双桥十二脉动整流器原理
12脉波整流维修说明
12脉波KGPS中频电源控制原理KGPS系列感应加热晶闸管变频装置是利用晶闸管将三相工频交流电能转换为几百或几千赫的单相交流电能。
具有控制方便、运行可靠、效率高等特点,有利于提高产品的产量和质量。
本装置采用全数字控制,扫频启动方式,无须同步变压器等,线路简单,调试方便,负载适应能力强,启动可靠。
应用于铸钢、不锈钢、合金钢的冶炼,真空冶炼,感应加热等不同场合。
1.主电路原理1.1整流电路原理整流电路主要是将50HZ的交流电整流成直流。
由12个晶闸管组成的12脉波串联全控整流电路,输入工频电网电压(400V),控制可控硅的导通,实现输出0~510V 连续可调的直流电压。
(如图)六相12脉波全控整流桥工作原理当触发脉冲在任意控制角时,其输出直流电压为:Ud = 1.35UaCosaX2式中:Ua = 三相进线电压a-控制角1.2逆变电路原理:该产品采用了并联逆变器,这种逆变器对负载变化适应能力强,见图(4)所示。
它的主要作用是将三相整流电压Ud逆变成单相400-10KC的中频交流电。
一般,由于功率大小、进线电压等原因,逆变可控硅的数量有,四只、八只、十六只三种,即采用单管、串管、并管等技术。
但为了分析方便,将其等效为图(4)电路。
下面分析一下逆变器的工作过程,假设图(4)中,先是①②导通③④截止,则直流电流Id经电抗器Ld,可控硅①②流向Lc谐振回路,Lc产生谐振,振荡电压正弦波。
此时电容器两端的电压极性为左正右负,如果在电容器两端电压尚未过零时之前的某一时刻产生脉冲去触发可控硅③④,此时形成可控硅①②③④同时导通状态,由于可控硅③④的导通,电容器两端的电压通过可控硅③④加在可控硅①②上使可控硅①②两端承受反压而关断,也就是说可控硅①②将电流换给了③④。
换流以后,直流电流Id经电抗器Ld、可控硅③④反向流向LC谐振回路。
电容器两端的电压继续按正弦规律变化,而电容器两端电压极性为左负右正,负载回路中的电流也改变了方向。
12脉波整流
/view/f05a78d850e2524de5187e42.html 串联型12脉波二极管整流器摘要:串联型12脉波二极管整流器是由两个相同的6脉波二极管整流器在直流输出侧串联得到的。
该类型整流器一般用作中压传动系统的变频器的前端。
但一般情况下,12脉波的二极管整流器的总谐波畸变率不能满足IEEE 标准。
关键词:串联型、二极管、整流器变频调速是当今理想的调速方法之一,也是重要的节能措施。
交—直—交变频方式因其优势受到越来越广泛的应用。
大多数的交—直—交变流装置的前置输入部分都采用二极管整流。
随着多脉波整流技术的兴起,各种大功率设备都越来越多的采用多脉波二极管整流器。
1.理论分析假定直流滤波电容d C 足够大,从而可以忽略直流电源d V 中的纹波含量。
在任何时刻(换相过程除外),上、下两个6脉波二极管整流器中各有两个二极管导通,d i 同时经过4个二极管形成回路。
由于两个6脉波二极管整流器的输出为串联连接,二次侧绕组的漏电感也可以认为是串联连接,直流电流的纹波相对较小。
输出直流电流d i 连续,且在每个供电频率周期内包含有12个脉波。
变压器二次侧星形连接的绕组中的电流a i 近似为梯形波,只是在顶端有4个纹波。
变压器二次侧三角形连接的绕组中的电流~ai 和a i 的波形形状相同,只是在相位上相差 30。
由于变压器一次侧和二次侧上面的绕组都为星形连接,折合后的电流'a i 和折合前的电流a i 波形形状应该相同,只是幅值将减少一半(可根据两个绕组匝数比计算得到)。
而二次侧三角形绕组中折合前的电流~a i 和折合后的电流'~a i 波形会不同。
且一次侧电流与二次侧电流之间存在如下关系:''~a a A i i i += 2. 仿真结果2.1 验证图2.1为12脉波串联型二极管整流器工作在额定条件下仿真所得的电流波形,从上到下依次为一次侧电流A i 、二次侧星形绕组中电流a i 、二次侧三角形绕组中电流~ai 和输出电流d i 。
12脉波整流电路原理
12脉波整流电路原理12脉波整流电路是一种用于将交流电转换为直流电的电路。
它通过使用12个二极管和一个中心引线,使得输出电压具有更高的平均值和更低的纹波。
本文将详细介绍12脉波整流电路的原理及其工作过程。
让我们来了解一下什么是脉波整流。
脉波整流是一种将交流电转换为直流电的技术。
通常,交流电的电压在正半周和负半周之间交替变化,而直流电的电压保持恒定。
脉波整流电路通过使用二极管来实现这一转换过程。
12脉波整流电路利用了三相交流电的特点。
三相交流电是指由三个相位相差120度的正弦波组成的电信号。
在12脉波整流电路中,三相交流电首先通过一个变压器,将其转换为低电压高电流的形式。
