用放缩法证明不等式
放缩法证明不等式
高考数学备考之放缩技巧证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。
这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一、裂项放缩 例1.(1)求∑=-nk k 12142的值; (2)求证:35112<∑=nk k. 解析:(1)因为121121)12)(12(21422+--=+-=-n n n n n ,所以122121114212+=+-=-∑=n n n knk (2)因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n knk 奇巧积累:(1)⎪⎭⎫ ⎝⎛+--=-<=1211212144441222n n n n n (4)25)1(123112111)11(<-++⨯+⨯++<+n n nn(5)nn n n 21121)12(21--=- (6) n n n -+<+221 (8) nn n n n n n 2)32(12)12(1213211221⋅+-⋅+=⋅⎪⎭⎫ ⎝⎛+-+-(13) 3212132122)12(332)13(2221nn n nnnnnn <-⇒>-⇒>-⇒>⋅-=⋅=+ (15))2(1)1(1≥--<+n n n n n说明:1、用放缩法证明不等式,放缩要适应,否则会走入困境.例如证明4712111222<+++n .由k k k11112--<,如果从第3项开始放缩,正好可证明;如果从第2项放缩,可得小于2.当放缩方式不同,结果也在变化.2、放缩法一般包括:用缩小分母,扩大分子,分式值增大;缩小分子,扩大分母,分式值缩小;全量不少于部分;每一次缩小其和变小,但需大于所求,第一次扩大其和变大,但需小于所求,即不能放缩不够或放缩过头,同时放缩后便于求和.例18 求证2131211222<++++n . 分析:此题的难度在于,所求证不等式的左端有多项和且难以合并,右边只有一项.注意到这是一个严格不等式,为了左边的合并需要考查左边的式子是否有规律,这只需从21n 下手考查即可. 证明:∵)2(111)1(11112≥--=-<⋅=n nn n n n n n , ∴ +⎪⎭⎫⎝⎛-+⎪⎭⎫ ⎝⎛-+<++++312121111131211222n 212111<-=⎪⎭⎫ ⎝⎛--+n n n201417. (12分)已知数列{}n a 满足111,31n n a a a +==+.(I)证明{12}n a +是等比数列,并求{}n a 的通项公式;(II)证明2111132n a a a +++<.【答案解析】解析:(I)∵131n n a a +=+11331111)223(22n n n n a a a a ++∴⇒+=+++=+ 1112132a a =+⇒= ∴{12}n a +是首项为32,公比为3的等比数列∴1*131333,2222n n n n n a a n N --⋅+==∈=⇒ (II)由(I)知,*13,2n n a n N -=∈,故 121213*********(13)n n a a a +++=++-+-- 12110331112()3333n n --+-≤+-+12111()11131331(1()).133323213nn n --=++++==⋅-<- 例2.(1)求证:)2()12(2167)12(151311222≥-->-++++n n n (2)求证:nn412141361161412-<++++(3)求证:1122642)12(531642531423121-+<⋅⋅⋅⋅-⋅⋅⋅⋅++⋅⋅⋅⋅+⋅⋅+n nn(4) 求证:)112(2131211)11(2-+<++++<-+n nn解析:(1)因为⎪⎭⎫⎝⎛+--=+->-12112121)12)(12(1)12(12n n n n n ,所以)12131(211)12131(211)12(112--+>+-+>-∑=n n i ni(2))111(41)1211(414136116141222n nn -+<+++=++++(3)先运用分式放缩法证明出1212642)12(531+<⋅⋅⋅⋅-⋅⋅⋅⋅n nn ,再结合nn n -+<+221进行裂项,最后就可以得到答案 (4)首先n n n n n++=-+>12)1(21,所以容易经过裂项得到nn 131211)11(2++++<-+再证21212121222)1212(21-++=-++=--+<n n n n n n n而由均值不等式知道这是显然成立的,所以)112(2131211-+<++++n n例3.求证:35191411)12)(1(62<++++≤++n n n n解析:一方面:因为⎪⎭⎫ ⎝⎛+--=-=-<1211212144411222n n n n n ,所以 35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n knk 另一方面:1111)1(143132111914112+=+-=+++⨯+⨯+>++++n n n n n n当3≥n 时,)12)(1(61++>+n n n n n ,当1=n 时,2191411)12)(1(6n n n n ++++=++ ,当2=n 时,2191411)12)(1(6nn n n ++++<++ ,所以综上有35191411)12)(1(62<++++≤++n n n n。
2022年 《用“放缩法”证明不等式的基本方法》优秀教案
用“放缩法〞证明不等式的根本方法近年来在高考解答题中,常渗透不等式证明的内容,而不等式的证明是高中数学中的一个难点,它可以考察学生逻辑思维能力以及分析问题和解决问题的能力。
特别值得一提的是,高考中可以用“放缩法〞证明不等式的频率很高,它是思考不等关系的朴素思想和根本出发点, 有极大的迁移性, 对它的运用往往能表达出创造性。
“放缩法〞它可以和很多知识内容结合,对应变能力有较高的要求。
因为放缩必须有目标,而且要恰到好处,目标往往要从证明的结论考察,放缩时要注意适度,否那么就不能同向传递。
下面结合一些高考试题,例谈“放缩〞的根本策略,期望对读者能有所帮助。
1、添加或舍弃一些正项〔或负项〕例1、求证:证明:假设多项式中加上一些正的值,多项式的值变大,多项式中加上一些负的值,多项式的值变小。
由于证明不等式的需要,有时需要舍去或添加一些项,使不等式一边放大或缩小,利用不等式的传递性,到达证明的目的。
此题在放缩时就舍去了,从而是使和式得到化简2、先放缩再求和〔或先求和再放缩〕例2、函数f〔〕=,求证:f〔1〕f〔2〕…f〔n〕>n证明:由fn= =1-得f〔1〕f〔2〕…f〔n〕>此题不等式左边不易求和,此时根据不等式右边特征, 先将分子变为常数,再对分母进行放缩,从而对左边可以进行求和假设分子, 分母如果同时存在变量时, 要设法使其中之一变为常量,分式的放缩对于分子分母均取正值的分式。
如需放大,那么只要把分子放大或分母缩小即可;如需缩小,那么只要把分子缩小或分母放大即可。
3、先放缩,后裂项〔或先裂项再放缩〕例3、a=n ,求证:错误!错误!错误!错误!错误!错误!错误!错误!错误!错误!错误!错误!、n是正整n数,且1<i≤m<n1证明:n i A<m i A;2证明:1m n>1n m证明:1对于1<i≤m,且A =m·…·m-i1,,由于m<n,对于整数=1,2,…,i-1,有,所以2由二项式定理有:1m n=1C m C m2…C m n,1n m=1C n C n2…C n m,由1知m i A>n i A 1<i≤m<n ,而C=∴m i C i n>n i C i m1<m<n∴m0C=n0C=1,m C=n C=m·n,m2C>n2C,…,m m C>n m C,m m1C>0,…,m n C>0,∴1C m C m2…C m n>1C n C2m n2…C n m,即1m n>1n m成立以上介绍了用“放缩法〞证明不等式的几种常用策略,解题的关键在于根据问题的特征选择恰当的方法,有时还需要几种方法融为一体。
放缩法证明数列不等式之常数型与函数型(解析版)
