matlab插值曲线拟合资料重点
2.1 重要:MATLAB插值与拟合
插值方法(interp,spline) 拟合方法(polyfit,polyval)
插值、拟合在化工计算中的作用
•表格式物性数据的内插 •离散实验数据点的处理 •微分法反应动力学方程拟合
插值简介
已知n+1个数对{xi, f(xi)},其中i=0,1…n,(xi互不相同,称 之为节点),求取函数g(xi)=f(xi)。 当{xi, f(xi)}有相当的精确度,但它们的函数关系难以确定或难 以计算时,则可利用这些数据点来构造一个较简单的函数来 近似表达原函数关系。
x = linspace(xi(1),xi(end),100); Lny = polyval(p,x); plot(xi,Lnyi,'o',x,Lny,'-') xlabel('x') ylabel('lny')
利用点(x=sin(kπ/6),y=cos(kπ/6),其中k=[0 1 2 3]来逼近单位 圆的前四分之一圆周。比较pchip与spline的差别。
1
t=linspace(0,pi/2,4)
0.9
0.8
x=cos(t);y=sin(t);
0.7
xx=linspace(0,1,40);
0.6
plot(x,y,'s',xx,[pchip(x,y,xx);spline(x,y,x 0.5
‘method’算法属性值可以是; ‘nearest’——最近插值 ‘linear’——线性插值(默认) ‘spline’——三次样条插值(spline) ‘cubic’——立方插值
二维插值函数的使用
假设有一组分度系数的“海底深度测量数据”,由以下一段 程序生成:
(完整)matlab实现插值法和曲线拟合
插值法和曲线拟合电子科技大学摘要:理解拉格朗日多项式插值、分段线性插值、牛顿前插,曲线拟合,用matlab 编程求解函数,用插值法和分段线性插值求解同一函数,比较插值余项;用牛顿前插公式计算函数,计算函数值;对于曲线拟合,用不同曲线拟合数据。
关键字:拉格朗日插值多项式;分段线性插值;牛顿前插;曲线拟合引言:在数学物理方程中,当给定数据是不同散点时,无法确定函数表达式,求解函数就需要很大的计算量,我们有多种方法对给定的表格函数进行求解,我们这里,利用插值法和曲线拟合对函数进行求解,进一步了解函数性质,两种方法各有利弊,适合我们进行不同的散点函数求解。
正文:一、插值法和分段线性插值 1拉格朗日多项式原理对某个多项式函数,已知有给定的k + 1个取值点:其中对应着自变量的位置,而对应着函数在这个位置的取值。
假设任意两个不同的x j 都互不相同,那么应用拉格朗日插值公式所得到的拉格朗日插值多项式为:其中每个为拉格朗日基本多项式(或称插值基函数),其表达式为:[3]拉格朗日基本多项式的特点是在 上取值为1,在其它的点 上取值为0.2分段线性插值原理给定区间[a ,b ], 将其分割成a=x 0 <x 1 〈…〈x n =b, 已知函数y= f(x ) 在这些插值结点的函数值为 y k =f(x k )(k=0,1,…,n)求一个分段函数I h (x), 使其满足:(1) I h (x k )=y k ,(k=0,1,…,n) ;(2) 在每个区间[x k ,x k+1 ] 上,I h (x )是个一次函数。
易知,I h (x)是个折线函数, 在每个区间[x k ,x k+1 ]上,(k=0,1,…,n)k 1k k1k 1k k 1k k k ,1)()()(x x x x x f x x x x x f x L --+--=++++,于是, I h (x )在[a,b ]上是连续的,但其一阶导数是不连续的.3拉格朗日插值多项式算法 ○1输入,(0,1,2,,)i i x y i n =,令0)(=x L n .错误!对0,1,2,,i n =,计算0,()()/()ni j i j j j il x x x x x -≠=--∏()()()n n i i L x L x l x y ←−−+4分段线性插值算法错误!输入(x k ,y k ),k=0,1,…,n;○2计算k 1k k1k 1k k 1k k k ,1)()()(x x x x x f x x x x x f x L --+--=++++5插值法和分段线性插值程序按下列数据分别作五次插值和分段线性插值,画出两条插值曲线以及给定数据点。
Matlab曲线拟合与插值运算
第五次课Matlab曲线拟合与插值运算一、本次课学习要点1、Matlab曲线拟合与插值运算2、符号表达式二、本次课教学重点利用M文件的Matlab曲线拟合与插值运算三、教学基本内容1、曲线拟合在许多应用领域中,人们经常需要从一系列已知离散点上的数据集[(x1,y1),(x2,y2)],…(x n,y n)]得到一个解析函数y=f (x)。
得到的解析函数f(x)应当在原离散点x i上尽可能接近给定的y i的值。
这一过程称为曲线拟合。
最常用的曲线拟合是最小二乘法曲线拟合。
似合结果可使误差的平方和最小,MATLAB提供的函数polyfit,根据给定的自变量数组x和函数数组y,按照拟合的阶数要求自动求解满足最小二乘意义的一阶或高阶解析函数f(x),使用很方便。
