九年级数学月考.doc

合集下载

2024-2025学年安徽省阜阳市九年级上学期月考数学试题

2024-2025学年安徽省阜阳市九年级上学期月考数学试题

2024-2025学年安徽省阜阳市九年级上学期月考数学试题1.下列函数一定是二次函数的是()A.B.C.D.2.方程的二次项系数、一次项系数、常数项分别为()A.4、、B.4、2、C.4、、1D.4、2、13.若二次函数的图象经过点,则该图象必经过点()A.B.C.D.4.关于x的一元二次方程的根的情况是()A.实数根的个数由b的值确定B.有两个不相等的实数根C.有两个相等的实数根D.没有实数根5.下列关于二次函数的图象说法中,错误的是()A.它的对称轴是直线B.它的图象有最低点C.它的顶点坐标是D.在对称轴的左侧,y随着x的增大而增大6.若m、n是关于x的方程的两个根,则的值为()A.4B.C.D.7.一抛物线的形状、开口方向与抛物线相同,顶点为,则此抛物线的解析式为()A.B.C.D.8.《九章算术》中有这样一道题:“今有二人同所立.甲行率六,乙行率四.乙东行,甲南行十步而邪东北与乙会.问:甲、乙行各几何?”大意是说:已知甲、乙二人同时从同一地点出发,甲的速度为6,乙的速度为4.乙一直向东走,甲先向南走10步,后又斜向北偏东方向走了一段后与乙相遇.那么相遇时,甲走了多少步()A.24B.30C.32D.369.某校从本学期开始实施劳动教育,在学校靠墙(墙长22米)的一块空地上,开辟出一块矩形菜地,如图所示,矩形菜地的另外三边用一根长49米的绳子围成,并留1米宽的门,若想开辟成面积为300平方米的菜地,则菜地垂直于墙的一边的长为()A.10米B.12米C.15米D.不存在10.函数和()在同一平面直角坐标系中的图象可能是()A.B.C.D.11.二次函数的顶点坐标是______.12.由于制药技术的提高,某种疫苗的成本下降了很多,因此医院对该疫苗进行了两次降价,设平均降价率为x,已知该疫苗的原价为462元,降价后的价格为y元,则y与x之间的函数关系式为______.13.已知关于x的一元二次方程,其中a、b、c分别为三边的长,如果方程有两个相等的实数根,则的形状为______.14.抛物线的图象交y轴于点A,点A关于x轴的对称点为点B.(1)点B坐标为______;(2)点,,且线段CD与抛物线恰有一个公共点,则m的取值范是______.15.解方程:16.直线与抛物线交于点.(1)求a和n的值;(2)对于二次函数,当y随x的增大而增大时,求自变量x的取值范围.17.已知关于x的一元二次方程.(1)判断方程根的情况;(2)设,是方程的两个根,求的值.18.如图,将一些小圆按规律摆放:(1)第个图形有个小圆,第个图形有个小圆(用含的代数式表);(2)能用个小圆摆成这样的图形吗?如果能,请求出摆成的是第几个图形;如果不能,请说明理由.19.如图,在中,,,点M从点A开始沿AC以的速度向点C运动(到点C时停止),过点M作,交BC与点N,并设点M的运动时间为t s.(1)当t为何值时,的面积为?(2)若,求t的值.20.如图,抛物线与y轴交于点A,过点A作与x轴平行的直线,交抛物线相交于点B、C(点B在点C的左面),若,求m的值.21.已知二次函数.(1)求证:不论n取何值时,抛物线的顶点始终在一条直线上.(2)若点,都在二次函数图象上,求证:.22.某商店销售一款成本价为40元的洗发水,如果每瓶按60元销售,每天可卖20瓶.该商店通过调查发现,每瓶洗发水售价每降低1元,日销售量增加2瓶.(1)如果该商店想保持日利润不变,且尽快销售完这批洗发水,每瓶售价应定为多少元?(2)同城另一家商店也销售同款洗发水,标价为每瓶62.5元.为促进销售,提高利润,这家商品决定实行打折促销,且其销售价格不低于(1)中的售价且不高于60元,则洗发水至少需打几折?23.如图,抛物线与x轴相交于B,C两点(点B在点C的左边),与y轴相交于点A,直线AC的函数解析式为.(1)求点A,C的坐标;(2)求抛物线的解析式;(3)在直线AC上方的抛物线上有一点M,求四边形ABCM面积的最大值及此时点M的坐标.。

数学九年级上册月考试卷

数学九年级上册月考试卷

数学九年级上册月考试卷一、选择题(每题3分,共30分)1. 一元二次方程x^2-2x = 0的根是()A. x_1=0,x_2=-2B. x_1=1,x_2=2C. x_1=1,x_2=-2D. x_1=0,x_2=22. 二次函数y = x^2-2x + 3的顶点坐标是()A. (1,2)B. (1, - 2)C. ( - 1,2)D. ( - 1, - 2)3. 关于x的一元二次方程(m - 1)x^2+5x + m^2-3m + 2 = 0的常数项为0,则m等于()A. 1B. 2C. 1或2D. 04. 抛物线y = - (x + 1)^2-2的对称轴是()A. x = 1B. x=-1C. x = 2D. x=-25. 已知二次函数y = ax^2+bx + c(a≠0)的图象如图所示,则下列结论中正确的是()(此处可插入一个二次函数图象,开口向下,与x轴有两个交点,对称轴x = - 1等特征的简单描述)A. a < 0,b < 0,c > 0B. a < 0,b < 0,c < 0C. a < 0,b > 0,c > 0D. a < 0,b > 0,c < 06. 一元二次方程x^2-6x + 5 = 0配方后可化为()A. (x - 3)^2=4B. (x - 3)^2=14C. (x + 3)^2=14D. (x + 3)^2=47. 若二次函数y = kx^2-6x + 3的图象与x轴有交点,则k的取值范围是()A. k < 3B. k < 3且k≠0C. k≤slant3D. k≤slant3且k≠08. 把二次函数y=(1)/(2)x^2-2x + 3化为y = a(x - h)^2+k的形式,结果为()A. y=(1)/(2)(x - 2)^2+1B. y=(1)/(2)(x - 1)^2+2C. y=(1)/(2)(x - 2)^2+3D. y=(1)/(2)(x - 1)^2+(5)/(2)9. 某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是91,设每个支干长出x个小分支,则x满足的方程是()A. 1 + x + x^2=91B. x + x^2=91C. 1 + x + 2x = 91D. 1 + x(x + 1)=9110. 二次函数y = ax^2+bx + c的图象经过点(-1,0),(3,0)和(0,2),则当x = 2时,y 的值为()A. 2B. 0C. -2D. -4二、填空题(每题3分,共18分)11. 方程(x - 1)^2=4的解为______。

九年级月考数学真题试卷【含答案】

九年级月考数学真题试卷【含答案】

九年级月考数学真题试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若一个正方形的边长为a,则它的对角线长为()。

A. a/2B. a√2C. 2aD. a√32. 下列函数中,哪个函数在其定义域内是增函数?()A. y = -x^2B. y = x^3C. y = -xD. y = 1/x3. 在直角坐标系中,点P(2, -3)关于原点的对称点是()。

A. (2, 3)B. (-2, 3)C. (-2, -3)D. (2, -3)4. 若一组数据的方差为4,则这组数据的标准差是()。

A. 2B. 4C. √4D. 1/25. 下列命题中,真命题是()。

A. 所有的实数都有倒数B. 若a > b,则1/a < 1/bC. 若a^2 = b^2,则a = bD. 对角线相等的四边形是矩形二、判断题(每题1分,共5分)6. 任何两个奇数之和都是偶数。

()7. 一元二次方程的解一定都是实数。

()8. 在三角形中,大边对大角。

()9. 若一组数据的平均数为0,则这组数据的中位数一定为0。

()10. 所有的等边三角形都是等腰三角形。

()三、填空题(每题1分,共5分)11. 若一个等腰三角形的底边长为10,腰长为13,则这个三角形的周长为______。

12. 若函数y = 2x + 3的图像与x轴相交于点P,则点P的坐标是______。

13. 在直角坐标系中,点A(3, 4)到原点的距离是______。

14. 若一组数据的众数是7,则这组数据中至少有一个数是______。

15. 若a^2 = 25,则a的值为______或______。

四、简答题(每题2分,共10分)16. 解释什么是算术平方根,并给出一个例子。

17. 解释什么是函数的单调性,并给出一个例子。

18. 解释什么是三角形的内角和,并给出一个例子。

19. 解释什么是数据的方差,并给出一个例子。

20. 解释什么是平行四边形的对角线,并给出一个例子。

九年级数学月考试题(含答案)

九年级数学月考试题(含答案)

第五次月考一 选择题(共10小题,每小题3分,计30分)1. 如图,在⊿ABC 中,AC=3,BC=4,AB=5,则tanB 的值是( )A.43 B.34 C.53 D.542. △ABC 中,∠A 、∠B 都是锐角,且sin A =21,cos B =23,则△ABC 的形状是( )A.直角三角形B.钝角三角形C.锐角三角形D.不能确定3. .在△ABC 中,AB =AC =4,BC =2,则4cos B 等于( )A.1B.2C.15D.4154. 如果∠A 为锐角,且cos A =41,那么∠A 的范围是 A . 0°<∠A ≤30° B.30°<∠A <45° C. 45°<∠A <60°D.60°<∠A <90°5 如图,沿AC 方向开山修路,为了加快施工进度,要在小山的另一边同时施工。

从AC 上的一点B ,取∠ABD=145°,BD=500米,∠D=55°,要使A 、C 、E 成一直线,那么开挖点E 离点D 的距离是( )A. 500sin55°米B. 500cos55°米C. 500tan55°米D. 500tan35°米6. 下列各关系式中,属于二次函数的是(x 为自变量) ( )A.y =81x 2B.y =12-xC.y =21x D.y =a 2x7. 已知二次函数c bx ax y ++=2的图象如右图所示, 则a、b、c满足( )A. a <0,b <0,c >0 B. a <0,b <0, c <0 C. a <0,b >0,c >0 D. a >0,b <0, c >0 8. 下列说法错误的是 ( )BACA.二次函数y =3x 2中,当x >0时,y 随x 的增大而增大B.二次函数y =-6x 2中,当x =0时,y 有最大值0C.a 越大图象开口越小,a 越小图象开口越大D.不论a 是正数还是负数,抛物线y =ax 2(a ≠0)的顶点一定是坐标原点 9. 在同一坐标系中,作y =x 2,y =-21x 2,y =31x 2的图象,它们的共同特点是( ) A.抛物线的开口方向向上B.都是关于x 轴对称的抛物线,且y 随x 的增大而增大C.都是关于y 轴对称的抛物线,且y 随x 的增大而减小D.都是关于y 轴对称的抛物线,有公共的顶点10. 已知a <-1,点(a -1,y 1),(a ,y 2)(a +1,y 3)都在函数y =x 2的图象上,则( )A.y 1<y 2<y 3B.y 1<y 3<y 2C.y 3<y 2<y 1D.y 2<y 1<y 3二 填空题(共6小题,每小题3分,计18分)11. 如图,等腰三角形ABC 的顶角为1200,腰长为10,则底边上的高AD=12. 某段公路每前进100 m ,就升高4 m ,则路面的坡度约为_____13. 如果由点A 测得点B 在北偏西20°的方向,那么由点B 测得点A 的方向是______ 14. 若函数y =(k 2-4)x 2+(k +2)x +3是二次函数,则k ______15. 写出一个开口向上,顶点是y 轴上的二次函数的表达式:16. 在边长为6 cm 的正方形中间剪去一个边长为x cm(x <6)的小正方形,剩下的四方框形的面积为y ,y 与x 之间的函数关系是______ 三 解答题(共8小题,计52分,解答应写出过程)17(本题满分6分)求值:sin 245°- cos60°+ tan60°·cos 230°18.(本题满分10分)如图,一位篮球运动员跳起投篮,球沿抛物线21 3.55y x =-+运行,然后准确落入篮框内.已知篮框的中心离地面的距离为3.05米. (1)球在空中运行的最大高度为多少米?(2)如果该运动员跳投时,球出手离地面的高度为2.25米,请问他距离篮框中心的水平距离是多少?19. (本小题满分12 分)在一次实践活动中,某课题学习小组用测倾器、皮尺测量旗杆的高度,他们设计了如下方案(如图①所示):(1)在测点A 处安置测倾器,测得旗杆顶部 M 的仰角∠MCE =α;(2)量出测点A 到旗杆底部N 的水平距离AN = m ; (3)量出测倾器的高度AC = h .根据上述测量数据,即可求出旗杆的高度MN .如果测量工具不变,请仿照上述过程,设计一个测量某小山高度(如图②)的方案: (1)在图②中,画出你测量小山高度 MN 的示意图(标上适当字母); (2)写出你设计的方案.x20. (本小题满分12 分)有一座抛物线形拱桥,桥下面在正常水位时AB宽20米,水位上升3米就达到警戒线CD,这时水面宽度为10米;(1)在如图的坐标系中,求抛物线的表达式.(2)若洪水到来时,再持续多少小时才能到拱桥顶?(水位以每小时0.2米的速度上升)21(本小题满分12 分)如图,一单杠高2.2米,两立柱之间的距离为1.6米,将一根绳子的两端栓于立柱与铁杠结合处,绳子自然下垂呈抛物线状.1)一身高0.7米的小孩站在离立柱0.4米处,其头部刚好触上绳子,求绳子最低点到地面的距离;2)为供孩子们打秋千,把绳子剪断后,中间系一块长为0.4米的木板,除掉系木板用去的绳子后,两边的绳长正好各为2米,木板与地面平行.求这时木板到地面的距离(供选用数据:36.3≈1.8,64.3≈1.9,36.4≈2.1.)(1)(2)参考答案:一、1. A 2.B 3. A 4. D 5. B 6. A 7. A 8. C 9. D 10. C二、11.5 12. 1∶24.98 13. 南偏东20° 14. ≠±2 15. 21y x =+ 16. y =36-x 2三、17. 解:原式= 2212- (2分)=112244-+= (6分) 18.解:⑴ ∵抛物线 21 3.55y x =-+的顶点为(0,3.5) ∴最大高度为3.5米 (4分) ⑵ 在21 3.55y x =-+中 当 3.05y =时 213.05 3.55x =-+ ∴2 2.25x = ∴ 1.5x =±又∵x >0 ∴ 1.5x = …………………… (8分) 当 2.25y =时 212.25 3.55x =-+ ∴2 6.25x = ∴ 2.5x =± 又∵x <0 ∴ 2.5x =- …………………… (11分) 故运动员距离篮框中心水平距离为 1.5+2.5 = 4 …………………… (12分) 19.解:(1)正确画出示意图. (4分) (2)① 在测点A 处安置测倾器,测得此时山顶M 的仰角 ∠MCE = α;② 在测点A 与小山之间的B 处安置测倾器(A 、B 与N 在同一条直线上),测得此时山顶M 的仰角 ∠MDE = β;③ 量出测倾器的高度AC = BD = h ,以及测点A 、B 之间的距离AB = m . 根据上述测量数据,即可求出小山的高度MN . (12分)20.解:(1)设拱桥顶到警戒线的距离为m .∵抛物线顶点在(0,0)上,对称轴为y 轴, ∴设此抛物线的表达式为y =ax 2(a ≠0). 依题意:C (-5,-m ),A (-10,-m -3).∴⎩⎨⎧-=---=-.)10(3,)5(22a m a m ⎪⎩⎪⎨⎧-=-=∴.1,251m a ∴抛物线表达式为y =2125x -8分 (2)∵洪水到来时,水位以每小时0.2米的速度上升,|m |=1, ∴从警戒线开始再持续2.01=5(小时)到拱桥顶. 12分(1) (2)21解:(1)如图,建立直角坐标系, …………2分 设二次函数解析式为 y =ax 2+c …………3分 ∵ D (-0.4,0.7),B (0.8,2.2), …………4分∴ ⎩⎨⎧.=+,=+2.264.07.016.0c a c a …………5分∴ ⎪⎩⎪⎨⎧.=,=2.0528c a∴绳子最低点到地面的距离为0.2米. …………7分 (2)分别作EG ⊥AB 于G ,FH ⊥AB 于H …………8分 AG =21(AB -EF )=21(1.6-0.4)=0.6. 在Rt △AGE 中,AE =2, EG =22AG AE -=226.02 =64.3≈1.9. …………11分∴ 2.2-1.9=0.3(米).∴ 木板到地面的距离约为0.3米. …………12分。