放缩法证明数列不等式之常数型与函数型◆题型一:放缩法证明数列不等式之常数型方法解密:放缩法证明数列不等式属于数列大题中较有难度的一种题型.大部分是以证明某个数列和大于或小于一个常数类型,小部分是证明某个数列前n项和或者积大于或小于一个函数(下一专题详解).本专题我们来介绍最常见的常数类型.放缩的目的有两个:一是通过放缩使数列的和变换成比如裂项相消等可以简单求和的形式,这样可以方便比较大小.二是两者之间无法直接比较大小,这样我们需要通过寻找一个媒介,来间接比较大小.放缩的原则:放缩必然会导致数变大或者变小的情况,我们的原则是越精确越好.在证明过程中,为了使放缩更精确,往往会第一项不变,从第二项或者第三项开始放缩(例题会有讲解).放缩的方法:(1)当我们要证明多项式M<A时,我们无法直接证明两者的大小,这时我们可以将多项式M放大为N1,当我们能够证明N1<A,也间接证明了M<A.切不可将M缩小为N2,即使能够证明N2<A,M与A的关系无法得证.(2)当我们要证明多项式M>A时,这时我们可以将多项式M缩小为N1,当我们能够证明N1>A,也间接证明了M>A.需要放缩的多项式多以分式形式出现,要使得分式的值变大,就是将分母变小,常见是将分母减去一个正数,比如1.常见的放缩形式:(1)1n2<1n-1n=1n-1-1n n≥2;(2)1n2>1n n+1=1n-1n+1;(3)1n2=44n2<44n2-1=212n-1-12n+1;(5)1n =2n+n<2n-1+n=2-n-1+nn≥2;(6)1n =2n+n>2n+n+1=2-n+n+1;(7)1n =2n+n<2n-12+n+12=222n-1+2n+1=2-2n-1+2n+1;(8)2n2n-12=2n2n-12n-1<2n2n-12n-2=2n-12n-12n-1-1=12n-1-1-12n-1n≥2;(12)12n-1<2n-12n-1-12n-1=12n-1-1-12n-1n≥2.类型一:裂项放缩求证112+122+132+.....+1n2<2【解析】因为1n2<1n2-n=1n n-1=1n-1-1n n≥2,所以112+122+132+.....+1n2<112+1 22-2+132-3+.....+1n2-n=1+1-12+12-13+.....+1n-1-1n=2-1n<2,所以原式得证.为什么第一项没有经过放缩,因为分母不能为0,所以只能从第二项进行放缩.总结:证明数列之和小于常数2,式子左侧我们进行放大处理,各个分式分母减去n ,可以变换成裂项相消的形式,同时又能作为媒介与2比较大小.同时要注意从第几项开始放缩的问题.【变式1】求证112+122+132+.....+1n 2<74【解析】因为1n 2<1n 2-1=1n +1 n -1=121n -1-1n +1 n ≥2 ,所以112+122+132+....+1n 2<112+122-1+132-1+....+1n 2-1=1+121-13+12-14+13-15....+1n -1-1n =1+121+12-1n -1n +1 <74,所以原式得证. 总结:证明数列之和小于常数2,式子左侧我们进行放大处理,各个分式分母减去n ,可以变换成裂项相消的形式,同时又能作为媒介与2比较大小.同时要注意从第几项开始放缩的问题.【变式2】求证112+122+132+.....+1n 2<53【解析】因为1n 2<1n 2-1=1n +1 n -1=121n -1-1n +1 n ≥2 ,所以112+122+132+....+1n 2<112+122+132-1+....+1n 2-1=1+122+1212-14+13-15+14-16+....+1n -1-1n =1+14+1212+13-1n -1n +1 =53-121n +1n +1 <53,注意这是保留前两项,从第三项开始放缩.总结:通过例1和变式题我们发现,我们对分式的进行放大,分母我们依次减去的数是n ,1.不难发现,这些数递减,所得的结果也是递减的.说明减去的数越小,所得的结果越精确.同时通过两道变试题我们也发现,保留前几项不动,这样放缩的精度也会高一些.有些模拟题中,经常出现保留前2项到3项不动的情况.那么作为学生如何判断从第几项开始放缩呢?这需要学生去尝试和试错,如果第一项不行,那就尝试第二项,第三项.【经典例题2】已知a n =n 2,b n =n 2,设c n =1a n +b n,求证:c 1+c 2+⋯+c n <43. 【解析】已知a n =n2,b n =n 2,因为c n =22n 2+n=2n (2n +1)=42n (2n +1)<4(2n -1)(2n +1)=212n -1-12n +1 所以c 1+c 2+⋯+c n <23+213-15+15-17+⋯+12n -1-12n +1 =23+23-22n +1<43,故不等式得证.【经典例题3】已知数列a n 满足a 1=1,a n -1=n -1na n (n ≥2,n ∈N *),(1)求a n ;(2)若数列b n 满足b 1=13,b n +1=b n +1a 2n(n ∈N *),求证:b n <2512.【答案】(1)a n =n ;(2)证明见解析.【详解】(1)由题意a n a n -1=nn -1(n ≥2),∴a n =a 1×a 2a 1×a 3a 2×⋯×a n a n -1=1×21×32×⋯×nn -1=n ,a 1=1也适合.所以a n =n (n ∈N *);(2)由已知b 1=13<2512,b 2=b 1+1=43<2512,b 3=b 2+122=43+14=1912<2512,当n ≥3时,b n +1-b n =1n2<1n (n -1)=1n -1-1n ,因此b n +1=b 3+(b 4-b 3)+(b 5-b 4)+⋯+(b n +1-b n )<1912+12-13 +13-14 +⋯+1n -1-1n=2512-1n <2512,则b n =b n +1-1n2<2512综上,b n <2512.类型二:等比放缩所谓等比放缩就是数列本身并非为标准的等比数列,我们将数列的通项经过一定的放缩使之成为一个等比数列,然后再求和,我们通过例题进行观察了解.【经典例题4】证明:121-1+122-1+123-1+...+12n -1<53【解析】令a n =12n -1,则a n +1a n =2n -12n +1-1<2n -12n +1-2=12⇒a n +1<12a n又因为a 1=1,a 2=13,由于不等式右边分母为3,因此从第三项开始放缩,得a 1+a 2+⋯+a n <a 1+a 2+12a 2+⋯+12 n -2a 2=1+131-12n -1 1-12<53故不等式得证.【经典例题5】已知数列a n 满足:a 1=2,a n +1=2a n +2n +1,n ∈N *.(1)求证a n2n 是等差数列并求a n ;(2)求数列a n 的前n 项和S n ;(3)求证:1a 2-a 1+1a 3-a 2+1a 4-a 3+⋅⋅⋅+1a n +1-a n <12.【答案】(1)证明见解析,a n =n ⋅2n ;(2)S n =(n -1)2n +1+2;(3)证明见解析.【详解】(1)证明:a n +12n +1-a n 2n =2a n +2n +12n +1-a n 2n =2a n 2n +1+1-a n2n=1,∴a n 2n 是首项为a 121=1,公差为1的等差数列,∴a n 2n =1+(n -1)1=n ,∴a n =n ⋅2n .(2)∵S n =1×21+2×22+3×23+⋅⋅⋅⋅⋅⋅n ⋅2n ,∴2S n =1×22+2×23+3×24+⋅⋅⋅⋅⋅⋅n ⋅2n +1,两式相减得:-S n =21+22+23+⋅⋅⋅⋅⋅⋅2n -n ⋅2n +1,-S n =21-2n1-2-n ⋅2n +1,∴S n =(n -1)2n +1+2.(3)证明:∵a n =n ⋅2n ,∴a n +1=(n +1)⋅2n +1,∴a n +1-a n =(n +2)⋅2n ,当n ∈N *时,n +2>2,∴(n +2)⋅2n >2n +1,∴1(n +2)⋅2n <12n +1,∴1a 2-a 1+1a 3-a 2+1a 4-a 3+⋅⋅⋅⋅⋅⋅1a n +1-a n <122+123+124+⋅⋅⋅⋅⋅⋅12n +1=141-12 n1-12=121-12 n <12.【练习1】已知数列{a n }中,a 1=1,其前n 项的和为S n ,且当n ≥2时,满足a n =S 2nS n -1.