小,∴当a = 80时,总费用最低,此时200- a =120. …………9分即总费用最低的方案是:购买A型80套,购买B型120套. ………………10分2014年中考数学模拟试题(二)一、选择题1、数2-中最大的数是()A 、1- BC 、0D 、2 2、9的立方根是()A 、3±B 、3 C、 D3、已知一元二次方程2430x x -+=的两根1x 、2x ,则12x x +=()A 、4B 、3C 、-4D 、-3 4、如图是某几何题的三视图,下列判断正确的是() A 、几何体是圆柱体,高为2 B 、几何体是圆锥体,高为2 C 、几何体是圆柱体,半径为2 D 、几何体是圆柱体,半径为2 5、若a b >,则下列式子一定成立的是()A 、0a b +>B 、0a b ->C 、0ab >D 、0a b> 6、如图AB ∥DE ,∠ABC=20°,∠BCD=80°,则∠CDE=() A 、20° B 、80° C 、60° D 、100°7、已知AB 、CD 是⊙O 的直径,则四边形ACBD 是() A 、正方形 B 、矩形 C 、菱形 D 、等腰梯形 8、不等式组302x x +>⎧⎨-≥-⎩的整数解有()A 、0个B 、5个C 、6个D 、无数个 9、已知点1122(,),(,)A x y B x y 是反比例函数2y x=图像上的点,若120x x >>则一定成立的是()A 、120y y >>B 、120y y >>C 、120y y >>D 、210y y >>10、如图,⊙O 和⊙O ′相交于A 、B 两点,且OO ’=5,OA=3, O ’B =4,则AB=( ) A 、5 B 、2.4 C 、2.5 D 、4.8 二、填空题11、正五边形的外角和为 12、计算:3m m -÷=13、分解因式:2233x y -=14、如图,某飞机于空中A 处探测到目标C ,此时飞行高度AC=1200米,从飞机上看地面控制点B的俯角20α=︒,则飞机A 到控制点B 的距离约为 。
2014肇庆二模(文数)【含答案--全WORD--精心排版】
肇庆市中小学教学质量评估 2014届高中毕业班第二次模拟考试数学(文科)参考公式:22⨯列联表随机变量))()()(()(22d b c a d c b a bc ad n K ++++-=. )(2k K P ≥与k 对应值表:一、选择题:1.已知i 是虚数单位,x 是实数,若复数(1)(2)xi i ++是纯虚数,则x =( ) A .2B .12 C .12- D .2-2.若函数||x y =的定义域为{}2,0,2M =-,值域为N ,则M N =( )A .{}2,0,2-B .{}0,2C .{}2D .{}03.已知53)2sin(=+απ,)2,0(πα∈,则=+)sin(απ( )A .35B .35-C .45D .45-4.已知向量(1,2),(,)a b x y ==,则“2x =-且4y =-”是“//a b ”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 5.若如图1所示的程序框图输出的S 是62,则在判断框中M 表示的“条件”应该是( ) A. 3n ≥ B. 4n ≥ C. 5n ≥ D. 6n ≥6.已知圆锥的正视图和侧视图都是边长为4的等边三角形,则此圆锥的表面积是( ) A .4π B .8π C .83πD .12π 7.已知直线l :b x y +=,圆224x y +=上恰有3个点到直线l 的距离都等于1,则b =( )A B . C . D .2± 8.若函数)4(sin 21)(2π+-=x x f (R x ∈),则()f x 是( )A .最小正周期为π的偶函数B .最小正周期为π的奇函数C .最小正周期为2π的偶函数 D .最小正周期为2π的奇函数 9.已知实数0≠a ,函数⎩⎨⎧≥--<+=1,21,2)(x a x x a x x f ,若)1()1(a f a f +=-,则a 的值为( )A .34-B .34C .35- D .35图2所有元素之和为( )A .0B .6C .12D .18二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分. (一)必做题(11~13题)11.已知等比数列{}n a 满足122348a a a a +=+=,,则5a = . 12.函数()x f x xe =的最小值为 .13.设不等式组042x x y y ≥⎧⎪+≤⎨⎪≥⎩所表示的平面区域为D ,若直线(3)y k x =+与D 有公共点,则k 的取值范围是 .(二)选做题(14~15题)14.(坐标系与参数方程选做题)已知C 的参数方程为3cos 3sin x ty t=⎧⎨=⎩(t 为参数),C 在点(0,3)处的切线为l , 若以直角坐标原点为极点,以x 轴的正半轴为极轴建立极坐标系, 则l 的极坐标方程为 .15.(几何证明选讲选做题)如图2,在ABC ∆中,AB=BC ,圆O 是ABC ∆的外接圆, 过点C 的切线交AB 的延长线于点D , BD=4,72=CD ,则AC 的长等于 .三、解答题:本大题共6小题,满分80分. 解答须写出文字说明、证明过程和演算步骤.16.(本小题满分12分)为考察高中生的性别与是否喜欢数学课程之间的关系,在我市某普通中学高中生中随机抽取200(1)根据独立性检验的基本思想,约有多大的把握认为“性别与喜欢数学课之间有关系”?(2)若采用分层抽样的方法从喜欢数学课的学生中随机抽取5人,则男生和女生抽取的人数分别是多少? (3)在(2)的条件下,从中随机抽取2人,求恰有一男一女的概率.17.(本小题满分13分)已知数列{}n a 是等差数列,{}n b 是等比数列,且1122b a ==,416b =,1211123a a a b b b ++=++. (1)求数列{}n a 和{}n b 的通项公式;(2)数列{}n c 满足(21)n n n c a b =-,求数列{}n c 的前n 项和n S .18.(本小题满分13分)如图3,在四棱锥P ABCD -中,底面ABCD 是边长为2的菱形,且∠DAB=60︒. 侧面PAD 为正三角形,其所在的平面垂直于底面ABCD ,G 为AD 边的中点. (1)求证:BG ⊥平面PAD ;(2)求三棱锥G —CDP 的体积;(3)若E 为BC 边的中点,能否在棱PC 上找到一点F ,使平面DEF ⊥平面ABCD ,并证明你的结论.19.(本小题满分14分)在∆ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,已知135sin =B ,且a 、b 、c 成等比数列.(1)求CA tan 1tan 1+的值;(2)若12cos =B ac ,求c a +的值.20.(本小题满分14分)已知双曲线C 的两个焦点坐标分别为12(2,0),(2,0)F F -,双曲线C 上一点P 到12,F F 距离差的绝对值等于2.(1)求双曲线C 的标准方程;(2)经过点M (2,1)作直线l 交双曲线C 的右支于A ,B 两点,且M 为AB 的中点,求直线l 的方程. (3)已知定点G (1,2),点D 是双曲线C 右支上的动点,求1DF DG +的最小值.21.(本小题满分14分)已知函数x xx a x f ln 2)1()(--=,R a ∈.(1)若a=1,判断函数()f x 是否存在极值,若存在,求出极值;若不存在,说明理由; (2)求函数)(x f 的单调区间; (3)设函数xax g -=)(.若至少存在一个],1[0e x ∈,使得)()(00x g x f >成立,求实数a 的取值范围.肇庆市2014届高中毕业班第二次模拟考试数学(文科)参考答案及评分标准一、选择题3e 532三、解答题16.(本小题满分12分)解:(1)∵22200(30906020) 6.061 5.0249011050150K ⨯-⨯=≈>⨯⨯⨯, (2分)∴约有97.5%以上的把握认为“性别与喜欢数学课之间有关系”. (4分) (2)男生抽取的人数有:30533020⨯=+(人) (5分),女生抽取的人数有:20523020⨯=+(人) (6分)(3)由(2)可知,男生抽取的人数为3人,设为a ,b ,c ,女生抽取的人数为2人,设为d ,e ,则所有基本事件有:(,),(,),(,),(,),a b a c a d a e (,),(,),(,),b c b d b e (,),(,),(,)c d c e d e 共10种.(8分) 其中满足条件的基本事件有:(,),(,),a d a e (,),(,),b d b e (,),(,)c d c e 共6种, (10分) 所以,恰有一男一女的概率为63105p ==. (12分) 17.(本小题满分13分)解:(1)设{}n a 的公差为d ,{}n b 的公比为q ,由341b b q =,得3411682b q b ===,从而2q =, (2分) 因此111222n n n n b b q --==⨯=,即n n b 2=. (4分) 由121112311a a ab b b a ++=++⎧⎨=⎩,得11311141a d a +=⎧⎨=⎩, (6分)所以1d =, (7分),故1(1)1(1)1n a a n d n n =+-=+-⨯=,即n a n =. (8分) (2)(21)(21)2n n n n c a b n =-=-⋅ (9分) 所以231123252(23)2(21)2n n n S n n -=⨯+⨯+⨯++-⋅+-⋅ (10分)两边同乘以2,得1322)12(2)32(23212+⋅-+⋅-++⨯+⨯=n n n n n S (11分)两式相减得34112222(21)2n n n S n ++-=++++--⋅ (12分)3112(12)2(21)212n n n -+⋅-=+--⋅- 1(32)26n n +=-⋅-,所以1(23)26n n S n +=-⋅+. (13分)18.(本小题满分13分)(1)证明:连结BD. 因为ABCD 为棱形,且∠DAB=60°,所以∆ABD 为正三角形. (1分) 又G 为AD 的中点,所以BG ⊥AD. (2分),又面PAD ⊥面ABCD ,面PAD∩面ABCD=AD , (3分) ∴BG ⊥平面PAD. (4分)所以PG ⊥平面ABCD. (5分),因为正三角形PAD 的边长为2,所以3=PG . (6分)在∆CDG 中,CD=2,DG=1,∠CDG=120°,所以23232121=⨯⨯⨯=∆CDG S . (7分) 故2123331=⨯⨯==--CDG P CDP G V V . (8分) (3)当F 为PC 的中点时,平面DEF ⊥平面ABCD. (9分)取PC 的中点F ,连结DE ,EF ,DF ,CG ,且DE 与CG 相交于H.因为E 、G 分别为BC 、AD 的中点,所以四边形CDGE 为平行四边形. (10分) 故H 为CG 的中点. 又F 为CP 的中点,所以FH//PG. (11分) 由(2),得PG ⊥平面ABCD ,所以FH ⊥平面ABCD. (12分) 又FH ⊂平面DEF ,所以平面DEF ⊥平面ABCD. (13分) 19.(本小题满分14分)解:(1)由a 、b 、c 成等比数列,得ac b =2.(1分),由正弦定理,得C A B sin sin sin 2=. (3分)所以513sin sin sin sin )sin(sin cos sin cos tan 1tan 12==+=+=+B B C A C A C C A A C A . (7分) (2)由12cos =B ac ,得0cos >B . (8分)又135sin =B ,所以1312sin 1cos 2=-=B B . (9分),所以13cos 122===B ac b . (10分) 由余弦定理,得B ac ac c a B ac c a b cos 22)(cos 22222--+=-+=,(13分) 代入数值,得)13121(132)(132+⨯-+=c a ,解得73=+c a . (14分) 20.(本小题满分14分) 解:(1)依题意,得双曲线C 的实半轴长为a=1,焦半距为c=2, (2分) 所以其虚半轴长322=-=a c b , (3分)又其焦点在x 轴上,所以双曲线C 的标准方程为1322=-y x . (4分) (2)设A 、B 的坐标分别为),(11y x 、),(22y x ,则⎪⎩⎪⎨⎧=-=-333322222121y x y x (5分) 两式相减,得121212123()()()()0x x x x y y y y -+--+=, (6分)因为M (2,1)为AB 的中点,所以⎩⎨⎧=+=+242121y y x x , (7分)所以0)(2)(122121=---y y x x ,即62121=--=x x y y k AB . (8分)故AB 所在直线l 的方程为)2(61-=-x y ,即0116=--y x . (9分)所以12222DF DG DF DG GF +=++≥+,当且仅当2,,G D F 三点共线时取等号.(11分) 因为2GF == (12分),所以22222DF DG GF ++≥+=, (13分) 故1DF DG+2. (14分) 21.(本小题满分14分) 解:(1)当1a =时,x xx x f ln 21)(--=,其定义域为(0,+∞). 因为0)1(211)(22≥-=-+='x x x xx f , (1分),所以)(x f 在(0,+∞)上单调递增, (2分) 所以函数()f x 不存在极值. (3分)(2)函数x x x a x f ln 2)1()(--=的定义域为(0,)+∞.22222)11()(x ax ax x x a x f +-=-+='当0a ≤时,因为0)(<'x f 在(0,+∞)上恒成立,所以)(x f 在(0,+∞)上单调递减. (4分)当0a >时,当),0(+∞∈x 时,方程0)(='x f 与方程022=+-a x ax 有相同的实根. (5分))1(44422a a -=-=∆,①当01a <<时,∆>0,可得a a x 2111--=,aa x 2211-+=,且210x x << 因为),0(1x x ∈时,0)(>'x f ,所以)(x f 在),0(1x 上单调递增; (6分) 因为),(21x x x ∈时,0)(<'x f ,所以)(x f 在),(21x x 上单调递减; (7分) 因为),(2+∞∈x x 时,0)(>'x f ,所以)(x f 在),(2+∞x 上单调递增; (8分)②当1≥a 时,0≤∆,所以0)(>'x f 在(0,+∞)上恒成立,故)(x f 在(0,+∞)上单调递增. (9分)综上,当0a ≤时,)(x f 的单调减区间为(0,+∞);当01a <<时,)(x f 的单调增区间为)11,0(2a a --与),11(2+∞-+a a ;单调减区间为)11,11(22aa a a -+--;当1≥a 时,)(x f 单调增区间为(0,+∞). (10分)(3)由存在一个],1[0e x ∈,使得)()(00x g x f >成立,得002ln ax x >,即02ln x a x >. (11分) 令2ln ()xF x x=,等价于“当],1[e x ∈ 时,min )(x F a >”. (12分) 因为22(1ln )()x F x x-'=,且当],1[e x ∈时,()0F x '≥,所以()F x 在[1,e]上单调递增,(13分) 故()(1)0F x F ==,因此0a >. (14分)。
2014年九年级中考第二次模拟数学试卷及答案
2014年初中毕业、升学统一考试模拟考试数学试题(考试形式:闭卷 满分:150分 考试时间:120分钟)友情提醒:本卷中的所有题目均在答题卡上作答,在本卷中作答无效。
一、选择题(本大题共8小题,每小题3分,共24分.每题的四个选项中,只有一个选项是符合要求的,请将正确选项前的字母代号填写在答题卡...相应位置....上) 1.下列各数中,最小的实数是A.B .12- C .2- D .132.下列函数中,自变量x 的取值范围是3x ≥的是A .13y x =- B.y = C .3y x =- D.y =3.下列成语或词语所反映的事件中,可能性大小最小的是A .瓜熟蒂落B .守株待兔C .旭日东升D .夕阳西下 4.下列水平放置的四个几何体中,主视图与其它三个不相同的是A B C D5.如图,在平面直角坐标系中,菱形OACB 的顶点O 在原点,点C 的坐标为(4,0),点B 的纵坐标是−1,则顶点A 坐标是A .(2,1)B .(1,−2)C .(1,2)D .(2,-1)6.下列四个选项中,数轴上的数a ,一定满足2a >-的是 A . B .C .D .7.已知P 是⊙O 内一点,⊙O 的半径为10,P 点到圆心O 的距离为6,则过P 点且长度是整数的弦的条数是 A .3B .4C .5D .68.在平面直角坐标系中,已知直线334y x =-+与x 轴、y 轴分别交于A 、B 两点,点C 在y 轴上.把坐标平面沿直线AC 折叠,使点B 刚好落在x 轴上,则点C 的坐标是 A .(0,34) B .(0,43) C .(0,3) D .(0,4)(第5题)二、填空题(本大题共10题,每题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 9. 计算:23a a a + ▲ .10.已知某种纸一张的厚度约为0.0089厘米,0.0089用科学计数法表示为 ▲ . 11.某天我国6个城市的平均气温分别是 -3℃、5℃、 -12℃、 16℃、 22℃、 28℃.则这6个城市平均气温的极差是 ▲ ℃.12.若32-=+b a ,21422=-b a ,则12+-b a = ▲ .13. 已知等腰三角形的一条腰长是5,底边长是6,则它底边上的高为 ▲ . 14.如图,是4×4的正方形网格,把其中一个标有数字的白色小正方形涂黑,就可以使图中的黑色部分构成一个中心对称图形,则这个白色小正方形内的数字是 ▲ . 15.已知圆锥的底面半径为9cm ,母线长为30cm ,则此圆锥的侧面展开扇形的圆心角度数为▲ .16. 将量角器按如图所示的方式放置在三角形纸板上,使点C 在半圆上.点A 、B 的读数分别为86°、30°,则∠ACB = ▲ °.17.如图所示,过y 轴正半轴上的任意一点P ,作x 轴的平行线,分别与反比例函数xy x y 24=-=和 的图象交于点A 和点B ,若点C 是x 轴上任意一点,连接AC 、BC ,则△ABC 的面积为 ▲ .18.在△ABC 中,∠ABC =30°,AB 边长为10,AC 边的长度可以在3、5、7、9、11中取值,满足这些条件的互不全等的三角形的个数是 ▲ 个.三、解答题 (本大题共10题,共96分.请在答题卡指定区域.......内作答,解答时应写出必要的文字说明、证明过程或演算步骤) 19.(本题满分8分)(1)212cos30()12--+--(2) 解不等式: 122123x x -+-≥20.(本题满分8分)(第16题)(第14题)(第17题)先化简再求值:232(1)121x x x x x ---÷--+,其中x 是方程022=-x x 的根.21.(本题满分8分)今年“3.15”期间某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“30元”的字样.规定:同一日内,顾客在本商场每消费满200元,就可以在箱子里一次摸出两个球,商场根据两小球所标金额之和返还相应数额的购物券.某顾客刚好消费200元. (1)该顾客至少可得到 ▲ 元购物券,至多可得到 ▲ 元购物券;(2)请你用画树状图或列表的方法,求出该顾客所获得的购物券金额不低于30元的概率.22.(本题满分8分)如图,在平行四边形ABCD 中,E F ,为BC 上两点,且BE CF =,AF DE =. (1)找出图中一对全等的三角形,并证明; (2)求证:四边形ABCD 是矩形.23.(本题满分10分)某市需调查该市九年级男生的体能状况,为此抽取了50名九年级男生进行引体向上个数测试,测试情况绘制成表格如下:(1)求这次抽样测试数据的平均数、众数和中位数;(2)在平均数、众数和中位数中,你认为用哪一个统计量作为该市九年级男生引体向上项目测试的合格标准个数较为合适?简要说明理由;A BCDEF(3)如果该市今年有3万名九年级男生,根据(2)中你认为合格的标准,试估计该市九年级男生引体向上项目测试的合格人数是多少?24.(本题满分10分)小明到某品牌服装专卖店做社会调查.了解到该专卖店为了激励营业员的工作积极性,实行“月总收入=基本工资+计件奖金”的方法,而“计件奖金=销售每件的奖金×月销售件数”,并获得如下信息:(1)求营业员的月基本工资和销售每件的奖金;(2)营业员丙哥希望本月总收入不低于1800元,则丙哥本月至少要卖服装多少件?25.(本题满分10分)超速行驶是引发交通事故的主要原因.上周末,小明和三位同学尝试用自己所学的知识检测车速,如图,观测点设在到文昌路的距离为100米的点P处.这时,一辆小轿车由西向东匀速行驶,测得此车从A处行驶到B处所用的时间为4秒且∠APO=60°,∠BPO=45°.(1)求A、B1.41≈,1.73≈)(2)请判断此车是否超过了文昌路每小时70千米的限制速度?26.(本题满分10分)如图,在△ABC,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,点F 在AC的延长线上,且CBFCAB∠=∠2.(1)试判断直线BF与⊙O的位置关系,并说明理由;(2)若AB=6,BF=8,求CBF∠tan.OPBA万丰文昌路。
2014中考数学二模试卷及答案(最新两套)
13.已知一次函数 的图象过点 、 .若 ,则
▲.