然后,通过连接12个二极管和一个中心引线,将交流电转换为直流电。
具体来说,当A相的电压最大时,通过A相的二极管将电流导通,此时B相和C相的二极管处于关断状态。
当A相的电压下降到零并开始变为负值时,A相的二极管关闭,B相的二极管导通。
在这一过程中,电流通过负载的方向保持不变,从而实现了整流的目的。
接下来,当B相的电压最大时,通过B相的二极管将电流导通,此时A相的二极管和C相的二极管处于关断状态。
当B相的电压下降到零并开始变为负值时,B相的二极管关闭,C相的二极管导通。
同样地,电流通过负载的方向保持不变。
当C相的电压最大时,通过C相的二极管将电流导通,此时A相和B相的二极管处于关断状态。
当C相的电压下降到零并开始变为负值时,C相的二极管关闭,A相的二极管导通。
电流继续通过负载的方向保持不变。
通过这样的循环过程,交流电被转换为具有更高平均值的直流电。
由于12脉波整流电路中使用了12个二极管,相比于6脉波整流电路,纹波更小,输出电压更稳定。
总结一下,12脉波整流电路是一种将交流电转换为直流电的电路。
它利用了三相交流电的特点,通过连接12个二极管和一个中心引线,将交流电转换为具有更高平均值和更低纹波的直流电。
这种电路在工业和电力系统中得到广泛应用,用于稳定供电和保护电子设备。
12脉波整流电路原理
12脉波整流电路原理
12脉波整流电路是一种高效的电力转换技术,它可以将交流电转换为直流电,同时减少了输出的脉动和谐波。
其原理基于三相交流电源的正弦波形,通过控制三相桥式整流器中的开关管,使得每个半周期内都能够有两个开关管被导通,从而实现了12个脉冲的整流。
在12脉波整流电路中,三相桥式整流器是核心部件。
其由6个二极管和6个可控硅组成,分别连接在三相交流电源的对应位置上。
当交流电源中某一相的正半周时,该相对应的可控硅导通,而其他两个可控硅则不导通。
当另外一相出现正半周时,则对应该相的可控硅导通,而前一个可控硅则停止导通。
如此循环下去,在一周期内就会出现12次开关变化。
由于12脉波整流器中每个半周期都有两个开关管被导通,因此输出端得到了更加平稳的直流输出。
同时,在输入端也减少了谐波污染和功率因数问题。
需要注意的是,在实际应用中需要进行适当的控制和保护。
例如,需要对可控硅的触发角度进行控制,以确保输出电压稳定。
同时,还需要考虑可控硅的损坏和过流保护等问题。
总之,12脉波整流电路是一种高效、稳定的电力转换技术。
其原理基于三相交流电源的正弦波形,在适当的控制下可以实现更加平稳和低谐波的直流输出。
在实际应用中需要进行适当的控制和保护,以确保系统的安全和可靠性。
#12MC-中频电源的工作原理
12MC-中频电源的工作原理12MC-中频电源的基本原理,就是通过二个三相桥式整流电路,把50Hz的工频交流电流整流成直流再经过二个滤波器(直流电抗器)进行滤波,最后由逆变器将直流变为单相中频交流电供给负载,其电源系统方框图见图1。
图1 12脉中频电源系统方框图符号说明:GI—给定积分器VOC—压控振荡器CON2—桥2整流电路VR—电压调节器1TR—桥1触发电路INV—逆变电路CR—电流调节器2TR—桥2触发电路BC—偏压电路CON1—桥1整流电路SP1—工频电流信号处理机SP2—中频电压信号处理机LA—限幅电路ACCT—工频交流电流互感器LP—平衡电抗器一、12MC——三相桥式线路作为整流器的工作情况三相桥式全控整流电路共有六个桥臂,在同一时刻必须有两个桥臂同时工作才能构成回路。
六个桥臂的工作顺序如图2所示。
现假定在时间t1-t2(t1-t2的时间间隔为60°电角度,即为一个周波的1/6T),此时SCR1和SCR6同时工作(图2(a)中涂黑的SCR),输出电压为U AB。
到时刻t2-t3晶闸管SCR2因受脉冲触发而导通,而SCR6则受BC反压而关断,将电流换给了SCR2,这时SCR1与SCR2同时工作,输出电压即为U AC;到时刻t3-t4,SCR3因受脉冲触发而导通,SCR1受到U AB的反压而关闭,将电流换给了SCR3,SCR2和SCR3同时工作,输出电压为U BC;据此,到时刻t4-t5,t5-t6,t6-t1分别为SCR3和SCR4,SCR4和SCR5,SCR5和SCR6同时工作,加到负载上的输出电压分别为R AB、U CA,U CB,这样即把一个三相交流电进行了全波整流,从上述分析可以看出,在一个周期中,输出电压有六次脉动。
这种整流电路由于在每一瞬间都有两个桥臂同时导通,而且每个桥臂导通时间间隔60°,故对触发脉冲有一定要求,即脉冲的时间间隔须必为60°,我们这里采用的是经过调制的双窄脉冲,脉冲间隔依次为60°。
双桥十二脉动整流器原理