九年级上册第二次月考数学试卷

九年级上册第二次月考数学试卷

20 -20 学年九年级第一学期第二次月考数学学科试卷学校: 班级: 姓名: 考号:一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A ,B ,C ,D 四个选项,其中只有一个是符合题目要求的。

1.抛物线2(2020)2021y x =-+的顶点坐标是( )A .(2020,2021)-B .(2020,2021)C .(2020,2021)-D .(2020,2021)-- 2.已知是方程x 2﹣3x +c =0的一个根,则c 的值是( )A .﹣6B .6C .D .23.为了解学生假期每天帮忙家长做家务活动情况,学校团委随机抽取了部分学生进行线上调查,并将调查结果绘制成频数直方图(不完整,每组含最小值,不含最大值),并且知道80~100分钟占所抽查学生的17.5%,根据提供信息,以下说法不正确的是( )A.本次共随机抽取了40名学生;B.抽取学生中每天做家务时间的中位数落在40~60分钟这一组;C.如果全校有800名学生,那么每天做家务时间超过1小时的大约有300人;D.扇形统计图中0~20分钟这一组的扇形圆心角的度数是30°; 4.抛物线y =2x 2与y =﹣2x 2相同的性质是( ) A .开口向下 B .对称轴是y 轴C .有最低点D .对称轴是x 轴5.某校高一年级今年计划招四个班的新生,并采取随机摇号的方法分班,小明和小红既是该校的高一新生,又是好朋友,那么小明和小红分在同一个班的机会是( ) A .B .C .D .6.如图,在⊙O 中,弦AC ∥半径OB ,∠BOC =48°,则∠OAB 的度数为( ) A .24°B .30°C .50°D .60°7.如图,△COD 是△AOB 绕点O 顺时针方向旋转30°后所得的图形,点C 恰好在AB 上,则∠A 的度数为( ) A .30°B .60°C .70°D .75° 8.若二次函数y =x 2+mx 的对称轴是x =4,则关于x 的方程x 2+mx =9的根为( ) A .x 1=0,x 2=8B .x 1=1,x 2=9C .x 1=1,x 2=﹣9D .x 1=﹣1,x 2=99.已知等腰三角形的两边长分别是一元二次方程x 2﹣6x +8=0的两根,则该等腰三角形的底边长为( ) A .2B .4C .8D .2或410.如图,二次函数y =ax 2+bx +c 的图象与y 轴正半轴相交,其顶点坐标为(,1),下列结论:①abc <0;②b 2﹣4ac >0;③a +b <0;④2a +c <0,其中正确的个数是( ) A .1个B .2个C .3个D .4个二、填空题(本大题共4小题,每小题5分,满分20分) 11.点M (1,2)关于原点的对称点的坐标为 .12.如图,AB 为⊙O 的直径,弦CD ⊥AB 于点H ,若AB =10,CD =8,则BH 的长度为 . 13.若一个圆锥的母线长为4,底面半径是1,则它的侧面展开图的面积是______. 14.我国魏晋时期的数学家刘徽首创“割圆术”,利用圆的内接正多边形逐步逼近圆来近似计算圆的周长,进而确定圆周率.某圆的半径为R ,其内接正十二边形的周长为C .若R =,则C = ,≈ (结果精确到0.01,参考数据:≈2.449,≈1.414).三、(本大题共2小题,每小题8分,满分16分)15.解方程: 3x (x +1)=3x +316.某汽车专卖店经销某种型号的汽车.已知该型号汽车的进价为15万元/辆,经销一段时间后发现:当该型号汽车售价定为25万元/辆时,平均每周售出8辆;售价每降低0.5万元,平均每周多售出1辆. (1)当售价为22万元/辆时,求平均每周的销售利润.(2)若该店计划平均每周的销售利润是90万元,为了尽快减少库存,求每辆汽车的售价. 四、(本大题共2小题,每小题8分,满分16分)17.如图,在平面直角坐标系中,ΔABC 三个顶点的坐标分别为A (1,1)、B (4,2)、C (3,5)。

安徽省池州市2024-2025学年九年级上学期九月月考数学试题(沪科版)

安徽省池州市2024-2025学年九年级上学期九月月考数学试题(沪科版)

安徽省池州市2024-2025学年九年级上学期九月月考数学试题(沪科版)一、单选题1.下列函数是二次函数的是( )A .25y x =+B .21y x x =+C .2321y x x =+-D .2(1)y x x x =-+2.已知点P (a ,m ),Q (b ,n )都在反比例函数y=2x-的图象上,且a <0<b ,则下列结论一定正确的是( )A .m+n <0B .m+n >0C .m <nD .m >n 3.已知二次函数y =ax 2+bx +c ,当x =1时,有最大值8,其图象的形状、开口方向与抛物线y =-2x 2相同,则这个二次函数的表达式是( )A .y =-2x 2-x +3B .y =-2x 2+4C .y =-2x 2+4x +8D .y =-2x 2+4x +64.二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,下列结论:①b 2﹣4ac >0;②abc <0;③4a +b =0;④4a ﹣2b +c >0.其中正确结论的个数是( )A .4B .3C .2D .15.已知两点12A(5,y ),B(3,y )-均在抛物线2(0)y ax bx c a =++≠上,点00C(x ,y )是该抛物线的顶点,若120y y y >≥,则x 0的取值范围是( )A .0x 5>-B .0x 1>-C .05x 1-<<-D .02x 3-<<6.二次函数()220y ax ax c a =-+>的图象过1234()()3,,1,,2(),,)4,(A y B y C y D y --四个点,下列说法一定正确的是( )A .若120y y >,则340y y >B .若140y y >,则230y y >C .若240y y <,则130y y <D .若340y y <,则120y y <7.某公园草坪的防护栏由100段形状相同的抛物线形构件组成,为了牢固起见,每段护栏需要间距0.4m 加设一根不锈钢的支柱,防护栏的最高点距底部0.5m (如图),则这条防护栏需要不锈钢支柱的总长度至少为( )A .50mB .100mC .160mD .200m8.如图,在平面直角坐标系中,矩形ABCD 的顶点A ,B 在x 轴的正半轴上,反比例函数(0,0)k y k x x=>>的图象经过顶点D ,分别与对角线AC ,边BC 交于点E ,F ,连接EF ,AF .若点E 为AC 的中点,AEF △的面积为1,则k 的值为( )A .125B .32C .2D .39.已知二次函数222(2)1y x b x b =--+-的图象不经过第三象限,则实数b 的取值范围是( ).A .54b ≥B .1b ≥或1b ≤-C .2b ≥D .12b ≤≤10.如图,在正方形ABCD 中,AB =4,动点M 从点A 出发,以每秒1个单位长度的速度沿射线AB 运动,同时动点N 从点A 出发,以每秒2个单位长度的速度沿折线AD →DC →CB 运动,当点N 运动到点B 时,点M ,N 同时停止运动.设V AMN 的面积为y ,运动时间为x (s ),则下列图象能大致反映y 与x 之间函数关系的是( )A .B .C .D .二、填空题11.二次函数()()2()y x a x b a b =---<与x 轴的两个交点的横坐标分别为m 和n ,且m n <,则a ,b ,m ,n 四个数的大小关系是(用<号连接)12.如图,Rt △ABC 的两个锐角顶点A ,B 在函数y =k x(x >0)的图象上,AC ∥x 轴,AC =2,若点A 的坐标为(2,2),则点B 的坐标为.13.如图,一块矩形土地ABCD 由篱笆围着,并且由一条与CD 边平行的篱笆EF 分开.已知篱笆的总长为900m (篱笆的厚度忽略不计),当AB=m 时,矩形土地ABCD 的面积最大.14.如图,抛物线2286y x x =-+-与x 轴交于点A 、B ,把抛物线在x 轴及其上方的部分记作1C ,将1C 向右平移得2C ,2C 与x 轴交于点B ,D ,若直线y x m =+与1C ,2C 共有3个不同的交点,请你探究:(1)2C 对应的函数表达式为;(2)m 的取值范围是.三、解答题15.已知二次函数22y x x m =-+-(m 是常数).(1)若该函数的图象与x 轴有两个不同的交点,求m 的取值范围.(2)若该二次函数的图象与x 轴的其中一个交点坐标为()1,0-,求一元二次方程220x x m -+-=的解.16.已知反比例函数k y x=的图象经过点M(2,1). (1)求该函数的表达式;(2)当2<x<4时,求y 的取值范围(直接写出结果).17.把抛物线()2y a x h k =++先向左平移2个单位长度,再向上平移4个单位长度,得到抛物线()21112y x =+-. (1)试确定,,a h k 的值;(2)作原抛物线关于x 轴对称的图形,求所得抛物线的函数表达式.18.某果园有100棵橙子树,平均每棵树结600个橙子,现准备多种一些橙子树以提高果园产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子,假设果园多种了x 棵橙子树. (1)直接写出平均每棵树结的橙子个数y (个)与x 之间的关系;(2)果园多种多少棵橙子树时,可使橙子的总产量最大?最大为多少个?19.已知顶点为()2,1A -的抛物线经过点B 0,3 ,与x 轴交于C ,D 两点(点C 在点D 的左侧).(1)求抛物线对应的函数表达式;(2)连接AB BD DA ,,,求ABD △的面积.20.如图,在平面直角坐标系中,Y OABC 的顶点A, C 的坐标分别为A(2,0),C(-1,2),反比例函数()k y=k 0x≠的图像经过点B .(1)求k 的值.(2)将Y OABC 沿着x 轴翻折,点C 落在点C′处.判断点C′是否在反比例函数()k y=k 0x≠的图像上,请通过计算说明理由.21.如图,在平面直角坐标系中,抛物线2y ax bx =+经过(2,4)A --,(2,0)B .(1)求抛物线2y ax bx =+的解析式.(2)若点M 是该抛物线对称轴上的一点,求AM OM +的最小值.22.某公司开发一款与教育配套的软件,年初上市后,经历了从亏损到盈利的过程,变化过程可用如图所示的抛物线描述,它刻画了该软件上市以来累积利润S (万元)与销售时间t (月)之间的函数关系(即前t 个月的利润总和S 与t 之间的函数关系),根据图象提供的信息,解答下列问题:(1)此软件上市第几个月后开始盈利?(2)求累积利润S (万元)与销售时间t (月)间的函数表达式;(3)第几个月公司的月利润为2.5万元?23.如图,两条抛物线214y x =-+,2215y x bx c =-++相交于A ,B 两点,点A 在x 轴负半轴上,且为抛物线2y 的最高点.(1)求抛物线2y 的解析式和点B 的坐标;(2)点C 是抛物线1y 上A ,B 之间的一点,过点C 作x 轴的垂线交2y 于点D ,当线段CD 取最大值时,求BCD S △.。

九年级数学月考试卷【含答案】

九年级数学月考试卷【含答案】

九年级数学月考试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若一个正方形的边长为a,则它的对角线长为()。

A. a/2B. a√2C. 2aD. a²2. 下列哪个数是无理数?()A. √9B. √16C. √3D. √13. 若a、b为实数,且a≠0,那么下列哪个式子是正确的?()A. a² = b²B. a² + b² = (a + b)²C. (a + b)² = a² + 2ab + b²D. a² b² = (a b)²4. 下列哪个式子是等边三角形的面积公式?()A. 面积 = 1/2 底高B. 面积 = 1/2 边长高C. 面积= √3/4 边长²D. 面积 = 1/4 边长²5. 若一个圆的半径为r,则它的周长为()。

A. 2πrB. πr²C. 2rD. r²二、判断题(每题1分,共5分)1. 若a、b为实数,且a≠b,则a²≠b²。

()2. 任何一个正整数都可以表示为两个质数的和。

()3. 两个等腰三角形的面积相等,则它们的周长也相等。

()4. 任何一个偶数都可以表示为两个奇数的和。

()5. 任何一个正整数都可以表示为三个连续整数的和。

()三、填空题(每题1分,共5分)1. 若一个正方形的边长为4,则它的面积为______。

2. 若一个圆的半径为3,则它的面积为______。

3. 若一个等腰三角形的底边长为8,腰长为5,则它的高为______。

4. 若一个等差数列的首项为2,公差为3,第5项为______。

5. 若一个等比数列的首项为3,公比为2,第4项为______。

四、简答题(每题2分,共10分)1. 简述勾股定理的内容。

2. 简述等差数列的定义。

3. 简述等比数列的定义。

江苏省宿迁市钟吾初级中学2024-2025学年九年级上学期数学第一次月考试题(含详解)

江苏省宿迁市钟吾初级中学2024-2025学年九年级上学期数学第一次月考试题(含详解)