为了说明这个问题,我们取以下函数为例:2-=y⨯25.0xx=0:0.1:1;for i=1:length(x);y(i)=0.5-2*x(i)^2;end显示为:将y值进行一定的修改,输入如下的程序y=[0.52 0.45 0.4 0.35 0.18 0.02 -0.25 -0.4 -0.81 -1.1 -1.5]m=1;fxy1=polyfit(x,y,m)m=2;fxy2=polyfit(x,y,m)y1=polyval(fxy1,x) %多项式求值,x为输入值,fx1为一次拟合出来的多项式y2=polyval(fxy2,x)plot(x,y,'o',x,y1,'k:',x,y2,'k')显示为:2、插值运算与曲线拟合不同,插值运算不是试图找出适合于所有自变量数组x的全局最优拟合函数Y=f(x〕,而是要找到一个解析函数连接自变量相邻的两个点(xi,xi十1),由此还可以找到两点间的数值。
根据自变量的维数不同,插值方法可以分为一维插值y=f(x)和二维插值z=f(x,y)等。
在许多工程问题上,我们只能获得无规律的离散点上的数值,插值可以帮助我们得到近似的连续过程,便于用数学的解析方法对已有数据进行处理和运算,因此是一个很有用的工具。
matlab插值法拟合曲线
matlab插值法拟合曲线
在MATLAB中,一维插值函数为interp1(),其调用格式为:
Y1=interp1(X,Y,X1,method)。
其中,X、Y是两个等长的已知向量,分别表示采样点和采样值;X1是一个向量或标量,表示要插值的点;method参数用于指定插值方法,常用的取值有以下四种:
1. linear:线性插值,默认方法。
将与插值点靠近的两个数据点用直线连接,然后在直线上选取对应插值点的数据。
2. nearest:最近点插值。
选择最近样本点的值作为插值数据。
3. pchip:分段3次埃尔米特插值。
采用分段三次多项式,除满足插值条件,还需满足在若干节点处相邻段插值函数的一阶导数相等,使得曲线光滑的同时,还具有保形性。
4. spline:3次样条插值。
每个分段内构造一个三次多项式,使其插值函数除满足插值条件外,还要求在各节点处具有连续的一阶和二阶导数。
曲线拟合可以使用cftool工具,首先导入X和Y的数据,然后可以选择残差图和置信区间分布图。
数据插值、拟合方法的MATLAB实现
hours=0:1:23;
temps=[12 12 12 11 10 10 10 10 11 13 15 18 19 20 22 21 20 19 18 16 15 15 15 15]
n=6;
p=polyfit(hours,temps,n)
t=linspace(0,23,100);
z=polyval(p,t); %多项式求值
plot(hours,temps,'o',t,z,'k:',hours,temps,'b',’r’,'linewidth',1.5)
legend('原始数据','6阶曲线')
2.3用8阶多项式拟合的命令
hours=0:1:23;
temps=[12 12 12 11 10 10 10 10 11 13 15 18 19 20 22 21 20 19 18 16 15 15 15 15]
实验结果:
1.一元插值图像
图1.1一元插值图
经分析三次样条插值法效果最好,以三次样条插值法得出每个0.5小时的温度值:
时间
0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
5.5
温度
12
11.9
12
12.0
12
11.6
11
10.4
10
9.9
10
10.0
时间
6
6.5
7
7.5
8
8.5
9
9.5
10
10.5
11
11.5
matlab插值和拟合专题
4.散乱节点的插值:ZI = GRIDDATA(X,Y,Z,XI,YI)
注:F12设置断点,F5单步执行
5.多项式拟合:
用m 次多项式拟合给定数据,Matlab中有现成的函数:
a=polyfit(x0,y0,m)
其中输入参数x0,y0 为要拟合的数据,m 为拟合多项式的次数,输出参数a 为拟合多项
式y=amxm+…+a0]。
多项式在x 处的值y 可用下面的函数计算
y=polyval(a,x)
'spline' 逐段3 次样条插值
'cubic' 保凹凸性3 次插值。
3.二维插值:z=interp2(x0,y0,z0,x,y,'method'),method的用法同上
二维三次样条插值:pp=csape({x0,y0},z0,conds,valconds),z=fnval(pp,{x,y})
1.分段线性插值:y=interp1(x0,y0,x,'method');
2.三次样条插值:pp=csape(x0,y0,conds);以一个结构体pp的形式返回三次样条插值(边界条件由conds指定)的分段多项式函数,ppval返回值
'nearest' 最近项插值
'linear' 线性插值
第十四讲 matlab拟合与插值
注意:X1的取值范围不能超出X的给定范围,否则, 会给出“NaN”错误 MATLAB中有一个专门的3次样条插值函数 Y1=spline(X,Y,X1),其功能及使用方法与函数 Y1=interp1(X,Y,X1,‘spline’)完全相同。 gjy_just@
5
例: 某观测站测得某日6:00时至18:00时之间每隔2小时的室内外温度(℃), 用3次样条插值分别求得该日室内外6:30至17:30时之间每隔2小时各 点的近似温度(℃)。 设时间变量h为一行向量,温度变量t为一个两列矩阵,其中第一列存放 室内温度,第二列储存室外温度。命令如下: h =6:2:18; t=[18,20,22,25,30,28,24;15,19,24,28,34,32,30]'; XI =6.5:2:17.5 YI=interp1(h,t,XI,’spline’) %用3次样条插值计算
gjy_just@ 自己编程!!!