双桥十二脉动整流器原理0引言十二脉冲整流技术的发展由来已久,早在70年代初期,当大功率可控硅发展成熟之际,人们就已经发现了可控硅整流器在将交流电转换为直流电的同时,产生了大量的谐波电流注入到电网中,随之而来的就是谐波电流对电网中的其它负载产生的影响,为此,人们寻求一种解决方法,希望去除掉整流器产生的谐波电流。
在当时的技术水平和条件下,只有两种解决方案:其一是采用两套整流器通过不同相位的叠加,以便消除H5、H7次谐波,也就是12脉冲整流器;另外一种方案就是采用LC型的无源滤波器,试图消除(主要是)H5和(部分的)H7以及少量的其它更高次的谐波。
这在当时算是比较先进的技术。
1十二脉冲整流器原理12脉冲是指在原有6脉冲整流的基础上,在输入端增加移相变压器后在增加一组6脉冲整流器,使直流母线电流由12个可控硅整流完成,因此又称为12脉冲整流。
两个三相整流电路就是通过变压器的不同联结构成12相整流电路。
桥1的网侧电流傅立叶级数展开为:iIA=iIa=2´31/2/p´Id(sinwt-1/5sin5wt-1/7sin7wt+1/11sin11wt+1/13sin13wt-1/17 Sin17wt-1/19sinwt+…)桥II网侧线电压比桥I超前30°,因网侧线电流比桥I超前30°:iIA=2´31/2/p´Id(sinwt+1/5sin5wt+1/7sin7wt+1/11sin11wt+1/13sin13wt+1/17Sin17 wt+1/19sinwt+…)故合成的网侧线电流iA=iIA+iIIA=4´31/2/p(sinwt+1/11sinwt+1/13sin13wt+…)可见,两个整流桥产生的5、7、17、19、…次谐波相互抵消,注入电网的只有12k±1(k为正整数)次谐波,且其有效值与与谐波次数成反比,而与基波有效值的比值为谐波次数的倒数。
串联12脉整流装置介绍及故障分析
208管理及其他M anagement and other串联12脉整流装置介绍及故障分析刘 阳,牛慧林,马 宁,宋晓西,王彦达(河北钢铁集团沙河中关铁矿有限公司,河北 邢台 054100)摘 要:本文分主要是对12脉串联传动装置配置进行介绍,对6脉和12脉进行比较,并对常见变流器故障分析处理。
关键词:12脉;串联;传动装置中图分类号:TM461 文献标识码:A 文章编号:11-5004(2021)02-0208-2 收稿日期:2021-01作者简介:刘阳,男,生于1974年,汉族,内蒙赤峰人,本科,高工,研究方向:自动化。
整流电路广泛应用于冶金、矿山等工业领域,它有6脉和12脉串联和12脉并联等多种应用形式。
矿山领域提升系统多选用六相△Y 形串联桥式整流电路。
1 串联12脉系统组成由于矿山主井提升系统电机功率较大,导致整流装置功率进一步增大,它所产生的谐波,无功功率等对电网的干扰也随之增大。
为了减少干扰,采用多重联结可以减少交流侧输入电流谐波,而对晶闸管多重整流电路采用顺序控制的方法可以提供功率因数,减轻干扰。
两个6脉串联,可以获得12脉串联电路,为了获得12相波性,每个波头应该错开30度,所以采取三绕组变压器,次级的两个绕组一个接成星形,另一个接成三角形,分别供给两组三相桥。
两组整流桥串联后接到负载。
两组整流桥输出的电压的相位彼此相差30度,因此电机负载的电压等于两个整流桥的电压之和,两个整流桥的电流相等。
电气图见图1。
图1 12脉串联整流电路2 设备配置简介以中关铁矿为例,说明设备选型情况,下图2为传动系统配置图。
高压进线系统采用的是10KV 进线电压,当断路器合闸后,输入到整流变压器的一次侧。
经过整流变压器二次侧变压后,电压为425V,两台变压器的相位相差30度,分别为两个整流模块DCS800-S02-5200供电。
DCS800整流模块额定的直流电流为5200A,最大过载的电流为7366A,可以满足提升机正常的需求。
12脉波整流电路原理
12脉波整流电路原理1. 引言在电力系统中,交流电是主要的供电方式。
然而,很多电子设备和电路需要直流电来工作。
因此,需要将交流电转换为直流电。
脉波整流电路是一种常用的将交流信号转换为直流信号的方法之一。
脉波整流电路采用了整流器来实现这个目标。
其中,12脉波整流电路是一种特殊类型的整流器,它能够提供更稳定和纯净的直流输出。
本文将详细解释12脉波整流电路的基本原理,并逐步介绍其工作过程、构成要素以及相关特性。
2. 整流器基础知识在开始讨论12脉波整流电路之前,我们先了解一些关于整流器的基础知识。
2.1 整流器概述整流器是一种将交变信号转换为直变信号的装置。
它通过改变输入信号中负半周和正半周之间的幅值和/或相位差来实现这个目标。
2.2 单相桥式整流器单相桥式整流器是最简单且最常见的整流器类型之一。
它由四个二极管和一个负载组成。
输入信号通过两个并联的二极管,然后再通过另外两个并联的二极管。