江苏省宿迁市钟吾初级中学2024-2025学年初中九上数学第一次月考试题一.选择题(共6小题)1.抛物线y=﹣x2+2x﹣c过A(﹣1,y1),B(2,y2),C(5,y3)三点.则将y1,y2,y3,从小到大顺序排列是( )A.y1<y2<y3B.y2<y1<y3C.y3<y1<y2D.y2<y3<y12.一元二次方程x2+4x﹣3=0的两根为x1、x2,则x1•x2的值是( )A.4B.﹣4C.3D.﹣33.某厂一月份生产某机器200台,计划第一季度共生产1800台.设二、三月份每月的平均增长率为x,根据题意列出得方程是( )A.200(1+x)2=1800B.200(1+x)+200(1+x)2=1800C.200(1﹣x)2=1800D.200+200(1+x)+200(1+x)2=18004.若关于x的方程m(x+h)2+k=0(m、h、k均为常数,m≠0)的解是x1=﹣3,x2=2,则方程m(x+h﹣3)2+k=0的解是( )A.x1=﹣6,x2=﹣1B.x1=0,x2=5C.x1=﹣3,x2=5D.x1=﹣6,x2=25.如图,在长为100米,宽为80米的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7644米2,则道路的宽应为多少米?设道路的宽为x 米,则可列方程为( )A.100×80﹣100x﹣80x=7644B.(100﹣x)(80﹣x)+x2=7644C.(100﹣x)(80﹣x)=7644D.100x+80x=3566.已知二次函数y=ax2+bx+c图象的对称轴为x=1,其图象如图所示,现有下列结论:①abc>0,②b﹣2a<0,③a﹣b+c>0,④a+b>n(an+b),(n≠1),⑤2c<3b.正确的是( )A.①③B.②⑤C.③④D.④⑤二.填空题(共11小题)7.如果抛物线y=2x2+4x+m的顶点在x轴上,则m= .8.若a:b=3:4,且a+b=14,则2a﹣b的值是 .9.如图,函数y=ax2+bx+c(a,b,c为常数,且a≠0)经过点(﹣1,0)、(m,0),且1<m<2,下列结论:①abc<0;②0<﹣<;③若点A(﹣2,y1),B(2,y2)在抛物线上,则y1<y2;④ax2+bx+c=0,必有两个不相等的实数根.其中结论正确的有 .(填序号)10.对于实数a、b,定义运算“*”;,关于x的方程(2x)*(x﹣1)=t+3恰好有三个不相等的实数根,则t的取值范围是 .11.一元二次方程(a+1)x2﹣ax+a2﹣1=0的一个根为0,则a= .12.已知实数a、b满足(a2+b2)2﹣2(a2+b2)=8,则a2+b2的值为 .13.已知点A(﹣5,y1),B(2,y2)在抛物线y=﹣(x+1)2+2上,则y1和y2的大小关系是 .(用“>”连接).14.若x1,x2方程x2﹣4x﹣2021=0的两个实数根,则代数式x12﹣2x1+2x2的值等于 .15.关于x的方程kx2+3x﹣1=0有实数根,则k的取值范围是 .16.已知二次函数y=x2+2x﹣n,当自变量x的取值在﹣2≤x≤1的范围时,函数的图象与x 轴有且只有两个公共点,则n的取值范围是 .17.如图,抛物线y=x2﹣8x+15与x轴交于A、B两点,对称轴与x轴交于点C,点D(0,﹣2),点E(0,﹣6),点P是平面内一动点,且满足∠DPE=90°,M是线段PB的中点,连接CM.则线段CM的最大值是 .三.解答题(共7小题)18.已知二次函数y=﹣x2+2mx+1.(1)求证:无论m取任何值,二次函数的图象与x轴总有两个不同的交点;(2)若此函数图象的顶点为D点,与y轴的交点于点C,直线CD与x轴相交于点A,抛物线的对称轴与x轴相交于点B,求证:BC⊥AD.19.如图,抛物线y=与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C.点D在y轴正半轴上,直线AD:y=x+b与抛物线交于点E.(1)求线段BC的长度;(2)如图2,点P是线段AE上的动点,过点P作y轴的平行线交抛物线于点Q,求的最大值;(3)如图3,将抛物线y=向左平移4个单位长度,将△DCA沿直线BC 平移,平移后的△DCA记为ΔD'C'A',在新抛物线的对称轴上找一点M,当△A'C'M是以点A'为直角顶点的等腰直角三角形时,请直接写出所有符合条件的点M的坐标.20.已知关于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a、b、c分别为△ABC 三边的长;(1)若a=b=c,试求这个一元二次方程的根;(2)若方程有两个相等的实数根,试判断△ABC的形状,并说明理由.21.如图1,有长为24米的篱笆,一面利用墙(墙的最大可用长度为a为15米),围成中间隔有一道篱笆的长方形花圃.(1)如果要围成面积为45平方米的花圃,AB的长是多少米?(2)如图2,如果在平行于墙面的篱笆上开两道1米宽的门,如果要围成面积为56平方米的花圃,AB的长是多少米?(3)在(1)的条件下,能围成面积比45平方米更大的花圃吗?如果能,请求出最大面积,并说明围法;如果不能,请说明理由.22.如图,二次函数y=﹣x2+2x+3的图象过点A(﹣1,0)、点B(0,3).(1)该二次函数的顶点是 ;(2)点C为点B关于抛物线对称轴的对称点,直线y=mx+n经过A、C两点,满足ax2+bx+c>mx+n的x的取值范围是 .(3)在对称轴上找一点M,使|MA﹣MC|取得最大值,求出此时M的坐标.23.2022年冬奥会在北京召开,某网络经销商购进了一批以冬奥会为主题的文化衫进行销售,文化衫的进价每件40元,每月销售量y(件)与销售单价x(元)之间的函数关系如图所示.(1)直接写出每月的销售量y(件)与销售单价x(元)之间的函数关系式 .(2)设每月获得的利润为W(元),当销售单价为多少元时,销售这款文化衫每月所获得的利润最大,最大利润为多少元?(3)该网店的营销部结合上述情况,提出了A,B两种营销方案:方案A:销售单价高于进价且不超过进价20元.方案B:每月销售量不少于220件,且每件文化衫的利润至少为35元.请比较哪种方案的最大利润更高,并说明理由24.已知:抛物线l1:y=﹣x2+2x+3交x轴于点A,B(点A在点B的左侧),交y轴于点C ,抛物线l2经过点A,与x轴的另一个交点为E(6,0),交y轴于点D(0,﹣3).(1)求抛物线l2的函数表达式;(2)如图,N为抛物线l1上一动点,过点N作直线MN∥y轴,交抛物线l2于点M,点N自点A运动至点B的过程中,求线段MN长度的最大值.(3)P为抛物线l1的对称轴上一动点,Q为抛物线l2上一动点,是否存在P、Q两点,使得B、D、P、Q为顶点的四边形是平行四边形?若存在,求出P、Q的坐标,若不存在,请说明理由.参考答案与试题解析一.选择题(共6小题)1.【解答】解:∵y=﹣x2+2x﹣c=﹣(x﹣1)2+1﹣c,∴图象的开口向下,对称轴是直线x=1,∴当x>1时,y随x的增大而减小,∵A(﹣1,y1)关于直线x=1的对称点是(3,y1),且1<2<3<5,∴y2>y1>y3,即y3<y1<y2.故选:C.2.【解答】解:x1•x2=﹣3.故选:D.3.【解答】解:二月份的生产量为200×(1+x),三月份的生产量为200×(1+x)(1+x),那么200+200(1+x)+200(1+x)2=1800.故选:D.4.【解答】解:解方程m(x+h)2+k=0(m、h、k均为常数,m≠0)得,x=﹣h±,∵此方程解是x1=﹣3,x2=2,∴﹣h﹣=﹣3,﹣h+=2,∵方程m(x+h﹣3)2+k=0的解是x=3﹣h±,∴x1=3﹣3=0,x2=3+2=5,故选:B.5.【解答】解:设道路的宽应为x米,由题意有(100﹣x)(80﹣x)=7644,故选:C.6.【解答】解:①由图象可知:a<0,b>0,c>0,abc<0,故①错误;②由于a<0,所以﹣2a>0.又b>0,所以b﹣2a>0,故②错误;③当x=﹣1时,y=a﹣b+c<0,故③错误;④当x=1时,y的值最大.此时,y=a+b+c,而当x=n时,y=an2+bn+c,所以a+b+c>an2+bn+c,故a+b>an2+bn,即a+b>n(an+b),故④正确;⑤当x=3时函数值小于0,y=9a+3b+c<0,且该抛物线对称轴是直线x=﹣=1,即a=﹣,代入得9(﹣)+3b+c<0,得2c<3b,故⑤正确;故④⑤正确.故选:D.二.填空题(共11小题)7.【解答】解:∵抛物线y=2x2+4x+m的顶点在x轴上,∴b2﹣4ac=0,即16﹣8m=0,解得m=2,故答案为2.8.【解答】解:设a=3k,b=4k,(k≠0),∵a+b=14,∴3k+4k=14,解得:k=2,∴a=6,b=8,∴2a﹣b=2×6﹣8=4.故答案为:4.9.【解答】解:∵抛物线的开口方向向上,∴a>0,∵抛物线的对称轴在y轴的右侧,∴>0,∴b<0,∵抛物线与y轴交于负半轴,∴c<0,∴abc>0.∴①的结论不正确;∵函数y=ax2+bx+c(a,b,c为常数,且a≠0)经过点(﹣1,0)、(m,0),∴抛物线的对称轴为直线x=,∵1<m<2,∴0<<.∵抛物线的对称轴为直线x=﹣,∴0<﹣<.∴②的结论正确;∵点A(﹣2,y1),B(2,y2)在抛物线上,A(﹣2,y1)到抛物线的对称轴的距离大于B(2,y2)到抛物线的对称轴的距离,∴y1>y2,∴③的结论不正确;∵抛物线y=ax2+bx+c与x轴有两个交点,∴方程ax2+bx+c=0,必有两个不相等的实数根,∴④的结论正确,结论正确的有:②④,故答案为:②④.10.【解答】解:由新定义的运算可得关于x的方程为:当2x≤x﹣1时,即x≤﹣1时,有(2x)2﹣2x(x﹣1)=t+3,即:2x2+2x﹣t﹣3=0(x≤﹣1),其根为:是负数,当2x>x﹣1时,即x>﹣1,时,有(x﹣1)2﹣2x(x﹣1)=t+3,即:x2=﹣t﹣2(x>﹣1),要使关于x的方程(2x)*(x﹣1)=t+3恰好有三个不相等的实数根,则x2=﹣t﹣2(x>﹣1)和2x2+2x﹣t﹣3=0(x≤﹣1)都必须有解,∴,∴,(1)当﹣t﹣2=0时,即t=﹣2时,方程x2=﹣t﹣2(x>﹣1)只有一个根x=0,∵当t=﹣2时,,∴,,∴此时方程2x2+2x﹣t﹣3=0(x≤﹣1)只有一个根符合题意,∴t=﹣2不符合题意;(2)当﹣3<t<﹣2时,方程x2=﹣t﹣2(x>﹣1)的两个根﹣1<x<1都符合题意,∵当﹣3<t<﹣2时,,∴,,∴方程2x2+2x﹣t﹣3=0(x≤﹣1)只有一个根符合题意,∴当﹣3<t<﹣2时,(2x)*(x﹣1)=t+3恰好有三个不相等的实数根;(3)∵当时,方程x2=﹣t﹣2(x>﹣1)的一个根≥1,另外一个根≤﹣1,∴此时方程x2=﹣t﹣2(x>﹣1)只有一个根符合题意,∵,,∴当时,方程2x2+2x﹣t﹣3=0(x≤﹣1)最多有一个根符合题意,∴当时(2x)*(x﹣1)=t+3不可能有三个不相等的实根;综上分析可知,t的取值范围是﹣3<t<﹣2.故答案为:﹣3<t<﹣2.11.【解答】解:∵一元二次方程(a+1)x2﹣ax+a2﹣1=0的一个根为0,∴a+1≠0且a2﹣1=0,∴a=1.故答案为:1.12.【解答】解:设y=a2+b2,原式化为y2﹣2y﹣8=0,即(y﹣4)(y+2)=0,可得y﹣4=0或y+2=0,解得:y1=4,y2=﹣2,∵a2+b2>0,∴a2+b2=4.故答案为:4.13.【解答】解:∵抛物线y=﹣(x+1)2+2,∴抛物线开口向下,对称轴为直线x=﹣1,∴B(2,y2)关于对称轴的对称点为(﹣4,y2),∵﹣5<﹣4<﹣1,∴y1<y2.故答案为:<.14.【解答】解:∵x1,x2是方程x2﹣4x﹣2021=0的两个实数根,∴x1+x2=4,x12﹣4x1﹣2021=0,即x12﹣4x1=2021,则原式=x12﹣4x1+2x1+2x2=x12﹣4x1+2(x1+x2)=2021+2×4=2021+8=2029.故答案为:2029.15.【解答】解:当k=0,方程变形为3x﹣1=0,此一元一次方程的解为x=;当k≠0,Δ=9﹣4k×(﹣1)≥0,解得k≥﹣,即k≥﹣且k≠0时,方程有两个实数根,综上所述实数k的取值范围为k≥﹣.故答案为:k≥﹣.16.【解答】解:依照题意画出图象,如图所示.观察函数图象可知:,解得:﹣1<n≤0.故答案为:﹣1<n≤0.17.【解答】解:解方程x2﹣8x+15=0得x1=3,x2=5,则A(3,0),∵抛物线的对称轴与x轴交于点C,∴C点为AB的中点,∵∠DPE=90°,∴点P在以DE为直径的圆上,圆心Q点的坐标为(0,﹣4),AQ==5,⊙Q的半径为2,延长AQ交⊙Q于F,此时AF最大,最大值为2+5=7,连接AP,∵M是线段PB的中点,∴CM为△ABP为中位线,∴CM=AP,∴CM的最大值为.故答案为:.三.解答题(共7小题)18.【解答】(1)证明:∵Δ=(2m)2﹣4×(﹣1)×1=4m2+4>0,∴方程﹣x2+2mx+1=0有两个不同的实数解,即无论m取任何值,二次函数的图象与x轴总有两个不同的交点.(2)证明:∵二次函数y=﹣x2+2mx+1,∴对称轴的直线为,顶点D点的坐标为(m,m2+1),点C(0,1),∵对称轴的直线x=m与x轴相交于点B,∴B(m,0),∴BC2=m2+12=m2+1,BD2=(m2+1)2=m4+2m2+1,CD2=m2+(m2+1﹣1)2=m4+m2,∵BC2+CD2=m2+1+m4+m2=m4+2m2+1,∴BC2+CD2=BD2,∴△BCD是直角三角形,∠BCD=90°,∴BC⊥AD.19.【解答】解:(1)令y=0,则=0,解得x=6或x=﹣4,∴A(﹣4,0),B(6,0),令x=0,则x=﹣3,∴C(0,﹣3),∴BC=3;(2)将点A(﹣4,0)代入y=x+b,∴﹣4+b=0,解得b=4,∴y=x+4,∴D(0,4),联立方程组,解得或,∴E(14,18),设P(t,t+4)(﹣4<t<14),∵PQ∥y轴,∴Q(t,t2﹣t﹣3),∴PQ=t+4﹣(t2﹣t﹣3)=﹣t2+t+7,∵CD=7,∴=﹣t2+t+1=﹣(t﹣5)2+,∴当t=5时,有最大值;(3)∵y==﹣(x﹣1)2﹣,∴平移后的抛物线解析式为y=﹣(x+3)2﹣,∴抛物线的对称轴为x=﹣3,设M(﹣3,m),∵A(﹣4,0),C(0,﹣3),∴AC=5,∴A'C'=5,∵△A'C'M是以点A'为直角顶点的等腰直角三角形,∴A'M=5,设△ACD沿x轴向左平移2a个单位长度,则沿y轴向下平移a个单位长度,∴A'(﹣4﹣2a,﹣a),C'(﹣2a,﹣3﹣a),∴=5①,C'M=,∵C'M=A'C',∴=5②,联立①②可得或,∴M(﹣3,3)或(﹣3,﹣2).20.【解答】解:(1)∵a=b=c,∴原方程为x2+x=0,即x(x+1)=0,解得:x1=0,x2=﹣1.(2)∵方程(a+c)x2+2bx+(a﹣c)=0有两个相等的实数根,∴Δ=(2b)2﹣4(a+c)(a﹣c)=4b2﹣4a2+4c2=0,∴a2=b2+c2.∵a、b、c分别为△ABC三边的长,∴△ABC为直角三角形.21.【解答】解:(1)设AB的长为x米,则BC的长为(24﹣3x)米,根据题意得:x(24﹣3x)=45,解得x1=3,x2=5,当x=3时,BC=24﹣3x=15,符合题意,当x=5时,BC=24﹣3x=9,符合题意,∴AB的长是3米或5米;(2)设AB的长为m米,则BC的长为(24﹣3m+1+1)米,根据题意得:m(24﹣3m+1+1)=56,解得m1=,m2=4,当m=时,BC=24﹣3m+1+1=12,符合题意,当m=4时,BC=24﹣3m+1+1=14,符合题意;∴AB的长是米或4米;(3)能围成面积比45平方米更大的花圃,理由如下:设AB的长为x米,围成面积为w平方米,∵墙的最大可用长度为a为15米,∴24﹣3x≤15,解得x≥3,根据题意得w=x(24﹣3x)=﹣3x2+24x=﹣3(x﹣4)2+48,∵﹣3<0,x≥3,∴x=4时,w取最大值,最大值为48平方米,此时24﹣3x=24﹣3×4=12,答:当AB=4,BC=12时,能围成面积比45平方米更大的花圃,最大面积是48平方米.22.【解答】解:(1)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴二次函数的顶点坐标为(1,4),故答案为:(1,4),(2)由(1)得,二次函数的对称轴为直线x=1,B(0,3),点C与点B关于该二次函数图象的对称轴对称,∴点C(2,3),由图象可知,不等式ax2+bx+c>mx的x的取值范围:﹣1<x<2.故答案为:﹣1<x<2.(3)函数的对称轴为直线x=1,点C与点B关于该二次函数图象的对称轴对称,如图所示,|AM1﹣M1C|=|AM1﹣BM1|≤AB,连接AB与对称轴交于点M,此时|MA﹣MC|=|MA﹣MB|=AB,∴|MA﹣MC|的最大值为AB;设AB直线解析式为y=kx+b的图象经过A,B两点,∴,解得,∴直线AB解析式为y=3x+3,把x=1代入得,y=3×1+3=6,∴M的坐标为(1,6).23.【解答】解:(1)由题意:设y与x之间的函数关系式为:y=kx+b(k≠0),将(40,600),(80,200)代入得:,解得:,故答案为:y=﹣10x+1000;(2)由题意得:W=(x﹣40)y=(x﹣40)(﹣10x+1000)=﹣10x2+1400x﹣40000=﹣10(x﹣70)2+9000,∵a=﹣10<0,∴当x=70时,W有最大值,W最大值=9000(元).∴销售单价为70元时,销售这款文化衫每天所获得的利润最大,最大利润为9000元;(3)选择方案B,理由:方案A:由题意,40<x≤60,方案B:由y≥220,可得x≤78,∴75≤x≤78,∵a=﹣10<0,且对称轴为直线x=70,∵75﹣70<70﹣60,∴当x=75时,最大利润最高,∴选择方案B.24.【解答】解:(1)设抛物线l2的函数表达式为y=ax2+bx+c,当y=0时,由﹣x2+2x+3=0得x1=﹣1,x2=3,∴A(﹣1,0),B(3,0),把A(﹣1,0)、D(0,﹣3)、E(6,0)代入y=ax2+bx+c,得,解得,∴抛物线l2的函数表达式为y=x2﹣x﹣3.(2)如图1,设点N的横坐标为x(﹣1<x≤3),∴N(x,﹣x2+2x+3),M(x,x2﹣x﹣3),∴MN=(﹣x2+2x+3)﹣(x2﹣x﹣3)=﹣x2+x+6=﹣(x﹣)2+,∵<0,且﹣1<<3,∴当x=时,MN的最大值为.(3)存在,如图2,设抛物线l1的顶点为点R,作RQ⊥y轴交抛物线l2于点Q,∵y=﹣x2+2x+3=y=﹣(x﹣1)2+4,∴抛物线l1的对称轴为直线x=1,顶点为R(1,4),过点Q作PQ∥DB交直线x=1于点P,作四边形PQDB,BD交直线x=1于点H,抛物线y=x2﹣x﹣3,当y=4时,则x2﹣x﹣3=4,解得x1=﹣2,x2=7,∴Q(﹣2,4),∵∠QPR=∠BHP=∠BDO,∠PRQ=∠DOB=90°,RQ=OB=3,∴△PRQ≌△DOB(AAS),∴PQ=DB,∴四边形PQDB是平行四边形,∵PR=DO=3,∴P(1,7);如图3,设直线x=1交抛物线l2于点G,抛物线l2:y=x2﹣x﹣3,当x=1时,y=﹣﹣3=﹣5,∴G(1,﹣5),设抛物线l2与抛物线l1的另一个交点为点Q,由得,,∴Q(4,﹣5),作QP∥BD交直线x=1于点P,作四边形PQBD,BD交直线x=1于点H,连接GQ,则GQ∥x轴,且GQ=3,∴∠GPQ=∠RHB=∠ODB,∠PGQ=∠DOB=90°,GQ=OB=3,∴△PGQ≌△DOB(AAS),∴QP=BD,∴四边形PQBD是平行四边形,∵GP=OD=3,∴P(1,﹣8);如图4,平行四边形PBQD以BD为对角线,设点F是BD的中点,则F(,﹣),∴点Q与点P关于BD的中点F成中心对称,在(2)的条件下,直线MN为x=,∵B(3,0),∴直线x=平分OB,∴直线x=也平分BD,∴直线x=经过点F(,﹣),∴点Q与点P到直线MN的距离相等,∴点Q的横坐标为+(﹣1)=2,抛物线y=x2﹣x﹣3,当x=2时,y=×4﹣×2﹣3=﹣6,∴Q(2,﹣6),作DK∥x轴,作QK⊥DK交DK于点K,设DQ交直线x=1于点J,直线x=1交x轴于点I,则K(2,﹣3),∵∠DQK=∠DJI=∠BPI,∠K=∠PIB=90°,KD=IB=2,∴△PDK≌△PBI(AAS),∴QK=PI=3,∴P(1,3),综上所述,P(1,7),Q(﹣2,4)或P(1,﹣8),Q(4,﹣5)或P(1,3),Q(2,﹣6).。