14.如图,四边形ABCD内接于⊙O,AD∥BC,∠ACB=50°,则∠CBD=▲°.
15.如图,在函数 (x>0)的图象上有点P1、P2、P3…、Pn、Pn+1,点P1的横坐标为1,且后面每个点的横坐标与它前面相邻点的横坐标的差都是1,过点P1、P2、P3…、Pn、Pn+1分别作x轴、y轴的垂线段,构成若干个矩形,如图所示,将图中阴影部分的面积从左至右依次记为S1、S2、S3…、Sn,则Sn=▲.(用含n的代数式表示)
∴△ABD的外接圆⊙O的圆心O在AC上.…………………………2分
∵OD=OB,OC=OC,CB=CD,∴△OBC≌△ODC.
∴∠OBC=∠ODC=90°.………………………………………………3分
又∵OB为半径,∴⊙O与BC相切.……………………………………4分
(没有说明圆心在AC上,扣1分.)
(2)∵AD=CD,∴∠ACD=∠CAD.∠COD=2∠CAD.
一、选择题(本大题共6小题,每小题2分,共12分)
题号
1
2
3
4
5
6
答案
C
D
D
B
D
B
二、填空题(本大题共10小题,每小题2分,共20分)
7. 8.39.x1=2,x2=4 10.乙11.2
12. 13.-2 14.50°15. 16.0.5或1.5
三、解答题(本大题共11小题,共88分)
17.(本题6分)
=.…………………………………………6分
19.(本题8分)
(1)∵△ABC≌△CAD,
中考二模考试数学试题及答案
2014中考二模考试数学试题注意事项:1.本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷为选择题,共24分;第Ⅱ卷为非选择题,96分;全卷共10页,满分120分,考试时间为120分钟.2.答第Ⅰ卷前,考生务必将自己的姓名、考号、考试科目涂写在答题卡上,考试结束,试题和答题卡一并收回.3.第Ⅰ卷每题选出答案后,必须用2B铅笔把答题卡上对应题目的答案标号【ABCD】涂黑.如需改动,先用橡皮擦干净,再改涂其它答案.第Ⅰ卷(选择题共24分)一、选择题:本大题共8小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.1.无理数: ()15D. 52.下列各命题正确的是 : ()A.若两弧相等,则两弧所对圆周角相等B. 有一组对边平行的四边形是梯形.C.垂直于弦的直线必过圆心.D. 有一边上的中线等于这边一半的三角形是直角三角形.3.某鞋店试销一种新款女鞋,销售情况如下表所示:鞋店经理最关心的是哪种型号的鞋销量最大.对他来说,下列统计量中最重要的是() A.平均数 B.众数 C.中位数 D.方差4.已知反比例函数2kyx-=的图象如图所示,则一元二次方程22(21)10x k x k--+-=根的情况是()A.有两个不等实根 B.有两个相等实根C.没有实根 D.无法确定5.已知四边形ABCD是平行四边形,下列结论中不正确的有()①当AB=BC时,它是菱形②当AC⊥BD时,它是菱形③当∠ABC=90时,它是矩形④当AC=BDA.1个 B.2个 C.3个 D.4个6.二次函数cbxaxy++=2的图象如图所示,则一次函数abxy+=的图象不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限第7题图7.如图所示,在折纸活动中,小明制作了一张ABC ∆纸片,点D E 、 分别在边AB AC 、上,将ABC ∆沿着DE 折叠压平,A 与A '重合, 若70A ∠=︒,则1+2∠∠=( ) A .70︒ B .110︒ C . 130︒ D .140︒8. 在6张完全相同的卡片上分别画有线段、等边三角形、直角梯形、正方形、正五边形和圆各一个图形。
【解析版】广东省肇庆市中考数学二模试卷
广东省肇庆市中考数学二模试卷一、选择题:(每小题3分,共30分.每小题给出四个答案,其中只有一个是正确的)1.计算|﹣3|的结果是()A. 3 B. C.﹣3 D.2.某红外线遥控器发出的红外线波长为0.000 000 94m,用科学记数法表示这个数是()A. 9.4×10﹣7m B. 9.4×107m C. 9.4×10﹣8m D. 9.4×108m3.下列运算正确的是()A. a﹣2a=a B.(﹣a2)3=﹣a6 C. a6÷a2=a3 D.(x+y)2=x2+y24.把某个不等式组中两个不等式的解集表示在数轴上,如图所示,则这个不等式组可能()A. B. C. D.5.如图,已知在Rt△ABC中,∠C=90°,BC=1,AC=2,则tanA的值为()A. 2 B. C. D.6.如图:下列四个图案中既是轴对称图形,又是中心对称图形的是()A. B. C. D.7.如图是一个工件的三视图,图中标有尺寸,则这个工件的体积是()A. 13πcm3 B. 17πcm3 C. 66πcm3 D. 68πcm38.关于反比例函数y=﹣的图象,下列说法正确的是()A.经过点(﹣1,﹣2)B.无论x取何值时,y随x的增大而增大C.当x<0时,图象在第二象限D.图象不是轴对称图形9.如图,∠ACB=60°,半径为2的⊙O切BC于点C,若将⊙O在CB上向右滚动,则当滚动到⊙O与CA也相切时,圆心O移动的水平距离为()A. 4 B. 2π C. 4π D. 210.如图,EF是△ABC的中位线,将△AEF沿中线AD方向平移到△A1E1F1的位置,使E1F1与BC边重合,已知△AEF的面积为7,则图中阴影部分的面积为()A. 7 B. 14 C. 21 D. 28二、填空题(本大题共5小题,每小题3分,共15分.)11.,则y x=.12.函数y=自变量的取值范围是.13.一个正多边形的内角是外角的2倍,则这个正多边形是边形.14.已知二次函数y=﹣x2+2x+m的部分图象如图所示,则关于x的一元二次方程﹣x2+2x+m=0的解为.15.观察下图找规律.(1)填出缺少的图形;(2)按照这样的规律,第21个图中,○在最.(填“上”“下”“左”“右).三、解答题(本大题共10小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.计算:|﹣3|+•tan30°﹣(﹣π)0.17.设x1、x2是方程2x2+4x﹣3=0的两个根,利用根与系数关系,求下列各式的值:(1)(x1﹣x2)2;(2).18.年某市国际车展期间,某公司对参观本次车展盛会的消费者进行了随机问卷调查,共发放1000份调查问卷,并全部收回.①根据调查问卷的结果,将消费者年收入的情况整理后,制成表格如下:年收入(万元) 4.8 6 7.2 9 10被调查的消费者人数(人) 200 500 200 70 30②将消费者打算购买小车的情况整理后,作出频数分布直方图的一部分(如图).注:每组包含最小值不包含最大值,且车价取整数.请你根据以上信息,回答下列问题.(1)根据①中信息可得,被调查消费者的年收入的众数是万元;(2)请在图中补全这个频数分布直方图;(3)打算购买价格10万元以下小车的消费者人数占被调查消费者人数的百分比是.19.甲、乙二人骑自行车同时从张庄出发,沿同一路线去李庄.甲行驶20分钟因事耽误一会儿,事后继续按原速行驶.如图表示甲、乙二人骑自行车行驶的路程y(千米)随时间x (分)变化的图象(全程),根据图象回答下列问题:(1)乙比甲晚多长时间到达李庄?(2)甲因事耽误了多长时间?(3)x为何值时,乙行驶的路程比甲行驶的路程多1千米?20.先化简,再求值:,其中x=+1.21.如图(1),Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D.AF平分∠CAB,交CD于点E,交CB于点F(1)求证:CE=CF.(2)将图(1)中的△ADE沿AB向右平移到△A′D′E′的位置,使点E′落在BC边上,其它条件不变,如图(2)所示.试猜想:BE′与CF有怎样的数量关系?请证明你的结论.22.某电脑公司现有A、B、C三种型号的甲品牌电脑和D,E两种型号的乙品牌电脑.希望中学要从甲、乙两种品牌电脑中各选购一种型号的电脑.(1)写出所有选购方案(利用树状图或列表方法表示);(2)如果(1)中各种选购方案被选中的可能性相同,那么A型号电脑被选中的概率是多少?(3)现知希望中学购买甲、乙两种品牌电脑共36台(价格如图所示),恰好用了10万元人民币,其中甲品牌电脑为A型号电脑,求购买的A型号电脑有几台.23.如图,梯形ABCD中,AD∥BC,BC=3AD,M、N为底边BC的三等分点,连接AM,DN.(1)求证:四边形AMND是平行四边形;(2)连接BD、AC,AM与对角线BD交于点G,DN与对角线AC交于点H,且AC⊥BD.试判断四边形AGHD的形状,并证明你的结论.24.(10分)(•襄阳)如图,直线AB经过⊙O上的点C,并且OA=OB,CA=CB,⊙O 交直线OB于E,D,连接EC,CD.(1)求证:直线AB是⊙O的切线;(2)试猜想BC,BD,BE三者之间的等量关系,并加以证明;(3)若tan∠CED=,⊙O的半径为3,求OA的长.25.(10分)(•漳州)如图1,已知:抛物线y=x2+bx+c与x轴交于A、B两点,与y 轴交于点C,经过B、C两点的直线是y=x﹣2,连接AC.(1)B、C两点坐标分别为B(,)、C(,),抛物线的函数关系式为;(2)判断△ABC的形状,并说明理由;(3)若△ABC内部能否截出面积最大的矩形DEFC(顶点D、E、F、G在△ABC各边上)?若能,求出在AB边上的矩形顶点的坐标;若不能,请说明理由.广东省肇庆市中考数学二模试卷参考答案与试题解析一、选择题:(每小题3分,共30分.每小题给出四个答案,其中只有一个是正确的)1.计算|﹣3|的结果是()A. 3 B. C.﹣3 D.考点:绝对值.分析:根据绝对值的性质进行计算.解答:解:|﹣3|=3.故选A.点评:本题考查了绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.某红外线遥控器发出的红外线波长为0.000 000 94m,用科学记数法表示这个数是()A. 9.4×10﹣7m B. 9.4×107m C. 9.4×10﹣8m D. 9.4×108m考点:科学记数法—表示较小的数.分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:0.000 000 94=9.4×10﹣7.故选A.点评:本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.下列运算正确的是()A. a﹣2a=a B.(﹣a2)3=﹣a6 C. a6÷a2=a3 D.(x+y)2=x2+y2考点:同底数幂的除法;合并同类项;幂的乘方与积的乘方;完全平方公式.分析:根据同底数幂的除法,底数不变指数相减;合并同类项,系数相加字母和字母的指数不变;同底数幂的乘法,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.解答:解:A、a﹣2a=﹣a,故错误;B、正确;C、a6÷a2=a4,故错误;D、(x+y)2=x2+2xy+y2,故错误;故选:B.点评:本题考查同底数幂的除法,合并同类项,同底数幂的乘法,幂的乘方很容易混淆,一定要记准法则才能做题.4.把某个不等式组中两个不等式的解集表示在数轴上,如图所示,则这个不等式组可能()A. B. C. D.考点:在数轴上表示不等式的解集.分析:根据数轴可知x的取值为:﹣1<x≤4,将不等式变形,即可得出关于x的不等式组.把各个选项的解的集合写出,进行比较就可以得到.解答:解:依题意得这个不等式组的解集是:﹣1<x≤4.A、解集是:无解,故A错误;B、解集是:﹣1≤x<4,故B错误;C、解集是:x>4,故C错误;D、解集是:﹣1<x≤4,故D正确;故选:D.点评:此题主要考查不等式组解集的表示方法.实心圆点包括该点,空心圆圈不包括该点,>向右、<向左.5.如图,已知在Rt△ABC中,∠C=90°,BC=1,AC=2,则tanA的值为()A. 2 B. C. D.考点:锐角三角函数的定义.分析:根据tanA是角A的对边比邻边,直接得出答案tanA的值.解答:解:∵∠C=90°,BC=1,AC=2,∴tanA==.故选B.点评:此题主要考查了锐角三角函数的定义,熟练记忆锐角三角函数的定义是解决问题的关键.6.如图:下列四个图案中既是轴对称图形,又是中心对称图形的是()A. B. C. D.考点:中心对称图形;轴对称图形.分析:根据轴对称图形的定义沿一条直线对折后,直线两旁部分完全重合的图形是轴对称图形,以及中心对称图形的定义分别判断即可得出答案.解答:解:∵A.此图形沿一条直线对折后能够完全重合,∴此图形是轴对称图形,但不是中心对称图形,故此选项错误;B:此图形沿一条直线对折后能够完全重合,∴此图形是轴对称图形,也是中心对称图形,故此选项正确;C.此图形沿一条直线对折后能够完全重合,∴此图形是轴对称图形,旋转180°不能与原图形重合,不是中心对称图形,故此选项错误;D:此图形沿一条直线对折后不能够完全重合,∴此图形不是轴对称图形,是中心对称图形,故此选项错误.故选:B.点评:此题主要考查了中心对称图形与轴对称图形的定义,熟练掌握其定义是解决问题的关键.7.如图是一个工件的三视图,图中标有尺寸,则这个工件的体积是()A. 13πcm3 B. 17πcm3 C. 66πcm3 D. 68πcm3考点:圆柱的计算;由三视图判断几何体.专题:计算题.分析:根据三视图可知该几何体是两个圆柱体叠加在一起,体积是两个圆柱体的体积的和.解答:解:根据三视图可知该几何体是两个圆柱体叠加在一起,底面直径分别是2cm和4cm,高分别是4cm和1cm,∴体积为:4π×22+π=17πcm3.故选B.点评:本题考查了圆柱的计算,解题的关键是正确地得到几何体的形状,这样才可以求体积.8.关于反比例函数y=﹣的图象,下列说法正确的是()A.经过点(﹣1,﹣2)B.无论x取何值时,y随x的增大而增大C.当x<0时,图象在第二象限D.图象不是轴对称图形考点:反比例函数的性质.分析:反比例函数y=(k≠0)的图象k>0时位于第一、三象限,在每个象限内,y随x的增大而减小;k<0时位于第二、四象限,在每个象限内,y随x的增大而增大;在不同象限内,y随x的增大而增大,根据这个性质选择则可.解答:解:∵k=﹣2<0,所以函数图象位于二四象限,在每一象限内y随x的增大而增大,图象是轴对称图象,故A、B、D错误.故选C.点评:本题考查了反比例函数图象的性质:①、当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.②、当k>0时,在同一个象限内,y随x 的增大而减小;当k<0时,在同一个象限,y随x的增大而增大.注意反比例函数的图象应分在同一象限和不在同一象限两种情况分析.9.如图,∠ACB=60°,半径为2的⊙O切BC于点C,若将⊙O在CB上向右滚动,则当滚动到⊙O与CA也相切时,圆心O移动的水平距离为()A. 4 B. 2π C. 4π D. 2考点:切线的性质.分析:连接O′C,O′B,O′D,OO′,则O′D⊥BC.