16
3.4 累加和与累乘积
在MATLAB中,使用cumsum和cumprod函数能方便地求得 向量和矩阵元素的累加和与累乘积向量,函数的调用格为: cumsum(X):返回向量X累加和向量。 cumprod(X):返回向量X累乘积向量。 cumsum(A):返回一个矩阵,其第i列是A的第i列的累加和向量。 cumprod(A):返回一个矩阵,其第i列是A的第i列的累乘积向量。 cumsum(A,dim):当dim为1时,该函数等同于cumsum(A);当dim为 2时,返回一个矩阵,其第i行是A的第i行的累加和向量。 cumprod(A,dim):当dim为1时,该函数等同于cumprod(A);当dim 为2时,返回一个向量,其第i行是A的第i行的累乘积向量。 例:s=10*rand(5,9) 分别求出各列和各行的累加和累乘
MATLAB中的曲线拟合与插值
MATLAB 中的曲线拟合和插值在大量的使用领域中,人们经常面临用一个分析函数描述数据(通常是测量值)的任务。
对这个问题有两种方法。
在插值法里,数据假定是正确的,要求以某种方法描述数据点之间所发生的情况。
这种方法在下一节讨论。
这里讨论的方法是曲线拟合或回归。
人们设法找出某条光滑曲线,它最佳地拟合数据,但不必要经过任何数据点。
图11.1说明了这两种方法。
标有'o'的是数据点;连接数据点的实线描绘了线性内插,虚线是数据的最佳拟合。
11.1 曲线拟合曲线拟合涉及回答两个基本问题:最佳拟合意味着什么?应该用什么样的曲线?可用许多不同的方法定义最佳拟合,并存在无穷数目的曲线。
所以,从这里开始,我们走向何方?正如它证实的那样,当最佳拟合被解释为在数据点的最小误差平方和,且所用的曲线限定为多项式时,那么曲线拟合是相当简捷的。
数学上,称为多项式的最小二乘曲线拟合。
如果这种描述使你混淆,再研究图11.1。
虚线和标志的数据点之间的垂直距离是在该点的误差。
对各数据点距离求平方,并把平方距离全加起来,就是误差平方和。
这条虚线是使误差平方和尽可能小的曲线,即是最佳拟合。
最小二乘这个术语仅仅是使误差平方和最小00.20.40.60.81-2024681012xy =f (x )Second O rder C urv e Fitting图11.1 2阶曲线拟合在MATLAB 中,函数polyfit 求解最小二乘曲线拟合问题。
为了阐述这个函数的用法,让我们以上面图11.1中的数据开始。
» x=[0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1]; » y=[-.447 1.978 3.28 6.16 7.08 7.34 7.66 9.56 9.48 9.30 11.2];为了用polyfit ,我们必须给函数赋予上面的数据和我们希望最佳拟合数据的多项式的阶次或度。
如果我们选择n=1作为阶次,得到最简单的线性近似。
MATLAB讲稿·优化插值拟合
则结果显示为:
x= 3
6.3.2 无约束多元函数最小值
命令 利用函数fminsearch求无约束多元函数最小值
多元函数最小值的标准形式为
min
x
f (x )
其中:x为向量,如 x [ x 1, x 2 , , x n ]
函数 fminsearch
格式 [x,fval,flag,output]=fminsearch(fun,x0,options) 说明:x0为初始点,fun为目标函数的表达式字符串或MATLAB自定义函数
2 x1 3 x 2 6
先在MATLAB编辑器中建立非线性约束函数文件:
function [c, ceq]=mycon (x)
c=(x(1)-1)^2-x(2); ceq=[ ]; %无等式约束
然后,在命令窗口键入如下命令或建立M文件:
>>fun='x(1)^2+x(2)^2-x(1)*x(2)-2*x(1)-5*x(2)'; >>x0=[0 1]; >>A=[-2 3]; %线性不等式约束 >>b=6; >>Aeq=[ ]; >>beq=[ ]; >>lb=[ ]; >>ub=[ ]; >>[x,fval,flag,output,lambda,grad,hessian] =fmincon(‟fun„,x0,A,b,Aeq,beq,lb,ub,@mycon) %x没有下、上界 %无线性等式约束 %目标函数
function f=myfun(x)
f=2*x(1)^3+4*x(1)*x(2)^3-10*x(1)*x(2)+x(2)^2; 保存为myfun.m,在命令窗口键入 >> X=fminsearch ('myfun', [0,0]) 或 >> X=fminsearch(@myfun, [0,0]) 结果为: X= 1.0016 0.8335