2023-2024学年九年级(上)第一次月考数学试卷-(含答案)

2023-2024学年九年级(上)第一次月考数学试卷-(含答案)

2023-2024学年九年级(上)第一次月考数学试卷一.选择题(共10小题,共30分)1.(3分)用配方法解一元二次方程2x 2﹣3x ﹣1=0,配方正确的是()A .(x ﹣)2=B .(x ﹣)2=C .(x ﹣)2=D .(x ﹣)2=2.(3分)下列说法不正确的是()A .一组同旁内角相等的平行四边形是矩形B .一组邻边相等的菱形是正方形C .有三个角是直角的四边形是矩形D .对角线相等的菱形是正方形3.(3分)若关于x 的一元二次方程x 2﹣2x +kb +1=0有两个不相等的实数根,则一次函数y =kx +b 的大致图象可能是()A .B .C .D .4.(3分)如图,在菱形ABCD 中,CE ⊥AB 于点E ,E 点恰好为AB 的中点,则菱形ABCD 的较大内角度数为()A .100°B .120°C .135°D .150°5.(3分)某市“菜篮子工程”蔬菜基地2022年产量为100吨,预计到2024年产量可达121吨.设该基地蔬菜产量的年平均增长率为x ,则可列方程为()A.100(1+x)2=121B.121(1﹣x)2=100C.100(1+2x)=121D.100(1+x2)=1216.(3分)如图,在菱形ABCD中,∠A=60°,点E、F分别为AD、DC上的动点,∠EBF =60°,点E从点A向点D运动的过程中,AE+CF的长度()A.逐渐增加B.逐渐减小C.保持不变且与EF的长度相等D.保持不变且与AB的长度相等7.(3分)四边形ABCD的对角线AC,BD相交于点O,能判定它是矩形的是()A.AO=CO,BO=OD B.AB=BC,AO=COC.AO=CO,BO=DO,AC⊥DB D.AO=CO=BO=DO8.(3分)如图,平行四边形ABCD中,对角线AC,BD相交于点O,下列条件:(1)∠1+∠DBC=90°;(2)OA=OB;(3)∠1=∠2,其中能判定平行四边形ABCD是菱形的条件有()A.0个B.1个C.2个D.3个9.(3分)如图,矩形ABCD的对角线AC,BD交于点O,AB=6,BC=8,过点O作OE ⊥AC,交AD于点E,过点E作EF⊥BD,垂足为F,则OE+EF的值为()A.B.C.D.10.(3分)如图,在正方形ABCD中,对角线AC,BD交于点O,AG平分∠BAC交BD于G,DE⊥AG于点H.下列结论:①AD=2AE:②FD=AG;③CF=CD:④四边形FGEA是菱形;⑤OF=BE,正确的有()A.2个B.3个C.4个D.5个二.填空题(共5小题,共15分)11.(3分)一元二次方程x2=5x的根.12.(3分)如图,四边形ABCD是菱形,AC=24,BD=10,DH⊥AB于点H,则线段DH 的长为.13.(3分)若关于x的方程(k﹣1)x2+4x+1=0有实数解,则k的取值范围是.14.(3分)如图,在边长为2的正方形ABCD中,点E,F分别是边AB,BC的中点,连接EC,FD,点G,H分别是EC,FD的中点,连接GH,则GH的长度为.15.(3分)如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F是边BC上不与点B,C重合的一个动点,把△EBF沿EF折叠,点B落在B′处.若△CDB′恰为等腰三角形,则DB′的长为.三.解答题(共8小题,共75分)16.(16分)用恰当的方法解下列方程:(1)x2+4x﹣2=0;(2)4x2﹣25=0;(3)(2x+1)2+4(2x+1)+4=0;(4)(x﹣1)(x﹣3)=8.17.(8分)如图,在四边形ABCD中,AD∥BC,对角线BD的垂直平分线与边AD、BC分别相交于点M、N.(1)求证:四边形BNDM是菱形;(2)若BD=24,MN=10,求菱形BNDM的周长.18.(8分)关于x的一元二次方程2﹣3+=0有实数根.(1)求k的取值范围;(2)如果k是符合条件的最大整数,且一元二次方程(﹣1)2++﹣3=0与方程2﹣3+=0有一个相同的根,求此时m的值.19.(8分)如图,在菱形ABCD中,对角线AC,BD交于点O,过点A作AE⊥BC于点E,延长BC至F,使CF=BE,连接DF.(1)求证:四边形AEFD是矩形;(2)若AC=10,∠ABC=60°,则矩形AEFD的面积是.20.(8分)某旅行社的一则广告如下:甲公司想分批组织员工到延安红色旅游学习.(1)如果第一批组织40人去学习,则公司应向旅行社交费元;(2)如果公司计划用29250元组织第一批员工去学习,问这次旅游学习应安排多少人参加?21.(8分)如图,在菱形ABCD中,AB=3,∠DAB=60°,点E是AD边的中点,点M 是AB边上一动点(不与点A重合),延长ME交射线CD于点N,连接MD,AN.(1)求证:四边形AMDN是平行四边形;(2)填空:①当AM的值为时,四边形AMDN是矩形;②当AM的值为时,四边形AMDN是菱形.22.(8分)阅读探究:“任意给定一个矩形A,是否存在另一个矩形B,它的周长和面积分别是已知矩形周长和面积的一半?”(完成下列空格)(1)当已知矩形A的边长分别为6和1时,小亮同学是这样研究的:设所求矩形的两边分别是x和y,由题意得方程组,消去y化简得:2x2﹣7x+6=0,∵b2﹣4ac=49﹣48>0,∴x1=,x2=,∴满足要求的矩形B存在.(2)如果已知矩形A的边长分别为2和1,请你仿照小亮的方法研究是否存在满足要求的矩形B.(3)如果矩形A的边长为m和n,请你研究满足什么条件时,矩形B存在?23.(11分)四边形ABCD是正方形,△BEF是等腰直角三角形,∠BEF=90°,BE=EF,连接DF,G为DF的中点,连接EG,CG,EC.(1)问题发现如图1,若点E在CB的延长线上,直接写出EG与GC的位置关系及的值;(2)操作探究将图1中的△BEF绕点B顺时针旋转至图2所示位置,请问(1)中所得的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由;(3)解决问题将图1中的△BEF绕点B顺时针旋转,若BE=1,AB=,当E,F,D三点共线时,请直接写出CE的长.参考答案与试题解析一.选择题(共10小题,共30分)1.(3分)用配方法解一元二次方程2x2﹣3x﹣1=0,配方正确的是()A.(x﹣)2=B.(x﹣)2=C.(x﹣)2=D.(x﹣)2=【分析】化二次项系数为1后,把常数项﹣右移,应该在左右两边同时加上一次项系数﹣的一半的平方.【解答】解:由原方程,得x2﹣x=,x2﹣x+=+,(x﹣)2=,故选:A.2.(3分)下列说法不正确的是()A.一组同旁内角相等的平行四边形是矩形B.一组邻边相等的菱形是正方形C.有三个角是直角的四边形是矩形D.对角线相等的菱形是正方形【分析】利用正方形的判定、平行四边形的性质,菱形的性质,矩形的判定分别判断后即可确定正确的选项.【解答】解:A、一组同旁内角相等的平行四边形是矩形,正确;B、一组邻边相等的菱形是正方形,错误;C、有三个角是直角的四边形是矩形,正确;D、对角线相等的菱形是正方形,正确.故选:B.3.(3分)若关于x的一元二次方程x2﹣2x+kb+1=0有两个不相等的实数根,则一次函数y =kx+b的大致图象可能是()A.B.C.D.【分析】根据一元二次方程x2﹣2x+kb+1=0有两个不相等的实数根,得到根的判别式大于0,求出kb的符号,对各个图象进行判断即可.【解答】解:∵x2﹣2x+kb+1=0有两个不相等的实数根,∴△=4﹣4(kb+1)>0,解得kb<0,A.k>0,b=0,即kb=0,故A不正确;B.k>0,b<0,即kb<0,故B正确;C.k>0,b>0,即kb>0,故C不正确;D.k<0,b<0,即kb>0,故D不正确.故选:B.4.(3分)如图,在菱形ABCD中,CE⊥AB于点E,E点恰好为AB的中点,则菱形ABCD 的较大内角度数为()A.100°B.120°C.135°D.150°【分析】连接AC,证明△ABC是等边三角形,得出∠B=60°,则∠D=60°,∠BAD =∠BCD=120°,即可得出答案.【解答】解:连接AC,如图:∵四边形ABCD是菱形,∴AB=BC,∠BAD=∠BCD,∠B=∠D,AD∥BC,∴∠BAD+∠B=180°,∵CE⊥AB,点E是AB中点,∴BC=AC=AB,∴△ABC是等边三角形,∴∠B=60°,∴∠D=60°,∠BAD=∠BCD=120°;即菱形ABCD的较大内角度数为120°;故选:B.5.(3分)某市“菜篮子工程”蔬菜基地2022年产量为100吨,预计到2024年产量可达121吨.设该基地蔬菜产量的年平均增长率为x,则可列方程为()A.100(1+x)2=121B.121(1﹣x)2=100C.100(1+2x)=121D.100(1+x2)=121【分析】利用增长后的量=增长前的量×(1+增长率),设平均每次增长的百分率为x,根据“从100吨增加到121吨”,即可得出方程.【解答】解:由题意知,设该基地蔬菜产量的年平均增长率为x,根据2022年产量为100吨,则2023年蔬菜产量为100(1+x)吨,2024年蔬菜产量为100(1+x)(1+x)吨,预计2024年产量可达121吨,即:100(1+x)(1+x)=121或100(1+x)2=121.故选:A.6.(3分)如图,在菱形ABCD中,∠A=60°,点E、F分别为AD、DC上的动点,∠EBF =60°,点E从点A向点D运动的过程中,AE+CF的长度()A.逐渐增加B.逐渐减小C.保持不变且与EF的长度相等D.保持不变且与AB的长度相等【分析】证明△ABE≌△DBF(AAS),可得AE=DF,根据线段的和可知:AE+CF=AB,是一定值,可作判断.【解答】解:连接BD,∵四边形ABCD是菱形,∴AB=AD=CD,∵∠A=60°,∴△ABD是等边三角形,∴AB=BD,∠ABD=60°,∵DC∥AB,∴∠CDB=∠ABD=60°,∴∠A=∠CDB,∵∠EBF=60°,∴∠ABE+∠EBD=∠EBD+∠DBF,∴∠ABE=∠DBF,在△ABE和△DBF中,∵,∴△ABE≌△DBF(AAS),∴AE=DF,∴AE+CF=DF+CF=CD=AB,故选:D.7.(3分)四边形ABCD的对角线AC,BD相交于点O,能判定它是矩形的是()A.AO=CO,BO=OD B.AB=BC,AO=COC.AO=CO,BO=DO,AC⊥DB D.AO=CO=BO=DO【分析】根据平行四边形的判定,矩形的判定,菱形的判定逐个判断即可.【解答】解:A、∵OA=OC,OB=OD,∴四边形ABCD是平行四边形,不能推出四边形ABCD是矩形,故本选项不符合题意;B、根据AB=BC,AO=CO不能推出四边形ABCD是矩形,故本选项不符合题意;C、∵OA=OC,OB=OD,∴四边形ABCD是平行四边形,∵AC⊥BD,∴平行四边形ABCD是菱形,不能推出四边形ABCD是矩形,故本选项不符合题意;D、∵OA=OB=OC=OD,∴OA=OC,OB=OD,AC=BD,∴四边形ABCD是平行四边形,∵AC=BD,∴四边形ABCD是矩形,故本选项符合题意;故选:D.8.(3分)如图,平行四边形ABCD中,对角线AC,BD相交于点O,下列条件:(1)∠1+∠DBC=90°;(2)OA=OB;(3)∠1=∠2,其中能判定平行四边形ABCD是菱形的条件有()A.0个B.1个C.2个D.3个【分析】由平行四边形的性质、菱形的判定、矩形的判定即可得出结论.【解答】解:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,AD∥BC,∴∠1=∠BCO,若∠1+∠DBC=90°时,则∠BCO+∠DBC=90°,∴∠BOC=90°,∴AC⊥BD,∴四边形ABCD是菱形;(1)能判定平行四边形ABCD是菱形;若OA=OB,则AC=BD,∴四边形ABCD是矩形;(2)不能判定平行四边形ABCD是菱形;若∠1=∠2,则∠2=∠BCO,∴AB=CB,∴四边形ABCD是菱形;(3)能判定平行四边形ABCD是菱形;故选:C.9.(3分)如图,矩形ABCD的对角线AC,BD交于点O,AB=6,BC=8,过点O作OE ⊥AC,交AD于点E,过点E作EF⊥BD,垂足为F,则OE+EF的值为()A.B.C.D.=S△AOE+S△DOE,【分析】依据矩形的性质即可得到△AOD的面积为12,再根据S△AOD 即可得到OE+EF的值.【解答】解:∵AB=6,BC=8,∴矩形ABCD的面积为48,AC==10,∴AO=DO=AC=5,∵对角线AC,BD交于点O,∴△AOD的面积为12,∵EO⊥AO,EF⊥DO,=S△AOE+S△DOE,即12=AO×EO+DO×EF,∴S△AOD∴12=×5×EO+×5×EF,∴5(EO+EF)=24,∴EO+EF=,故选:C.10.(3分)如图,在正方形ABCD中,对角线AC,BD交于点O,AG平分∠BAC交BD于G,DE⊥AG于点H.下列结论:①AD=2AE:②FD=AG;③CF=CD:④四边形FGEA是菱形;⑤OF=BE,正确的有()A.2个B.3个C.4个D.5个【分析】①根据正方形的性质和角平分线的定义得:∠BAG=∠CAG=22.5°,由垂直的定义计算∠AED=90°﹣22.5°=67.5°,∠EAD=∠EAD=22.5°,得ED是AG的垂直平分线,则AE=EG,△BEG是等腰直角三角形,则AD=AB>2AE,可作判断;②证明△DAF≌△ABG(ASA),可作判断;③分别计算∠CDF=∠CFD=67.5°,可作判断;④根据对角线互相平分且垂直的四边形是菱形可作判断;⑤设BG=x,则AF=AE=x,表示OF和BE的长,可作判断.【解答】解:①∵四边形ABCD是正方形,∴∠BAD=90°,∠BAC=45°,∵AG平分∠BAC,∴∠BAG=∠CAG=22.5°,∵AG⊥ED,∴∠AHE=∠EHG=90°,∴∠AED=90°﹣22.5°=67.5°,∴∠ADE=22.5°,∵∠ADB=45°,∴∠EDG=22.5°=∠ADE,∵∠AHD=∠GHD=90°,∴∠DAG=∠DGA,∴AD=DG,AH=GH,∴ED是AG的垂直平分线,∴AE=EG,∴∠EAG=∠AGE=22.5°,∴∠BEG=45°=∠ABG,∴∠BGE=90°,∴AE=EG<BE,∴AD=AB>2AE,故①不正确;②∵四边形ABCD是正方形,∴AD=AB,∠DAF=∠ABG=45°,∵∠ADF=∠BAG=22.5°,∴△DAF≌△ABG(ASA),∴DF=AG,故②正确;③∵∠CDF=45°+22.5°=67.5°,∠CFD=∠AFE=90°﹣22.5°=67.5°,∴∠CDF=∠CFD,∴CF=CD,故③正确;④∵∠EAH=∠FAH,∠AHE=∠AHF,∴∠AEF=∠AFE,∴AE=AF,∴EH=FH,∵AH=GH,AG⊥EF,∴四边形FGEA是菱形;故④正确;⑤设BG=x,则AF=AE=x,由①知△BEG是等腰直角三角形,∴BE=x,∴AB=AE+BE=x+x=(+1)x,∴AO==,∴OF=AO﹣AF=﹣x=,∴==,∴OF=BE;故⑤正确;本题正确的结论有:②③④⑤;故选:C.二.填空题(共5小题,共15分)11.(3分)一元二次方程x2=5x的根x1=0,x2=5.【分析】先移项,然后通过提取公因式x对等式的左边进行因式分解.【解答】解:由原方程,得x2﹣5x=0,则x(x﹣5)=0,解得x1=0,x2=5.故答案是:x1=0,x2=5.12.(3分)如图,四边形ABCD是菱形,AC=24,BD=10,DH⊥AB于点H,则线段DH的长为.【分析】直接利用菱形的性质得出AO,DO的长,再利用三角形面积以及勾股定理得出答案.【解答】解:∵四边形ABCD是菱形,AC=24,BD=10,=×AC×BD=120,AO=12,OD=5,AC⊥BD,∴S菱形ABCD∴AD=AB==13,∵DH⊥AB,∴AO×BD=DH×AB,∴12×10=13×DH,∴DH=.