集合与函数的概念测试题及答案
集合与函数概念单元测试题经典(含答案)
第一章集合与函数概念测试题一:选择题1、下列集合中与集合{21,}x x k k N +=+∈不相等的是( ) A .{23,}x x k k N =+∈ B .{41,}x x k k N +=±∈ C .{21,}x x k k N =+∈ D .{23,3,}x x k k k Z =-≥∈2、图中阴影部分所表示的集合是( )A.B ∩[C U (A ∪C)]B.(A ∪B) ∪(B ∪C)C.(A ∪C)∩(C U B)D.[C U (A ∩C)]∪B3、已知集合2{1}A y y x ==+,集合2{26}B x y x ==-+,则A B = ( )A .{(,)1,2}x y x y ==B .{13}x x ≤≤C .{13}x x -≤≤D .∅4、已知集合2{40}A x x =-=,集合{1}B x ax ==,若B A ⊆,则实数a 的值是( )A .0B .12±C .0或12±D .0或125、已知集合{1,2,3,}A a =,2{3,}B a =,则使得Φ=B A C U )(成立的a 的值的个数为( ) A .2 B .3 C .4 D .56、设A 、B 为两个非空集合,定义{(,),}A B a b a A b B ⊕=∈∈,若{1,23}A =,{2,3,4}B =,则A B⊕中的元素个数为 A .3 B .7 C .9 D .127、已知A 、B 两地相距150千米,某人开汽车以60千米/小时的速度从A 地到达B 地,在B 地停留1小时后再以50千米/小时的速度返回A 地,把汽车离开A 地的距离x 表示为时间t (小时)的函数表达式是 ( )A .x =60tB .x =60t +5C .x =⎩⎨⎧>-≤≤)5.3(,50150)5.20(,60t t t tD .x =⎪⎩⎪⎨⎧≤<--≤<≤≤)5.65.3(),5.3(50150)5.35.2(,150)5.20(,60t t t t t8、已知g (x )=1-2x, f [g (x )]=)0(122≠-x xx ,则f (21)等于 ( ) A .1B .3C .15D .309、函数y=xx ++-1912是( ) A .奇函数 B .偶函数 C .既是奇函数又是偶函数 D .非奇非偶数10、设函数f (x )是(-∞,+∞)上的减函数,又若a ∈R ,则( )A .f (a )>f (2a )B .f (a 2)<f (a)C .f (a 2+a )<f (a )D .f (a 2+1)<f (a ) 二、填空题11、设集合A={23≤≤-x x },B={x 1122-≤≤-k x k },且A ⊇B ,则实数k 的取值范围是 .12、已知x ∈[0,1],则函数y =x x --+12的值域是 . 13、设函数xy 111+=的定义域为___________________;值域为_____________________________.14、设f (x )是定义在R 上的偶函数,在区间(-∞,0)上单调递增,且满足,22(25)(21)f a a f a a -+-<++求实数a 的取值范围_______________。
高中数学必修一第一章《集合与函数概念》单元测试题(含答案)
⾼中数学必修⼀第⼀章《集合与函数概念》单元测试题(含答案)《集合与函数概念》单元测试题(第⼀章)(120分钟150分)⼀、选择题(本⼤题共12⼩题,每⼩题5分,共60分.在每⼩题给出的四个选项中,只有⼀项是符合题⽬要求的)1.集合A={0,1,2},B={x|-1A.{0}B.{1}C.{0,1}D.{0,1,2}2.设集合M={2,0,x},集合N={0,1},若N?M,则x的值为( )A.2B.0C.1D.不确定3.在下列由M到N的对应中构成映射的是( )4.已知函数f(x)=ax3+bx(a≠0),满⾜f(-3)=3,则f(3)= ( )A.2B.-2C.-3D.3【补偿训练】已知y=f(x)是偶函数,且f(4)=5,那么f(4)+f(-4)的值为( ) A.5 B.10C.8D.不确定5.已知⼀次函数y=kx+b为减函数,且kb<0,则在直⾓坐标系内它的⼤致图象是( )6.