因为O′D=O′B,O′C平分∠ACB,可得∠O′CB=∠ACB=×60°=30°,由勾股定理得BC=2.解答:解:当滚动到⊙O′与CA也相切时,切点为D,连接O′C,O′B,O′D,OO′,∵O′D⊥AC,∴O′D=O′B.∵O′C平分∠ACB,∴∠O′CB=∠ACB=×60°=30°.∵O′C=2O′B=2×2=4,∴BC===2.故选:D.点评:此题主要考查了切线及角平分线的性质,勾股定理等知识点,属中等难度题,正确的作出辅助线是解题的关键.10.如图,EF是△ABC的中位线,将△AEF沿中线AD方向平移到△A1E1F1的位置,使E1F1与BC边重合,已知△AEF的面积为7,则图中阴影部分的面积为()A. 7 B. 14 C. 21 D. 28考点:相似三角形的判定与性质;三角形中位线定理;平移的性质.专题:压轴题.分析:根据三角形的中位线定理,结合相似三角形的性质可以求得三角形ABC的面积,从而求解.解答:解:∵EF是△ABC的中位线,∴EF∥BC,EF=BC.∴△AEF∽△ACB.∴=.∴△ABC的面积=28.∴图中阴影部分的面积为28﹣7﹣7=14.故选B.点评:此题综合运用了三角形的中位线定理和相似三角形的判定和性质.二、填空题(本大题共5小题,每小题3分,共15分.)11.,则y x=﹣8.考点:非负数的性质:算术平方根;非负数的性质:偶次方.专题:常规题型.分析:根据非负数的性质列式求出x、y的值,然后代入进行计算即可得解.解答:解:根据题意得,x﹣3=0,y+2=0,解得x=3,y=﹣2,所以,y x=(﹣2)3=﹣8.故答案为:﹣8.点评:本题考查了算术平方根非负数,平方数非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.12.函数y=自变量的取值范围是x>3.考点:函数自变量的取值范围.分析:根据二次根式的意义和分式的意义可知:x﹣3>0,可求x的范围.解答:解:根据题意得:x﹣3>0,解得:x>3,故答案为:x>3.点评:主要考查了函数自变量的取值范围的确定和分式的意义.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.13.一个正多边形的内角是外角的2倍,则这个正多边形是6边形.考点:多边形内角与外角.分析:设这个正多边的外角为x°,则内角为2x°,根据内角和外角互补可得x+2x=180,解可得x的值,再利用外角和360°÷外角度数可得边数.解答:解:设这个正多边的外角为x°,由题意得:x+2x=180,解得:x=60,360°÷60°=6.故答案为6.点评:此题主要考查了多边形的内角和外角,关键是计算出外角的度数,进而得到边数.14.已知二次函数y=﹣x2+2x+m的部分图象如图所示,则关于x的一元二次方程﹣x2+2x+m=0的解为x1=﹣1或x2=3.考点:抛物线与x轴的交点.分析:由二次函数y=﹣x2+2x+m的部分图象可以得到抛物线的对称轴和抛物线与x轴的一个交点坐标,然后可以求出另一个交点坐标,再利用抛物线与x轴交点的横坐标与相应的一元二次方程的根的关系即可得到关于x的一元二次方程﹣x2+2x+m=0的解.解答:解:依题意得二次函数y=﹣x2+2x+m的对称轴为x=1,与x轴的一个交点为(3,0),∴抛物线与x轴的另一个交点横坐标为1﹣(3﹣1)=﹣1,∴交点坐标为(﹣1,0)∴当x=﹣1或x=3时,函数值y=0,即﹣x2+2x+m=0,∴关于x的一元二次方程﹣x2+2x+m=0的解为x1=﹣1或x2=3.故答案为:x1=﹣1或x2=3.点评:本题考查的是关于二次函数与一元二次方程,在解题过程中,充分利用二次函数图象,根据图象提取有用条件来解答,这样可以降低题的难度,从而提高解题效率.15.观察下图找规律.(1)填出缺少的图形;(2)按照这样的规律,第21个图中,○在最下.(填“上”“下”“左”“右).考点:规律型:图形的变化类.专题:压轴题;规律型.分析:(1)观察所给图形可知:三角形和圆按逆时针方向绕正方形旋转,继而即可填出缺少的图形;(2)每4个图形一个循环,则第21个图形与第一个图相同.解答:解:(1)填出图形如下所示:(2)每4个图形一个循环,则第21个图形与第一个图相同,○在最下.故答案为:下.点评:本题考查规律型中的图形变化问题,难度适中,解题关键是找出三角形和圆按逆时针方向绕正方形旋转.三、解答题(本大题共10小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.计算:|﹣3|+•tan30°﹣(﹣π)0.考点:实数的运算;零指数幂;特殊角的三角函数值.专题:计算题.分析:原式第一项利用绝对值的代数意义化简,第二项利用特殊角的三角函数值计算,最后一项零指数幂法则计算即可得到结果.解答:解:原式=3+×﹣1=3.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.17.设x1、x2是方程2x2+4x﹣3=0的两个根,利用根与系数关系,求下列各式的值:(1)(x1﹣x2)2;(2).考点:根与系数的关系.分析:欲求(x1﹣x2)2与的值,先把此代数式变形为两根之积或两根之和的形式,代入数值计算即可.解答:解:根据根与系数的关系可得:x1+x2=﹣2,x1•x2=.(1)(x1﹣x2)2=x12+x22﹣2x1x2=x12+x22+2x1x2﹣4x1x2=(x1+x2)2﹣4x1x2==10.(2)=x1x2+1+1+==.点评:将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.18.年某市国际车展期间,某公司对参观本次车展盛会的消费者进行了随机问卷调查,共发放1000份调查问卷,并全部收回.①根据调查问卷的结果,将消费者年收入的情况整理后,制成表格如下:年收入(万元) 4.8 6 7.2 9 10被调查的消费者人数(人) 200 500 200 70 30②将消费者打算购买小车的情况整理后,作出频数分布直方图的一部分(如图).注:每组包含最小值不包含最大值,且车价取整数.请你根据以上信息,回答下列问题.(1)根据①中信息可得,被调查消费者的年收入的众数是6万元;(2)请在图中补全这个频数分布直方图;(3)打算购买价格10万元以下小车的消费者人数占被调查消费者人数的百分比是52%.考点:频数(率)分布直方图.专题:图表型.分析:(1)众数就是出现次数最多的数,依据定义即可求解;(2)计算出这组的频数,即可作出图表;(3)根据百分比的计算方法即可求解.解答:解:(1)由表格可知,年收入6万元的人数最多,因此众数是6万元;(2)被漏的10~12组的频数是1000﹣40﹣120﹣360﹣200﹣40=240人;(3)购买10万元以下小车的人有40+120+360=520人,从而可求得占被调查消费者人数的百分比是520÷1000=52%.点评:本题主要考查了频率的计算公式,是需要识记的内容.19.甲、乙二人骑自行车同时从张庄出发,沿同一路线去李庄.甲行驶20分钟因事耽误一会儿,事后继续按原速行驶.如图表示甲、乙二人骑自行车行驶的路程y(千米)随时间x (分)变化的图象(全程),根据图象回答下列问题:(1)乙比甲晚多长时间到达李庄?(2)甲因事耽误了多长时间?(3)x为何值时,乙行驶的路程比甲行驶的路程多1千米?考点:一次函数的应用.专题:压轴题;分类讨论.分析:(1)根据图象,可将乙的函数式表示出来,从而可将乙所需的总时间求出,从图象中读出甲所需的总时间,两者相减即为乙比甲晚到李庄的时间;(2)用待定系数法可将甲的一次函数式求出,从图象知:甲20分钟所行驶的路程,将时间求出,从而可将甲因事耽误的时间求出;(3)应分两种情况,当甲因事停止时,乙比甲多行驶1千米的路程;当乙和甲都行走时,乙比甲多行驶1千米的路程.解答:解:(1)设直线OD解析式为y=k1x(k1≠0),由题意可得60k1=10,,当y=15时,,x=90,90﹣80=10分故乙比甲晚10分钟到达李庄.(2)设直线BC解析式为y=k2x+b(k2≠0),由题意可得解得∴y=x﹣5由图象可知甲20分钟行驶的路程为5千米,x﹣5=5,x=40,40﹣20=20分故甲因事耽误了20分钟.(3)分两种情况:①,解得:x=36②x﹣(x﹣5)=1,解得:x=48当x为36或48时,乙行驶的路程比甲行驶的路程多1千米.点评:本题考查用待定系数法求一次函数关系式,并会用一次函数研究实际问题,具备在直角坐标系中的读图能力.20.先化简,再求值:,其中x=+1.考点:分式的化简求值;分母有理化.专题:计算题.分析:这是个分式除法与减法混合运算题,运算顺序是先做括号内的减法,先进行通分;做除法时要注意先把除法运算转化为乘法运算,而做乘法运算时要注意先把分子、分母能因式分解的先分解,然后约分.解答:解:原式===;当x=+1时,原式==.点评:此题要特别注意符号的处理.化简和取值的结果都要求达到最简为止.21.如图(1),Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D.AF平分∠CAB,交CD于点E,交CB于点F(1)求证:CE=CF.(2)将图(1)中的△ADE沿AB向右平移到△A′D′E′的位置,使点E′落在BC边上,其它条件不变,如图(2)所示.试猜想:BE′与CF有怎样的数量关系?请证明你的结论.考点:全等三角形的判定与性质;等腰三角形的判定与性质;平移的性质.专题:几何综合题;压轴题.分析:(1)根据平分线的定义可知∠CAF=∠EAD,再根据已知条件以及等量代换即可证明CE=CF,(2)根据题意作辅助线过点E作EG⊥AC于G,根据平移的性质得出D′E′=DE,再根据已知条件判断出△CEG≌△BE′D′,可知CE=BE′,再根据等量代换可知BE′=CF.解答:(1)证明:∵AF平分∠CAB,∴∠CAF=∠EAD,∵∠ACB=90°,∴∠CAF+∠CFA=90°,∵CD⊥AB于D,∴∠EAD+∠AED=90°,∴∠CFA=∠AED,又∠AED=∠CEF,∴∠CFA=∠CEF,∴CE=CF;(2)猜想:BE′=CF.证明:如图,过点E作EG⊥AC于G,连接EE′,又∵AF平分∠CAB,ED⊥AB,EG⊥AC,∴ED=EG,由平移的性质可知:D′E′=DE,∴D′E′=GE,∵∠ACB=90°,∴∠ACD+∠DCB=90°∵CD⊥AB于D,∴∠B+∠DCB=90°,∴∠ACD=∠B,在△CEG与△BE′D′中,,∴△CEG≌△BE′D′(AAS),∴CE=BE′,由(1)可知CE=CF,∴BE′=CF.点评:本题主要考查了平分线的定义,平移的性质以及全等三角形的判定与性质,难度适中.22.某电脑公司现有A、B、C三种型号的甲品牌电脑和D,E两种型号的乙品牌电脑.希望中学要从甲、乙两种品牌电脑中各选购一种型号的电脑.(1)写出所有选购方案(利用树状图或列表方法表示);(2)如果(1)中各种选购方案被选中的可能性相同,那么A型号电脑被选中的概率是多少?(3)现知希望中学购买甲、乙两种品牌电脑共36台(价格如图所示),恰好用了10万元人民币,其中甲品牌电脑为A型号电脑,求购买的A型号电脑有几台.考点:列表法与树状图法;二元一次方程组的应用.专题:方案型.分析:(1)依据题意先用列表法或画树状图法,列出所有可能的结果,然后根据概率公式求出该事件的概率;(2)(3)根据题意列出方程求解则可.解答:解:(1)列表如图:甲乙 A B CD (D,A)(D,B)(D,C)E (E,A)(E,B)(E,C)有6种可能结果:(A,D),(A,E),(B,D),(B,E),(C,D),(C,E);(2)因为选中A型号电脑有2种方案,即(A,D)(A,E),所以A型号电脑被选中的概率是;(3)由(2)可知,当选用方案(A,D)时,设购买A型号、D型号电脑分别为x,y台,根据题意,得解得,经检验不符合实际,舍去;当选用方案(A,E)时,设购买A型号、E型号电脑分别为a,b台,根据题意,得解得.所以希望中学购买了7台A型号电脑.点评:本题考查的是用列表法或画树状图法求概率,同时考查了二元一次方程组的应用,综合性比较强.用到的知识点为:概率=所求情况数与总情况数之比.23.如图,梯形ABCD中,AD∥BC,BC=3AD,M、N为底边BC的三等分点,连接AM,DN.(1)求证:四边形AMND是平行四边形;(2)连接BD、AC,AM与对角线BD交于点G,DN与对角线AC交于点H,且AC⊥BD.试判断四边形AGHD的形状,并证明你的结论.考点:梯形;全等三角形的判定与性质;三角形中位线定理;平行四边形的判定与性质;菱形的判定.分析:(1)通过证明四边形AMND中的一组对边AD和MN平行且相等即可;(2)根据对角线互相垂直的平行四边形是菱形,先根据平行四边形的判定定理一组对边平行且相等(GH∥AD,GH=AD)证明出四边形AGHD是平行四边形,又AC⊥BD,即可判断出四边形AGHD是菱形.解答:(1)证明:∵BC=3AD,BC=3MN,∴AD=MN,∵AD∥BC,∴四边形AMND是平行四边形.(2)解:四边形AGHD是菱形.∵AD∥BC,∴∠ADG=∠MBG,∵∠BGM=∠DGA,AD=BM,∴△BGM≌△DGA(AAS),∴AG=GM.同理可得AH=HC,∴GH是△AMC的中位线,∴GH∥BC,,∴GH∥AD,GH=AD,∴四边形AGHD是平行四边形,∵AC⊥BD,∴四边形AGHD是菱形.点评:本题考查了梯形的知识,及平行四边形和菱形的判定,难度适中,要求熟练掌握这些知识以便灵活运用.24.(10分)(•襄阳)如图,直线AB经过⊙O上的点C,并且OA=OB,CA=CB,⊙O 交直线OB于E,D,连接EC,CD.(1)求证:直线AB是⊙O的切线;(2)试猜想BC,BD,BE三者之间的等量关系,并加以证明;(3)若tan∠CED=,⊙O的半径为3,求OA的长.考点:切线的判定;切割线定理;相似三角形的判定与性质.专题:综合题;压轴题.分析:(1)连接OC,根据等腰三角形的性质易得OC⊥AB;即可得到证明;(2)易得∠BCD=∠E,又有∠CBD=∠EBC,可得△BCD∽△BEC;故可得BC2=BD•BE;(3)易得△BCD∽△BEC,BD=x,由三角形的性质,易得BC2=BD•BE,代入数据即可求出答案.解答:(1)证明:如图,连接OC,(1分)∵OA=OB,CA=CB,∴OC⊥AB,(2分)∴AB是⊙O的切线.(3分)(2)解:BC2=BD•BE.(4分)证明:∵ED是直径,∴∠ECD=90°,∴∠E+∠EDC=90°.又∵∠BCD+∠OCD=90°,∠OCD=∠ODC(OC=OD),∴∠BCD=∠E.(5分)又∵∠CBD=∠EBC,∴△BCD∽△BEC.(6分)∴.∴BC2=BD•BE.(7分)(3)解:∵tan∠CED=,∴.∵△BCD∽△BEC,∴.(8分)设BD=x,则BC=2x,∵BC2=BD•BE,∴(2x)2=x•(x+6).(9分)∴x1=0,x2=2.∵BD=x>0,∴BD=2.∴OA=OB=BD+OD=3+2=5.(10分)点评:本题考查常见的几何题型,包括切线的判定,线段等量关系的证明及线段长度的求法,要求学生掌握常见的解题方法,并能结合图形选择简单的方法解题.25.(10分)(•漳州)如图1,已知:抛物线y=x2+bx+c与x轴交于A、B两点,与y 轴交于点C,经过B、C两点的直线是y=x﹣2,连接AC.