(1)求证:数列1S n 是等差数列;(2)证明:S 21+S 22+⋯+S 2n <74.【答案】(1)证明见解析;(2)证明见解析【解析】(1)当n ≥2时,S n -S n -1=S 2nS n -1,S n -1-S n =S n S n -1,即1S n -1S n -1=1从而1S n 构成以1为首项,1为公差的等差数列.(2)由(1)可知,1S n =1S 1+n -1 ×1=n ,∴S n =1n .则当n ≥2时S 2n =1n 2<1n 2-1=121n -1-1n +1 .故当n ≥2时S 21+S 22+⋯+S 2n <1+121-13 +1212-14 +⋯+121n -1-1n +1=1+121+12-1n -1n +1 <1+12⋅32=74又当n =1时,S 21=1<74满足题意,故S 21+S 22+⋯+S 2n <74.法二:则当n ≥2时S 2n =1n 2<1n 2-n=1n -1-1n ,那么S 21+S 22+⋯+S 2n <1+14+12-13 +13-14 +⋯1n -1-1n =74-1n <74又当n =1时,S 21=1<74,当时,S 21=1<74满足题意.【练习2】已知数列a n 的前n 项和为S n ,且S n =12na n+a n -1.(1)求数列a n 的通项公式;(2)若数列2a 2n的前n 项和为T n ,证明:T n <32.【答案】(1)a n =n +1n ∈N * .(2)见解析【解析】(1)当n =1时,S 1=12a 1+a 1-1,即a 1=2,当n ≥2时,S n =12na n+a n -1①,S n -1=12n -1 a n -1+a n -1-1②,①-②,得:2a n =na n -n -1 a n -1+2a n -2a n -1,即na n =n +1 a n -1,∴a n n +1=a n -1n ,且a 12=1,∴数列a n n +1 是以每一项均为1的常数列,则a nn +1=1,即a n =n +1n ∈N * ;(2)由(1)得a n =n +1,∴2a 2n =2n +12<2n n +2 =1n -1n +2,∴T n <1-13+12-14+13-15+⋯+1n -1n +2=1+12-1n +1-1n +2<32.【练习3】已知函数f (x )=x 3-2x ,数列a n 中,若a n +1=f (a n ),且a 1=14.(1)求证:数列1a n-1是等比数列;(2)设数列a n 的前n 项和为S n ,求证:S n <12.【答案】(1)见解析;(2)见解析【解析】(1)由函数f (x )=x3-2x ,在数列a n 中,若a n +1=f (a n ),得:a n +1=a n 3-2a n,上式两边都倒过来,可得:1a n +1=3-2a n a n =3a n-2,∴1a n +1-1=3a n -2-1=3a n -3=31a n -1 .∵1a 1-1=3.∴数列1a n -1 是以3为首项,3为公比的等比数列.(2)由(1),可知:1a n -1=3n ,∴a n =13n +1,n ∈N *.∵当n ∈N *时,不等式13n +1<13n 成立.∴S n =a 1+a 2+⋯+a n =131+1+132+1+...+13n +1<131+132+...+13n =13⋅1-13n 1-13=12-12•13n <12.∴S n <12.【练习4】已知函数f (x )=x 2-2x ,数列a n 的前n 项和为S n ,点P n n ,S n 均在函数y =f x 的图象上.若b n=12a n +3 (1)当n ≥2时,试比较b n +1与2b n的大小;(2)记c n =1b n n ∈N *试证c 1+c 2+⋯+c 400<39.【答案】(1)b n +1<2bn ;(2)证明见解析.【详解】(1)∴f (x )=x 2-2x ,故S n =n 2-2n ,当n ≥2时,a n =S n -S n -1=2n -3,当n =1时,a 1=S 1=-1适合上式,因此a n =2n -3n ∈N * .从而b n =n ,b n +1=n +1,2b n=2n ,当n ≥2时,2n =1+1 n =C n 0+C n 1+⋯>n +1故b n +1<2b n=2n(2)c n =1b n =1n,c 1=1,1n =2n +n <2n +n -1=2(n -n -1)n ∈N *,n ≥2 c 1+c 2+...+c 400<1+22-1 +23-2 +...+2400-399 =2400-1=39.◆题型二:放缩法证明数列不等式之函数型方法解密:数列放缩较难的的两类便是形如数列的前n 项和与函数f (n )的不等关系,即a 1+a 2+⋯+a n <f (n )或者数列前n 项积与函数f (n )的不等关系,即a 1⋅a 2⋅⋯⋅a n <f (n )的问题,其中,这里的前n 项和与前n 项积难求或者是根本无法求.面对这类题时,首先,我们可以将f (n )看成某个数列的和或者积,然后通过比较通项的大小来解决;其次,我们也可以对a n 进行变形,使之能求和或者求积.往往第二种方法难以把握,对学生综合素质要求较高.而第一种方法相对简单易行,所以本专题以“拆项”为主线详细讲解.【经典例题1】已知数列a 1=32,a n +1=3a n -1,n ∈N *(1)若数列b n 满足b n =a n -12,求证:数列b n 是等比数列。
利用放缩法证明不等式
利用放缩法证明不等式广东肇庆中学高三(13)班 汪建洲 2014.12.4教学目标:1、知识与技能:掌握不等式2221111111111,()111211n n n n n n n n n -<<-<=-+---+和的正确运用; 2、过程与方法:经历探究21n 放缩方法,感受在什么情况下,需要用放缩法证明不等式。
3、情感态度:开展小组讨论和交流,使高三学生放缩的价值。
教学重点:掌握证明不等式的两种放缩技巧。
教学难点:体会用放缩法证明不等式放大或缩小的“度”。
教学过程与方法一、引入引例证明:对一切正整数n ,有1)1(1321211<+++⨯+⨯n n 所谓放缩法,即是把要证明的不等式一边适当地放大(或缩小),使之得出明显的不等量关系,再应用不等量大小的传递性,从而使得不等式等到证明的方法。
这种方法就是证明不等式的常用方法,尤其在今后高等数学是用处更为广泛。
二、典型例题例1对一切正整数n ,有21312111232<++++n ,(节选14年全国卷) 证明:因为21111,2,3,(1)1k k k k k k<=-=--, 所以2321111111112311*22*3(1)*n n n ++++<++++- 1111111()()()11223(1)n n =+-+-++-- 12n=- 注意:实际上,在证明原不等式的过程中,已经得到一个更强的结论232111112123n n ++++<-,这恰恰在一定程度上体现了放缩法的基本思想。
变式:设数列}{n a 的通项公式n a n =,证明:对一切正整数n ,有①4711112232221<++++na a a a (节选14年全国卷)②2222123111153n a a a a ++++< 三、当堂练习:1、对一切正整数n ,证明①n n nn 1141312111212222-<++++<+- ②23)12(1513111232<-++++n 2、数列}{n a 的通项公式213-=n n a , 证明:对一切正整数n ,有2311121<+++n a a a 归纳放缩的常用方法: n n n n n <+<+22,11、2111111121(1)(1)1n n n n n n n n n-=<<=-++--、 22111113()1211n n n n <=---+、 2111423(21)2121(21)n n nn n <<+++-+、()()()52=<=、1(212--=-+<k k k k 四、课堂小结:常用的两种放缩技巧:对于分子分母均取正的分式(1) 分子不变,分母缩小(分母仍为正数)则分式的值变大(2) 分子不变,分母放大(分母仍为正数)则分式的值变小 课后作业:1、数列}{n a 的满足2,)13)(13(32,0111≥--•==--n a a n n n n ,证明:2121<+++n a a a 2、已知数列,)13(32-=n nn b 证明:121<+++n b b b。