MATLAB 09曲线拟合和插值
1
为了使用polyfit,我们必须给函数赋予数据和希望最佳拟合数据的多项 式的阶次或度。如果我们选择n=1作为阶次,得到最简单的线性近似。通常 称为线性回归。相反,如果我们选择n=2作为阶次,得到一个2阶多项式。
polyfit 的输出是一个多项式系数的行向量。
多项式阶次的选择是有点任意的。两点决定一直线或一阶多项式。三点 决定一个平方或2阶多项式。按此进行,n+1数据点唯一地确定n阶多项式。 高阶多项式给出很差的数值特性,常常失真,人们不应选择比所需的阶次 高的多项式。 [例9—2] Example 01-2。 链接 Example 01-3。 链接 Example 01-4。 链接
2
9.2 曲线插值
插值是一种估计给定数据点之间函数值的方法。特别地,当人们不能 很快地求出所需中间点的函数值时,插值是一种很有价值的工具。
1. 一维插值
最简单插值的例子或许是MATLAB的作图;用直线连接数据点。线性插 值 认为中间值落在数据点之间的直线上。当数据点个数的增加,线性插值就 更精确。 [例9—3] 链接 Example 02。 如曲线拟合一样,插值要作决策。根据所作的假设,有多种插值。 MATLAB在一维函数interp1中,提供了许多的插值选择。 YI = interp1(X,Y,XI,'method')
Matlab中的曲线拟合与插值技巧
Matlab中的曲线拟合与插值技巧在数据科学和工程领域中,曲线拟合和插值技术是常用的数学方法。
在Matlab 中,有许多工具和函数可用于处理这些技术。
本文将讨论Matlab中的曲线拟合和插值技巧,并介绍一些实际应用案例。
一、曲线拟合技术曲线拟合是根据已知数据点来构造一个与这些点最匹配的曲线模型。
在Matlab 中,常用的曲线拟合函数包括polyfit和lsqcurvefit。
1. polyfit函数polyfit函数是Matlab中一个功能强大的多项式拟合函数。
它可以拟合多项式曲线模型,并通过最小二乘法找到最佳拟合系数。
例如,我们有一组数据点(x,y),我们想要拟合一个二次多项式曲线来描述这些数据。
可以使用polyfit函数:```matlabx = [1, 2, 3, 4, 5];y = [2, 4, 6, 8, 10];degree = 2;coefficients = polyfit(x, y, degree);```在上述例子中,degree参数设置为2,表示拟合一个二次多项式曲线。
polyfit 函数将返回一个包含拟合系数的向量,可以用来构造拟合曲线。
2. lsqcurvefit函数lsqcurvefit函数是Matlab中一个用于非线性最小二乘拟合的函数。
与polyfit函数不同,lsqcurvefit函数可以用于拟合任意曲线模型,不局限于多项式。
例如,我们想要拟合一个指数函数曲线来拟合数据:```matlabx = [1, 2, 3, 4, 5];y = [1.1, 2.2, 3.7, 6.5, 12.3];model = @(params, x) params(1)*exp(params(2)*x);params0 = [1, 0];estimated_params = lsqcurvefit(model, params0, x, y);```在上述例子中,model是一个函数句柄,表示要拟合的曲线模型。
MATLAB中的数据插值与拟合方法介绍
MATLAB中的数据插值与拟合方法介绍概述数据处理是科学研究和工程实践中的重要环节之一。
对于实验或观测数据,我们常常需要通过插值和拟合方法来获取更加精确和连续的函数或曲线。
在MATLAB中,有多种方法和函数可以用于实现数据插值和拟合,本文将介绍其中的一些常用方法。
一、数据插值数据插值是指利用有限个数据点,通过某种方法构建一个连续的函数,以实现在这些点之间任意位置的数值估计。
在MATLAB中,常用的数据插值方法有线性插值、多项式插值、三次样条插值等。
1. 线性插值线性插值是最简单的插值方法之一,假设我们有两个数据点 (x1, y1) 和 (x2, y2),要在这两个点之间插值一个新的点 (x, y),线性插值即为连接 (x1, y1) 和 (x2, y2) 这两个点的直线上的点(x, y)。
在MATLAB中,可以通过interp1函数进行线性插值。
2. 多项式插值多项式插值是使用一个低次数的多项式函数来拟合数据的方法。
在MATLAB 中,可以通过polyfit函数进行多项式拟合,然后利用polyval函数来进行插值。
具体的插值效果与所选用的多项式阶数有关。
3. 三次样条插值三次样条插值算法利用相邻数据点之间的三次多项式来拟合数据,从而构成一条光滑的曲线。