这样,无论输入信号的极性如何,都可以得到一个单方向的输出信号。
然而,单相桥式整流器的输出信号仍然包含有交流成分。
为了进一步减小交流成分,我们可以使用12脉波整流电路。
3. 12脉波整流电路原理3.1 构成要素12脉波整流电路由以下几个主要构成要素组成:•变压器•整流桥•滤波电容•负载下面将逐一介绍这些构成要素。
3.1.1 变压器变压器是整个系统的核心部件。
它用于将输入的交流电转换为合适的电压级别,并提供给整流桥。
变压器通常由一个铁芯和两个或多个线圈组成。
其中,一个线圈称为初级线圈,另一个或多个线圈称为次级线圈。
3.1.2 整流桥整流桥是12脉波整流电路中非常重要的部件之一。
它由四个二极管组成,通常采用硅二极管。
整流桥的作用是将输入信号中的负半周和正半周分别转换为单方向的信号。
3.1.3 滤波电容滤波电容用于进一步平滑输出信号,减小其交流成分。
它通过在整流后的直流信号上存储能量,并在负载需要时释放能量。
滤波电容的容值越大,输出信号中的交流成分越小。
6脉动整流与12脉动整流
6脉冲与12脉冲可控硅整流器原理与区别一、理论推导1、6脉冲整流器原理:6脉冲指以6个可控硅(晶闸管)组成得全桥整流,由于有6个开关脉冲对6个可控硅分别控制,所以叫6脉冲整流、当忽略三相桥式可控硅整流电路换相过程与电流脉动,假定交流侧电抗为零,直流电感为无穷大,延迟触发角a为零,则交流侧电流傅里叶级数展开为:(1—1)由公式(1-1)可得以下结论:电流中含6K?1(k为正整数)次谐波,即5、7、11、13。
等各次谐波,各次谐波得有效值与谐波次数成反比,且与基波有效值得比值为谐波次数得倒数。
图1、1 计算机仿真得6脉冲A相得输入电压、电流波形2、12脉冲整流器原理:12脉冲就是指在原有6脉冲整流得基础上,在输入端、增加移相变压器后在增加一组6脉冲整流器,使直流母线电流由12个可控硅整流完成,因此又称为12脉冲整流。
下图所示I与II两个三相整流电路就就是通过变压器得不同联结构成12相整流电路、12脉冲整流器示意图(由2个6脉冲并联组成)桥1得网侧电流傅立叶级数展开为:(1—2)桥II网侧线电压比桥I超前30?,因网侧线电流比桥I超前30?(1—3)故合成得网侧线电流(1—4)可见,两个整流桥产生得5、7、17、19、.。
次谐波相互抵消,注入电网得只有12k?1(k为正整数)次谐波,即11、13、23、25等各次谐波,且其有效值与与谐波次数成反比,而与基波有效值得比值为谐波次数得倒数、图1。
2 计算机仿真得12脉冲UPS A相得输入电压、电流波形二、实测数据分析。
以上计算为理想状态,忽略了很多因数,如换相过程、直流侧电流脉动、触发延迟角,交流侧电抗等。
因此实测值与计算值有一定出入。
理论计算谐波表:某型号大功率UPS谐波实测数据表:从以上两表对比可得,6脉整流器谐波含量最大为5次谐波、12脉整流器强度最大为11次谐波,与理论计算结果一致。
6脉5次谐波实测值较计算值偏大,12脉11次谐波实测值与计算值相同。
脉冲整流器原理
脉冲整流器原理
脉冲整流器是一种电子器件,用于将交流电信号转换为直流电信号。
它的原理是基于二极管的导电特性。
在正半个周期内,输入交流电信号的电压是正的,而在负半个周期内,输入电压则是负的。
脉冲整流器利用这一特性,只允许正向电流通过,同时阻止反向电流的流动。
脉冲整流器由一个或多个二极管和负载组成。
当输入交流电信号的电压为正时,二极管处于导通状态,正向电流可以通过二极管传导给负载,从而实现整流。
而当输入电压为负时,二极管会进入截止状态,阻止反向电流的流动。
这样,在整个交流周期内,只有正向电流能够通过整流器。
脉冲整流器通常会附加滤波电容,用于平滑输出直流电信号。
滤波电容可以帮助减小输出波形的纹波,使得输出的直流电信号更为稳定。
脉冲整流器广泛应用于各种电子设备中,例如电源适配器、整流电路、变频器等。
通过将交流电信号转换为直流电信号,脉冲整流器可以为电子设备提供稳定的电源,保证设备正常运行。
12脉冲整流
大功率UPS 6脉冲与12脉冲可控硅整流器的区别艾默生网络能源有限公司UPS 产品部 温顺理一、理论推导 1.6脉冲整流器原理:6脉冲指以6个可控硅(晶闸管)组成的全桥整流,由于有6个开关脉冲对6个可控硅分别控制,所以叫6脉冲整流。
当忽略三相桥式可控硅整流电路换相过程和电流脉动,假定交流侧电抗为零,直流电感为无穷大,延迟触发角a 为零,则交流侧电流傅里叶级数展开为:(1)由公式(1)可得以下结论:电流中含6K ±1(k 为正整数)次谐波,即5、7、11、13…等各次谐波,各次谐波的有效值与谐波次数成反比,且与基波有效值的比值为谐波次数的倒数。
2.12脉冲整流器原理:12脉冲是指在原有6脉冲整流的基础上,在输入端、增加移相变压器后在增加一组6脉冲整流器,使直流母线电流由12个可控硅整流完成,因此又称为12脉冲整流。