(1)B、C两点坐标分别为B(4,0)、C(0,﹣2),抛物线的函数关系式为y=x2﹣x﹣2;(2)判断△ABC的形状,并说明理由;(3)若△ABC内部能否截出面积最大的矩形DEFC(顶点D、E、F、G在△ABC各边上)?若能,求出在AB边上的矩形顶点的坐标;若不能,请说明理由.考点:二次函数综合题.专题:压轴题.分析:(1)令x=0以及y=0代入y=x﹣2得出B,C的坐标.把相关坐标代入抛物线可得函数关系式.(2)已知AB,AC,BC的值,根据反勾股定理可证明△ABC是直角三角形.(3)证明△CGF∽△CAB,利用线段比求出有关线段的值.求出S矩形DEFG的最大值.再根据△ADG∽△AOC的线段比求解.解答:解:(1)令x=0,y=﹣2,当y=0代入y=x﹣2得出:x=4,故B,C的坐标分别为:B(4,0),C(0,﹣2).y=x2﹣x﹣2.(2)△ABC是直角三角形.证明:令y=0,则x2﹣x﹣2=0.∴x1=﹣1,x2=4.∴A(﹣1,0).解法一:∵AB=5,AC=,BC=2.∴AC2+BC2=5+20=25=AB2.∴△ABC是直角三角形.解法二:∵AO=1,CO=2,BO=4,∴∵∠AOC=∠COB=90°,∴△AOC∽△COB.∴∠ACO=∠CBO.∵∠CBO+∠BCO=90°,∴∠ACO+∠BCO=90°.即∠ACB=90°.∴△ABC是直角三角形.(3)能.①当矩形两个顶点在AB上时,如图1,CO交GF于H.∵GF∥AB,∴△CGF∽△CAB.∴.解法一:设GF=x,则DE=x,CH=x,DG=OH=OC﹣CH=2﹣x.∴S矩形DEFG=x•(2﹣x)=﹣x2+2x=﹣(x﹣)2+.当x=时,S最大.∴DE=,DG=1.∵△ADG∽△AOC,∴,∴AD=,∴OD=,OE=2.∴D(﹣,0),E(2,0).解法二:设DG=x,则DE=GF=.∴S矩形DEFG=x•=﹣x2+5x=﹣(x﹣1)2+.∴当x=1时,S最大.∴DG=1,DE=.∵△ADG∽△AOC,∴,∴AD=,∴OD=,OE=2.∴D(﹣,0),E(2,0).②当矩形一个顶点在AB上时,F与C重合,如图2,∵DG∥BC,∴△AGD∽△ACB.∴.解法一:设GD=x,∴AC=,BC=2,∴GF=AC﹣AG=﹣.∴S矩形DEFG=x•(﹣)=﹣x2+x=﹣(x﹣)2+.当x=时,S最大.∴GD=,AG=,∴AD=.∴OD=∴D(,0)解法二:设DE=x,∵AC=,BC=2,∴GC=x,AG=﹣x.∴GD=2﹣2x.∴S矩形DEFG=x•(2﹣2x)=﹣2x2+2x=﹣2(x﹣)2+(12分)∴当x=时,S最大,∴GD=,AG=.∴AD=.∴OD=∴D(,0)综上所述:当矩形两个顶点在AB上时,坐标分别为(﹣,0),(2,0)当矩形一个顶点在AB上时,坐标为(,0).点评:本题考查的是二次函数的综合运用以及三角形相似的判定,考生要学会灵活运用二次函数的相关知识.。
2014年中考数学二模试题及答案九
中考数学二模数学试题九考生须知1.本试卷共6页,共五道大题,25个小题,满分120分。
考试时间120分钟。
2.在试卷和答题卡上认真填写学校名称、姓名和考试编号。
3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
4.考试结束,请将本试卷和答题卡一并交回。
一、选择题(共8道小题,每小题4分,共32分) 下列各题均有四个选项,其中只有一个..是符合题意的. 1.21-的倒数是( ). A .2 B .2- C .21D . 21-2.根据中国汽车工业协会的统计,2011年上半年的中国汽车销量约为932.5万辆,同比增速3.35%.将932.5万辆用科学记数法表示为( )辆A .93.25×105B .0.9325×107C .9.325×106D .9.325×1023.若一个正多边形的每个内角都为135°,则这个正多边形的边数是( ). A .9 B .8 C .7 D .64.下列运算正确的是( ).A .22a a a =⋅B .22=÷a aC . 22423a a a += D . ()33a a -=-5.如图所示,直线a ∥b ,直线c 与直线a ,b 分别相交于点A 、点B ,AM ⊥b ,垂足为点M ,若∠1=58°,则∠2的度数是( ).A .22B .30C .32D .426.某校抽取九年级的8名男生进行了1次体能测试,其成绩分别为90,75,90,85, 75,85,95,75,(单位:分)这次测试成绩的众数和中位数分别是 ( ). A .85,75 B .75,85 C .75,80 D .75,757.已知圆锥的底面半径为3,母线长为4,则圆锥的侧面积等于( ). A .15π B .14π C .13π D .12π第5题图2a bc MB A 18.过正方体中有公共顶点的三条棱的中点切出一个平面,形成如图几何体,其正确展开图为( ) .A B C D 二、填空题(共4道小题,每小题4分,共16分) 9.在函数3+=x y 中,自变量x 的取值范围是 .10.若()022=++-a b a ,则=+b a .11.把代数式142-+m m 化为()b a m ++2的形式,其中a 、b 为常数,则a +b = .12.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0)…根据这个规律探索可得,第20个点的坐标是__________;第90个点的坐标为____________.三、解答题(共6道小题,每小题5分,共30分) 13.()33602120---+︒-πcos解: 14.解方程:2132+=+-a a a解:15. 已知4+=y x ,求代数式2524222-+-y xy x 的值.解:16.如图,在△ABC 中,AD 是中线,分别过点B 、C 作AD 及其延长线的垂线BE 、CF ,垂足分别为点E 、F .求证:BE =CF . 证明:17.如图,某场馆门前台阶的总高度CB 为0.9m ,为了方便残疾人行走,该场馆决定将其中一个门的门前台阶改造成供轮椅行走的斜坡,并且设计斜坡的倾斜角A ∠为8°,请计算从斜坡起点A 到台阶最高点D 的距离(即斜坡AD 的长).(结果精确到0.1m ,参考数据:sin 8°≈0.14,cos 8°≈0.99,tan 8°≈0.14)C ABD解:18.如图,平面直角坐标系中,直线AB 与x 轴交于点A (2,0),与y 轴交于点B ,点D 在直线AB 上.⑴求直线AB 的解析式;⑵将直线AB 绕点A 逆时针旋转30°,求旋转后的直线解析式. 解:⑴⑵四、解答题(共4道小题,每小题均5分,共20分)19.如图1,已知平行四边形ABCD 中,对角线AC BD ,交于点O ,E 是BD 延长线上的点,且ACE △是等边三角形. ⑴求证:四边形ABCD 是菱形;⑵如图2,若2AED EAD ∠=∠,AC =6.求DE 的长.y x31D BO AOBEACD OB EACD图1 图2 证明:⑴ ⑵20. 如图,⊙O 中有直径AB 、EF 和弦BC ,且BC 和EF 交于点D,点D 是弦BC 的中点,CD =4,DF =8.⑴求⊙O 的半径及线段AD 的长;⑵求sin ∠DAO 的值.解:⑴⑵21.图①、图②反映是某综合商场今年1-4月份的商品销售额统计情况.观察图①和图②,解答下面问题:⑴来自商场财务部的报告表明,商场1-4月份的销售总额一共是280万元,请你根据这FE D BO A C。
2014年广东省中考数学模拟试题(二)试题及答案
图1 图22014年广东省中考数学模拟试题(二)(时间100分钟,满分120分)班别:_______学号:________姓名:_________成绩:__________一、选择题(30分)1.2-的相反数是()A.2-B.2C.21-D.212.下面四个图形中,是三棱柱的平面展开图的是()A.B.C.D.3.甲、乙两个芭蕾舞团女演员的平均身高是165=甲x,165=乙x,她们身高的方差是.512=甲s,.522=乙s.下列说法正确的是()A.甲团演员身高更整齐B.乙团演员身高更整齐C.两团演员身高一样更整齐D.无法确定谁更整齐4.下列等式正确的是()A.1)1(2-=-B.632222=⨯C.020=D.1)1(2=--5.在数轴上表示不等式01<-x的解集,正确的是()A.B.C.D.6.下列图形中,既是轴对称又是中心对称的图形是()A.直角三角形B.正五边形C.正六边形D.等腰梯形7.如图1,CDAB//,BCBD⊥,∠2=50°,则∠1=()A.40°B.50°C.60°D.140°8.在我市今年慈善公益万人行活动中,某校九年级有50人参与了公益捐款,捐款金额的条形统计图如图2所示.捐款金额的众数和中位数分别是()A.10,20 B.20,50 C.20,35 D.10,359.有一根1m长的铁丝,怎样用它围成一个面积为206.0m的长方形?设长方形的长为x m,依题意,下列方程正确的是()A.06.0)1(=-xx B.06.0)21(=-xxC.06.0)5.0(=-xx D.06.0)21(2=-xx图 4图7二、填空题(本大题6小题,每小题4分,共24分) 11.地球绕太阳公转的速度约为每秒30000米, 这个数据用科学记数法可表示为 . 12.因式分解:=+-122x x.13.如图4,圆盘被分成8个全等的小扇形,分别涂上红、黄、白3种颜色.如果小明将飞镖随意投中圆盘, 投中白色扇形的概率是 .14.命题“对顶角相等”的题设是 ,结论是 .15.计算4332-、5443-、6554-,并根据计算结果的规律填空:=-201200200199 . 16.如图5,ABC ∆中,=∠C 90°,34tan =A ,以C 为圆心的圆与AB 相切于D .若圆C 的 半径为1,则阴影部分的面积=S .三、解答题㈠(本大题3小题,每小题6分,共18分) 17.先化简,后求值:111-++x x x ,其中3=x .18.如图6,ABC ∆中,=∠C90°,将ABC ∆绕点A 旋转得到11C AB ∆,点C 的对应点1C 恰好落在AB边上.⑴作图:作出11C AB ∆(保留作图痕迹,不要求写作法);⑵已知5=AC ,12=BC ,求1BB 的长.19.在围棋盒中有x 颗黑色棋子和y 颗白色棋子,从盒中随机地取出一个棋子,它是黑色棋子的概率是83. ⑴写出表示x 和y 关系的表达式;⑵如果往盒中再放进10颗黑色棋子,则取得黑色棋子的概率变为21,求x 和y 的值.四、解答题㈡(本大题3小题,每小题7分,共21分) 20.如图7,四边形ABCD 、DEFG 都是正方形,连接AE、CG .求证:⑴CG AE =;⑵CG AE ⊥.图5图821.今年植树节,某学校计划安排教师植树300颗,教师完成植树120颗后,学校全体团员加入植树活动,植树速度提高到原来的1.5倍,整个植树过程共用了3小时.⑴学校原计划每小时植树多少颗?⑵如果团员全程参加,整个植树过程需要多少小时完成?22.如图8,AB 是⊙O 的弦,AB OP⊥交⊙O 于C ,2=OC ,030=∠ABC .⑴求AB 的长;⑵若C 是OP 的中点,求证:PB 是⊙O 的切线.五、解答题㈢(本大题3小题,每小题9分,共27分) 23.在平面直角坐标系Oxy 中,抛物线k x x y +-=42(k 是常数)与x 轴相交于A 、B 两点(B 在A 的右边),与y 轴相交于C 点.⑴求k 的取值范围;⑵若OBC ∆是等腰直角三角形,求k 的值.图9;24.如图9,矩形ABCD 中,E 是BC 上一点,将矩形沿AE翻折后,点B 恰好与CD 边上的点F 重合.已知5=AB ,3=AD .⑴求BE ;⑵求EAF ∠tan .25.如图10,抛物线4212--=x x y 与坐标轴相交于A 、B 、C 三点,P 是线段AB 上一动点(端点除外),过P 作AC PD //,交BC 于点D ,连接CP .⑴直接写出A 、B 、C 的坐标;⑵求PCD ∆面积的最大值,并判断当PCD ∆的面积取最大值时,以PA 、PD 为邻边的平行四边形是否为菱形.2014年广东省中考数学模拟试题(二)评分参考一、选择题 BAADC CADCB 二、填空题11.4103⨯12.2)1(-x 13.4114.两个角是对顶角(2分),这两个角相等(2分)15.402001-16.24625π- 三、解答题㈠17.原式)1)(1()1()1(-+++-=x x x x x ……2分(分子、分母各1分)1122-+=x x ……4分 3=x 时,原式1)3(1)3(22-+=……5分 2=……6分 18.⑴作图(图略)……3分(确定1C 点1分,确定1B 点1分,其他1分)⑵由已知得13=AB ……4分,85131=-=BC ,1211=C B ……5分 所以134128221=+=BB ……6分 19.⑴83=+y x x (或等价关系式)……2分⑵依题意,21)10(10=+++y x x ……3分解方程组⎪⎪⎩⎪⎪⎨⎧=+++=+21)10(1083y x x y x x即⎩⎨⎧++=+=y x x y x 1020235……5分得⎩⎨⎧==2515y x ,即x 和y 的值分别为15和25……6分. 四、解答题㈡20.⑴依题意,CD AD =,ED GD =……1分ADG ADE CDG ∠+=∠=∠090……2分∴ADE ∆≌CDG ∆……3分,CG AE =……4分⑵设AE 与DG 相交于M ,AE 与CG 相交于N ,在GMN ∆和DME ∆中, 由⑴得AED CGD ∠=∠……5分,又DME GMN ∠=∠……6分 所以090=∠=∠MDE GNM ,CG AE ⊥……7分. 21.⑴设学校原计划每小时植树x 颗……1分依题意得,35.1180120=+xx ……3分 解方程得,80=x ……4分,检验,80=x 是原分式方程的解……5分 ⑵团员全程参加,整个植树过程需要5.21203005.1300==x (小时)……6分 答(略)……7分.22.⑴连接OA 、OB ……1分,∵030=∠ABC ,∴060=∠AOC ……2分设AB OP ⊥于D ,则3sin =∠⨯=AOC OA AD ……3分 又∵AB OP ⊥,∴322==AD AB ……4分⑵由⑴知060=∠BOC ,从而060=∠=∠OCB OBC ……5分C 是OP 的中点,CB CO CP ==,从而03021=∠=∠OCB PBC ……6分 所以090=∠OBP (BP OB ⊥),PB 是⊙O 的切线……7分.五、解答题㈢23.⑴依题意,04)4(2>--k ……1分解不等式得,4<k ……2分⑵依题意,) , 0(k C ……3分,从而)0 , |(|k B ……5分0||4||2=+-k k k ……6分0>k 时,032=-k k ,解得3=k ;0<k 时,052=+k k ,解得5-=k ……9分(注:正确求得3=k 、5-=k 中任何一个给2分,全对给3分). 24.⑴(方法一)依题意,5==AB AF ,422=-=AD AF DF ……2分在CEF Rt ∆中,1=-=DF CD CF ,AFD DAF CFE ∠-=∠=∠090……3分,DAF CFE ∠=∠cos cos ……4分,所以AFADEF CF =……5分 解得35=⨯=AD AF CF EF ,所以35==EF BE ……7分 (方法二)依题意,5==AB AF ,422=-=AD AF DF ……2分 设x BE =,在CEF Rt ∆中,1=-=DF CD CF ,x BE EF ==,x CE -=3 ……3分,222)3(1x x -+=……5分,解得35==x BE ……7分 ⑵EAB EAF ∠=∠tan tan ……8分,31==AB BE ……9分. 25.⑴)0 , 4(A 、)0 , 2(-B 、)4 , 0(-C ……2分(对1-2个给1分,全对2分)⑵设)0 , (x P (42<<-x ),因为AC PD //,所以ABBPAC PD =……3分,解得)2(322+=x PD ……4分C 到PD 的距离(即P 到AC 的距离))4(2245sin 0x PA d -=⨯=……5分PCD ∆的面积383231)4)(2(31212++-=-+=⨯⨯=x x x x d PD S ……6分3)1(312+--=x S ,PCD ∆面积的最大值为3……7分PCD ∆的面积取最大值时,1=x ,34=-=x PA ,22)2(322=+=x PD ……8分因为PD PA ≠,所以以PA 、PD 为邻边的平行四边形不是菱形……9分.。