在MATLAB中,可以通过spline函数进行三次样条插值。
二、数据拟合除了插值方法外,数据拟合也是处理实验或观测数据的常见方法之一。
数据拟合是指通过选择一个特定的数学模型,使该模型与给定的数据点集最好地拟合。
在MATLAB中,常用的数据拟合方法有多项式拟合、指数拟合、非线性最小二乘拟合等。
1. 多项式拟合在MATLAB中,可以使用polyfit函数进行多项式拟合。
该函数通过最小二乘法来拟合给定数据点集,并得到一个多项式函数。
根据所选用的多项式阶数,拟合效果也会有所不同。
2. 指数拟合指数拟合常用于具有指数关系的数据。
在MATLAB中,可以通过拟合幂函数的对数来实现指数拟合。
Matlab中的插值与拟合方法介绍
Matlab中的插值与拟合方法介绍在数据分析与处理的过程中,插值与拟合是非常重要的工具。
Matlab作为一种常用的数据处理与分析工具,提供了许多插值与拟合函数,方便用户进行数据处理和分析。
本文将介绍Matlab中的插值和拟合方法,并提供相应的示例和应用场景。
一、插值方法1. 线性插值线性插值是最简单的插值方法之一,通过连接已知数据点的直线进行插值。
在Matlab中,可以使用interp1函数进行一维线性插值。
下面以一个简单的例子来说明线性插值的应用:```x = [1, 2, 3, 4, 5];y = [2, 4, 6, 8, 10];xi = 2.5;yi = interp1(x, y, xi)```在这个例子中,已知一组数据点(x, y),要求在x=2.5处的插值结果。
通过interp1函数,可以得到插值结果yi=5。
线性插值适用于数据点较少且近邻点的变化趋势比较明显的情况。
2. 三次样条插值三次样条插值是一种更精确的插值方法,它利用多个小区间的三次多项式进行插值。
在Matlab中,可以使用interp1函数的'spline'选项进行三次样条插值。
以下是一个示例:```x = [1, 2, 3, 4, 5];y = [2, 4, 6, 8, 10];xi = 2.5;yi = interp1(x, y, xi, 'spline')```通过设置'spline'选项,可以得到插值结果yi=5.125。
三次样条插值适用于数据点较多且变化较为复杂的情况。
3. 二维插值除了一维插值,Matlab还提供了二维插值函数interp2,用于处理二维数据的插值问题。
以下是一个简单的二维插值示例:```x = 1:4;y = 1:4;[X, Y] = meshgrid(x, y);Z = X.^2 + Y.^2;xi = 2.5;yi = 2.5;zi = interp2(X, Y, Z, xi, yi)```在这个例子中,首先生成一个二维数据矩阵Z,然后利用interp2函数在给定的坐标(xi, yi)处进行插值,得到插值结果zi=12.25。
Matlab数学建模学习笔记——插值与拟合
Matlab数学建模学习笔记——插值与拟合⽬录插值与拟合插值和拟合的区别图⽚取⾃知乎⽤户yang元祐的回答插值:函数⼀定经过原始数据点。
假设f(x)在某区间[a,b]上⼀系列点上的值y_i=f(x_i),i=0,1,\dots,n。
插值就是⽤较简单、满⾜⼀定条件的函数\varphi(x)去代替f(x)。
插值函数满⾜条件\varphi(x_i)=y_i,i=0,1,\dots,n拟合:⽤⼀个函数去近似原函数,不要求过已知数据点,只要求在某种意义下它在这些点上的总偏差最⼩。
插值⽅法分段线段插值分线段插值就是将每两个相邻的节点⽤直线连起来,如此形成的⼀条折线就是就是分段线性插值函数,记作I_n(x),它满⾜I_n(x_i)=y_i,且I_n(x)在每个⼩区间[x_i,x_{i+1}]上是线性函数(i=0,1\dots,n-1)。
I_n(x)可以表⽰为I_n(x)=\sum_{i=0}^n y_il_i(x),其中l_i(x)= \begin{cases} \frac{x-x_{i-1}}{x_i-x_{i-1}},&x\in [x_{i-1},x_i],i \neq 0,\\ \frac{x-x_{i+1}}{x_i-x_{i+1}},&x\in [x_i,x_{i+1}],i \neq n,\\ 0,&其他 \end{cases}I_n(x)有良好的收敛性,即对x\in [a,b],有\lim _{n \rightarrow \infin}I_n(x)=f(x)⽤I_n(x)计算x点的插值的时候,只⽤到x左右的两个点,计算量与节点个数n⽆关。
但是n越⼤,分段越多,插值误差越⼩。