下图所示I 和II 两个三相整流电路就是通过变压器的不同联结构成12相整流电路。
...)19sin 19117sin 17113sin 13111sin 1117sin 715sin 51(sin 32+--++--⨯⨯⨯=t t t t t t t I i d A ωωωωωωωπ12脉冲整流器示意图(由2个6脉冲并联组成)桥1的网侧电流傅立叶级数展开为:(1-2)桥II 网侧线电压比桥I 超前30︒,因网侧线电流比桥I 超前30︒(1-3)故合成的网侧线电流(1-4)可见,两个整流桥产生的5、7、17、19、…次谐波相互抵消,注入电网的只有12k ±1(k 为正整数)次谐波,即11、13、23、25等各次谐波,且其有效值与与谐波次数成反比,而与基波有效值的比值为谐波次数的倒数。
...)19sin 19117sin 17113sin 13111sin 1117sin 715sin 51(sin 32+--++--⨯⨯⨯=t t t t t t t I i d IA ωωωωωωωπ...)19sin 19117sin 17113sin 13111sin 1117sin 715sin 51(sin 32+++++++⨯⨯⨯=t t t t t t t I i d IIA ωωωωωωωπ...)13sin 13111sin 111(sin 34t t t I i i i d IIA IA A ωωωπ++⨯⨯⨯=+=二、实测数据分析。
12脉冲介绍
12脉冲整流器原理:
12脉冲是指在原有6脉冲整流的基础上,在输入端、增加移相变压器后在增加一组6脉冲整流器,使直流母线电流由12个可控硅整流完成,因此又称为12脉冲整流。
下图所示两个三相整流电路就是通过变压器的不同联结构成12相整流电路。
12脉冲整流器示意图(由2个6脉冲并联组成)
桥1的网侧电流傅立叶级数展开为:
(1-2)
桥II网侧线电压比桥I超前30°,因网侧线电流比桥I超前30°
(1-3)
故合成的网侧线电流
(1-4)
可见,两个整流桥产生的5、7、17、19、...次谐波相互抵消,注入电网的只有12k±1(k为正整数)次谐波,即11、13、23、25等各次谐波,且其有效值与谐波次数成反比,而与基波有效值的比值为谐波次数的倒数。
浅析12脉动并联整流技术及其应用
浅析12脉动并联整流技术及其应用大雁矿业集团雁南煤矿副井提升机电控系统于1997年设计,2004年投产。
传动系统采用16位处理器的SIMADYN-D系统,自动化系统采用S5系列PLC装置。
这在当时是非常先进的控制方式,但是随着使用年限的增加和产品的更新换代,原系统的设备故障率不断加大,备品备件也很难购买到,而且价格十分昂贵,这给正常的生产和维护带来很大的安全隐患和成本负担,因此采用新型且经济的SIEMENS数字产品SINAMICS DCM 6RA80对其进行改造,是一种非常优异的解决方案。
1 直流提升机改造方案雁南煤矿副井提升机技术数据:提升高度:321m;提升速度:6.28m/s;电机容量:1250kW;电枢电压750V;额定电流1928A;励磁电压110V;励磁电流229A。
对原系统的改造方案确定如下:1.1 供电方案1.1.1 高压供电系统。
高压开关柜利用原设备,开关的合/分操作可以分别在原S5-PLC系统或S7-PLC系统中进行,两套系统不能同时操作。
S7-PLC系统采用输出继电器无源接点,作为高压开关的合闸及分闸指令。
原高压柜提供给S5-PLC的开关已合信号、故障信号、储能信号也都要引入S7-PLC系统,均为无源接点。
如辅助接点不足,采用在高压柜中增加继电器的方式进行扩展。
1.1.2 整流变压器。
原系统具有2台1050kVA 6kV/740V电枢整流变压器,本次改造利用原电枢整流变压器,通过新增配的切换柜将交流电源引入新系统。
变压器温度检测接入新自动化系统给出声光报警,并入提升机控制系统的闭锁回路。
1.1.3 晶闸管整流柜。
电枢回路采用2台金自天正公司TCP1系列晶闸管变流柜。
每台晶闸管变流柜构成晶闸管反并联的三相整流桥,两台晶闸管变流柜经电抗器并联后构成12脉动可逆整流回路。
散热方式为自带冷却风机,强迫风冷。
1.1.4 传动回路切换。
为实现传动新-老系统切换,在传动装置的交流进线侧和直流输出侧设置电源切换开关。
12脉动换流器工作原理
12脉动换流器工作原理
12脉动换流器的工作原理与6脉动换流器的工作原理相同,是利用交流系统两相短路来进行换相。
具体来说,它通过将三相交流电转换成直流电,然后逆变成三相交流电,实现换流的目的。
在12脉动换流器中,每个桥臂由一-个或多个整流器/逆变器组成。