2014届中考二模数学试题含答案
2014年初中毕业班第二次模拟测试数 学 试 卷说明:1.全卷共4页,考试用时为100分钟,满分为120分。
2.考生务必用黑色字迹的签字笔或钢笔在答题卷密封线左边的空格里填写自己的学校、班级、姓名、准考证号,并在答题卷指定的位置里填写座位号。
3.选择题选出答案后,请将所选选项的字母填写在答题卷对应题目的空格内。
4.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卷各题目指定区域内相应位置上;如需改动,先画掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
5.考生务必保持答题卷的整洁。
考试结束时,将试卷和答题卷一并交回。
一、选择题(本大题共10小题,每小题3分,共30分。
在各题的四个选项中,只有—项是正确的,请将所选选项的字母填写在答题卷对应题目的空格内) 1、9的算术平方根是A .81B .3±C .3-D .32、据报道,肇庆团市委“情系农村”深化农村青年创业小额贷款工作,共发放贷款13 000 000多元,数字13 000 000用科学记数法表示为A .1.3×106B .1.3×107C .1.3×108D .1.3×1093、如图所示的几何体的主视图是4、下列计算正确的是 A.222)2(aa =- B.632a a a ÷= C.a a 22)1(2-=-- D.22a a a =⋅5、等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为 A . 12 B . 15 C . 12或15 D . 186、如图,线段DE 是△ABC 的中位线,∠B =60°,则∠ADE 的度数为 A .80° B .70° C .60° D .50°7、下列图案由正多边形拼成,其中既是轴对称图形又是中心对称图形的是8、在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的A .众数B .方差C .平均数D .中位数(第6题图)(第3题图)(第16题图)9、把不等式组2151x x -≤⎧⎨>⎩的解集在数轴上表示正确的是10、童童从家出发前往体育中心观看篮球比赛,先匀速步行至公交汽车站,等了一会儿,童童搭乘公交汽车至体育中心观看比赛,比赛结束后,童童搭乘邻居刘叔叔的车顺利到家.其中x 表示童童从家出发后所用时间,y 表示童童离家的距离.下图中能反映y 与x 的函数关系式的大致图象是二、填空题:(本题共6个小题,每小题4分,共24分) 11、分解因式:24(1)x x --= ▲ .12、如果26a b -=,则42b a -= ▲ .13、已知菱形的两条对角线长分别为6和8,则菱形的边长为 ▲ .14、在一个口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机摸出一个小球然后放回,再随机摸出一个小球,则两次取出的小球标号相同的概率为 ▲ . 15x 的取值范围是 ▲ . 16、如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为E ,∠C = 30°,CD =. 则阴影部分的面积S 阴影= ▲ .三、解答题(一)(本大题3小题,每小题6分,共18分)17、计算:2014201(1)()(5)16sin 602π--⨯+---︒18、已知一次函数y x b =+的图象经过点B (0,),且与 反比例函数ky x=(k 为不等于0的常数)的图象有一交点 为点A (m ,1-) .求m 的值和反比例函数的解析式. 19、在图示的方格纸中(1)作出△ABC 关于MN 对称的图形△A 1B 1C 1;(2)说明△A2B2C2是由△A1B1C1经过怎样的平移得到的?四、解答题(二)(本大题3小题,每小题7分,共21分)20、如图,在小山的东侧A点处有一个热气球,由于受西风的影响,以30米/分的速度沿与地面成75°角的方向飞行,25分钟后到达C点处,此时热气球上的人测得小山西侧B点的俯角为30°,求小山东西两侧A、B两点间的距离.(第20题图)21、为了了解某校学生的身高情况,随机抽取该校男生、女生进行抽样调查.已知抽取的样本中,男生、女生的人数相同,利用所得数据绘制如下统计图表:根据图表提供的信息,回答下列问题:(1)样本中,男生的身高众数在▲组,中位数在▲组;(2)求样本中,女生身高在E组的人数;(3)已知该校共有男生400人,女生380人,请估计身高在160≤x<170之间的学生约有多少人?(第22题图)22、如图,在平行四边形ABCD 中,∠ABC =60°,E 、F 分别 在CD 和BC 的延长线上,AE ∥BD .(1)求证:点D 为CE 的中点; (2)若EF ⊥BC ,EF =,求AB 的长.五、解答题(三)(本大题3小题,每小题9分,共27分)23、现要把228吨物资从某地运往甲、乙两地,用大、小两种货车共18辆,恰好能一次性运完这批物资.已知这两种货车的载重量分别为16吨/辆和10吨/辆,运往甲、乙两地的运费如下表:(1)求这两种货车各用多少辆?(2)如果安排9辆货车前往甲地,其余货车前往乙地,设前往甲地的大货车为a 辆,前往甲、乙两地的总运费为w 元,求出w 与a 的函数关系式(写出自变量的取值范围);(3)在(2)的条件下,若运往甲地的物资不少于120吨,请你设计出使总运费最少的货车调配方案,并求出最少总运费。
2014年九年级第二次模拟考试数学试题
62014中考数学模拟考试数学试卷1.﹣3的相反数为( ▲ )A 、3B 、13C 、﹣3D 、13-2.已知地球上海洋面积约为316 000 000km 2,316 000 000这个数用科学记数法可表示为( ▲ )A .3.16×109B .3.16×108C .3.16×107D .3.16×1063.如图所示的是零件三通的立体图,则这个几何体的俯视图是( ▲ )A B C D4.已知反比例函数1y x-=,下列结论中正确的是( ▲ )A.图象经过点(1,1)B.图象在第一、三象限C.当1>x 时,10y -<<D.当0<x 时,y 随着x 的增大而减小5.如图,在Rt △ABC 中,90C ∠=︒,4AC =,3BC =,则tan A 的值为( ▲ ) A .34 B .43 C .35 D .456.已知圆锥的母线长为5,底面半径为3,则圆锥的表面积为( ▲ ) A .15π B .24π C .30π D .39π7.已知⊙O 1和⊙O 2的半径分别为2cm 和5cm ,两圆的圆心距是3cm ,则两圆的位置关系是( ▲ )A .内含B .外切C .内切D .相交8.某班体育委员调查了本班46名同学一周的平均每天体育活动时间,并制作了如图所示的频数分布直方图,从直方图中可以看出,该班同学这一周的平均每天体育活动时间的中位数和众数依次是( ▲ )A .40分,40分B .50分,40分C .50分,50分 D .40分,50分(第5题图)(第8题图)主视方向(第3题图)D (第9题图)(第10题图)E PABCF(第16题图)9.如图,AC 是菱形ABCD 的对角线,AE EF FC ==,则:BMNABCD S S 菱形 =( ▲ )A .34 B .37 C .38 D .31010.如图,在Rt △ABC 中,90A ∠=︒,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,动点P 从点B 出发,沿着BC 匀速向终点C 运动,则线段EF 的值大小变化情况是( ▲ ) A. 一直增大 B.一直减小 C. 先减小后增大 D.先增大后减少 11.计算:23()a ▲ .12.如图,已知//,,35AB CD BC ABE C BEC ∠∠=︒∠平分,则的度数是 ▲ . 13.某校艺术节演出中,5位评委给某个节目打分如下:9分,9.2分,8.9分,8.8分,9.1分,则该节目的平均得分是 ▲ 分.14.阳阳从家到学校的路程为2400米,他早晨8点离开家,要在8点30分到8点40分之间到学校,如果用x 表示他的速度(单位:米/分),则x 的取值范围为 ▲ . 15.如图,在平面直角坐标系xoy 中,直线AB 过点A (-4,0),B (0,4),⊙O 的半径O 为坐标原点),点P 在直线AB 上,过点P 作⊙O 的一条切线PQ ,Q 为切点,则切线长PQ 的 最小值为 ▲ .16.如图,已知直线y =2x +6交y 轴于点A ,点B 是这条直线上的一点,并且位于第一象限,点P 是直线x=8上的一动点,若△APB 是等腰直角三角形,则点B 的坐标为17.(本题10分)(1)计算:101()(2013)3π-+-+(2)解方程:xx x -=+--2312318.(本题6分)(1)在图①中确定格点D ,并画出一个以A ,B ,C ,D 为顶点的四边形,使其为轴对称图形;(2)在图②中确定格点E ,并画出一个以A ,B ,C ,E 为顶点的四边形,使其为中心对称图形.(第12题图)AD(第15题图)19.(本题8分)如图,在□ABCD 中,分别延长BA ,DC 到点E ,使得AE=AB ,CH=CD ,连接EH ,分别交AD ,BC 于点F ,G 。
广东中考第二次模拟考试《数学卷》含答案解析
广东中考数学仿真模拟测试题一、选择题1.-711的倒数是A. 711B. -711C.117D. -1172.应对疫情,许多企业跨界抗疫,生产口罩.截至2月29日,全国口罩日产量达到116000000只.将116000000用科学记数法表示应为()A. 611610⨯ B. 711.610⨯ C. 71.1610⨯ D. 81.1610⨯3.如图是由5个完全相同的小正方形搭成的几何体,如果将小正方体A放到小正方体B的正上方,则它的()A. 主视图会发生改变B. 俯视图会发生改变C. 左视图会发生改变D. 三种视图都会发生改变4.下列图形中既是中心对称图形又是轴对称图形的是( )A. B.C. D.5.下列运算正确的是( )A. 2a+3a=5a2B. (﹣ab2)3=﹣a3b6C. a2•a3=a6D. (a+2b)2=a2+4b26.在一次演讲比赛中,参赛的10名学生成绩统计如图所示,下列说法中错误的是().A. 众数是90分B. 中位数是90分C. 平均数是90分D. 极差是15分7.下列命题中正确的是( )A. 1的平方根等于它本身B. 一元二次方程210x x +-=无解C. 任意多边形的外角和是360°D. 如果两个圆周角相等 ,那么它们所对的弧长一定相等8.某商贩在一次买卖中,以每件135元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,在这次买卖中,该商贩( )A. 不赔不赚B. 赚9元C. 赔18元D. 赚18元 9.规定一种新运算“△”:b a b a =;则123=( ) A. 16B. 9C. 19D. 2310.对于二次函数y =x 2﹣2mx ﹣3,有下列说法:①它的图象与x 轴有两个公共点;②如果当x ≤1时y 随x 的增大而减小,则m =1;③如果将它的图象向左平移3个单位后过原点,则m =﹣1;④如果当x =4时的函数值与x =2008时的函数值相等,则当x =2012时的函数值为﹣3.其中正确个数是( )A. 1B. 2C. 3D. 4 11.如图,矩形纸片ABCD 中,点E 是AD 的中点,且AE =1,连接BE ,分别以B 、E 为圆心,以大于12BE 的长为半径作弧,两弧交于点M 、N ,若直线MN 恰好过点C ,则AB 的长度为( )A. 2B. 3C. 5D. 212.如图,△ABC中,∠ABC=45°,CD⊥AB于点D,BE平分∠ABC,且BE⊥AC于点E,与CD交于F,H 是BC边的中点,连接DH与BE交于点G,则下列结论:①BF=AC;②∠A=∠DGE;③CE<BG;④S△ADC=S四边形CEGH;⑤DG•AE=DC•EF中,正确结论的个数是( )A. 2B. 3C. 4D. 5二、填空题13.分解因式6xy2-9x2y-y3 = _____________.14.已知盒子里有4个黄色球和n个红色球,每个球除颜色不同外均相同,则从中任取一个球,取出红色球的概率是45,则n的值是_____.15.如图,已知点C处有一个高空探测气球,从点C处测得水平地面上A,B两点的俯角分别为30°和45°.若AB=2km,则A,C两点之间的距离为_____km.16.如图,在平面直角坐标系中,已知A(0,6),B(2,0),C(6,0),D为线段BC上的动点,以AD为边向右侧作正方形ADEF,连接CF交DE于点P,则CP的最大值_____.三、解答题17.计算:101(2020)|31|3tan 305π-︒⎛⎫--+-- ⎪⎝⎭. 18.先化简,再求值:(222311x x x --+-)11x ÷+,其中x =2+1. 19.为全面贯彻党的教育方针,坚持“健康第一”的教育理念,促进学生健康成长,提高体质健康水平,成都市调整体育中考实施方案:分值增加至60,男1000米(女800米)必考,足球、篮球、排球“三选一”…,从2019年秋季新入学的七年级起开始实施.某中学为了解七年级学生对三大球类运动的喜爱情况,从七年级学生中随机抽取部分学生进行调查问卷,通过分析整理绘制了如下两幅统计图.请根据两幅统计图中的信息回答下列问题:(1)求参与调查的学生中,喜爱排球运动的学生人数,并补全条形图;(2)若该中学七年级共有400名学生,请你估计该中学七年级学生中喜爱篮球运动的学生有多少名?(3)若从喜爱足球运动的2名男生和2名女生中随机抽取2名学生,确定为该校足球运动员的重点培养对象,请用列表法或画树状图的方法求抽取的两名学生为一名男生和一名女生的概率.20.