拉格朗⽇插值多项式朗格朗⽇(Lagrange)插值的基函数为\begin{aligned} l_i(x)&=\frac{(x-x_0)\cdots(x-x_{i-1})(x-x_{i+1})\cdots(x-x_n)}{(x_i-x_0)\cdots(x_i-x_{i-1})(x_i-x_{i+1})\cdots(x_i-x_n)}\\ &= \prod_{j=0\\j\neq i}^{n} \frac{x-x_j}{x_i -x_j},i=0,1,\cdots,n。
基于MATLAB的数值计算_插值及曲线拟合
基于MATLAB的数值计算一插值及曲线拟合摘要:本文基于MATLA的数值计算功能,重点介绍了插值及曲线拟合的应用及特点.关键词:MATLAB;数值计算;插值及曲线拟合本文从MATLAB的功能特点出发,阐述了它在数值计算中的基本要素和相关函数,以工程计算中常用到的数据插值和曲线拟合为主旨,通过三个实例,验证、分析了用MATLAB进行数据的插值和曲线拟合的合理性、可靠性和准确性。
1插值及曲线拟合插值与拟合是来源于实际、又广泛应用于实际的两种重要方法.随着计算机的不断发展及计算水平的提高,它们在国民经济和科学研究等方面扮演着越来越重要的角色。
1 .1插值插值计算在数据拟合和数据平滑等方面应用普遍。
插值计算的目的是通过离散的数据点来获得更为丰富的信息,它可以细分为一维插值和二维插值。
一维插值是在线的方向上对数值点进行插值:二维插值则可以理解为在面的方向上进行插值。
比较典型的例子就是在绘图过程中,当绘制二维曲线时,利用一维插值从少量数据中获得足够的信息进行描点;在绘制三维曲线时,则必须对两个方向的数据进行插值来获得其他点的信息。
1.2曲线拟合很多的时候,在工程研究与计算中得到的原始数据往往只是在某些点上的离散值,它们所代表的函数关系不易得出一个容易表示的数学表达式;或者所得出的数据的函数表达式比较复杂,不易计算,这样在计算这些函数其他所需要的数值方面就带来了诸多不便.解决这个难题的方法之一就是利用一些性质相对“好”的简单函数,在某种规定和标准之下,去拟合或逼近这些“困难”函数,然后通过这些简单函数去获得所希望得到的结果。
曲线拟合根据拟合方法的不同,有参数拟合和非参数拟合。
参数拟合,曲线不通过所有点,采用最小二乘法:非参数拟合,曲线通过所有点,采用插值法。
2插值及曲线拟合应用实例2. 1一维插值与拟合应用一维插值是进行数据分析和曲线拟合的重要手段,interp 1函数使用多项式技术,用多项式函数拟合所提供的数据,计算目标插值点上的插值函数值.它提供四种插值方法,即线性插值、三次样条插值、三次插值和最近邻点插值。
matlab 插值拟合
matlab 插值拟合摘要:一、插值与拟合的基本概念二、MATLAB 中的插值函数1.线性插值2.最邻近插值3.三次样条插值4.多项式插值三、MATLAB 中的拟合函数四、MATLAB 插值与拟合的应用实例五、总结正文:一、插值与拟合的基本概念插值是一种通过已知的数据点来预测未知数据点的方法。
它是基于已知数据点的函数值,通过一定的算法来预测未知数据点上的函数值。
拟合则是一种更广义的概念,它不仅包括插值,还包括了通过已知数据点来确定函数的形式,如多项式、指数、对数等。
在实际应用中,拟合常常用来解决数据点的预测和预测模型的选择问题。
二、MATLAB 中的插值函数MATLAB 提供了多种插值函数,包括线性插值、最邻近插值、三次样条插值和多项式插值等。
下面我们逐一介绍这些函数。
1.线性插值线性插值是最简单的插值方法,它通过计算已知数据点之间的直线来预测未知数据点上的函数值。
在MATLAB 中,线性插值的函数是`yinterp1`,其用法如下:```matlabyinterp1(x0,y0,xq,method,extrapolation)```其中,`x0`和`y0`分别是已知数据点的横纵坐标,`xq`是要预测的数据点的横坐标,`method`指定插值的方法,默认为线性插值("linear"),`extrapolation`指定是否进行外推,默认为关闭("off")。
2.最邻近插值最邻近插值是一种基于距离的插值方法,它通过找到距离未知数据点最近的已知数据点来预测未知数据点上的函数值。
在MATLAB 中,最邻近插值的函数是`yinterp2`,其用法如下:```matlabyinterp2(x0,y0,xq,method)```其中,`x0`和`y0`分别是已知数据点的横纵坐标,`xq`是要预测的数据点的横坐标,`method`指定插值的方法,默认为最邻近插值("nearest")。
曲线的插值与拟合matlab
在数学和统计学领域中,曲线的插值与拟合是一项重要的技术,它在数据分析、图像处理、工程计算等领域都有着广泛的应用。
曲线的插值与拟合可以帮助我们从有限的数据点中还原出连续的曲线,以便更好地理解数据的规律和特性。