当某个桥臂上的整流器工作时,该桥臂上的二二极管处于正向导通状态,而逆变器则处于反向截止状态。
此时,该桥臂的输出电压与电源电压相位相同。
当需要换流时,整流器停止工作,逆变器开始导通。
由于逆变器的输出电压与电源电压相位相反,因此该桥臂的输出电压也与电源电压相位相反。
这样,通过控制每个桥臂上的整流器/逆变器的状态,可以实现12脉动换流器的
换流过程。
需要注意的是,12脉动换流器在换流过程中会产生大量的谐波电流和电压。
因此,在设计和使用12脉动换流器时,需要考虑采取措施来抑制谐波电流和电压的影响。
12脉波整流
12脉波整流变压器结构型式的选择摘要:介绍了12脉波整流机组中整流变压器两种结构型式的特点和在方案选择中需要注意的问题。
在大型的电化学或电冶金用直流电源系统中,同相逆并联12脉波整流机组是组成24相、36相、48相整流系统的基本组成单元。
12脉波整流机组主电路的连接型式有两种方案:一种是由一台整流变压器与两台整流装置组成的单机组12脉波整流电路(简称“单机组12脉波整流电路”);另一种是由置于同一油箱内的两台完全独立的整流变压器与两台整流装置组成的双机组等值12脉波整流电路(简称“等值12脉波整流电路”)。
上述两种连接方式的整流电路,对12脉波整流输出电压(电流)波形的对称性以及对网侧谐波电流的影响是不同的,应引起设计人员和用户的注意。
1两种连接方式对谐波电流的影响理想情况下,12脉波整流电路运行过程中,不会在网侧产生5次和7次谐波电流。
但单机组12脉波整流电路,由于变压器两个阀侧绕组的输出电压和阻抗不容易做到很一致,使得运行时存在着严重的负荷分配不均的问题。
需要通过晶闸管相控或饱和电抗器的励磁调节来纠正这种偏差,从而导致二个三相桥晶闸管导通的相位差不能严格地保持为30°,使得网侧仍然存在5次和7次谐波电流。
对于等值12脉波整流电路,由于变压器两个阀侧绕组的输出电压和阻抗容易做到一致,而不会破坏1 2脉波的对称性。
2阀侧绕组之间负荷电流分配不均的问题2.1单机组12脉波整流电路单机组12脉波整流电路,其整流变压器网侧只有一组绕组,导致两组阀侧绕组间负荷分配不均的原因是Y接和△接这两组绕组间匝比NY/N△偏离,彼此理想空载直流电压Udio不相等,因此,负荷分配不可能平均。
整流变压器阀侧两组绕组间的匝比NY/N△值接近的可取整数比为4/7(偏差1.04%)、7/12(偏差1.02%)、11/19(偏差0.27%)。
由此可见,将NY/N△做成11/19,可使△Udio偏差减到最小,改善电流分配不均问题。
6脉动整流与12脉动整流
6脉冲与12脉冲可控硅整流器原理与区别一、理论推导1、6脉冲整流器原理:6脉冲指以6个可控硅(晶闸管)组成的全桥整流,由于有6个开关脉冲对6个可控硅分别控制,所以叫6脉冲整流。
当忽略三相桥式可控硅整流电路换相过程和电流脉动,假定交流侧电抗为零,直流电感为无穷大,延迟触发角a为零,则交流侧电流傅里叶级数展开为:(1-1)由公式(1-1)可得以下结论:电流中含6K?1(k为正整数)次谐波,即5、7、11、13...等各次谐波,各次谐波的有效值与谐波次数成反比,且与基波有效值的比值为谐波次数的倒数。
图1.1 计算机仿真的6脉冲A相的输入电压、电流波形2、12脉冲整流器原理:12脉冲是指在原有6脉冲整流的基础上,在输入端、增加移相变压器后在增加一组6脉冲整流器,使直流母线电流由12个可控硅整流完成,因此又称为12脉冲整流。
下图所示I和II两个三相整流电路就是通过变压器的不同联结构成12相整流电路。
12脉冲整流器示意图(由2个6脉冲并联组成)桥1的网侧电流傅立叶级数展开为:(1-2)桥II网侧线电压比桥I超前30?,因网侧线电流比桥I超前30?(1-3)故合成的网侧线电流(1-4)可见,两个整流桥产生的5、7、17、19、...次谐波相互抵消,注入电网的只有12k?1(k为正整数)次谐波,即11、13、23、25等各次谐波,且其有效值与与谐波次数成反比,而与基波有效值的比值为谐波次数的倒数。
图1.2 计算机仿真的12脉冲UPS A相的输入电压、电流波形二、实测数据分析。
以上计算为理想状态,忽略了很多因数,如换相过程、直流侧电流脉动、触发延迟角,交流侧电抗等。
因此实测值与计算值有一定出入。
理论计算谐波表:某型号大功率UPS谐波实测数据表:从以上两表对比可得,6脉整流器谐波含量最大为5次谐波、12脉整流器强度最大为11次谐波,与理论计算结果一致。
6脉5次谐波实测值较计算值偏大,12脉11次谐波实测值与计算值相同。
12脉动换流器直流电压
2019/6/13
23
由于每个桥的有电压降,共B个桥电路串联,因此交流电压
或 用功率因数方程表达的直流电压为: 总的交流电流的基频分量的有效值为:
2019/6/13
24
谢谢大家!