不等式证明 之 放缩法
不等式证明 之 放缩法放缩法的定义所谓放缩法,即要证明不等式A<B 成立,有时可以将它的一边放大或缩小,寻找一个中间量,如将A 放大成C ,即A<C ,后证C<B ,这种证法便称为放缩法。
使用放缩法的注意事项(1)放缩的方向要一致。
(2)放与缩要适度。
(3)很多时候只对数列的一部分进行放缩法,保留一些项不变(多为前几项或后几项)。
(4)用放缩法证明极其简单,然而,用放缩法证不等式,技巧性极强,稍有不慎,则会出现放缩失当的现象。
典例分析:例1、 设x>y>z ,n *N ∈,且z x n z y y x -≥-+-11恒成立,求n 的最大值.例2、 已知:x>0,y>0,z>0,求证:z y x z yz y y xy x ++>+++++2222.例3、 求证:n n n 21...31211112<++++<-+)(, n *N ∈.例4、 求证:21...31211222<++++n ,n *N ∈.变式:求证:471...31211222<++++n,n *N ∈.例5、 已知:)()1(...433221+∈+⨯++⨯+⨯+⨯=N n n n a n ,, 求证:2)2(2)1(+<<+n n a n n n .例6、{}n b 满足:2111,(2)3n n n b b b n b +≥=--+(1) 用数学归纳法证明:n b n ≥(2) 1231111...3333n n T b b b b =++++++++,求证:12n T < 解:(1)略(2) 13()2(3)n n n n b b b n b ++=-++又 n b n ≥132(3)n n b b +∴+≥+ , *n N ∈ 迭乘得:11132(3)2n n n b b -++≥+≥ *111,32n n n N b +∴≤∈+ 234111111111 (2222222)n n n T ++∴≤++++=-< 点评:把握“3n b +”这一特征对“21(2)3n n n b b n b +=--+”进行变形,然后去掉一个正项,这是不等式证明放缩的常用手法。
用“放缩法”证明不等式的基本方法
用“放缩法”证明不等式的基本方法近年来在高考解答题中,常渗透不等式证明的内容,而不等式的证明是高中数学中的一个难点,它可以考察学生逻辑思维能力以及分析问题和解决问题的能力。
特别值得一提的是,高考中可以用“放缩法”证明不等式的频率很高,它是思考不等关系的朴素思想和基本出发点, 有极大的迁移性, 对它的运用往往能体现出创造性。
“放缩法”它可以和很多知识内容结合,对应变能力有较高的要求。
因为放缩必须有目标,而且要恰到好处,目标往往要从证明的结论考察,放缩时要注意适度,否则就不能同向传递。
下面结合一些高考试题,例谈“放缩”的基本策略,期望对读者能有所帮助。
1、添加或舍弃一些正项(或负项)例1、已知*21().n n a n N =-∈求证:*122311...().23n n a a a n n N a a a +-<+++∈ 证明: 111211111111.,1,2,...,,2122(21)2 3.222232k k k k k k kk a k n a +++-==-=-≥-=--+-Q1222311111111...(...)(1),2322223223n n n n a a a n n n a a a +∴+++≥-+++=-->-*122311...().232n n a a a n nn N a a a +∴-<+++<∈ 若多项式中加上一些正的值,多项式的值变大,多项式中加上一些负的值,多项式的值变小。
由于证明不等式的需要,有时需要舍去或添加一些项,使不等式一边放大或缩小,利用不等式的传递性,达到证明的目的。
本题在放缩时就舍去了22k-,从而是使和式得到化简.2、先放缩再求和(或先求和再放缩) 例2、函数f (x )=xx 414+,求证:f (1)+f (2)+…+f (n )>n +)(2121*1N n n ∈-+. 证明:由f (n )=nn 414+=1-1111422n n>-+⋅ 得f (1)+f (2)+…+f (n )>n22112211221121⋅-++⋅-+⋅-Λ)(2121)2141211(41*11N n n n n n ∈-+=++++-=+-Λ.此题不等式左边不易求和,此时根据不等式右边特征, 先将分子变为常数,再对分母进行放缩,从而对左边可以进行求和. 若分子, 分母如果同时存在变量时, 要设法使其中之一变为常量,分式的放缩对于分子分母均取正值的分式。
放缩法证明不等式
放缩法证明不等式所谓放缩法,就是针对不等式的结构特征,运用不等式及有关的性质,对所证明的不等式的一边进行放大或缩小或两边放大缩小同时兼而进行,以达到证明结果的方法。
但无论是放大还是缩小都要遵循不等式传递性法则,保证放大还是缩小的连续性,不能牵强附会,须做到步步有据。
比如:证a <b ,可先证a <h 1,成立,而h 1<b 又是可证的,故命题得证。
数列与不等式的综合问题常常出现在高考的压轴题中,是历年命题的热点,解决这类问题常常用到放缩法。
“放缩法”可以和很多知识内容结合,对应变能力有较高的要求。
因为放缩必须有目标,而且要恰到好处,目标往往要从证明的结论考察,放缩时要注意适度,否则就不能同向传递。
利用放缩法证明不等式,既要掌握放缩法的基本方法和技巧,又须熟练不等式的性质和其他证法。
做到放大或缩小恰到好处,才有利于问题的解决。
一、用放缩法证明不等式的基本策略1、运用放大、缩小分母或分子的办法来达到放缩的目的分式的放缩对于分子分母均取正值的分式,如需放大,则只要把分子放大或分母缩小即可;如需缩小,则只要把分子缩小或分母放大即可.还可利用真分数的分子和分母加上同一个正数,则分数值变大;假分数的分子和分母加上同一个正数,则分数值变小来进行放缩. 例1、若a ,b ,c ,d 是正数.求证:12a b c d a b ca b db c da c d<+++<++++++++证明:a b c d a b c a b db c d a c d+++++++++++1abc da b c d a b c d a b c d a b c d>+++=++++++++++++又2a b c d a b c da b c a b d b c d a c d a b a b c d c d+++<+++=++++++++++++ 或a b c d a b ca b d b c da c d +++++++++++2a bb ca cb d a bcd a b c da b c da b c d++++<+++=++++++++++++(利用(0)a a mm b b m+<>+) ∴12a bcda b ca b d b c d a c d <+++<++++++++例2、求证:213121112222<++++n证明:∵nn n n n111)1(112--=-<∴2222111111*********232231nn nn++++<+-+-++-=-<-【变式】2222111171234n++++<∵nn n n n111)1(112--=-<∴2222211111111151171()()1232231424nn nn++++<++-++-=+-<-本题说明:此题采用了从第三项开始拆项放缩的技巧,放缩拆项时,不一定从第一项开始,须根据具体题型分别对待,即放不能太宽、缩不能太窄,真正做到恰到好处。
四类放缩法巧证超越不等式
四类放缩法巧证超越不等式
利用放缩法超越不等式主要分为四类:
(1)非负放缩法:如果一个不等式中包含负号,可以利用非负放缩法,也就是不等式的左侧减去右侧和等于0,然后将右侧的正值放大以超
越左侧;
(2)零点放缩法:当不等式的左右两侧中存在一个值为0时,可以
利用零点放缩法,将其他数值放大或放小;
(3)另类放缩法:当不等式中都是非负数,则可以采用另类放缩法,将所有数值做放大或缩小,直到左侧超越右侧;
(4)双边放缩法:当不等式中有正有负数时,可以利用双边放缩法,也就是左右双边同时缩小或放大,直到左侧超越右侧。
新课标人教A版数学:利用放缩法证明不等式
2n
2n
【方法总结之一】
n
放缩法证明与数列求和有关的不等式,若 ai 可直 i 1
接求和,就先求和再放缩;若不能直接求和的,一般要
先将通项 an 放缩后再求和.