1. 插值与拟合的概念在开始深入探讨曲线的插值与拟合之前,让我们先来了解一下这两个概念的含义。
插值是指通过已知数据点之间的连续函数,以得到介于已知数据点之间的数据点的值。
而拟合则是指通过已知数据点,找到拟合曲线以最好地逼近这些数据点。
2. 曲线插值的方法在实际操作中,我们可以使用不同的方法进行曲线的插值。
常见的方法包括线性插值、多项式插值、样条插值等。
在Matlab中,有丰富的函数库可以用来进行不同类型的曲线插值,例如interp1, interp2, interpn等,这些函数可以很方便地实现曲线的插值操作。
(1)线性插值线性插值是一种简单直接的插值方法,它通过已知的两个数据点之间的直线来逼近新的数据点。
虽然线性插值操作简单,但在一些情况下并不能很好地逼近数据的真实规律。
(2)多项式插值多项式插值是一种常用的插值方法,它通过已知数据点构造一个多项式函数来逼近数据。
在Matlab中,可以使用polyfit和polyval函数来实现多项式插值操作,通过调整多项式的阶数可以得到不同精度的逼近结果。
(3)样条插值样条插值是一种更加复杂但精确度更高的插值方法,它通过已知的数据点构造出一系列的局部插值函数来逼近数据。
在Matlab中,可以使用spline函数来进行样条插值操作,通过调整插值节点的数量和类型可以得到不同精度的逼近结果。
3. 曲线拟合的方法除了插值方法之外,曲线的拟合也是一种常用的数据处理方法。
在实际操作中,我们可以使用不同的方法来进行曲线的拟合。
常见的方法包括最小二乘法拟合、多项式拟合、非线性拟合等。
在Matlab中,有丰富的函数库可以用来进行不同类型的曲线拟合,例如polyfit, lsqcurvefit, nlinfit等,这些函数可以很方便地实现曲线拟合操作。
MATLAB中的数据插值与曲线拟合技术
MATLAB中的数据插值与曲线拟合技术概述:数据插值和曲线拟合是在科学研究和工程实践中常用的技术手段。
在MATLAB中,有丰富的函数库和工具箱可用于实现各种插值和拟合算法。
本文将介绍MATLAB中的一些常见的数据插值和曲线拟合技术,并分析它们的原理和适用场景。
一、数据插值技术:1. 线性插值:线性插值是最简单且常用的数据插值技术之一,它通过在已知数据点之间的直线上进行插值。
MATLAB中的interp1函数可以实现线性插值,其基本原理是根据已知数据点的横纵坐标值,计算出待插值点的纵坐标值。
2. 拉格朗日插值:在拉格朗日插值中,我们通过一个多项式函数来描述已知数据点之间的曲线。
MATLAB中的polyfit和polyval函数可以帮助我们实现拉格朗日插值。
首先,polyfit函数用于拟合一个多项式函数,然后polyval函数可以根据拟合得到的多项式计算插值点的纵坐标值。
3. 样条插值:样条插值是一种光滑插值技术,通过使用多个低次多项式来拟合数据点之间的曲线。
MATLAB中的spline函数可以实现样条插值。
该函数将已知数据点的横纵坐标传入,然后自动计算出曲线段之间的控制点,并进行插值操作。
二、曲线拟合技术:1. 多项式拟合:多项式拟合是一种常用的曲线拟合技术,它通过拟合一个多项式函数来逼近已知数据点。
MATLAB中的polyfit和polyval函数同样可以应用于多项式拟合,我们可以选择合适的多项式阶次进行拟合。
2. 非线性拟合:有些数据集并不能用简单的多项式函数进行拟合,可能需要更复杂的非线性函数来逼近。
在MATLAB中,我们可以使用curve fitting工具箱中的fit函数来实现非线性拟合。
该函数可以根据给定的模型类型和数据集,自动拟合出最优的曲线。
3. 递归最小二乘拟合:递归最小二乘拟合是一种高级的数据拟合算法,可以有效地处理大型数据集。
MATLAB中的regress函数可以进行递归最小二乘拟合。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解 在命令窗口输入:
n=11, m=21 x=-5:10/(m-1):5 y=1./(1+x.^2) z=0*x x0=-5:10/(n-1):5 y0=1./(1+x0.^2) y1=interp1(x0,y0,x) y2=interp1(x0,y0,x,'spline') [x' y' y1' y2'] plot(x,z,'r',x,y,'k:',x,y1,'b',x,y2,'g') gtext('Piece.linear.'),gtext('Spline'),gtext('y=1/(1+x^2)')
例4
对
y
1
1 x2
在[-5,
5]上,
用n=11个等距分点作分段线
性插值和三次样条插值, 用m=21个插值点作图,比较结果.