2019/6/13
25
图1.每极1组12脉动
图3.每极2组12脉动
换流单元
图2.每极2组12脉动换流单元串联 换流单元并联
2019/6/13
3
多桥脉动换流器直流电压:
2019/6/13
向家坝-上海 ±800kV = ±400kV
±400kV = ±200kV
±200kV ±200kV ±200kV
4
双极双桥
葛洲坝 ~500kV
51 + +
c1 ud1
21
_
ud
52 +
ud2
c2 22 _ቤተ መጻሕፍቲ ባይዱ
_
41 12
6
二、 双桥12脉动换流器工作方式(工况4-5)
1)工况4
换流器工况4 是指12个换流阀有4个阀同时导通,如:4个阀导通11、 12、21、22
2019/6/13
7
2019/6/13
8
2)工况5
5个阀同时导通:分别是11、12、21、22、31
2019/6/13
13
2019/6/13
14
2019/6/13
15
2019/6/13
16
2019/6/1312脉波换流桥
直流电压和交流波形
17
12脉动换流器的运行方式 实际应用中,常见多为12脉波换流桥。
6与12脉冲整流器原理
一、理论推导1、6脉冲整流器原理:6脉冲指以6个可控硅(晶闸管)组成的全桥整流,由于有6个开关脉冲对6个可控硅分别控制,所以叫6脉冲整流。
当忽略三相桥式可控硅整流电路换相过程和电流脉动,假定交流侧电抗为零,直流电感为无穷大,延迟触发角a为零,则交流侧电流傅里叶级数展开为:(1-1)由公式(1-1)可得以下结论:电流中含6K?1(k为正整数)次谐波,即5、7、11、13...等各次谐波,各次谐波的有效值与谐波次数成反比,且与基波有效值的比值为谐波次数的倒数。
图1.1 计算机仿真的6脉冲A相的输入电压、电流波形2、12脉冲整流器原理:12脉冲是指在原有6脉冲整流的基础上,在输入端、增加移相变压器后在增加一组6脉冲整流器,使直流母线电流由12个可控硅整流完成,因此又称为12脉冲整流。
下图所示I和II两个三相整流电路就是通过变压器的不同联结构成12相整流电路。
12脉冲整流器示意图(由2个6脉冲并联组成)桥1的网侧电流傅立叶级数展开为:(1-2)桥II网侧线电压比桥I超前30?,因网侧线电流比桥I超前30?(1-3)故合成的网侧线电流(1-4)可见,两个整流桥产生的5、7、17、19、...次谐波相互抵消,注入电网的只有12k?1(k为正整数)次谐波,即11、13、23、25等各次谐波,且其有效值与与谐波次数成反比,而与基波有效值的比值为谐波次数的倒数。
图1.2 计算机仿真的12脉冲UPS A相的输入电压、电流波形二、实测数据分析。
以上计算为理想状态,忽略了很多因数,如换相过程、直流侧电流脉动、触发延迟角,交流侧电抗等。
因此实测值与计算值有一定出入。
理论计算谐波表:某型号大功率UPS谐波实测数据表:从以上两表对比可得,6脉整流器谐波含量最大为5次谐波、12脉整流器强度最大为11次谐波,与理论计算结果一致。
6脉5次谐波实测值较计算值偏大,12脉11次谐波实测值与计算值相同。
三、谐波分析和改良对策谐波可能造成配电线缆、变压器发热,降低通话质量,空气开关误动作,发电机喘振等不良后果;谐波按电流相序分为+序(3k+1次,k为0和正整数)、-序(3k+2次,k为0和正整数)、0序(3k次,k为正整数)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
双桥十二脉动整流器原理
0引言
十二脉冲整流技术的发展由来已久,早在70年代初期,当大功率可控硅发展成熟之际,人们就已经发现了可控硅整流器在将交流电转换为直流电的同时,产生了大量的谐波电流注入到电网中,随之而来的就是谐波电流对电网中的其它负载产生的影响,为此,人们寻求一种解决方法,希望去除掉整流器产生的谐波电流。
在当时的技术水平和条件下,只有两种解决方案:其一是采用两套整流器通过不同相位的叠加,以便消除H5、H7次谐波,也就是12脉冲整流器;另外一种方案就是采用LC型的无源滤波器,试图消除(主要是)H5和(部分的)H7以及少量的其它更高次的谐波。
这在当时算是比较先进的技术。
1十二脉冲整流器原理
12脉冲是指在原有6脉冲整流的基础上,在输入端增加移相变压器后在增加一组6脉冲整流器,使直流母线电流由12个可控硅整流完成,因此又称为12脉冲整流。
两个三相整流电路就是通过变压器的不同联结构成12相整流电路。
桥1的网侧电流傅立叶级数展开为:
iIA=iIa=2´31/2/p´Id(sinwt-1/5sin5wt-1/7sin7wt+1/11sin11wt+1/13sin13wt-1/17 Sin17wt-1/19sinwt+…)
桥II网侧线电压比桥I超前30°,因网侧线电流比桥I超前30°:
iIA=2´31/2/p´Id(sinwt+1/5sin5wt+1/7sin7wt+1/11sin11wt+1/13sin13wt+1/17Sin17 wt+1/19sinwt+…)