问题是将通项 an 放缩为可以求和且“不大不小”的 什么样的 bn 才行呢?其实,能求和的常见数列模型并不
多,主要有等差模型、等比模型、错位相减模型、裂项
例6
求证:1 3 5 2n 1 1 (n N)
246
2n 2n 1
n
分析 我们能否将证明形如 ai f (n) 的思维策略类比迁移
i 1
过来呢?
思路
135 246
2n 1 2n
1
2n 1 Bn b1b2b3
bn
利用公式 bn
Bn Bn1
(n
2) , b1
B1 易得: bn
因此,问题转化为只要证 2n 1 2n 1 2n 2n 1
变式3
求证:1
1 22
1 32
1 n2
5 3
(n N)
例2 求证: 1 1 1
13 35 5 7
1
1 (n N)
(2n 1)(2n 1) 2
分析 左边可用裂项相消法求和,先求和再放缩.
1
1( 1 1 )
(2n 1)(2n 1) 2 2n 1 2n 1
左边 1 [(1 1) (1 1) ( 1 1 )]
1 3n1
)
1 3 17 (n 2) 14 14
当n = 1时,不等式显然也成立.
【方法总结之三】
一般地,形如 an an bn 或 an an b (这里 a b 1)的
数列,在证明 1 1 1 k ( k 为常数)时都可以提取
放缩法证明不等式
放缩法证明不等式放缩法是一种非常常用的证明不等式的方法,它通过逐步削弱不等式的一侧,使得最后的不等式很容易得到证明。
本文将通过一些例子来说明放缩法的使用。
例1:证明Cauchy不等式Cauchy不等式的表述为:对于任意的实数a1,a2,...,an和b1,b2,...,bn,有:(a1^2+a2^2+...+an^2)(b1^2+b2^2+...+bn^2) >=(a1b1+a2b2+...+anbn)^2证明方法如下:首先,我们注意到不等式的左边是一个平方形式,而右边是一个乘积形式。
我们可以利用这个观察来放缩不等式。
由平均值不等式,我们有:(a1^2+a2^2+...+an^2)/n >=(a1+a2+...+an)^2/n^2同样,(b1^2+b2^2+...+bn^2)/n >= (b1+b2+...+bn)^2/n^2将这两个不等式相乘,得到:(a1^2+a2^2+...+an^2)(b1^2+b2^2+...+bn^2) >=[(a1+a2+...+an)(b1+b2+...+bn)/n]^2注意到右边的中括号内的部分就是(a1b1+a2b2+...+anbn)/n,我们可以进一步放缩为:[(a1+a2+...+an)(b1+b2+...+bn)/n]^2 >= (a1b1+a2b2+...+anbn)^2因此,我们得到了Cauchy不等式的证明。
例2:证明AM-GM不等式AM-GM不等式的表述为:对于非负实数a1,a2,...,an,有:(a1+a2+...+an)/n >=(a1a2...an)^(1/n)证明方法如下:我们首先注意到不等式的左边是一个平均值形式,而右边是一个几何平均值的形式。
我们可以利用这个观察来放缩不等式。
由平均值不等式,我们有:(a1+a2+...+an)/n >= √(a1a2...an)对于任意的i,我们可以用a1a2...an的值来替换ai,则不等式仍然成立:(a1+a2+...+an)/n >= √(a1a2...an)因此,我们得到了AM-GM不等式的证明。
高中数学讲义:放缩法证明数列不等式
放缩法证明数列不等式一、基础知识:在前面的章节中,也介绍了有关数列不等式的内容,在有些数列的题目中,要根据不等式的性质通过放缩,将问题化归为我们熟悉的内容进行求解。
本节通过一些例子来介绍利用放缩法证明不等式的技巧1、放缩法证明数列不等式的理论依据——不等式的性质:(1)传递性:若,a b b c >>,则a c >(此性质为放缩法的基础,即若要证明a c >,但无法直接证明,则可寻找一个中间量b ,使得a b >,从而将问题转化为只需证明b c >即可 )(2)若,a b c d >>,则a c b d +>+,此性质可推广到多项求和:若()()()121,2,,n a f a f a f n >>>L ,则:()()()1212n a a a f f f n +++>+++L L (3)若需要用到乘法,则对应性质为:若0,0a b c d >>>>,则ac bd >,此性质也可推广到多项连乘,但要求涉及的不等式两侧均为正数注:这两条性质均要注意条件与结论的不等号方向均相同2、放缩的技巧与方法:(1)常见的数列求和方法和通项公式特点:① 等差数列求和公式:12nn a a S n +=×,n a kn m =+(关于n 的一次函数或常值函数)② 等比数列求和公式:()()1111n n a q S q q -=¹-,n n a k q =×(关于n 的指数类函数)③ 错位相减:通项公式为“等差´等比”的形式④ 裂项相消:通项公式可拆成两个相邻项的差,且原数列的每一项裂项之后正负能够相消,进而在求和后式子中仅剩有限项(2)与求和相关的不等式的放缩技巧:① 在数列中,“求和看通项”,所以在放缩的过程中通常从数列的通项公式入手② 在放缩时要看好所证不等式中不等号的方向,这将决定对通项公式是放大还是缩小(应与所证的不等号同方向)③ 在放缩时,对通项公式的变形要向可求和数列的通项公式靠拢,常见的是向等比数列与可裂项相消的数列进行靠拢。
用放缩法证明不等式时如何放缩
n + C 以 十D
又 因 为 2 =( 1 + 1 ) c n o + c +c A+c +c 1 +
十 八 槲1 > 2 川, 所 以 n ) > 者 。
3 “ 添舍” 放缩
< 2。
通过对 不等 式的一 边进行 添项 或减项 以达 到解题 目的 , 这是常规思路 。
的氛 围 , 为开展探究活 动做好思 想上 、 心理上 的准备。在探 究 解决 了学生 的学习态度 、 学习 习惯 问题 , 使教 学质 量的提高和 过程 中 , 教师 要通 过巡视 、 观察 、 参 与讨 论等方 式给 学生 以积 学生 学习能力 的发 展有了可靠保证 。 同时 , 也 创设了富有生机
1 分 式 放 缩
一
证明: 由题意 知 , ( , z ) 一 n 丁=
" 十 l
, ’ 十
I
一 n 丁= ( 1 一
"十 l
, _ 十
l
) 一
r 一 : : 二 1 丝 ± 2
3 , 所 以只须证 2 一 >2 n +1 ,
n + l
n + l 2 1 ( n + 1 ) ( 2 1 )’
个分式若 分子变大则 分式值变 大 ,若分 母变大 则分式
又因为 n EA r 且
值 变小 , 一个真 分式 , 分子、 分母 同时 加上 同一个 正数 则分式 值 变大 , 利用这些 性质 , 可达到证题 目的 。 例 1 :已知 a 、 b 、 c为三 角 形 的三 边 ,求 证 : 1 < L +
,
—
证明 : 由题 设得 a 2 + a b + b a + b, 于是( 口 + ) >a 2 +a b + +— + — , 又 口 , b , c为三 角形 的 边 , 故 + a +b +c ’a +b +c 。 a+b +c ’ ~ “’ ’ 。 — — n 工’ 。 b 2 =a + b , 又a + b >0 , 得 n + >l , 又 < 1( 日 + 6 ) i l i i ( 日 + 6 ) =
放缩法证明不等式例题
放缩法证明不等式一、放缩法原理为了证明不等式B A ≤,我们可以找一个或多个中间变量C 作比较,即若能判定B C ,C A ≤≤同时成立,那么B A ≤显然正确。
所谓“放”即把A 放大到C,再把C 放大到B ;反之,由B 缩小经过C 而变到A,则称为“缩”,统称为放缩法。
放缩是一种技巧性较强的不等变形,必须时刻注意放缩的跨度,做到“放不能过头,缩不能不及”。
二、常见的放缩法技巧1、基本不等式、柯西不等式、排序不等式放缩 2、糖水不等式放缩:)b a ,0m (ma mb a b >≥++≤. 3、添(减)项放缩4、先放缩,后裂项(或先裂项再放缩)5、逐项放大或缩小:)1n (n 1n 1)1n (n 12-<<+ 21n 2)1n (n n +<+<)12)(32(1)12(12--<-n n n )12)(12(1)12(12+->-n n n )22(21)12(12+<+n n n三、例题讲解例1:设a 、b 、c 是三角形的边长,求证cb a cb ac b a c b a -++-++-+≥3例2:设a 、b 、c ≥0,且3=++c b a ,求证abc c b a 23222+++≥29例3:已知*21().n n a n N =-∈求证:*122311...().23n n a a a n n N a a a +-<+++∈例4:函数f (x )=xx 414+,求证:f (1)+f (2)+…+f (n )>n +)(2121*1N n n ∈-+.例5:已知a n =n ,求证:∑nk=1 ka 2k<3.例6: 已知数列{}n a ,,132a =,113(2,*)21n n n na a n n N a n --=≥∈+-.(1)求数列{}n a 的通项公式;(2)对一切正整数n ,不等式123!n a a a a n λ⋅⋅<⋅恒成立,试求正整数的最小值。
例谈证明不等式的四种常用措施
=
cos2 a, a
∈
(0,
π 2
)
,
æ è
x
+
1 x
öøæèç
y
+
1 y
ö
÷
ø
=
æ
ç
sin2
a
è
+
1 sin2a
öæ
֍
cos2
a
øè
+
1 cos2a
ö
÷
ø
=
sin4 a
+
cos4a - 2 sin2a 4 sin22a
cos2 a
+
2
,
( ) =
4 - sin2a 2 + 16 , 4 sin22a
(x)
=
(
cos sin
α β
)x
+
(
cos sin
β α
)x,
且x < 0,
α,β ∈
æ è
0,
π 2
öø,若
f (x) > 2, 求证:α + β >
π 2
.