在平面直角坐标系xOy 中,反比例函数(0)k y x x =>的图象和ABC 都在第一象限内,52AB AC ==,//BC x 轴,且4BC =,点A 的坐标为(3,5).(1)若反比例函数(0)k y x x =>的图象经过点B ,求此反比例函数的解析式;(2)若将ABC 向下平移m (m>0)个单位长度,A ,C 两点的对应点同时落在反比例函数图象上,求m 的值.21.有一段6000米的道路由甲乙两个工程队负责完成.已知甲工程队每天完成的工作量是乙工程队每天完成工作量的2倍,且甲工程队单独完成此项工程比乙工程队单独完成此项工程少用10天.(1)求甲、乙两工程队每天各完成多少米?(2)如果甲工程队每天需工程费7000元,乙工程队每天需工程费5000元,若甲队先单独工作若干天,再由甲乙两工程队合作完成剩余的任务,支付工程队总费用不超过79000元,则两工程队最多可以合作施工多少天?22.如图,在平行四边形ABCD 中,过点A 作AE ⊥BC ,垂足为E ,连接DE ,F 为线段DE 上一点,且∠AFE =∠B .(1)求证:△ADF ∽△DEC ;(2)若AB =4,AD =3AE =3,求AF 的长;(3)若CD =CE ,则直线CD 是以点E 为圆心,AE 长为半径的圆的切线.试证明之.23.如图,抛物线y =ax 2+bx +c 的图象,经过点A (1,0),B (3,0),C (0,3)三点,过点C ,D (﹣3,0)的直线与抛物线的另一交点为E .(1)请你直接写出:①抛物线的解析式;②直线CD的解析式;③点E的坐标( ,);(2)如图1,若点P是x轴上一动点,连接PC,PE,则当点P位于何处时,可使得∠CPE=45°,请你求出此时点P的坐标;(3)如图2,若点Q是抛物线上一动点,作QH⊥x轴于H,连接QA,QB,当QB平分∠AQH时,请你直接写出此时点Q的坐标.答案与解析一、选择题1.-711的倒数是A. 711B. -711C.117D. -117【答案】D【解析】【分析】根据乘积为1的两个数互为倒数进行求解即可得.【详解】∵711117⎛⎫⎛⎫-⨯-⎪ ⎪⎝⎭⎝⎭=1,∴-711的倒数是-117,故选D.【点睛】本题考查了倒数的定义,熟知乘积为1的两个数互为倒数是解题的关键.2.为应对疫情,许多企业跨界抗疫,生产口罩.截至2月29日,全国口罩日产量达到116000000只.将116000000用科学记数法表示应为()A. 611610⨯ B. 711.610⨯ C. 71.1610⨯ D. 81.1610⨯【答案】D【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【详解】将116000000用科学记数法表示应为1.16×108.故选:D.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.如图是由5个完全相同的小正方形搭成的几何体,如果将小正方体A放到小正方体B的正上方,则它的()A. 主视图会发生改变B. 俯视图会发生改变C. 左视图会发生改变D. 三种视图都会发生改变【答案】A【解析】【分析】根据从上面看得到的图形事俯视图,从正面看得到的图形是主视图,从左边看得到的图形是左视图,可得答案.【详解】如果将小正方体A放到小正方体B的正上方,则它的主视图会发生改变,俯视图和左视图不变.故选A.【点睛】本题考查了简单组合体的三视图,从上面看得到的图形是俯视图,从正面看得到的图形是主视图,从左边看得到的图形是左视图.4.下列图形中既是中心对称图形又是轴对称图形的是( )A. B.C. D.【答案】B【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,是中心对称图形,故此选项正确;C、是轴对称图形,不是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项错误;故选:B.【点睛】本题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5.下列运算正确的是( )A. 2a+3a=5a2B. (﹣ab2)3=﹣a3b6C. a2•a3=a6D. (a+2b)2=a2+4b2【答案】B【解析】【分析】分别根据合并同类项法则,积的乘方运算法则,同底数幂的乘法法则以及完全平方公式逐一判断即可.【详解】解:A.2a+3a=5a,故本选项错误;B.(﹣ab2)3=﹣a3b6,正确;C.a2•a3=a5,故本选项错误;D.(a+2b)2=a2+4ab+4b2,故本选项错误.故选:B.【点睛】本题考查整式的运算,涉及到合并同类项、完全平方公式、积的乘方与幂的乘方,解题的关键是熟练掌握各运算的法则.6.在一次演讲比赛中,参赛的10名学生成绩统计如图所示,下列说法中错误的是().A. 众数是90分B. 中位数是90分C. 平均数是90分D. 极差是15分【答案】C【解析】【分析】根据众数、中位数、平均数以及极差概念进行判断即可.【详解】∵90出现了5次,出现的次数最多,∴众数是90,故A中结论正确;∵共有10个数,∴中位数是将数据从小到大(或从大到小)排列后第5、6个数的平均数,∴中位数是(90+90)÷2=90,故B 中结论正确; ∵平均数是(80×1+85×2+90×5+95×2)÷10=89,故C 中结论错误; ∵极差是95-80=15,故D 中结论正确.故选:C .【点睛】本题考查了中位数、众数、平均数以及极差的概念和计算,掌握这些概念知识是解题的关键. 7.下列命题中正确的是( )A. 1的平方根等于它本身B. 一元二次方程210x x +-=无解C. 任意多边形的外角和是360°D. 如果两个圆周角相等 ,那么它们所对的弧长一定相等【答案】C【解析】【分析】根据平方根的定义、利用根的判别式判断一元二次方程根的个数、多边形的外角和和圆周角定理的推论逐一判断即可.【详解】解:A . 1的平方根是±1,故本选项错误;B . ()224141150-=-⨯⨯-=>b ac ∴一元二次方程210x x +-=有两个不相等的实数根,故本选项错误;C . 任意多边形的外角和是360°,故本选项正确;D . 如果两个圆周角相等 ,但它们在半径不相等的两个圆中,那么它们所对的弧长不相等,故本选项错误; 故选C .【点睛】此题考查的是平方根的定义、利用根的判别式判断一元二次方程根的个数、多边形的外角和和圆周角定理的推论,掌握平方根的定义、利用根的判别式判断一元二次方程根的个数、多边形的外角和和圆周角定理的推论是解决此题的关键.8.某商贩在一次买卖中,以每件135元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,在这次买卖中,该商贩( )A. 不赔不赚B. 赚9元C. 赔18元D. 赚18元 【答案】C【解析】【分析】设盈利上衣成本x元,亏本上衣成本y元,由题意得:135-x=25%x;y-135=25%y;求出成本可得. 【详解】设盈利上衣成本x元,亏本上衣成本y元,由题意得135-x=25%xy-135=25%y解方程组,得x=108元,y=180元135+135-108-180=-18亏本18元故选C【点睛】考核知识点:一元一次方程的运用.理解题意,列出方程是关键.9.规定一种新运算“△”:ba b a=;则123=( )A. 16B. 9C.19D.23【答案】C 【解析】【分析】由题意ba b a=,则211233⎛⎫= ⎪⎝⎭,再进行计算即可得到答案.【详解】由题意ba b a=,则211233⎛⎫= ⎪⎝⎭=19,故选择C.【点睛】本题考查指数幂的运算,解题的关键是掌握新定义的计算法则.10.对于二次函数y=x2﹣2mx﹣3,有下列说法:①它的图象与x轴有两个公共点;②如果当x≤1时y随x的增大而减小,则m=1;③如果将它的图象向左平移3个单位后过原点,则m=﹣1;④如果当x=4时的函数值与x=2008时的函数值相等,则当x=2012时的函数值为﹣3.其中正确的个数是( )A. 1B. 2C. 3D. 4 【答案】B【解析】【分析】①利用根的判别式△>0判定即可;②根据二次函数的增减性利用对称轴列不等式求解即可;③根据向左平移横坐标减求出平移前的点的坐标,然后代入函数解析式计算即可求出m 的值;④根据二次函数的对称性求出对称轴,再求出m 的值,然后把x=2012代入函数关系式计算即可得解.【详解】解:①∵△=(-2m )2-4×1×(-3)=4m 2+12>0,∴它的图象与x 轴有两个公共点,故本小题正确;②∵当x≤1时y 随x 的增大而减小, ∴对称轴直线2121m x -=-⨯,解得m≥1,故本小题错误; ③∵将它的图象向左平移3个单位后过原点,∴平移前的图象经过点(3,0),代入函数关系式得,32-2m•3-3=0,解得m=1,故本小题错误;④∵当x=4时的函数值与x=2008时的函数值相等,∴对称轴为直线4200810062x +== 2100621m -∴-=⨯ 解得m=1006,∴函数关系式为y=x 2-2012x-3,当x=2012时,y=20122-2012×2012-3=-3,故本小题正确; 综上所述,结论正确的是①④共2个.故选:B .【点睛】本题考查了二次函数图象,二次函数的性质,主要利用了二次函数与x 轴的交点问题,二次函数的对称性以及增减性,熟记各性质是解题的关键.11.如图,矩形纸片ABCD 中,点E 是AD 的中点,且AE =1,连接BE ,分别以B 、E 为圆心,以大于12BE 的长为半径作弧,两弧交于点M 、N ,若直线MN 恰好过点C ,则AB 的长度为( )A. 2B. 3C. 5D. 2【答案】B【解析】【分析】 如图,连接EC ,记MN 与BE 的交点为F ,由FC 垂直平分BE ,得到∠BFC=∠EFC=90°,EF=BF ,由于FC=FC ,推出△BFC ≌△CEF (SAS ),于是得到BC=EC 利用勾股定理可得答案.【详解】解:如图,连接EC ,记MN 与BE 的交点为F ,∵FC 垂直平分BE ,即∠BFC=∠EFC=90°,EF=BF ,又∵FC=FC ,在△BFC 与△CEF 中, EF BF BFC EFC FC FC⎧⎪∠∠⎨⎪⎩===∴△BFC ≌△EFC (SAS ),∴BC=EC又∵AD=BC ,AE=1,E 为AD 的中点,∴ EC=2 ,1,DE =由勾股定理得:AB=CD =2221 3.-=故选:B .【点睛】本题考查的是线段垂直平分线的性质以及矩形的性质,本题的关键是要画出辅助线,证明三角形全等后易求解.本题难度中等.12.如图,△ABC 中,∠ABC =45°,CD ⊥AB 于点D ,BE 平分∠ABC ,且BE ⊥AC 于点E ,与CD 交于F ,H 是BC 边的中点,连接DH 与BE 交于点G ,则下列结论:①BF =AC ;②∠A =∠DGE ;③CE <BG ;④S △ADC =S 四边形CEGH ;⑤DG •AE =DC •EF 中,正确结论的个数是()A. 2B. 3C. 4D. 5【答案】C【解析】【分析】 证明△BDF ≌△CDA 可判断①;由,,CD AB BE AC ⊥⊥利用三角形的外角的性质及四边形的内角和定理可判断②;连接,CG 利用DH 是BC 的垂直平分线,从而可判断③;过G 作GJ ⊥AB 于J ,过F 作FM ⊥BC 于M ,连接GM ,设1,DJ JG == 分别计算三角形ADC 的面积和四边形CEGH 的面积可判断④;由△BDF ∽△CEF ,可判断⑤.【详解】解:∵CD ⊥AB ,BF ⊥AC ,∴∠BEC=∠BDC=∠ADC=90°,∵∠ABC=45°,∴∠DCB=45°=∠ABC , ∴BD=DC ,∵∠BDC=∠CEF=90°,∠DFB=∠EFC ,∴由三角形内角和定理得:∠DBF=∠ACD ,∵在△BDF 和△CDA 中,,BDF CDA BD DC DBF ACD ∠⎧⎪⎨⎪∠∠⎩=== ∴△BDF ≌△CDA (ASA ),∴BF=AC ,∠BFD=∠A ,∴①正确;∵∠DFB=∠FBC+∠FCB=∠FBC+45°,∠DGF=∠GBD+45°,∠FBC=∠GBD ,∴∠DFG=∠DGF ,,,CD AB BE AC ⊥⊥180,A DFE ∴∠+∠=︒180,DFE DFG ∠+∠=︒A DFG ∴∠=∠∴∠A=∠DGE ,故②正确,如图,连接,CG∵∠ABC=45°,∠BDC=90°,∴△BDC 是等腰直角三角形,∵H 是BC 边的中点,∴DH 垂直平分BC ,,BG CG ∴=90,CEG ∠=︒,CE CG ∴<,CE BG ∴< 故③正确;过G 作GJ ⊥AB 于J ,过F 作FM ⊥BC 于M ,连接GM ,,,,DC DB CD AB DH BC =⊥⊥45,DBC DCB HDB HDC ∴∠=∠=∠=∠=︒,,DJ JG FM MC ∴==,BE AC BE ⊥平分,ABC ∠,,GJ GH FD FM ∴==,DGF DFG ∠=∠,DG DF ∴=,DG FM ∴=//,DH FM∴四边形DGMF 是菱形,,DG GM ∴=设1,DJ JG ==则1,GH HM DG GM FM DF ======2,FC ∴=∴ 四边形CFGH 的面积=梯形GHMF 的面积+FMC ∆的面积113(112222=+⨯+=+ 1(212CAD S ∆=+=+ ∴ S △ADC ≠S 四边形CEGH ,故④错误.∵△BDF ∽△CEF , ∴BD DF CE EF=, ∵BD=DC ,CE=AE ,DF=DG , ∴,DC DG AE EF = ∴DG•AE=DC•EF ,故⑤正确.故选:C .【点睛】本题考查等腰直角三角形的性质、全等三角形的判定和性质、等腰三角形的判定和性质、菱形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考选择题中的压轴题.二、填空题13.分解因式6xy 2-9x 2y -y 3 = _____________.【答案】-y(3x -y)2【解析】【分析】先提公因式-y ,然后再利用完全平方公式进行分解即可得.【详解】6xy 2-9x 2y -y 3=-y(9x 2-6xy+y 2)=-y(3x-y)2,故答案为:-y(3x-y)2.【点睛】本题考查了利用提公因式法与公式法分解因式,熟练掌握因式分解的方法及步骤是解题的关键.因式分解的一般步骤:一提(公因式),二套(套用公式),注意一定要分解到不能再分解为止.14.已知盒子里有4个黄色球和n 个红色球,每个球除颜色不同外均相同,则从中任取一个球,取出红色球的概率是45,则n 的值是_____. 【答案】16【解析】【分析】用红球的个数除以总球的个数得出红球的概率,从而求出n 的值.【详解】解:由题意得:4n n =45解得:n =16;故答案为:16.【点睛】此题主要考查概率的计算,解题的关键是熟知概率公式的运用.15.如图,已知点C处有一个高空探测气球,从点C处测得水平地面上A,B两点的俯角分别为30°和45°.若AB=2km,则A,C两点之间的距离为_____km.【答案】(2+23)【解析】【分析】过点C作CD垂直于AB延长线,垂足为D,由题意知∠CBD=45°,∠A=30°,AB=2km,设BD=CD=x,在Rt△ACD中,由tanA=CDAD列方程求出x的值,在根据AC=2CD可得答案.