故合成的网侧线电流iA=iIA+iIIA=4´31/2/p(sinwt+1/11sinwt+1/13sin13wt+…)可见,两个整流桥产生的5、7、17、19、…次谐波相互抵消,注入电网的只有12k±1(k为正整数)次谐波,且其有效值与与谐波次数成反比,而与基波有效值的比值为谐波次数的倒数。
12脉冲是指在原有6脉冲整流的基础上,在输入端、增加移相变压器后在增加一组6脉冲整流器,使直流母线电流由12个可控硅整流完成,因此又称为12脉冲整流。
下图所示I和II两个三相整流电路就是通过变压器的不同联结构成12相整流电路。
图112脉冲整流器示意图(由2个6脉冲并联组成)
桥1的网侧电流傅立叶级数展开为:
(1-2)桥II网侧线电压比桥I超前30°,因网侧线电流比桥I超前30°:
(1-3)故合成的网侧线电流
(1-4)可见,两个整流桥产生的5、7、17、19等次谐波相互抵消,注入电网的只有12k±1(k为正整数)次谐波,即11、13、23、25等各次谐波,且其有效值与与谐波次数成反比,而与基波有效值的比值为谐波次数的倒数。
图1.2计算机仿真的12脉冲UPS A相的输入电压、电流波形
2实测数据分析
以上计算为理想状态,忽略了很多因数,如换相过程、直流侧电流脉动、触发延迟角,交流侧电抗等。
因此实测值与计算值有一定出入。
理论计算谐波表:
谐波次数5th7th11th13th17th19th23th
6脉冲谐波含量20%14%9%8%6%5%4%
12脉冲谐波含量0%0%9%8%0%0%4%
某型号大功率UPS谐波实测数据表:
谐波次数5th7th11th13th17th19th23th
6脉冲谐波含量32%3%8%3%4%2%2%
12脉冲谐波含量1%1%9%4%1%1%2%从以上两表对比可得,6脉整流器谐波含量最大为5次谐波、12脉整流器强度最大为11次谐波,与理论计算结果一致。
6脉5次谐波实测值较计算值偏大,12脉11次谐波实测值与计算值相同。
3谐波分析和改良对策
谐波可能造成配电线缆、变压器发热,降低通话质量,空气开关误动作,发电机喘振等不良后果;谐波按电流相序分为正序(3k+1次,k为0和正整数)、负序(3k+2次,k为0或正整数)、0序(3k次,k为正整数)。
正序电流使损耗加重,负序电流使电机反转、发热,零序电流使中线电流异常增大。
从实测值可见,6脉整流器5次谐波最大,可加装5次滤波器来抑制谐波;12脉整流器11次谐波最大,可加装11次滤波器来抑制谐波。
4十二脉冲整流器优点
12脉冲整流器基本消除了5次谐波(衰减率10倍以上)、部分地消除了7次谐波(衰减率2倍)对电网的注入影响,使得UPS对上线电网的谐波污染(总电流失真度THDI)衰减了约2倍。
5十二脉冲整流器缺点
(1)谐波抑制效果较差:按照国际标准IEC61000-3-4的谐波标准(参见下表),12脉冲整流器的总电流谐波失真度为10%,满足该标准,但单次谐波H 11、H13均超过标准数值的两倍以上,甚至比原6脉冲整流器的H11、H13还要大;在一些特殊场合,只能采用12脉冲整流器+H11次无源滤波器的方法,但其结果甚至于还不如6脉冲整流器+无源滤波器的效果。
(2)低负载率时效果很差:UPS大多数情况下运行在60~70%的负载率,特别是当UPS为1+1冗余并联时,每台UPS的负载率仅在30~40%左右,12脉冲整流器的THDI约等于20%,即使采用12脉冲整流器+H11次滤波器,也仍然在15%左右,还不如6脉冲整流器+无源滤波器的结果(参见下图)。
(3)系统效率损失较大:假如以6脉冲整流器的效率为单位1,则12脉冲整流器的采用将降低系统效率的2~3%;而普通LC滤波器仅降低1%左右,这就是LC低通滤波器至今仍然在沿用的一个原因。
(4)价格较高:假如以6脉冲整流器的UPS标准价为单位1,则12脉冲整流器需增加20%(内置,但大容量时可能不能内置)到30%(独立机柜外置);而普通LC滤波器仅需增加10%(内置)到20%(外置),这也正是LC低通滤波器至今仍然在采用的主要原因。
(5)可靠性低:由于12脉冲整流器是由2个6脉冲整流器串连或并联组成的,因此部件增多,反而增加了UPS本身的故障点,降低了UPS系统的可靠性,对整个负载系统的供电不利。
(6)安全性差:12脉冲整流器是串连连接到UPS系统中的(与LC滤波器相同),而MGE推出的THM与UPS是并联连接到电网与负载之间的,因此安全性较高,不会由于THM的故障造成整个UPS系统的供电故障。
(7)与发电机匹配差:在一些配发电机的大型用户现场,采用12脉冲整流器后,UPS和发电机的匹配不是最佳的,即发电机的容量将需要配得较大,有时需要2.5~3倍。
6总结
综上所述,十二脉冲整流器的弊大于利,在现代电力电子技术成功发展的今天,应属于逐渐趋于淘汰的产品。
而应用新技术的有源谐波调节器和有源滤波器等产品将成为市场发展的必然趋势。