证明:假设0
<
α
+
β
≤
π 2
,
由α, β
∈
(0,π2 )可得0
<
α
≤
π 2
-
β
≤
π 2
,
则
cos
α
≥
cosæè
π 2
-
β
ö ø
=
sin
β
>
1)
=
2n2
+
谈谈证明数列不等式的三种方法
解题宝典数列不等式证明具有较强的综合性,且难度较大.此类问题往往综合考查了等差、等比数列的通项公式、前n 项和公式、性质、不等式的可加性、可乘性、传递性等,对同学们的逻辑推理和分析能力有较高的要求.本文主要介绍三种证明数列不等式的方法.一、裂项放缩法若数列的通项公式为分式,且可裂为或通过放缩后化为两项之差的形式,则可采用裂项放缩法求解.首先将数列的各项拆分,在求和时绝对值相等、符号相反的项便会相互抵消,再将所得的结果进行适当的放缩,便可证明数列不等式.例1.若数列{}a n ,{}b n 的通项公式分别为a n =n (n +1),b n =()n +12,试证明1a 1+b 1+1a 2+b 2+⋯+1a n +b n<512.证明:当n =1时,1a 1+b 1=16<512,当n ≥2时,a n +b n =()n +1()2n +1>2()n +1n ,1a n +b n =1()n +1()2n +1<12n ()n +1=12æèöø1n -1n +1,∴1a 1+b 1+1a 2+b 2+⋯+1a n +b n ùûú<16+12éëêæèöø12-13+⋯+æèöø1n -1n +1,∵12éëêùûúæèöø12-13+⋯+æèöø1n -1n +1=12æèöø12-1n +1<14,∴1a 1+b 1+1a 2+b 2+⋯+1a n +b n <16+14=512∴1a 1+b 1+1a 2+b 2+⋯+1a n +b n <512成立.{}1a n +b n的通项公式为分式,且可通过放缩、裂项将其转化为两项之差:12æèöø1n -1n +1,于是采用裂项放缩法求证.运用裂项放缩法证明不等式时,需根据数列通项公式的特点或和的特点进行适当的放缩,同时要把握放缩的“度”,不可“放”得过大,也不可“缩”得过小.二、构造函数法数列是一种特殊的函数.在解答数列不等式证明题时,可根据目标不等式的特点构造出函数模型,此时需将n ∈N *看作函数的自变量,将目标式看作关于n 的函数式,利用函数的单调性、有界性来求得函数式的最值,从而证明不等式成立.例2.已知数列{}a n 的通项公式为a n =3n -1,且该数列的每一项均大于零.若数列{}b n 的前n 项和为T n ,且a n ()2b n-1=1,证明:3T n -1>log 2()a n +3.证明:∵a n()2b n-1=1,a n=3n -1,∴b n =log 2æèçöø÷1+1a n =log 23n 3n -1,∴T n =b 1+b 2+⋯+b n =log 2æèöø32∙65∙⋯∙3n 3n -1,∴3T n -1-log 2()a n +3=log 2æèöø32⋅65⋅⋯⋅3n 3n -13∙23n +2,设f ()n =æèöø32∙65∙⋯∙3n 3n -13∙23n +2,∴f ()n +1f ()n =3n +23n +5∙æèöø3n +33n +23=()3n +32()3n +5()3n +22,∵()3n +33-()3n +5()3n +22=9n +7>0,∴f ()n +1>f ()n ,∴f ()n 单调递增,∴f ()n ≥f ()1=2720>1,∴3T n -1-log 2()a n +3=log 2f ()n >0,∴3T n -1>log 2()a n +3成立.解答本题,需先求得b n 、T n ,并将目标式化简,然后根据目标不等式的特点构造函数f ()n ,通过比较f ()n +1、f ()n 的大小,判断出函数的单调性,进而根据函数的单调性证明不等式成立.一般地,在判断数列或函数的单调性时,可采用作差或作商法来比较数列的前后两项a n +1、a n 的大小,若a n +1>a n ,则函数或数列单调递增;若a n +1<a n ,则函数或数列单调递减.三、数学归纳法数学归纳法主要用于证明与自然数N 有关的命题.运用数学归纳法证明数列不等式,需先根据题意证明当n =1时不等式成立;然后假设当n =k 时不等式成立,再根据题意,通过运算、推理证明当n =k +1时不等式也成立,这样便可证明对任意n ∈N *不等式恒成立.42下下下下下下下下下下下下下下下下下方法集锦例3.已知数列{a n }的通项公式为a n =2éëêùûú()2-1n+1,若数列{b n }中b 1=2,b n +1=3b n +42b n +3,试证明:2<b n ≤a 4n -3.证明:当n =1时,2<2,b 1=a 1=2,∴2<b 1≤a 1,不等式成立,假设当n =k 时,不等式成立,∴2<b k ≤a 4k -3,即0<b k -2≤a 4k -3-2,当n =k +1时,b k +1-2=3b k +42b k +3-2=()3-22b k+()4-322b k +3=()3-22()b k -22b k +3>0,∵2<b k ,∴12b k +3<2+33-22,b k +1-2=()3-22()b k-22b k +3<()3-222()b k-2≤()2-14()a 4k -3-2=a 4k +1-2.∴当n =k +1时,不等式成立,即2<b n ≤a 4n -3成立.解答本题主要采用了数学归纳法,分两步完成,首先证明当n =1时不等式成立,然后假设当n =k 时不等式成立,并将其作为已知条件,证明2<b k ,进而证明当n =k +1时,不等式也成立.相比较而言,构造函数法的适用范围较广,裂项放缩法和数学归纳法的适用范围较窄,且裂项放缩法较为灵活,运用数学归纳法证明不等式过程中的运算量较大.因此在证明数列不等式时,可首先采用构造函数法,然后再根据不等式的特点和解题需求运用裂项放缩法或数学归纳法求证.(作者单位:湖北省恩施土家族苗族自治州高级中学)圆锥曲线的离心率是反映圆锥曲线几何特征的一个基本量.圆锥曲线的离心率主要是指椭圆与双曲线的离心率,可用e =ca来表示.求圆锥曲线的离心率问题是一类常考的题目.下面谈一谈求圆锥曲线离心率的三种途径.一、根据圆锥曲线的定义圆锥曲线的定义是解答圆锥曲线问题的重要依据.我们知道,椭圆的焦半径长为c 、长半轴长为a ;双曲线的焦半径长为c 、实半轴长为a ,而圆锥曲线的离心率为e =ca.因此,只要根据圆锥曲线的定义确定a 、c的值,即可求得圆锥曲线的离心率.例1.已知F 1,F 2分别是双曲线x 2a 2-y 2b2=1(a >0,b >0)的左,右焦点,如果双曲线上存在点P ,使∠F 1PF 2=90°,并且||PF 1=3||PF 2,求双曲线的离心率.解:因为||PF 1=3||PF 2,①由双曲线的定义得||PF 1-||PF 2=2a ,②由①②得||PF 1=3a ,||PF 2=a .且||F 1F 2=2c ,∠F1PF 2=90°,则|F 1F 2||2=PF 1||2+PF 2|2,即(2c )2a )2+a 2,解得5a =2c ,所以e =ca .题目中指出了两个焦半径||PF 1、||PF 2之间的关系,可将其与双曲线的定义:平面内与两个定点F 1、F 2的距离的差的绝对值等于常数(小于|F 1F 2|)的点的轨迹关联起来,根据双曲线的定义建立关于两个焦半径的方程,通过解方程求得双曲线的离心率.二、利用几何图形的性质圆锥曲线的几何性质较多,如双曲线、椭圆的对称轴为坐标轴,对称中心为原点,双曲线的范围为x ≥a或x ≤-a .在求圆锥曲线的离心率时,要仔细研究几何图形,明确焦半径、实半轴长、虚半轴长与几何图形的位置关系,据此建立关于a 、b 、c 关系式,再通过解方43。
放缩法证明数列不等式经典例题