故答案为:.13.(3分)若关于x的方程(k﹣1)x2+4x+1=0有实数解,则k的取值范围是k≤5.【分析】分k﹣1=0和k﹣1≠0两种情况,其中k﹣1≠0时根据题意列出关于k的不等式求解可得.【解答】解:当k﹣1=0时,方程为4x+1=0,显然有实数根;当k﹣1≠0,即k≠1时,△=42﹣4×(k﹣1)×1≥0,解得k≤5且k≠1;综上,k≤5.故答案为:k≤5.14.(3分)如图,在边长为2的正方形ABCD中,点E,F分别是边AB,BC的中点,连接EC,FD,点G,H分别是EC,FD的中点,连接GH,则GH的长度为1.【分析】方法一:连接CH并延长交AD于P,连接PE,根据正方形的性质得到∠A=90°,AD∥BC,AB=AD=BC=2,根据全等三角形的性质得到PD=CF=,根据勾股定理和三角形的中位线定理即可得到结论.方法二:设DF,CE交于O,根据正方形的性质得到∠B=∠DCF=90°,BC=CD=AB,根据线段中点的定义得到BE=CF,根据全等三角形的性质得到CE=DF,∠BCE=∠CDF,求得DF⊥CE,根据勾股定理得到CE=DF==,点G,H分别是EC,FD的中点,根据相似三角形的判定和性质定理即可得到结论.【解答】解:方法一:连接CH并延长交AD于P,连接PE,∵四边形ABCD是正方形,∴∠A=90°,AD∥BC,AB=AD=BC=2,∵E,F分别是边AB,BC的中点,∴AE=CF=×2=,∵AD∥BC,∴∠DPH=∠FCH,∵∠DHP=∠FHC,∵DH=FH,∴△PDH≌△CFH(AAS),PD=CF=,∴AP=AD﹣PD=,∴PE===2,∵点G,H分别是EC,FD的中点,∴GH=EP=1;方法二:设DF,CE交于O,∵四边形ABCD是正方形,∴∠B=∠DCF=90°,BC=CD=AB,∵点E,F分别是边AB,BC的中点,∴BE=CF,∴△CBE≌△DCF(SAS),∴CE=DF,∠BCE=∠CDF,∵∠CDF+∠CFD=90°,∴∠BCE+∠CFD=90°,∴∠COF=90°,∴DF⊥CE,∴CE=DF==,∵点G,H分别是EC,FD的中点,∴CG=FH=,∵∠DCF=90°,CO⊥DF,∴∠DCO+∠FCO=∠DCO+∠CDO=90°,∴∠FCO=∠CDO,∵∠DCF=∠COF=90°,∴△COF∽△DOC,∴=,∴CF2=OF•DF,∴OF===,∴OH=,OD=,∵∠COF=∠COD=90°,∴△COF∽△DOC,∴,∴OC2=OF•OD,∴OC==,∴OG=CG﹣OC=﹣=,∴HG===1,故答案为:1.15.(3分)如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F是边BC上不与点B,C重合的一个动点,把△EBF沿EF折叠,点B落在B′处.若△CDB′恰为等腰三角形,则DB′的长为16或4.【分析】根据翻折的性质,可得B′E的长,根据勾股定理,可得CE的长,根据等腰三角形的判定,可得答案.【解答】解:(i)当B′D=B′C时,过B′点作GH∥AD,则∠B′GE=90°,当B′C=B′D时,AG=DH=DC=8,由AE=3,AB=16,得BE=13.由翻折的性质,得B′E=BE=13.∴EG=AG﹣AE=8﹣3=5,∴B′G===12,∴B′H=GH﹣B′G=16﹣12=4,∴DB′===4(ii)当DB′=CD时,则DB′=16(易知点F在BC上且不与点C、B重合).(iii)当CB′=CD时,则CB=CB′,由翻折的性质,得EB=EB′,∴点E、C在BB ′的垂直平分线上,∴EC垂直平分BB′,由折叠,得EF也是线段BB′的垂直平分线,∴点F与点C重合,这与已知“点F是边BC上不与点B,C重合的一个动点”不符,故此种情况不存在,应舍去.综上所述,DB′的长为16或4.故答案为:16或4.三.解答题(共8小题,共75分)16.(16分)用恰当的方法解下列方程:(1)x2+4x﹣2=0;(2)4x2﹣25=0;(3)(2x+1)2+4(2x+1)+4=0;(4)(x﹣1)(x﹣3)=8.【分析】(1)利用公式法求解可得;(2)利用直接开平方法求解可得;(3)利用换元法求解可得;(4)整理成一般式,再利用公式法求解可得.【解答】解:(1)∵a=1,b=4,c=﹣2,∴△=42﹣4×1×(﹣2)=24>0,则x==﹣2±,即x1=﹣2+,x2=﹣2﹣;(2)∵4x2=25,∴x2=,解得x1=,x2=﹣;(3)令2x+1=a,则a2+4a+4=0,∴(a+2)2=0,解得a=﹣2,∴2x+1=﹣2,解得x1=x2=﹣1.5;(4)方程整理为一般式,得:x2﹣4x﹣5=0,解得:(x﹣5)(x+1)=0,则x﹣5=0或x+1=0,解得x1=5,x2=﹣1.17.(8分)如图,在四边形ABCD中,AD∥BC,对角线BD的垂直平分线与边AD、BC分别相交于点M、N.(1)求证:四边形BNDM是菱形;(2)若BD=24,MN=10,求菱形BNDM的周长.【分析】(1)证△MOD≌△NOB(AAS),得出OM=ON,由OB=OD,证出四边形BNDM 是平行四边形,进而得出结论;(2)由菱形的性质得出BM=BN=DM=DN,OB=BD=12,OM=MN=5,由勾股定理得BM=13,即可得出答案.【解答】(1)证明:∵AD∥BC,∴∠DMO=∠BNO,∵MN是对角线BD的垂直平分线,∴OB=OD,MN⊥BD,在△MOD和△NOB中,,∴△MOD≌△NOB(AAS),∴OM=ON,∵OB=OD,∴四边形BNDM是平行四边形,∵MN⊥BD,∴四边形BNDM是菱形;(2)解:∵四边形BNDM是菱形,BD=24,MN=10,∴BM=BN=DM=DN,OB=BD=12,OM=MN=5,在Rt△BOM中,由勾股定理得:BM===13,∴菱形BNDM的周长=4BM=4×13=52.18.(8分)关于x的一元二次方程2﹣3+=0有实数根.(1)求k的取值范围;(2)如果k是符合条件的最大整数,且一元二次方程(﹣1)2++﹣3=0与方程2﹣3+=0有一个相同的根,求此时m的值.【分析】(1)利用判别式的意义得到△=(﹣3)2﹣4k≥0,然后解不等式即可;(2)先确定k=2,再解方程2﹣3+2=0,解得x1=1,x2=2,然后分别把x=1和x=2代入元二次方程(﹣1)2++﹣3=0可得到满足条件的m的值.【解答】解:(1)根据题意得△=(﹣3)2﹣4k≥0,解得k≤;(2)满足条件的k的最大整数为2,此时方程2﹣3+=0变形为方程2﹣3+2=0,解得x1=1,x2=2,当相同的解为x=1时,把x=1代入方程(﹣1)2++﹣3=0得m﹣1+1+m﹣3=0,解得m=;当相同的解为x=2时,把x=2代入方程(﹣1)2++﹣3=0得4(m﹣1)+2+m﹣3=0,解得m=1,而m﹣1≠0,不符合题意,舍去,所以m的值为.19.(8分)如图,在菱形ABCD中,对角线AC,BD交于点O,过点A作AE⊥BC于点E,延长BC至F,使CF=BE,连接DF.(1)求证:四边形AEFD是矩形;(2)若AC=10,∠ABC=60°,则矩形AEFD的面积是25.【分析】(1)根据菱形的性质得到AD∥BC且AD=BC,等量代换得到BC=EF,推出四边形AEFD是平行四边形,根据矩形的判定定理即可得到结论;(2)根据全等三角形的判定定理得到Rt△ABE≌Rt△DCF(HL),求得矩形AEFD的面积=菱形ABCD的面积,根据等腰三角形的性质得到结论.【解答】(1)证明:∵四边形ABCD是菱形,∴AD∥BC,AD=BC,∵CF=BE,∴BC=EF,∴AD∥EF,AD=EF,∴四边形AEFD是平行四边形,∵AE⊥BC,∴∠AEF=90°,∴平行四边形AEFD是矩形;(2)解:∵AB=CD,BE=CF,∠AEB=∠DFC=90°,∴Rt△ABE≌Rt△DCF(HL),∴矩形AEFD的面积=菱形ABCD的面积,∵∠ABC=60°,∴△ABC是等边三角形,∵AC=10,∴AE=AC=5,AB=10,BO=5,∵AD=EF=10,∴矩形AEFD的面积=菱形ABCD的面积=×10×10=50,故答案为:50.20.(8分)某旅行社的一则广告如下:甲公司想分批组织员工到延安红色旅游学习.(1)如果第一批组织40人去学习,则公司应向旅行社交费28000元;(2)如果公司计划用29250元组织第一批员工去学习,问这次旅游学习应安排多少人参加?【分析】(1)首先表示出40人是平均每人的费用,进而得出总费用;(2)表示出每人平均费用为:800﹣10(x﹣30),进而得出等式求出答案.【解答】解:(1)∵人数多于30人,那么每增加1人,人均收费降低10元,∴第一批组织40人去学习,则公司应向旅行社交费:40×[800﹣(40﹣30)×10]=28000(元);故答案为:28000;(2)设这次旅游应安排x人参加,∵30×800=24000<29250,∴x>30,根据题意得:x[800﹣10(x﹣30)]=29250,整理得,x2﹣110x+2925=0,解得:x1=45,x2=65∵800﹣10(x﹣30)≥500,∴x≤60.∴x=45.答:这次旅游应安排45人参加.21.(8分)如图,在菱形ABCD中,AB=3,∠DAB=60°,点E是AD边的中点,点M 是AB边上一动点(不与点A重合),延长ME交射线CD于点N,连接MD,AN.(1)求证:四边形AMDN是平行四边形;(2)填空:①当AM的值为 1.5时,四边形AMDN是矩形;②当AM的值为3时,四边形AMDN是菱形.【分析】(1)求出△DNE≌△AME,根据全等及时向的性质得出NE=ME,根据平行四边形的判定得出即可;(2)①根据等边三角形的判定得出△ABD是等边三角形,根据等边三角形的性质求出DM⊥AB,根据矩形的判定得出即可;②求出△ABD是等边三角形,求出M和B重合,根据菱形的判定得出即可..【解答】(1)证明:∵点E是AD边的中点,∴AE=DE,∵四边形ABCD是菱形,∴DC∥AB,∴∠DNE=∠AME,在△DNE和△AME中,∴△DNE≌△AME(AAS),∴NE=ME,∵AE=DE,∴四边形AMDN是平行四边形;(2)解:①当AM=1.5时,四边形AMDN是矩形,理由是:连接BD,∵四边形ABCD是菱形,∴AD=AB=3,∵∠DAB=60°,∴△ADB是等边三角形,∴AD=BD=3,∵AM=1.5,AB=3,∴AM=BM,∴DM⊥AB,即∠DMA=90°,∵四边形AMDN是平行四边形,∴四边形AMDN是矩形,即当AM=1.5时,四边形AMDN是矩形,故答案为:1.5;②当AM=3时,四边形AMDN是菱形,理由是,此时AM=AB=3,即M和B重合,∵由①知:△ABD是等边三角形,∴AM=MD,∵四边形AMDN是平行四边形,∴四边形AMDN是菱形,故答案为:3.22.(8分)阅读探究:“任意给定一个矩形A,是否存在另一个矩形B,它的周长和面积分别是已知矩形周长和面积的一半?”(完成下列空格)(1)当已知矩形A的边长分别为6和1时,小亮同学是这样研究的:设所求矩形的两边分别是x和y,由题意得方程组,消去y化简得:2x2﹣7x+6=0,∵b2﹣4ac=49﹣48>0,∴x1=,x2=2,∴满足要求的矩形B存在.(2)如果已知矩形A的边长分别为2和1,请你仿照小亮的方法研究是否存在满足要求的矩形B.(3)如果矩形A的边长为m和n,请你研究满足什么条件时,矩形B存在?【分析】(1)利用求根公式即可求出方程的两根;(2)仿照(1)找准关于x的一元二次方程,由根的判别式△=﹣7<0,可得出方程无解,即不存在满足要求的矩形B;(3)仿照(1)找准关于x的一元二次方程,由根的判别式△≥0,可找出m、n之间的关系.【解答】解:(1)利用求根公式可知:x1==,x2==2.故答案为:;2.(2)设所求矩形的两边分别是x和y,根据题意得:,消去y化简得:2x2﹣3x+2=0.∵b2﹣4ac=(﹣3)2﹣4×2×2=﹣7<0,∴该方程无解,∴不存在满足要求的矩形B.(3)设所求矩形的两边分别是x和y,根据题意得:,消去y化简得:2x2﹣(m+n)x+mn=0.∵矩形B存在,∴b2﹣4ac=[﹣(m+n)]2﹣4×2mn≥0,∴(m﹣n)2≥4mn.故当m、n满足(m﹣n)2≥4mn时,矩形B存在.23.(11分)四边形ABCD是正方形,△BEF是等腰直角三角形,∠BEF=90°,BE=EF,连接DF,G为DF的中点,连接EG,CG,EC.(1)问题发现如图1,若点E在CB的延长线上,直接写出EG与GC的位置关系及的值;(2)操作探究将图1中的△BEF绕点B顺时针旋转至图2所示位置,请问(1)中所得的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由;(3)解决问题将图1中的△BEF绕点B顺时针旋转,若BE=1,AB=,当E,F,D三点共线时,请直接写出CE的长.【分析】(1)过G作GH⊥EC于H,推出EF∥GH∥DC,求出H为EC中点,根据梯形的中位线求出EG=GC,GH=(EF+DC)=(EB+BC),推出GH=EH=BC,根据直角三角形的判定推出△EGC是等腰直角三角形即可;(2)延长EG到H,使EG=GH,连接CH,过E作BC的垂线EQ,证△EFG≌△HDG,推出DH=EF=BE,∠FEG=∠DHG,求出∠EBC=∠HDC,证出△EBC≌△HDC,推出CE=CH,∠BCE=∠DCH,求出△ECH是等腰直角三角形,即可得出答案;(3)分两种情况:①CE在BC的上方,如图3,作辅助线,构建等腰直角三角形,求出cos∠DBE=,推出∠DBE=60°,证明△GDC≌△EBC(ASA),则EC=CG,DG=EB=1,从而得结论;②CE在BC的下方,如图4,同理可得结论.【解答】解:(1)EG⊥CG,;理由是:如图1,过G作GH⊥EC于H,∵∠FEB=∠DCB=90°,∴EF∥GH∥DC,∵G为DF中点,∴H为EC中点,∴EG=GC,GH=(EF+DC)=(EB+BC)=CE,即GH=EH=HC,∴∠EGC=90°,即△EGC是等腰直角三角形,;(2)结论还成立,理由是:如图2,延长EG到H,使EG=GH,连接CH,过E作BC的垂线EQ,延长CB交EQ于R,延长CD,交EH于N,在△EFG和△HDG中,,∴△EFG≌△HDG(SAS),∴DH=EF=BE,∠FEG=∠DHG,∴EF∥DH,同理得ER∥CD,∴∠1=∠2,∴∠1=∠2=90°﹣∠3=∠4,∴∠EBC=180°﹣∠4=180°﹣∠1=∠HDC,在△EBC和△HDC中,,∴△EBC≌△HDC(SAS).∴CE=CH,∠BCE=∠DCH,∴∠ECH=∠DCH+∠ECD=∠BCE+∠ECD=∠BCD=90°,∴△ECH是等腰直角三角形,∵G为EH的中点,∴EG⊥GC,,即(1)中的结论仍然成立;(3)分两种情况:①如图3,连接BD,过C作CG⊥EC,交ED的延长线于G,∵AB=,正方形ABCD,∴BD=2,Rt△BED中,cos∠DBE=,∴∠DBE=60°,∠BDF=30°∵tan∠BDE==,∴DE=BE=,∵∠ABD=45°,∴∠ABE=60°﹣45°=15°,∴∠EBC=90°+15°=105°,∵∠EDC=∠BDE+∠CDB=30°+45°=75°,∴∠CDG=180°﹣75°=105°,∴∠CDG=∠CBE,∵∠ECG=∠BCD=90°,∴∠DCG=∠BCE,∵BC=CD,∴△GDC≌△EBC(ASA),∴EC=CG,DG=EB=1,∴△ECG是等腰直角三角形,∴EG=CE,∵EG=ED+DG=+1,∴CE==;②如图4,连接BD,过C作CH⊥EC,交ED于H,同理得△DHC≌△BEC(ASA),∴EC=CH,DH=EB=1,同理可知:DE=,∴EH=DE﹣DH=﹣1,∵△ECH是等腰直角三角形,∴EH=CE,∴CE==;综上,CE的长为.。