xy
y1
y2
0 0.5000 1.0000 1.5000 2.0000 2.5000 3.0000 3.5000 4.0000 4.5000 5.0000
四种插值方法比较
函数
格式
zi=interp2(x,y,z,xi,yi)
功能
二维插值。Z为由已知点的值组成的 矩阵,参量x与y是与z同维的已知点 的矩阵,且必须是单调的。xi与yi为 需要插值的点。若xi与yi中有在x与y 范围之外的点,则相应地返回NaN。
zi=interp2(z,xi,yi) Interp2
MATLAB对已知数据集外部点上函数值的预测都返回NaN, 但可通过为interp1函数添加‘extrap’参数指明也用于外插。 MATLAB的外插结果偏差较大。
例1
对
f
x
பைடு நூலகம்
1
1 9
x2
在[-1,
1]上,
用n=20的等距分点
进行线性插值, 绘制 f(x)及插值函数的图形.
解 在命令窗口输入:
x=-1:0.1:1; y=1./(1+9*x.^2); xi=-1:0.1:1; yi=interp1(x,y,xi); plot(x,y,'r-',xi,yi,'*')
例3. 已知实验数据如表。
x
0
0.25 0.50 0.75 1.00
y
0.9162 0.8109 0.6931 0.5596 0.4055
计算插值点x0=0.6处的函数值y0。
>> x=[0 0.25 0.50 0.75 1.00]; >> y=[0.9162 0.8109 0.6931 0.5596 0.4055]; >> x0=0.6; >> y01=interp1(x,y,x0); >> y02=interp1(x,y,x0,'nearest'); >> y03=interp1(x,y,x0,'pchip'); >> y04=interp1(x,y,x0,'spline'); >> y01,y02,y03,y04
三、插值、曲线拟合
插值就是已知一组离散的数据点集,在集合内部某两 个点之间预测函数值的方法。
插值法是实用的数值方法,是函数逼近的重要方法。在 生产和科学实验中,自变量x与因变量y的函数y = f(x)的关 系式有时不能直接写出表达式,而只能得到函数在若干个 点的函数值或导数值。当要求知道观测点之外的函数值时, 需要估计函数值在该点的值。
Matlab常用数据插值函数及功能
函数
格式
功能
yi=interp1(x,y,xi)
一维插值。对一组点(x,y)进行插 值,计算插值点xi的函数值。
yi=interp1(y,xi) Interp1
此格式默认x=1:n,其中n是向量 y的长度,y为矩阵时,
n=size(y,1)
yi=interp1(x,y,xi,method) Method为指定的插值算法。 Nearest最近邻点插值,linear线 性插值(默认方式),spline三次 样条函数插值,cubic三次插值。
例2. 在普通V带设计中,带轮的包角α与包角系数ka之间的关系如 表所示。求α=133.5°时的包角系数ka。
包角与包角系数
包角 (°)
90 100 110 120 125 130 135 140
包角系 数
0.69
0.74
0.78
0.82
0.84
0.86
0.88
0.89
包角 (°)
145 150 155 160 165 170 175 180
包角系 数
0.91
0.92
0.93
0.95
0.96
0.98
0.99
1
>>a1=[90,100,110,120,125,130,135,140,145,150,155,160,165,170,175,180]; >>a2=[0.69,0.74,0.78,0.82,0.84,0.86,0.88,0.89,0.91,0.92,0.93,0.95,0.96,0.98,0.99 ,1]; >>ka=interp1(a1,a2,133.5) >>ka=0.8740
函数
格式
y=interpft(x,n) Interpft
y=interpft(x,n,dim)
yy=spline(x,y,xx) spline
pp=spline(x,y)
功能 一维Fourier插值。适用于周期函数生 成数据的插值。X为抽样序列,n为 需要计算的等距点数,y为n点的插 值计算结果。
沿着指定的方向dim进行计算。
三次样条数据插值。用三次样条插 值计算出由向量x与y确定的一元函 数在点xx处的值yy。
返回由向量x与y确定的分段样条多 项式的系数矩阵pp。
注意:
(1)只对已知数据点集内部的点进行的插值运算称为内插, 可比较准确的估测插值点上的函数值。
(2)当插值点落在已知数据集的外部时的插值称为外插, 要估计外插函数值很难。
y01 = 0.639700000000000
y02 = 0.693100000000000
y03 = 0.641818996851421
y04 = 0.641831200000000
例4
对
y
1
1 x2
在[-5,
5]上,
用n=11个等距分点作分段线
性插值和三次样条插值, 用m=21个插值点作图,比较结果.
此格式默认x=1:n、y=1:m,其中 [m,n]=size(z)。再按 zi=interp2(x,y,z,xi,yi)情形进行计算。
zi=interp2(x,y,z,xi,yi,method)
用指定的算法method计算二维插值。 Linear双线性插值(默认方式), Nearest最邻近插值,spline三次样条 插值,cubic双三次插值。