放缩法证明数列不等式经典例题放缩法证明数列不等式放缩法是一种证明数学不等式的方法,它利用一些基本的放缩技巧来推导出更复杂的不等式。
下面介绍几种常用的放缩技巧:1.$\frac{1}{n(n+1)}<\frac{1}{2}\left(\frac{1}{n}-\frac{1}{n+1}\right)$证明:将右边的式子化简得到$\frac{1}{n(n+1)}<\frac{1}{2n}-\frac{1}{2(n+1)}$,再将右边的两项合并得到$\frac{1}{n(n+1)}<\frac{1}{2}\left(\frac{1}{n}-\frac{1}{n+1}\right)$。
2.$\frac{n}{n+1}<\sqrt{\frac{n}{n+1}}<\frac{n+1}{n}$证明:将右边的式子平方得到$\frac{n}{n+1}<\frac{n}{n+1}<\frac{(n+1)^2}{n(n+1)}$,再将中间的式子平方根得到$\frac{n}{n+1}<\sqrt{\frac{n}{n+1}}<\frac{n+1}{n}$。
3.$\frac{1}{n^2}<\frac{1}{n(n-1)}-\frac{1}{(n+1)n}$证明:将右边的式子通分得到$\frac{1}{n(n-1)}-\frac{1}{(n+1)n}=\frac{1}{n(n+1)}-\frac{1}{n(n-1)}$,再将右边的两项合并得到$\frac{1}{n^2}<\frac{1}{n(n-1)}-\frac{1}{(n+1)n}$。
4.$\frac{2}{n(n-1)}<\frac{1}{n-1}-\frac{1}{n+1}$证明:将右边的式子通分得到$\frac{1}{n-1}-\frac{1}{n+1}=\frac{2}{n(n+1)}$,再将右边的式子倒数得到$\frac{2}{n(n-1)}<\frac{1}{n-1}-\frac{1}{n+1}$。
20181207放缩法证明不等式
(2)若 f (x) 在定义域内为增函数,求a 的取值范围;
(3)设 g(x) f (x) x2 1 ,当a 1 时,
求证:① g(x) 0在其定义域内恒成立;
求证:②
ln 22 ln 32 22 32
ln n2 n2
2n2 n 1
2n 1
。
例4. 证明: x2ex-lnx>1 .
O
1
x
x 1
x 1
x
≤lnx≤ x ≤ 1
y x
y
2
y=x-1
y=lnx
y x1 x
O
1
x
x1 ≤
x 1 x≤lnx≤ x-1
x
2
(0<x≤1)
6.(本小题满分 14 分)设函数 f (x) ln x x2 ax 。 (1)若 f (x) 在x 1 处取得极值,求a 的值;
O
1
x
方法三:
方法四:
又由
f '(x0)=0
得:( x02
2 x0 ) ex0
1 x0
0
e x0
1 x02 ( x0
2)
x02 e x0
1 x0 2
f (x)≥ f (x0)=
x02ex0 ln x0 =
1 x0 2 ln x0
构造函数 h(x)=
1 ln x x2
,
x
放缩法证明不等式
放缩的方法
1。运用基本不等式和常见结论进行放缩 2。运用切线方程进行放缩 3。运用题目给出的不等式进行放缩。 4。运用参数范围进行放缩
切线放缩原理及常见的切线放缩
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
利用放缩法证明数列型不等式一、常用的放缩法在数列型不等式证明中的应用1、裂项放缩法:放缩法与裂项求和的结合,用放缩法构造裂项求和,用于解决和式问题。
裂项放缩法主要有两种类型:(1)先放缩通项,然后将其裂成某个数列的相邻两项的差,在求和时消去中间的项。
例1设数列{}n a 的前n 项的和14122333n n n S a +=-⨯+,1,2,3,n =。
设2nn nT S =,1,2,3,n =,证明:132ni i T =<∑。
证明:易得12(21)(21),3n nn S +=--1132311()2(21)(21)22121n n n n n n T ++==-----, 112231113113111111()()221212212121212121nn i i i n n i i T ++===-=-+-++---------∑∑=113113()221212n +-<-- 点评: 此题的关键是将12(21)(21)n n n +--裂项成1112121n n +---,然后再求和,即可达到目标。
(2)先放缩通项,然后将其裂成(3)n n ≥项之和,然后再结合其余条件进行二次放缩。
例 2 已知数列{}n a 和{}n b 满足112,1(1)n n n a a a a +=-=-,1n n b a =-,数列{}n b 的前n 和为n S ,2n n n T S S =-; (I )求证:1n n T T +>; (II )求证:当2n ≥时,2n S 71112n +≥。
证明:(I )1111111()2322122n n T T n n n n n n+-=+++-++++++++ 11121221n n n =+-+++10(21)(22)n n =>++ ∴1n n T T +>. (II )112211222222,n n n n n n S S S S S S S S ---≥∴=-+-++-+1221122n n T T T T S --=+++++由(I )可知n T 递增,从而12222n n T T T --≥≥≥,又11217,1,212T S T ===,12211222n n n S T T T T S --∴=+++++21171711(1)(1)112212n n T T S n +≥-++=-++=即当2n ≥时,2n S 71112n +≥。
点评:此题(II )充分利用(I )的结论,n T 递增,将2n S 裂成1122112222n n n n S S S S S S S ----+-++-+的和,从而找到了解题的突破口。
2、迭乘放缩法:放缩法与迭乘法的结合,用放缩法构造迭乘形式,相乘时消去中间项。
用于解决积式问题。
例3 已知数列{}n a 的首项为13,a =点()1,+n n a a 在直线)(03*N n y x ∈=-上。
若3*3log 2(),n n c a n N =-∈证明对任意的*n ∈N,不等式12111(1)(1+)(1+)nc c c +⋅⋅> 证明: 32n c n =-,331313133131(1+)()323231332n n n n n n c n n n n n --++=>⋅⋅=---- 所以3121114731[(1)(1+)(1+)]311432n n n c c c n ++⋅⋅>⋅⋅⋅=+-即12111(1)(1+)(1+)nc c c +⋅⋅> 点评:此题是证明积式大于根式,由于左边没有根式,右边是三次根式,立方后比较更容易处理。
33131(1+)()32n n c n -=-可以看成是三个假分式的乘积,保持其中一项不变,另两项假分数分子分母同时加1,加2,则积变小,3313133131()323231332n n n n n n n n n n --++>⋅⋅=----,而通项式为31{}32n n +-的数列在迭乘时刚好相消,从而达到目标。
3、迭代放缩法:通过放缩法构造递推不等关系,进行迭代,从而求解。
例4 已知数列{}n x 满足,1111,,*21n n x x n N x +==∈+,证明:1112||()65n n n x x -+-≤⋅。
证明:当1n =时,1211||||6n n x x x x +-=-=,结论成立。