【详解】解:如图所示,延长AB,过点C作CD垂直于AB延长线,垂足为D,由题意知∠CBD=45°,∠A=30°,AB=2km,设BD=CD=x,在Rt△ACD中,由tan A=CDAD可得32xx=+,解得x3,即CD3,则AC=2CD3km),故答案为:3.【点睛】此题考查解直角三角形的应用-仰角俯角问题,能够正确地构建出直角三角形,将实际问题化归为解直角三角形的问题是解题的关键.16.如图,在平面直角坐标系中,已知A(0,6),B(2,0),C(6,0),D为线段BC上的动点,以AD为边向右侧作正方形ADEF,连接CF交DE于点P,则CP的最大值_____.【答案】3 2【解析】【分析】过点F作FQ⊥y轴于Q,利用AAS证出△QFA≌△OAD,可得FQ=OA=6,从而得出FC⊥x轴,然后根据相似三角形的判定定理证出△OAD∽△CDP,列出比例式,然后设OD=x,由题意可知2≤x≤6,则CD=OC -OD=6-x,即可求出CP与x的二次函数关系,然后利用二次函数求最值即可.【详解】解:过点F作FQ⊥y轴于Q∴∠FQA=∠AOD=90°∴∠OAD+∠ODA=90°,∵四边形ADEF为正方形∴∠FAD=∠ADE=90°,FA=AD∴∠OAD+∠QAF=90°,∠ODA+∠CDP=90°∴∠QAF =∠ODA,∠OAD=∠CDP∴△QFA≌△OAD∴FQ=OA=6∴点F的横坐标为6∵C(6,0),∴FC⊥x轴∴∠AOD=∠DCP=90°∵∠OAD=∠CDP∴△OAD∽△CDP∴OA OD CD CP= 设OD=x ,由题意可知2≤x ≤6,则CD=OC -OD=6-x ∴6x 6x CP=- 解得:CP=216-+x x 213(3)62x =--+ ∴当x=3时,CP 最大,最大值为32 故答案为:32. 【点睛】此题考查的是正方形的性质、全等三角形的判定及性质、相似三角形的判定及性质和利用二次函数求最值,掌握正方形的性质、全等三角形的判定及性质、相似三角形的判定及性质和利用二次函数求最值是解决此题的关键.三、解答题17.计算:101(2020)|1|3tan 305π-︒⎛⎫--+- ⎪⎝⎭. 【答案】3【解析】【分析】利用负指数幂、零指数幂、二次根式的估算、特殊三角函数求每部分的值,求实数的混合计算的值即可.【详解】解:原式=13135-+-⨯=3. 【点睛】掌握负指数幂、零指数幂、二次根式的估算、特殊三角函数等知识是解答此题的关键.18.先化简,再求值:(222311x x x --+-)11x ÷+,其中x +1.【答案】1,12x -【解析】【分析】 先根据分式的各个运算法则化简,然后代入求值即可.【详解】解:(222311x x x --+-)11x ÷+=2(1)(23)1 (1)(1)1---+⋅+-x x xx x=22231--+-x xx=11 x-,当x=2+1时,原式=211+-=22.【点睛】此题考查的是分式的化简求值和二次根式的运算,掌握分式的各个运算法则是解决此题的关键.19.为全面贯彻党的教育方针,坚持“健康第一”的教育理念,促进学生健康成长,提高体质健康水平,成都市调整体育中考实施方案:分值增加至60,男1000米(女800米)必考,足球、篮球、排球“三选一”…,从2019年秋季新入学的七年级起开始实施.某中学为了解七年级学生对三大球类运动的喜爱情况,从七年级学生中随机抽取部分学生进行调查问卷,通过分析整理绘制了如下两幅统计图.请根据两幅统计图中的信息回答下列问题:(1)求参与调查的学生中,喜爱排球运动的学生人数,并补全条形图;(2)若该中学七年级共有400名学生,请你估计该中学七年级学生中喜爱篮球运动的学生有多少名?(3)若从喜爱足球运动的2名男生和2名女生中随机抽取2名学生,确定为该校足球运动员的重点培养对象,请用列表法或画树状图的方法求抽取的两名学生为一名男生和一名女生的概率.【答案】(1)21人,详见解析;(2)180名;(3)2 3【解析】【分析】(1)先根据足球人数及其百分比求得总人数,再用总人数乘以排球人数占总人数的百分比可得排球人数,即可补全图形;(2)根据样本估计总体,先求出喜爱篮球运动人数的百分比,然后用400乘以篮球人数占百分比,即可得到喜爱篮球运动人数;(3)画树状图得出所有等可能的情况数,找出1名男生和1名女生的情况数,根据概率公式即可得出所求概率.【详解】解:(1)由题意可知调查的总人数=12÷20%=60(人), 所以喜爱排球运动的学生人数=60×35%=21(人) 补全条形图如图所示:(2)∵该中学七年级共有400名学生,∴该中学七年级学生中喜爱篮球运动的学生有400×(1﹣35%﹣20%)=180名答:该中学七年级学生中喜爱篮球运动的学生有180名;(3)画树状图为:共有12种等可能的结果数,其中抽取的两人恰好是一名男生和一名女生结果数为8, 所以抽取的两人恰好是一名男生和一名女生概率=812=23. 【点睛】此题考查了条形统计图、扇形统计图以及列表法与树状图法,解题的关键是理解条形图与扇形图中数据间的关系.20.在平面直角坐标系xOy 中,反比例函数(0)k y x x =>的图象和ABC 都在第一象限内,52AB AC ==,//BC x 轴,且4BC =,点A 的坐标为(3,5).(1)若反比例函数(0)k y x x=>的图象经过点B ,求此反比例函数的解析式; (2)若将ABC 向下平移m (m>0)个单位长度,A ,C 两点的对应点同时落在反比例函数图象上,求m 的值.【答案】(1)7(0)2y x x =>; (2) 54m =. 【解析】【分析】(1)根据已知求出B 与C 点坐标,然后根据待定系数法即可求得反比例函数的解析式;(2)表示出相应的平移后A 与C 坐标,将之代入反比例函数表达式即可求解.【详解】(1)52AB AC ==,4BC =,点(3,5)A , 7(1,)2B ∴,7(5,)2C . ∵反比例函数(0)k y x x=>的图象经过点B , ∴此反比例函数的解析式为7(0)2y x x=>. (2)将ABC ∆向下平移m 个单位长度,设A ,C 的对应点分别为A',C'.∴A'(3,5-m),C'(5,72-m). ∵A',C'两点同时落在反比例函数图象上,73(5)5()2m m ∴-=-, 54m ∴=. 【点睛】本题考查反比例函数的图象及性质;熟练掌握等腰三角形的性质,通过等腰三角形求出点的坐标是解题的关键.21.有一段6000米的道路由甲乙两个工程队负责完成.已知甲工程队每天完成的工作量是乙工程队每天完成工作量的2倍,且甲工程队单独完成此项工程比乙工程队单独完成此项工程少用10天.(1)求甲、乙两工程队每天各完成多少米?(2)如果甲工程队每天需工程费7000元,乙工程队每天需工程费5000元,若甲队先单独工作若干天,再由甲乙两工程队合作完成剩余的任务,支付工程队总费用不超过79000元,则两工程队最多可以合作施工多少天?【答案】(1)甲工程队每天完成600米,乙工程队每天完成300米;(2)两工程队最多可以合作施工6天.【解析】分析】(1)设乙工程队每天完成x米,则甲工程队每天完成2x米,根据工作时间=工作总量÷工作效率结合甲工程队单独完成此项工程比乙工程队单独完成此项工程少用10天,即可得出关于x的分式方程,解之即可得出结论;(2)设甲队先单独工作y天,则甲乙两工程队还需合作6000600300600y-+=(20233-y)天,根据总费用=每天的费用×工作时间结合支付工程队总费用不超过79000元,即可得出关于y的一元一次不等式,解之即可得出结论.【详解】(1)设乙工程队每天完成x米,则甲工程队每天完成2x米,依题意,得:6000x﹣60002x=10,解得:x=300,经检验,x=300是原方程的解,且符合题意,∴2x=600.答:甲工程队每天完成600米,乙工程队每天完成300米.(2)设甲队先单独工作y天,则甲乙两工程队还需合作6000600300600y-+=(20233-y)天,依题意,得:7000(y+20233-y)+5000(20233-y)≤79000,解得:y≥1,∴20233-y≤20233-=6.答:两工程队最多可以合作施工6天.22.如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE =∠B.(1)求证:△ADF∽△DEC;(2)若AB=4,AD=3AE=3,求AF的长;(3)若CD=CE,则直线CD是以点E为圆心,AE长为半径圆的切线.试证明之.【答案】(1)详见解析;(2)23(3)详见解析【解析】【分析】(1)△ADF 和△DEC 中,易知∠ADF=∠DEC (平行线的内错角),而∠AFD 和∠C 是等角的补角,由此可判定两个三角形相似;(2)在Rt △ADE 中,由勾股定理易求得DE 的长,从而根据相似三角形的对应边成比例求出AF 的长;(3)过点E 作EH ⊥DC ,交DC 的延长线于点H ,根据等边对等角可得∠CED =∠CDE ,利用等量代换可得∠ADE =∠CDE ,利用AAS 证出△ADE ≌△HDE ,从而证出AE =HE ,最后根据切线的判定定理即可证出结论.【详解】解:(1)∵四边形ABCD 是平行四边形,∴AB ∥CD ,AD ∥BC ,∴∠B +∠C =180°,∠ADF =∠DEC ,∵∠AFD +∠AFE =180°,∠AFE =∠B ,∴∠AFD =∠C ,∴△ADF ∽△DEC ;(2)∵AE ⊥BC ,AD =33,AE =3, ∴DE =22AD AE +=22(33)3+=6,由(1)知△ADF ∽△DEC ,得=AF AD DC DE, ∴AF =⨯DC AD DE =4336⨯=23. (3)过点E 作EH ⊥DC ,交DC 的延长线于点H .∵CD =CE ,∴∠CED =∠CDE .∵∠ADE =∠CED ,∴∠ADE =∠CDE .又∵∠EAD =∠EHD =90°,在△ADE 和△HDE 中,ADE CDE EAD EHD DE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ADE ≌△HDE ,∴AE =HE ,∴直线CD 是以点E 为圆心,AE 长为半径的圆的切线.【点睛】此题考查的是平行四边形的性质、相似三角形的判定及性质、勾股定理、全等三角形的判定及性质和切线的判定,掌握平行四边形的性质、相似三角形的判定及性质、勾股定理、全等三角形的判定及性质和切线的判定定理是解决此题的关键.23.如图,抛物线y =ax 2+bx +c 的图象,经过点A (1,0),B (3,0),C (0,3)三点,过点C ,D (﹣3,0)的直线与抛物线的另一交点为E .(1)请你直接写出:①抛物线的解析式 ;②直线CD 的解析式 ;③点E 的坐标( , );(2)如图1,若点P 是x 轴上一动点,连接PC ,PE ,则当点P 位于何处时,可使得∠CPE =45°,请你求出此时点P 的坐标;(3)如图2,若点Q 是抛物线上一动点,作QH ⊥x 轴于H ,连接QA ,QB ,当QB 平分∠AQH 时,请你直接写出此时点Q 的坐标.【答案】(1)①y =x 2﹣4x +3,②y =x +3,③(5,8);(2)P 1(1,0),P 2(9,0);(3)Q (33.【解析】【分析】(1)①假设抛物线的解析式为y =a (x ﹣1)(x ﹣3),将A ,B 代入,即可求出抛物线的解析式;②设直线CD 的解析式为y =kx +b ,将C ,D 代入可得直线CD 的解析式;③联立两个解析式可得E 点坐标;(2)过点E 作EH ⊥x 轴于H ,由已知可推出CD =32,DE =82,EC =52,△ECP ∽△EPD ,由此可得PE 2,根据勾股定理可得PH ,由此即可求出点P 的坐标;(3)延长QH 到M ,使得HM =1,连接AM ,BM ,延长QB 交AM 于N ,设Q (t ,t 2﹣4t +3),由题意得点Q 只能在点B 的右侧的抛物线上,则QH =t 2﹣4t +3,BH =t ﹣3,AH =t ﹣1,由此可推出△QHB ∽△AHM ,据此可得QN ⊥AM ,当BM =AB =2时,QN 垂直平分线段AM ,此时QB 平分∠AQH ,根据勾股定理可得t 值,即可推出点Q 坐标.【详解】(1)①∵抛物线经过A (1,0),B (3,0),∴可以假设抛物线的解析式为y =a (x ﹣1)(x ﹣3),把C (0,3)代入得到a =1,∴抛物线的解析式为y =x 2﹣4x +3;②设直线CD 的解析式为y =kx +b ,则有330b k b =⎧⎨-+=⎩,解得13k b =⎧⎨=⎩,∴直线CD 的解析式为y =x +3;③由2343y x y x x =+⎧⎨=-+⎩,解得03x y =⎧⎨=⎩或58x y =⎧⎨=⎩,∴E (5,8),故答案为:y =x 2﹣4x +3,y =x +3,(5,8);(2)如图1中,过点E 作EH ⊥x 轴于H ,∵C (0,3),D (﹣3,0),E (5,8),∴OC =OD =3,EH =8,。
2014年中考二模数学试卷及答案