2024-2025学年湖北省部分学校九年级(上)第一次月考数学试卷(含解析)

2024-2025学年湖北省部分学校九年级(上)第一次月考数学试卷(含解析)

2024-2025学年湖北省部分学校九年级(上)第一次月考数学试卷一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.一元二次方程4x2+x−3=0中一次项系数、常数项分别是( )A. 2,−3B. 0,−3C. 1,−3D. 1,02.解方程(x+1)2=3(1+x)的最佳方法是( )A. 直接开平方法B. 配方法C. 公式法D. 因式分解法3.抛物线y=−3x2+2x−1与y轴的交点为( )A. (0,1)B. (0,−1)C. (−1,0)D. (1,0)4.若关于x的一元二次方程(k−1)x2+x+1=0有实数根,则k的取值范围是( )A. k≥54B. k>54C. k>54且k≠1 D. k≤54且k≠15.若关于x的方程x2−kx−3=0的一个根是x=3,则k的值是( )A. −2B. 2C. −12D. 126.关于x的方程|x2−2x−3|=a有且仅有两个实数根,则实数a的取值范围是( )A. a=0B. a=0或a=4C. a>4D. a=0或a>47.在手拉手学校联谊活动中,参加活动的每个同学都要给其他同学发一条励志短信,总共发了110条,设参加活动的同学有x个,根据题意,下面列出的方程正确的是( )A. 12x(x+1)=110 B. 12x(x−1)=110 C. x(x+1)=110 D. x(x−1)=1108.已知函数y=ax2+bx+c的图象如图,那么关于x的方程ax2+bx+c+2=0的根的情况是( )A. 无实数根B. 有两个相等实数根C. 有两个同号不等实数根D. 有两个异号实数根9.二次函数y=ax2+bx+c,若ab<0,a−b2>0,点A(x1,y1),B(x2,y2)在该二次函数的图象上,其中x1<x2,x1+x2=0,则( )A. y1=−y2B. y1>y2C. y1<y2D. y1、y2的大小无法确定10.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列4个结论:①abc<0;②b>a+c;③2a−b=0;④b2−4ac<0.其中正确的结论个数是( )A. 1个B. 2个C. 3个D. 4个二、填空题:本题共5小题,每小题3分,共15分。

辽宁省铁岭地区部分学校2024-2025学年九年级上学期月考(一)数学试题(含答案)

辽宁省铁岭地区部分学校2024-2025学年九年级上学期月考(一)数学试题(含答案)