当2n ≥时,易知1111101,12,12n n n n x x x x ---<<+<=>+111115(1)(1)(1)(1)212n n n n n x x x x x ----∴++=++=+≥+1111||11||||11(1)(1)n n n n n n n n x x x x x x x x -+---∴-=-=++++211112122212||()||()||()55565n n n n n n x x x x x x ----≤-≤-≤≤-=点评:此题将目标式进行放缩得到递推不等关系,进行迭代,找到解题途径。
4、等比公式放缩法:先放缩构造成等比数列,再求和,最后二次放缩实现目标转化。
例5已知数列{}n a 的各项均为正数,且满足111122,(),1n nn n a a a n N a a *++-==∈-记2n n n b a a =-,数列{}n b 的前n 项和为n x ,且1()2n n f x x =. (I )数列{}n b 和{}n a 的通项公式; (II )求证:12231()()()1()2()()()2n nf x f x f x n nn N f x f x f x *+-<+++<∈.略解:(I ) 2nn b =,12n a =,()21nn f x =-。
证明:(II )11()21211, 1()2122(2)2n n n n n n f x f x ++--==<--12231()()()()()()2n n f x f x f x nf x f x f x +∴+++<.111()2111()2122(21)n n n n n f x f x +++-==---1111111, 22(22)22n n n +++=->-+- 12231231()()()111111()=(1)()()()22222222n n n n f x f x f x n n n f x f x f x ++-∴+++>-+++--> ∴12231()()()12()()()2n n f x f x f x n nf x f x f x +-<+++<.反思:右边是2n ,感觉是n 个12的和,而中间刚好是n 项,所以利用1211212n n +-<-;左边是12n -不能用同样的方式来实现,想到11(())(()0)222n n f n f n -=-+>,试着考虑将12121n n +--缩小成1({}2n n c c -是等比数列),从而找到了此题的突破口。
5、二项式定理放缩法:在证明与指数有关的数列型不等式时,用二项式定理放缩特别有效。
二项式定理放缩法有两种常见类型:(1)部分二项式定理放缩法:即只在式子的某一部分用二项式定理放缩。
例6已知数列{}n a 满足a a =1(2)a ≠-,1(46)41021n n n a n a n ++++=+(n *∈N ).(Ⅰ)证明数列221n a n +⎧⎫⎨⎬+⎩⎭是等比数列,并求出通项n a ;(Ⅱ)如果1a =时,设数列{}n a 的前n 项和为n S ,试求出n S ,并证明当3n ≥时,有34111110n S S S +++<. 略解: 223)12)(2(1-⋅++=-n n n a a (*n N ∈), 则(21)(21)nn S n =--. nn n n n n n C C C C ++++=-1102 ,∴当3≥n 时,01122(1)n n nnn n n C C C C n -=+++≥+,则1212+≥-n n . )12)(12(+-≥∴n n S n ,则)121121(21)12)(12(11+--=+-≤n n n n S n . 因此,)]121121()9171()7151[(2111143+--++-+-≤+++n n S S S n 101)12151(21<+-=n . 反思:为什么会想到将11(21)(21)n n S n =--放缩成1(21)(21)n n -+联想到1111111223(1)1n n n ++=-<⋅⋅⋅++,因为要证明110<,而34111nS S S +++是一个数列前n 项的和,最后通过放缩很可能变成1()(()0)10f n f n ->的形式,而110应是由31137S =⋅放缩后裂项而成,311111()35235S <=-⋅,111(21)(21)(21)(21)n n S n n n =≤---+111()22121n n =--+,此时刚好得到341111111()252110n S S S n +++≤-<+,接下来就要处理1212+≥-n n ,想到用二项式定理。
(2)完全二项式定理放缩法:整个式子的证明主要借助于二项式定理。
例7设数列{}n a 的前n 项和为n S ,且对任意的*n N ∈,都有0,n n a S >=.(I)求12,a a 的值;(II )求数列{}n a 的通项公式n a ;(III )证明:21221n n nn n n a a a +-≥+。
略解:(I )(II )121,2a a ==,n a n =;证明(III )012233(1),n n n n n x C C x C x C x +=++++012233(1),n n n n n x C C x C x C x -=-+-+133551(1)(1)22222n n n n n n x x C x C x C xC x nx +--=++≥=,令12x n=, 则有11(1)(1)122n n n n+--≥,从而(21)(2)(21)n n n n n n +≥+-,即21221n n nn n n a a a +-≥+。
点评:利用二项式定理结合放缩法证明不等式时,一定要紧密结合二项式展开式的特点,联系需证不等式的结构,通过化简、变形、换元等手段使问题得以解决。
6、比较放缩法:比较法与放缩法的结合,先进行比较(作差或作商),再进行放缩。
例8在单调递增数列}{n a 中,11=a ,22=a ,且12212,,+-n n n a a a 成等差数列,22122,,++n n n a a a 成等比数列, ,3,2,1=n .(I )分别计算3a ,5a 和4a ,6a 的值;(II )求数列}{n a 的通项公式(将n a 用n 表示); (III )设数列}1{n a 的前n 项和为n S ,证明:24+<n nS n ,*n N ∈.略解:(I )(II )得33a =,492a =,56a =,68a =.⎪⎪⎩⎪⎪⎨⎧+++=为偶数为奇数n n n n n a n ,8)2(,8)3)(1(2证明:(III )由(II ),得⎪⎪⎩⎪⎪⎨⎧+++=为偶数为奇数n n n n n a n ,)2(8,)3)(1(812.显然,2114341111+⨯=<==a S ; 当n 为偶数时,42n n S n -=+22211111148244466(2)(2)2nn n n n ⎡⎤++++++-⎢⎥⨯⨯⨯+++⎣⎦ 1111114824244646(2)(2)2n n n n n n ⎡⎤⎛⎫⎛⎫⎛⎫<++++++-⎢⎥ ⎪ ⎪ ⎪⨯⨯⨯⨯⨯+++⎝⎭⎝⎭⎝⎭⎣⎦ 111111114824466822n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++--⎪ ⎪ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ 11480222n n n ⎛⎫=--= ⎪++⎝⎭; 当n 为奇数(3≥n )时,14144(1)8422(1)2(1)(3)2n n n n n n nS S n a n n n n n ---=+-<+-++-++++ 128401(1)(3)2(1)(2)(3)n n n n n n n n n ⎡⎤-=+-=-<⎢⎥+++++++⎣⎦. 综上所述,402n n S n -<+,即24+<n nS n ,*n N ∈. 点评: 此题在作差比较中实施裂项放缩,进而得到最后结果小于0,从而得证。