xABB.初三数学第二次模拟试题(考试时间120分钟满分150分)第一部分选择题(共24分)一、选择题(下列各题所给答案中,只有一个答案是正确的,每小题3分,共24分)1.2012年元月的某一天,我市的最低气温为-3℃,最高气温为4℃,那么这一天我市的日温差是A.3℃B.4℃C.-7℃D.7℃2.下列运算,结果正确的是A.422aaa=+B.()222baba-=-C.()()aabba222=÷D.()422263baab=3.图中圆与圆之间不同的位置关系有A.2种B.3种C.4种D.5种4.如图,BC∥DE,∠1=105°, ∠AED=65°, 则∠A的大小是A.25°B.35°C.40°D.60°5.四名运动员参加了射击预选赛,他们成绩的平均环数x及其方差s2如表所示.如果选出一个成绩较好且状态稳定的人去参赛,那么应选A.甲B.乙C.丙D.丁6.如右图是一个机器零件的三视图,根据标注的尺寸,这个零件的侧面积(单位:mm2)是A.π24B.π21C.π20D.π157.反比例函数ky=的图象如左图所示,那么二次函数y = kx2-k2x —1图象大致为8.下列说法正确的个数是①“对顶角相等”的逆命题是真命题②所有的黄金三角形都相似③若数据1、-2、3、x的极差为6,则x=4 ④方程x2-mx-3=0有两个不相等的实数根⑤已知关于x的方程232x mx+=-的解是正数,那么m的取值范围为6m>-A.5 B.4 C.3 D.2第二部分选择题(共126分)二、填空题(每小题3分,共30分)9.在函数xy32-=中,自变量x的取值范围是.10.我市今年初中毕业生为12870人,将12870用科学记数法表示为______(保留两个有效数字).11.如图,人民币旧版壹角硬币内部的正九边形每个内角的度数是______.12.如图,直线1l:11y x=+与直线2l:2y mx n=+相交于点),1(bP.当12y y>时,x的取值范围为.13.六·一儿童节前,苗苗来到大润发超市发现某种玩具原价为100元,经过两次降价,现售价为81元,假设两次降价的百分率相同,则每次降价的百分率为.14.如图所示,在建立平面直角坐标系后,△ABC顶点A的坐标为(1,-4) ,若以原点O为位似中心,在第二象限内画ABC△的位似图形A B C'''△,使ABC△与A B C'''△的位似比等于12,则点A'的坐标为.第11题第12题第14题15.如图,在平面直角坐标系中,已知点A(1,0)、B(0,2),如果将线段AB绕点B顺时针旋转90°至CB,那么点C的坐标是.16.定义:如图,若双曲线xky=(0>k)与它的其中一条对称轴y x=相交于两点A,B,则线段AB的长称为双曲线xky=(0>k)的对径.若某双曲线xky=(0>k)的对径是26,则k的值为.17.如图,已知四边形ABCD是菱形,∠A=70°,将它分割成如图所示的四个等腰三角形,那么∠1+∠2+∠3= 度.18.在矩形纸片ABCD中,AB=8,BC=20,F为BC的中点,沿过点F的直线翻折,使点B落在边AD上,折痕交矩形的一边与G,则折痕FG=_____________第4题第5题第3题第15题第16题第17题三、简答题(共96分) 19.(8分)(1)计算:121(2)3-⎛⎫- ⎪⎝⎭-12sin30° (2)解方程:120112x x x x -+=+- 20.(6分)先化简211()111a a a a -÷-+-,再选取一个使原式有意义的a 的值代入求值. 21.(8分)一个不透明的口袋中有n 个小球,其中两个是白球,其余为红球,这些球的形状、大小、质地等完全相同,从袋中随机地取出一个球,它是红球的概率是35.(1)求n 的值;(2)把这n 个球中的两个标号为1,其余分别标号为2,3,…,1n -,随机地取出一个小球后不放回,再随机地取出一个小球,求第二次取出小球标号大于第一次取出小球标号的概率. 22.(10分)典典同学学完统计知识后,随机调查了她家所在辖区若干名居民的年龄, 将调查数据绘制成如下扇形和条形统计图: 请根据以上不完整的统计图提供的信息, 解答下列问题:(1)扇形统计图中a = ,b = ; 并补全条形统计图;(2)若该辖区共有居民3500人,请估计年龄在0~14岁的居民的人数.(3)一天,典典知道了辖区内60岁以上的部分老人参加了市级门球比赛,比赛的老人们分成甲、乙两组,典典很想知道甲乙两组的比赛结果,王大爷告诉说,甲组与乙组的得分和为110,甲组得分不低于乙组得分的1.5倍,甲组得分最少为多少? 23.(10分)如图,自来水公司的主管道从A 小区向北偏东 60° 直线延伸,测绘员在A 处测得要安装自来水的M 小区在A 小区 北偏东30°方向,测绘员沿主管道测量出AC=200米,小区M 位于C 的北偏西60°方向,(1)请你找出支管道连接点N ,使得N 到该小区铺设的管道最短. (在图中标出点N 的位置) (2)求出AN 的长.24.(10分)如图,在△ABC 中,AD 平分∠BAC ,交BC 于D ,将 A 、D 重合折叠,折痕交AB 于E ,交AC 于F ,连接DE 、DF , (1)判断四边形AEDF 的形状并说明理由; (2)若AB=6,AC=8,求DF 的长.25.(10分)已知四边形ABCD 的外接圆⊙O 的半径为5,对角线AC 与BD 的交点为E ,且AB 2=AE ²AC ,BD=8, (1)判断△ABD 的形状并说明理由;(2)求△ABD 的面积.26.(10分)某种商品在30天内每件销售价格P (元)与时间t(天)的函数关系用如图所示的两条线段表示,该商品在30天内日销售量Q (件)与时间t(天) 之间的函数关系是Q=-t+40(0<t≤30,t 是整数).(1)求该商品每件的销售价格P 与时间t 的函数关系式,并写出自变量t 的取值范围; (2)求该商品的日销售金额的最大值,并指出日销售金额最大的一天是30天中 的第几天?(日销售金额=每件的销售价格×日销售量)27.(12分)如图,矩形ABCD 中,AD=8,AB=4,点E 沿A→D 方向在线段AD 上运动,点F 沿D→A 方向在线段DA 上运动,点E 、F 速度都是每秒2个长度单位,E 、F 两点同时出发,且当E 点运动到D 点时两点都停止运动,设运动时间是t(秒). (1)当 0<t<2时,判断四边形BCFE 的形状,并说明理由(2)当0<t<2时,射线BF 、CE 相交于点O ,设S △FEO =y ,求y 与t 之间的函数关系式. (3)问射线BF 与射线CE 所成的锐角是否能等于60°?若有可能,请求出t 的值,若不能,请说明理由.28.(12分)如图(1),分别以两个彼此相邻的正方形OABC 与CDEF 的边OC 、OA 所在直线为x轴、y 轴建立平面直角坐标系(O 、C 、F 三点在x 轴正半轴上).若⊙P 过A 、B 、E 三点(圆心在x 轴上)交y 轴于另一点Q ,抛物线c bx x y ++=241经过A 、C 两点,与x 轴的另一交点为G ,M 是FG 的中点,B 点坐标为(2,2).(1)求抛物线的函数解析式和点E 的坐标;(2)求证:ME 是⊙P 的切线;(3)如图(2),点R 从正方形CDEF 的顶点E 出发以1个单位/秒的速度向点F 运动,同时点S 从点Q 出发沿y 轴以5个单位/秒的速度向上运动,连接RS ,设运动时间为t 秒(0<t<1),在运动过程中,正方形CDEF 在直线RS 下方部分的面积是否变化,若不变,说明理由并求出其值;若变化,请说明理由;初三数学二模试题参考答案1-5 DCACB 6-8 DBD9.x ≤32 10.1.3³104 11.140 12.x >1 13.10% 14.(-21,2) 15.(-2,1) 16.917.95 18.55或45 19.(1)419 (2)5120.a 2+1 (a ≠±1) 21.(1)5 (2)209 22.(1)a=20% b=12% (2)700 (3)66分 23.(1)菱形 理由略 (2)724 24.(1)画MN ⊥AC 即可 (2)503 25.(1)等腰(略) (2)826.(1)P=⎩⎨⎧≤≤+-<<+)3025(100)250(20t t t t(2)W=QP①0<t <25 ②25≤t ≤30W=(-t+40)(t+20) W=(-t+40)(-t+100) =-(t -10)2+900 =t 2-140t+4000 t=10 W 大=900 =(t -70)2-900t=25 W 大=1125 综上所述, 最大值1125 第25天27.(1)等腰梯形 略 (2)y=t t --4)2(82 (3)①t=4-23 ②t =4-33228.(1)y=41x 2-23x+2 E(3,1)(2)证明略(3)不变 21。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014年怀集县第二次模拟考试数学试卷一、选择题(每小题3分,本题共30分) 1. 43-的倒数是▲ A. 34 B. 43 C. 43- D. 34-2.在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5。
从中随机摸出一个小球,其标号大于2的概率为▲A. 51B. 52C. 53D. 543.太阳的半径大约是696000千米,用科学记数法可表示为▲4.如图,直线a ,b 被直线c 所截,a ∥b ,∠1=∠2, 若∠3=40°,则∠4等于▲A. 40°B. 50°C. 70°D. 80°5.如图,为估算某河的宽度,在河对岸边选定一个目标点A ,近岸取点B ,C ,D ,使得AB ⊥BC ,CD ⊥BC ,点E 在BC 上,并且点A ,E ,D 在同一条直线上。
若测得BE=20m ,EC=10m ,CD=20m ,则河的宽度AB 等于▲ A. 60m B. 40m C. 30m D. 20m 6.下面的几何体中,主(正)视图为三角形的是▲AC7.分式方程2x x=+的解是▲ A .-2 B .2 C .-4 D .48.下列交通标志中,是轴对称图形的是▲A .B . C. D .9.某中学随机地调查了50名学生,了解他们一周在校的体育锻炼时间,结果如下表所示:则这50名学生这一周在校的平均体育锻炼时间是▲A. 6.2小时B. 6.4小时C. 6.5小时D. 7小时10.如图,一只蚂蚁从O 点出发,沿着扇形OAB 的边缘匀速爬行一周,设蚂蚁的运动时间为t ,蚂蚁到O 点的距离为S ,则S 关于t 的函数图象大致为▲B二、填空题(每小题4分,本题共24分) 11.实数9的平方根是 ▲12.在三角形ABC 中,0110A C ∠+∠=,则B ∠= ▲CB13.反比例函数1y x=,自变量x 的取值范围是________▲_________ 14.分解因式:a ab ab 442+-=______▲___________ 15.∠α=80°,则α的补角为____▲______°16.请写出一个开口向上,并且与y 轴交于点(0,1)的抛物线的解析式_▲三、解答题(一)(每小题6分,本题共18分)17.计算:10)41(45cos 22)31(-+︒--+-。
18.先化简,再求值:⎝ ⎛⎭⎪⎫1+1x -1÷x x 2-1,其中x =-4.19.不等式组⎪⎩⎪⎨⎧>+->x x x x 23123,并把解集在数轴上正确表示出来。
四、解答题(二)(每小题7分,本题共21分) 20.如图,AC 是平行四边形ABCD 的对角线. (1)利用尺规作出AC 的垂直平分线(要求保留 作图痕迹,不写作法);(2) 设AC 的垂直平分线分别与AB 、AC 、CD交于点E 、O 、F ,求证:OE OF =.21.小明春游,登了一座山,地形险峻。
由山脚A 沿坡角为30°的山坡AB 行走480米,到达一个景点B ,再由B 地沿山坡BC 行走360米到达山顶C 。
如果在山顶C 处观测到景点B 的俯角为45°,小明在想:山高CD 是多少米,你能得出答案吗?()B22.小丽学完统计知识后,随机调查了她所在辖区若干名居民的年龄,将调查数据绘制成如下扇形和条形统计图:请根据以上不完整的统计图提供的信息,解答下列问题:⑴小丽同学共调查了名居民的年龄,扇形统计图中=,=;⑵补全条形统计图;⑶若该辖区年龄在0~14岁的居民约有3500人,请估计年龄在15~59岁的居民的人数.五、解答题(三)(每小题9分,本题共27分)23.如图,在平面直角坐标系中,一次函数y=kx+b(k≠0)的图象与反比例函数y=mx(m≠0)的图象相交于A(2,12),B(-1,1)两点.(1)分别求出反比例函数和一次函数的解析式;(2)根据图象写出:当x为何值时,一次函数值大于反比例函数值?24.如图,AB 是⊙O 的直径,PA ,PC 分别与⊙O 相切于点A ,C ,PC 交AB 的延长线于点D ,DE ⊥PO 交PO 的延长线于点E 。
(1)求证:∠EPD=∠EDO (2)若PC=6,tan ∠PDA=43,求OE 的长。
25.如图,△ABC 是以BC 为底边的等腰三角形,点A 、C 分别是一次函数334y x =-+的图像与y 轴、x 轴的交点,点B 在二次函数218y x bx c =++的图像上,且该二次函数图像上存在一点D 使四边形ABCD 能构成平行四边形. (1)试求点B 、D 的坐标,并求出该二次函数的解析式;(2)P 、Q 分别是线段AD 、CA 上的动点,点P 从A 开始向D 运动,同时点Q 从C 开始向A 运动,它们运动的速度都是每秒1个单位,求: ①当P 运动到何处时,△APQ 是直角三角形?②当P 运动到何处时,四边形PDCQ 的面积最小?此时四边形PDCQ 的面积是多少?DAy2014年怀集县第二次模拟考试数学答案一、选择题(每小题3分,本题共30分)二、填空题(每小题4分,本题共24分)11.3± 12.070 13.0x ≠ 14. 2(2)a b - 15. 11016此题答案不唯一,只要二次项系数大于0,经过点(0,1)即可。
21(0)y ax bx a =++>. 三、解答题(每小题6分,本题共18分) 17.(第一步4分,第二步2分) 18.化简得:1x +……………4分 当x =-4.时,原式= -3……………6分19.(第一步2分,共6分)四、解答题(一)(每小题7分,本题共21分) 20.(1)正确作图……………3分 (3)证明……………7分21.(1)求第一坡的高度240米……………3分(2)求第二坡的高度0sin 45BC ⨯=6分(3)得出答案240+7分22.(1)500; 20%;12%…………3分 (2)补全条形统计图…………5分(3)35000.20(0.460.22)÷⨯+=1190人…………6分答……………1190人…………7分五、解答题(每小题9分,本题共27分)23.解:(1)如图D6,可知:点A 的坐标为⎝ ⎛⎭⎪⎫2,12,点B 的坐标为(-1,-1).图D6∵反比例函数y =m x (m ≠0)的图象经过点⎝ ⎛⎭⎪⎫2,12.∴m =1. …………1分∴反比例函数的解析式为y =1x.…………2分∵一次函数y =kx +b (k ≠0)的图象经过点A ⎝ ⎛⎭⎪⎫2,12和点B (-1,-1), ∴⎩⎪⎨⎪⎧2k +b =12,-k +b =-1,…………4分解得⎩⎪⎨⎪⎧k =12,b =-12.…………5分∴一次函数的解析式为y =12x -12.…………6分(2)由图象,知当x >2或-1<x <0时,一次函数值大于反比例函数值.…………9分24.解析:…………………………1分 …………………………2分 …………………………3分…………………………4分…………………………5分…………………………6分…………………………7分 …………………………8分…………………………9分25.解:(1)由334y x =-+,得A (0,3),C (4,0). 由于B 、C 关于OA 对称,所以B (-4,0),…………………………………………1分 BC =8.因为AD //BC ,AD =BC ,所以D (8,3).………………………………………………2分将B (-4,0)、D (8,3)分别代入218y x bx c =++,得240,88 3.b c b c -+=⎧⎨++=⎩ 解得14b =-,c =-3.所以该二次函数的解析式为211384y x x =--.……………4分 (2)①设点P 、Q 运动的时间为t .如图2,在△APQ 中,AP =t ,AQ =AC -CQ =5-t ,cos ∠PAQ =cos ∠ACO =45.当PQ ⊥AC 时,45AQ AP =.所以545t t -=.解得259t =.……………………6分当QP ⊥AD 时.这时45AP AQ =,所以455t t =-.解得209t =. 即259AP =或209AP =时,△APQ 是直角三角形。
……………………7分②如图3,过点Q 作QH ⊥AD ,垂足为H .由于S △APQ =2111333sin (5)2225102AP QH AP AQ PAQ t t t t ⋅=⋅∠=-⨯=-+,…8分 S △ACD =11831222AD OA ⋅=⨯⨯=,所以S 四边形PDCQ =S △ACD -S △APQ =2233358112()()1021028t t t --+=-+.所以当52t =,即AP =52时,四边形PDCQ 的最小值是818.……………………9分。