2024—2025年中学生能力训练数学阶段练习(一)时间:120分钟 满分:120分第一部分 选择题(共30分)一、选择题(本题共10小,每小题3分,共30分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列方程是关于的一元二次方程的是()A .B .C .D .2.用配方法解一元二次方程,配方后得到的方程是( )A .B .C .D .3.下列命题是真命题的是()A .对角线相等的平行四边形是菱形B .有一角为直角的四边形是矩形C .对角线互相垂直且相等的平行四边形是正方形D .矩形的对角线互相垂直平分且相等4.《九章算术》中的“折竹抵地”问题:“今有竹高二十尺,未折抵地,去本四尺,问折者高几何”意思是:现有竹子高20尺,折后竹尖抵地与竹子底部距离为4尺,问折处高几尺?如图所示,设竹子折断处离地尺,由题意可列方程为( )A .B .C .D .5.如图,点是矩形外一点,连接,过点作交分别于点..则的度数为( )A .12°B .18°C .22°D .28°x 26x =2340x x +-=3xy =212x x +=223x x -=()214x +=()214x -=()224x +=()222x -=x 222420x +=()222420x x =+-()322420x x -=-()222420x x +=-E ABCD AE E EG AE ⊥,AD BC ,F G 2118∠=︒1∠6.关于的一元二次方程有两个不相等的实数根,则的取值范围是()A .B .C .D .7.如图,在矩形中,点的坐标是,则的长是()A .3B .CD .48.如图,用一段长的围栏圈成一个一边靠墙(墙长)的矩形鸡舍,其面积为,在鸡舍侧面中间位置留一个宽的门(由其它材料成),则矩形鸡舍长为( )A .或B .或C .D .9.实数满足,则( )A .B .C .D .10.如图,在菱形中,,,分别是的中点,连接,且分别是的中点,连接,则的长为( )AB .2C.D .1第二部分 非选择题(共90分)二、填空题(每小题3分,共15分)11.一元二次方程的解是______.12.若是方程的一个实数根,则代数式的值为______.x 220x x m -+=m 1m <1m ≤1m >1m ≥OABC B ()1,3AC 10m 55m 215m 1m BC 5m 6m 2.5m 3m 5m3m ,,a b c 420a b c -+=240b ac ->240b ac -<240b a -≤240b ac -≥ABCD 60ABC ∠= 4AB =,E F ,AB AD ,CE CF ,M N ,CE CF MN MN 220x x +-=t 210x x --=22024t t +-13.如图,在矩形中,,,连接.分别以点为圆心,大于长为半径画弧,两相交于点,连接,相交于点.与相交于点,连接,.则的长为______.14.定义:如果和均是一元二次方程的根,则这个一元二次方程为对称方程,已知是对称方程,则______.15.如图,在矩形中,,.点为边上一动点(不与点重合),将绕点顺时针旋转得到.连接.则的最小值为______.三、解答题16.(每题5分,共10分)选择最佳方法解下列关于的方程:(1);(2).17.(本小题8分)已知是的三边长,,满足,求的值.18.(本小题8分)大连贝雕历史悠久,明代,大连手工艺人就已经开始把贝壳磨成细片镶嵌在家具,首饰盒上,某贝雕吊坠平均每月可以销售150件,每件盈利80元,通过市场调查发现,每件贝雕吊坠让利2元,则月销售量增加5件.为了增加月销售量,决定降价促销,如果每月要盈利11250元,求每件应降价为多少元?19.(本小题8分)如图1,在矩形,,,点是线段上的一个动点,连接.沿方向平移得到.(1)证明:四边形是平行四边形;ABCD 4AD =8AB =AC ,A C 12AC ,E F EF AB G CD H AH CG GH 1x =1x =-()200a bx c a ++=≠220x mx n ++=m n =ABCD 2AB =5AD =P BC ,A B AP P 90︒PQ CQ CQ x ()2290x +-=2420x x --=,,c a b Rt ABC V a c <22108410a b a b +--+-c ABCD 2AB =4BC =E BC AE ABE V BC A B E '''V AEE A ''(2)如图2,当点与点重合,点与点重合时,若四边形为菱形,求的长度.20.(本小题8分)某商场出售一种商品,在销售该商品一段时间后发现,售价为45元/件时,日销售量为55件;售价为50元/件时,日销售量为50件,并且日销售量(件)与每件售价(元)之间满足一次函数关系.(1)求与之间的函数关系式;(2)已知该商品成本价为27元/件,单件商品的利润率不能超过.若某日该商品日销售利润为1060元,请求出该日该商品的售价.21.(本小题8分)如图,在正方形中,,垂直平分,交与点,交与点.(1)求证:;(2)若,求的长.22.(本小题12分)若关于的方程的若干个解中,存在两个不相等的解,且这两个解为互为相反数,则称这两个解为这个方程的对称解,这个方程称为对称解方程.例如方程:和是方程的对称解,则为对称解方程.(1)下列方程是对称解方程的有______;①; ②; ③.A 'D B 'c AEE D 'BE y x y x 80%ABCD 4AB =+FG CE AD G BC F BE DG CF +=BE BF =DG x 2x =2x =-240x -=240x -=340x x -=2210x x +-=41x=(2)已知关于的方程恰好是对称解方程,若函数与轴交于两点(点在点的左侧),与轴交于点,求的面积;(3)已知为一元二次方程为常数)的对称解,当.试求的值.23.(本小题13分)如图1,在菱形中,,射线以点为旋转中心,从位置开始逆时针旋转,旋转角为,点E 与点C 关于成轴对称,连接并延长与交于点F ,连接.(1)试判断的形状,并说明理由;(2)当点为中点时,求此时旋转角的度数;(3)若,直接写出的值.数学阶段练习(一)参考答案(北师版)一、选择题BBCDD ACCDA二、填空题11., 12.2025 13.14.1 15三、解答题16.解:(1).或,,;(2),,.x 21x b +=21y x b =+-x ,A B A B y C ABC V 12,x x 20(,,ax bx c a b c ++=20a c +=2212x x +ABCD 120ABC ∠=︒BM B BC ()0120αα︒<<︒BM AE BM ,,CE CF DF CEF V E AF α57AE AF =BF DF12x =-21x =()2290x +-=()229.x ∴+=23,x ∴+=±23x ∴+=23x +=-11x ∴=25x =-2420x x --=24 2.x x ∴-=24424x x ∴-+=+()226x ∴-=2x ∴-=12x ∴=+22x =-17.,,.是的三边长,,为的斜边.18.解:设每件降价元,则每件的利润为元,每月可售出件,根据题意得:整理得:.解得:,(不符合题意,舍去).答:每件应降价30元.19.(1)沿方向平移得到.,.四边形是平行四边形:(2),四边形为菱形在中,20.解:(1)由题意,设一次函数的关系式为.由题意可得,所求函数关系式为.(2)由题章可得,.,.单件商品的利润率不能超过不符合题意,舍去答:该日该商品的售价为每件47元,21.(1)证明:过点作于点,正方形,,.22108410a b a b +--+= ()()22540,a b ∴-+-=5a ∴=4b =,,a b c R ABC V a c <c ∴Rt ABC V c ∴===x ()80x -15052x ⎛⎫+⨯ ⎪⎝⎭()80150511250.2x x ⎛⎫-+⨯= ⎪⎝⎭2203000x x --=130x =210x =-ABE V BC A B E '''V AE A E ''∴=AE A E ''∥∴AEE A ''2AB = 4BC = AEF D '4AE AD BC ∴===Rt ABE V 90B ∠= 222,AB BE AE ∴+=BE ∴==y kx b =+4555.5050k b k b +=⎧⎨+=⎩1.100k b =⎧∴⎨=⎩∴100y x =-+()()271001060x x --+=180x ∴=247x = 80%48.6x ∴≤180x ∴=47x ∴=G GM BC ⊥M 90GMF ∴∠= 90FCM CF ∴∠+∠= ABCD BC CD ∴=90EBC D DCB ∠=∠=∠=四边形为矩形,.,,,.又.又是的垂直平分线又(2)解:设,又,又在中,,22.(1)①③(2)的方程恰好是对称解方程.,又函数与轴的交点为,与轴的交点为的面积为(3)为一元二次方程为常数)的对称解,23.(1)等边三角形证明:连接四边形是菱形,关于对称,,,∴CDGM CD GM ∴=DG CM =GM BC ∴=.DF CE ⊥ 90FOC ∴∠= 90GFC FCO ∴∠+∠= FGM FCO ∴∠=∠90GMF B ∠=∠= (),CBE GMF AAS ∴≅V V .BE MF ∴=GF CE EF MF∴=CF CM FM =+ CF DG BE∴=+DG CM x ==BE BF = BE FM = 4AB =+122BF FM BE x ∴===+-122CF x =+122EF CF x ==++ Rt BEF V 90B ∠= 222BE BF EF+=4x ∴=4DG ∴=-x 21x b +=112b x -∴=212b x --=120x x += 0b ∴= 21y x b =+-x 1,02A ⎛⎫- ⎪⎝⎭1,02B ⎛⎫ ⎪⎝⎭y ()0,1C -ABC ∴V 111122⨯⨯=12,x x 20(,,ax bxc a b c +=120b x x a ∴+=-=12c x x a⋅=0b ∴=0a ac += 2a c ∴=-1212c x x a ∴⋅==-()222121212120212x x x x x x ⎛⎫∴+=+-=-⨯-= ⎪⎝⎭BE ABCD AB BC∴=,E C BM BC BE ∴=FE FC =AB BE ∴=BAE BEA∴∠=∠在四边形中,又是等边三角形.(2)连接为中点又是等边三角形,,在菱形中,又与重合平分旋转角(3当在点同时,过点作与点设,,由轴对称可得,在中,BC BE = BEC BCE∴∠=∠ABCF 120ABC ∠=2360120240BAE AEC BCE AEC ︒︒︒∴∠+∠+∠=∠=-=120AEC ︒∴∠=60CEF ︒∴∠=FE FC = CFF∴V AC E AF AE EF∴=CEF V CE CF EF∴==AE CE ∴=CE EF =EAC ECA ∴∠=∠ECF EFC∠=∠22180ECA ECF ∴∠+∠= 90ACF ∴∠=ABCD AC BD ⊥90AOD ∴∠=//BD CF ∴60BDC DFC ∴∠=∠=60ECF = ∠EC ∴CD BM CD ⊥ BM ∴DBC ∠∴30α=,E F A B BH AF ⊥H57AE AF =5AE k =7AF k =2EF k =AB BE = 52AH HE k ∴==92HF k ∴=30HFB ∠= Rt BHF V BH ∴=和是等边三角形,,在中当在点异侧时,过点作与点设,,由轴对称可得,在中和是等边三角形,,在中.222BF BH HF =+BF ∴=BCD V CEF V BC CD ∴=CE CF =BCE DCF∠=∠,BCE DCF ∴≅V V .DF BE ∴=Rt BHE V 222BE BH HE =+BE ∴=BF BF DF BE ∴===.E F A B BH AE ⊥H 57AE AF =5AE k =7AF k =12EF k =AB BE = 52AH HE k ∴==192HF k ∴=30HFB ∠= Rt BHFV BH k ∴=222BF BH HF =+BF ∴=BCD V CEF V BC CD ∴=CE CF =BCE DCF ∠=∠,BCE DCF ∴≅V V .DF BE ∴=Rt BHE V 222BE BH HE =+BE ∴=BF BF DF BE ∴==。

九年级数学月考试题

九年级数学月考试题

九年级数学试卷说明:全卷共8页,24题,总分120分,考试时间为120分钟。

一、精心选一选:(本大题共10小题,每小题3分,共30分。

每小题给出四个答案,其中只有一个是正确的,请把正确的答案代号填入相应空格内。

)1、若的值为则的解为方程10522++=-+a a ,x x a ( ) A 、12 B 、6 C 、9 D 、162、顺次连结任意四边形四边中点所得的四边形一定是( )A 、平行四边形B 、矩形C 、菱形D 、正方形 3.下面性质中菱形有而矩形没有的是( )(A )邻角互补(B )内角和为360°(C )对角线相等 (D )对角线互相垂直 4、在下列命题中,正确的是( )A .有一组邻边相等的平行四边形是菱形B .有一个角是直角的四边形是矩形C .一组对边平行的四边形是平行四边形D .对角线互相垂直的四边形是正方形 5.如图,直角三角板的直角顶点落在直尺边上,若∠1=56°,则∠2的度数为( )6.若px 2-3x-p=0是关于x 的一元二次方程,则( ).A .p=1B .p ≠0C .p>0D .p 为任意实数7.如图,菱形ABCD 的边长为4,过点A 、C 作对角线AC 的垂线,分别交CB 和AD的延长线于点E 、F ,AE=3,则四边形AECF 的周长为()8、下列方程中,一元二次方程是( )(A ) 221x x +(B ) bx ax +2(C ) ()()121=+-x x (D ) 052322=--y xy x9、方程()()1132=-+x x 的解的情况是( )(A )有两个不相等的实数根 (B )没有实数根 (C )有两个相等的实数根 (D )有一个实数根 10.如图,已知菱形ABCD 的边长等于2,∠则对角线BD 的长为 ( )A . 1BC . 2D .二、耐心填一填(本大题共5小题,每小题3分,共15分。

请把答案填在横线上方。

) 11.如果21x x 、是方程06322=--x x 的两个根,那么21x x += ,21x x ⋅= 。

山西省大同市大同一中南校2024-2025学年上学期第一次月考九年级数学试卷

山西省大同市大同一中南校2024-2025学年上学期第一次月考九年级数学试卷

山西省大同市大同一中南校2024-2025学年上学期第一次月考九年级数学试卷一、单选题1.方程()()3240x x −−=的根是( ) A .13x =−,22x =− B .13x =,22x = C .13x =,22x =−D .13x =−,22x =2.抛物线2(3)5y x =−+的开口方向、顶点坐标分别是( ) A .开口向上;()3,5− B .开口向下;()3,5−− C .开口向上;()3,5D .开口向下;()3,5−3.解方程()()2513510x x x −−−=最适当的方法是( ) A .直接开平方法 B .配方法C .公式法D .因式分解法4.拋物线243y x x =−++的对称轴是( ) A .x =2B .2x =−C .4x =D .4x =−5.习近平总书记说:“读书可以让人保持思想活力,让人得到智慧启发,让人滋养浩然之气”.我校为响应全民阅读活动,打造书香校园,在校园里建立了图书角。

据统计,八(10)班第一周阅读128人次,阅读人次每周增加,到第三周累计阅读608人次,若阅读人次的周平均增长率为x 可得方程( ) A .128(1+x)=608B .128(1+x )2=608C .128(1+x)+128(1+x)2=608D .128+128(1+x)+128(1+x)2=6086.关于x 的一元二次方程22210x ax a ++−=的根的情况是( ) A .没有实数根B .有两个相等的实数根C .有两个不相等的实数根D .实数根的个数与实数a 的取值有关7.下表给出了二次函数()20y ax bx c a =++≠的自变量x 与函数值y 的部分对应值,则方程20ax bx c ++=的一个根的近似值可能是( )A .1.09B .1.19C .1.29D .1.398.若点()14A y −,,()21B y −,,3(1)C y ,在抛物线21(2)12y x =−+−上,则( ) A .132<y y y <B .213<<y y yC .321<y y y <D .312y y y <<9.二次函数y =ax 2+bx +c 的自变量x 与函数y 的对应值如下表:下列说法正确的是( ) A .抛物线的开口向下 B .当x >-3时,y 随x 的增大而增大C .二次函数的最小值是-2D .抛物线的对称轴是直线x =-5210.如图,抛物线()210:+=+L y ax bx c a ≠与x 轴只有一个公共点A (1,0),与y 轴交于点B(0,2),虚线为其对称轴,若将抛物线向下平移两个单位长度得抛物线2L ,则图中两个阴影部分的面积和为( )A .1B .2C .3D .4二、填空题11.方程32=2x x x ++()()的解为 .12.二次函数2=23y x x −−的顶点坐标是 ,与y 轴的交点坐标是 .13.汽车刹车后行驶的距离y (单位:m )关于行驶的时间x (单位:s )的函数解析式是:2156s x x =−,汽车刹车后前进了 米才能停下来.14.三角形的两边长分别是3和4,第三边长是方程x 2﹣13x+40=0的根,则该三角形的周长为 .15.如图,抛物线2824277y x x =−++与x 轴交于A 、B 两点,与y 轴交于C 点,P 为抛物线对称轴上动点,则PA PC +取最小值时,点P 坐标是 .三、解答题 16.解下列方程: (1)22480x x +−=; (2)262−+=−x ; (3)22530x x +−=17.已知关于x 的一元二次方程22240x mx m ++−=. (1)求证:无论m 为何值,该方程总有两个不相等的实数根. (2)若该方程的两个根为p 和q ,且满足0pq p q −−=,求m 的值.18.如图,直线12y x =−−交x 轴于点A ,交y 轴于点B ,抛物线22y ax bx c =++顶点为A ,且经过点B .(1)求该抛物线的解析式; (2)求当12y y ≥时,x 的取值范围.19.平安路上,多“盔”有你,在“交通安全宣传月”期间,某商店销售一批头盔,进价为每顶40元,售价为每顶68元,平均每周可售出100顶.商店计划将头盔降价销售,每顶售价不高于58元,经调查发现:每降价2元,平均每周可多售出40顶.设每顶头盔降价x 元,平均每周的销售量为y 顶.(1)每顶头盔降价x 元后,每顶头盔的利润是 元(用含x 的代数式表示); (2)平均每周的销售量y (顶)与降价x (元)之间的函数关系式是 ; (3)若该商店希望平均每周获得4000元的销售利润,则每顶头盔应降价多少?20.如图,利用一面墙(墙的长度不超过45m ),用79m 长的篱笆围成一个矩形场地,并且与墙平行的边留有1m 宽建造一扇门方便出入(用其他材料),设m AB x =,矩形ABCD 的面积为2m y .(1)请求出y 与x 之间的函数关系式,并写出x 的取值范围; (2)怎样围才能使矩形场地的面积为2750m ?(3)当x 为何值时,矩形场地的面积最大?最大值为多少平方米? 21.阅读与思考下面是小宇同学的数学小论文,请仔细阅读并完成相应的任务:用函数观点认识一元二次方程根的情况,我们知道,一元二次方程()200ax bx c a ++=≠的根就是相应的二次函数()20y ax bx c a =++≠的图象与x 轴交点的横坐标.抛物线与x 轴的交点有三种情况:有两个交点、有一个交点、无交点.与此相对应,一元二次方程的根也有三种情况:有两个不相等的实数根、有两个相等的实数根、无实数根.因此可用抛物线与x 轴的交点个数确定一元二次方程根的情况.下面根据抛物线的顶点坐标24,24b ac b aa ⎛⎫−− ⎪⎝⎭和一元二次方程根的判别式24Δb ac =−分别分0a >和0a <两种情况进行分析:(i )0a >时,拋物线开口向上:①当2Δ40b ac =−>时,有240ac b −<.0a >,∴顶点纵坐标2404ac b a−<.∴顶点在x 轴的下方,犹物线与x 轴有两个交点(如图①).∴—元二次方程()200ax bx c a ++=≠有两个不相等的实数根.②当2Δ40b ac =−=时,有240.−=ac b 0a >,∴顶点纵坐标2404ac b a−=.∴顶点在x 轴上,抛物线与x 轴有一个交点(如图②).∴—元二次方程()200ax bx c a ++=≠有两个相等的实数根.③当2Δ40b ac =−<时,L (ii )0a <时,抛物线开口向下:… 任务:(1)请参照小论文中当0a >时①②的分析过程,写出(ii )中当0a <,Δ0>时,一元二次方程根的情况的分析过程,并画出相应的示意图;(2)实际上,除一元二次方程外,初中数学还有一些知识也可以用函数观点来认识,例如:可用函数观点来认识一元一次方程的解,请你再举出一例22.如图所示是隧道的截面由抛物线和长方形构成,长方形的长是12m ,宽是4m .按照图中所示的直角坐标系,抛物线可以用y =16−x 2+bx +c 表示,且抛物线上的点C 到OB 的水平距离为3m ,到地面OA 的距离为172m .(1)求抛物线的函数关系式,并计算出拱顶D 到地面OA 的距离;(2)一辆货运汽车载一长方体集装箱后高为6m ,宽为4m ,如果隧道内设双向车道,那么这辆货车能否安全通过?(3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m ,那么两排灯的水平距离最小是多少米?23.如图,已知二次函数23y ax bx =++的图象交x 轴于点()1,0A ,()3,0B ,交y 轴于点C .(1)求这个二次函数的解析式:(2)点P 是直线BC 下方抛物线上的一动点,求BCP 面积的最大值,并求出此时点P 的坐标.。

人教版九年级上期数学第二次月考试题用.doc

人教版九年级上期数学第二次月考试题用.doc

D| P I-H人教版九年级(上)数学月考试题—*、选择题(每题3分,共30分)1.A.2.A.3.A.一元二次方程x2 + px-2 = 0的一个根为2,则〃的值是()1 B.2 C. —1 D. —2关于x的一元二次方程(Z:-l)x2 + 2x-2 = 0有两个实数根,则£的取值范围是()k^-B. k>LC. 丄且k知D. k>-且PHI2 2 2 2 兀],£是一元二次方程2x2 -7% + 6 = 0的两个根,则兀]+兀2的值是(7 7-7 B. 7 C. -- D. —2 2如图1,将/?rAABC绕直角顶点C顺时针旋转90。

,得到8饥,连接)4.AA〔若Z1 二20。

,则ZB二( A.5.是A.6.)A'C 70° B. 65° C. 55° D. 60°抛物线y = F向右平移2个单位,再向上平移3个单位后得到的解析式()^=(X +2)2+3 B. y = (x —2尸+3 C. y = (x + 2)2-3 D. y = (x-2)2-3 如图2,小明在一次推铅球的过程中发现:铅球行进高度y(m)与水平距离x(m)Z间的关系为), = _右(兀_4)2+3,由此可知铅球推出的距离是(A. 10B. 12C. 8D. 97. 已知点(兀],牙),(兀2,旳)均在抛物线);=x2-2±,下列说法正确的是()A.若X 二%,则x\ = x2B.若 %! =- x2,则y{ =~ y2C.若x2>Xj >0,则y, > y2D.若x l<x2<0,则y l > y28.A.B.C.下列说法正确的是()顶点在圆周上的角是圆周角圆心角的度数等于圆周角度数的2倍等弧所对的圆周角相等D. 平分弦的肓径垂盲于弦,并且平分弦所对的两条弧9. 如图3,在OO中,直径AB=8, ZA0D=120° , C为弧BD的中点,在ABA. 4A/210. 如图4,OC±一点,上找一点P,使PC+PD最知],其最短距离是()B. 4^3C. 4D. 8OC经过原点O,并与处标轴交于A、D两点,B为)已知Z0BA=30° , D(0, 2),则圆心C的坐标是(A. (■半,1)B・ (y,D C.(」¥)D. (-y,1)m.AAVPB二、11.填空题(每题3分,共18分)写出两个根为・2, 5的一元二次方程12.二次函数y = ax2+(a2-3a-4)x-12a的图像关于y轴对称,并有最大值,则沪13. 如图5, /?rAABC 中,ZACB=90° , ZA=a,将AABC 绕顶点C顺时针旋转后得AEDC,点D在AB边上,则旋转角的大小为 ________________ ・(用a表示)14. 若点(a,n)> (b,n)在函数y =十-3尤+加的图像上(aHb),则a+b= _________ .15. ____________________________________________________________________ 已知鬪内接等腰AABC中,底边BC=8,鬪的半径为5,则BC边上的高为 __________________ 16. 二次函数『=ax2 +bx + c(aHO)图像如图6,下列结论小,正确的是 _________ (填番号).①abc>0 @2a+b=0 ③当mH 1 时,a + b> am2 +hm④若avj+方兀]2 =妙2? +厉「,且兀|工兀2,则兀|+兀2=2⑤a~b+c>0①用配方法解:X2-5X-4=0 ②选择适当方法求解:3x(x-2) = 4-2x18. 在正方形网格中,AABC三个顶点都在格点上,(6分)(1)画岀AABC绕点0逆时针旋转90°后的△AEG;(2)画出△ 4也关于点0的中心对称图形厶A2B2C219. 关于x的一元二次方程F _ 2兀+ 2£ +1 = 0的两个根若2召+乞2=£2,求k的值.(8分)20. 某工厂今年1刀份收入为100万元,1至3刀生产收入以相同的百分率逐刀增长,累计达364万元,求2,3月牛产收入的月增长率.(6分)(参考量:V164 M.9 J11.56=3.4)21. 边长为1的正方形ABCD绕点A逆时针旋转30°得到正方形ABQD,并与CD交于点H,D1三、解答题(共72分)17. 解方程(8分)如图8, (8分)(1)求证:B、H = DH(2)求阴影部分的面积22. 如图9是抛物线的拱桥,当拱顶离水面2m时,水面宽4m,当水面下降1m,水面宽度增加多少?(8分)23. 如图10, AB是的直径,弦CD丄AB于点E,点M在OO±, MD恰好经过圆心O,连接MB, (8分)(1)若CD=16, BE=4,求00 的直径;(2)若ZM=ZD,求ZD的度数.24. 水果店王阿姨到水果批发市场打算购进一种水果销售,经过还价,实际价格每千克比原來少2元,发现原来买这种水果80千克的钱现在可买88千克,(8分)(1)求现在实际购进这种水果每千克多少元?(2)王阿姨准备购进这种水果销售,若这种水果的销售量y (千克)与销售x (元/千克)满足如图11 所示的一次函数关系,请你帮王阿姨拿个主意,将这种水果的销售价定为多少时,所获利润故多?是多少?25. 如图12,抛物线q:y = mx2~2mx—3m (m<0)的顶点为M, A/x轴交于A、B两点,与3y轴交于点D,已知C(0, 一一), (12分)2(1)求经过A, B, C三点的抛物线c2的解析式.(2)在第四象限内能否在抛物线c?上找一点P,使得APBC的而积最大?若存在,求出APBC的最大面积;若不存在,请说明理由.(3) 当△BDM为&△时,求m的值.InSE。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级数学月考(一)姓名________ 学号 ___________________ 成绩___________________
一、精心选一选,相信自己的判断!(每小题3分,共36分)
1、下列关系式中,属于二次函数的是(x为自变量)()
A y=-x2
B y = A/X2 -1
C y = —7
D y = a2x2
'8 - x2
2、当m不为何值时,函数y =(加一2)兀2+4兀—5 (m是常数)是二次函数()
A -2
B 2
C 3D-3
3、抛物线y二1的顶点坐标是().
A (0, 1)
B (0, 一1)
C (1, 0)
D (— 1, 0)
4、y = x2^2的对称轴杲育线()
A x=2
B x=0
C y 二0
D y 二2
5、二次函数y = + 一4兀+ 7的最/ 卜值为()
A 2
B -2
C 3 D-3
6、经过原点的抛物线是()
A y=2x2+x
B y = 2(x4-1)2
C y 二2x^1
D y 二
2x'+l
7、己知二次函数y = 3(x-2)2+l,当x二3时,y的值为()
A 4
B -4 C3 D - 3
9、设抛物线y=x2+8x-k的顶点在x轴上,则k的值为()
A -16
B 16
C -8
D 8
10、在二次函数y=2x2+4x+5的图象上,依横坐标找到三点(一1,力),(-,y2)(-3-, _y3),则
2 2
你认为$1,$2,旳的大小关系应为()
A-J1>J2>J3 Bj2刁3刁1 C-J3>Ji>j2
11、下列函数中,当x<0时,y随x的增大而减小的函数是(
A y=-3x
B y 二4x
C y =
D y=-x^
x
12、已知二次函数y = ax1 +bx + c (dHO)的图彖如图4所
示,有下列四个结论:®b < 0®c > O®/?2-4ac > 0 @ d—b + cvO,
其中正确的个数有()
A. 1个
B. 2个
C. 3个
D. 4个
二、耐心填一填:(把答案填放相应的空格里。

每小题4分,40分)。

13、二次两数L的开口方向是
14、抛物线);=-*(兀-2)2 +5的对称轴是_______ .这条抛物线的开口向______
15、用配方法将二次函数y = 3x2-2x-1化成y = a(x-h)2 +k的形式是_______________
16、已知二次函数y = /+加+ 3的图象的顶点的横坐标是1,则b二___________
17、二次函数〉,=-兀$+4兀的图彖的顶点坐标是____ ,在对称轴的右侧y随x的增大而.
18、抛物线尸4与直线x=4的交点坐标是 ________________ .
19、若二次两数尸mF的图彖经过点(一1, 2),则二次函数尸日#的解析式是_____ •
3
20、函数),=才(兀2-1)的自变量x的取值范围是_
21、两数尸9—4/,当尸___________ 时有最人值___
22、已知二次函数)=ax2 + bx + c的图象如图所示,
则 a 0,b 0,c 0, A 0o(填“〈”或“〉”)
三、细心做一做:(本大题共3小题,每小题6分,共18分。


23、求函数.尸-#+4犷3的图像的对称轴、顶点坐标及与x轴的交点坐标.;
24、已知抛物线与x轴交于点M (-1, 0)、N (2, 0),且经过点(1, 2),求这个函数的表达式;
25、已知抛物线的顶点为(1, -1),且过点(2, 1),求这个函数的表达式;
四、勇敢闯一闯:(本大题共2小题,每小题7分,共14分。

)
26、某商人如果将进货价为X元的商品按每件10元出售,每天町销售10()件,现采用提高售出价,减少进货虽的办法增加利润,已知这种商品每涨价1元其销售量就要减少10件,问他将售出价定为多少元时,才能使每天所赚的利润最大?并求出最人利润.
27、已知:如图,在Rt△肋C中,ZU90° ,殓6, AC=8f点〃在斜边肋上,分别作DE1AC, 〃尸丄傥;垂足分别为从F,得四边形化乙用设D&x, D&y.
(1)用含尸的代数式表示畀E 人
(2)求y与xZ间的函数关系式,并求出x的取值范围.
(3)设四边形处庐的面积为S,求出S的戢大值.
五、综合题;(本大题共2小题,每小题6分,共12分。

)
28、如图,在平面直角坐标系中,0B10A,且0B=20A,点A的坐标是(一1, 2).
(1)求点B的坐标;
(2)求过点A、0、B的抛物线的表达式;
(3)连接AB,在(2)中的抛物线上求出点P,使得S AAL^=S AA B0・
29、如图,在平面直角处标系屮,己知矩形肋〃的三个顶点〃(4, 0)、0(8, 0)、〃(& 8). 抛物线y=ax-f-bx过〃、Q两点.
(1)直接写出点A的坐标,并求出抛物线的解析式;
(2)动点P从点力出发.沿线段M向终点万运动,同时点0从点C出发,沿线段皿
向终点〃运动.速度均为侮秒1个单位长度,运动时间为广秒•过点"作PEIAB交胚于点E
①过点E作EFLAD于点F,交抛物线于点G.当t为何值时,线段%最长?
②连接用2.在点只Q运动的过程屮,判断冇几个时刻使得△做是等腰三和形?请直接写出相应的才值.。

相关文档
最新文档