若f(x)=则f的值为( )A.-B.C.D.7.若f(g(x))=6x+3,且g(x)=2x+1,则f(x)= ( )A.3B.3xC.6x+3D.6x+18.下列四个图形中,不是以x为⾃变量的函数的图象是( )9.已知集合A={x|x2+x+1=0},若A∩R=?,则实数m的取值范围是( )A.m<4B.m>4C.0D.0≤m<410.函数f(x)=|x|和g(x)=x(2-x)的单调递增区间分别是( )A.(-∞,0]和(-∞,1]B.(-∞,0]和[1,+∞)C.[0,+∞)和(-∞,1]D.[0,+∞)和[1,+∞)11.对于任意两个正整数m,n,定义某种运算“※”如下:当m,n都为正偶数或正奇数时,m※n=m+n;当m,n中⼀个为正偶数,另⼀个为正奇数时,m※n=mn.则在此定义下,集合M={(a,b)|a※b=12,a∈N*,b∈N*}中的元素个数是( )A.10个B.15个C.16个D.18个12.设奇函数f(x)在(0,+∞)上为增函数,且f(1)=0,则使<0的x的取值范围为( )A.(-1,0)∪(1,+∞)B.(-∞,-1)∪(0,1)C.(-∞,-1)∪(1,+∞)D.(-1,0)∪(0,1)⼆、填空题(本⼤题共4⼩题,每⼩题5分,共20分.请把正确答案填在题中横线上)13.已知集合A={x|1≤x<2},B={x|x14.已知a是实数,若集合{x|ax=1}是任何集合的⼦集,则a的值是.15.已知f(x)为偶函数,则f(x)=x1,1x0, ______,0x 1.+-≤≤≤≤16.定义在R上的奇函数f(x)为减函数,若a+b≤0,给出下列不等式:①f(a)f(b)≤0;②f(a)+f(b)≤f(-a)+f(-b);③f(b)f(-b)≤0;④f(a)+f(b)≥f(-a)+f(-b).其中正确的是.(把你认为正确的不等式的序号全写上).三、解答题(本⼤题共6⼩题,共70分.解答时应写出必要的⽂字说明、证明过程或演算步骤)17.(10分)设全集为R,集合A={x|3≤x<6},B={x|2(1)分别求A∩B,(eB)∪A.R(2)已知C={x|a18.(12分)已知函数f(x)=.(1)判断点(3,14)是否在f(x)的图象上.(2)当x=4时,求f(x)的值.(3)当f(x)=2时,求x的值.19.(12分)若函数f(x)=x2+4x+a的定义域和值域均为[-2,b](b>-2),求实数a,b的值.20.(12分)(2015·烟台⾼⼀检测)已知函数f(x)=ax+b,且f(1)=2,f(2)=-1.(1)求f(m+1)的值.(2)判断函数f(x)的单调性,并⽤定义证明..【拓展延伸】定义法证明函数单调性时常⽤变形技巧(1)因式分解:当原函数是多项式函数时,作差后的变形通常进⾏因式分解.(2)通分:当原函数是分式函数时,作差后往往进⾏通分,然后对分⼦进⾏因式分解.(3)配⽅:当原函数是⼆次函数时,作差后可考虑配⽅,便于判断符号.21.(12分)已知函数f(x)对任意实数x,y恒有f(x+y)=f(x)+f(y),且当x>0时,f(x)<0,⼜f(1)=-2.(1)判断f(x)的奇偶性.(2)求证:f(x)为R上的减函数.(3)求f(x)在区间[-3,3]上的值域.22.(12分)定义在(-1,1)上的函数f(x)满⾜:①对任意x,y∈(-1,1),都有f(x)+f(y)=f;②f(x)在(-1,1)上是单调递减函数,f=-1.(1)求f(0)的值.(2)求证:f(x)为奇函数.(3)解不等式f(2x-1)<1.《集合与函数概念》单元测试题参考答案(第⼀章)(120分钟150分)。
高一上学期数学《集合与函数概念》单元检测卷(B)含答案解析
第一章 集合与函数概念单元检测卷(B)(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项符合题目要求)1.下列能构成集合的是( )A .中央电视台著名节目主持人B .我市跑得快的汽车C .上海市所有的中学生D .sin 30,tan 45,cos 60︒︒︒2. 设集合M 是由不小于23的数组成的集合,a =11,则下列关系中正确的是( )A .a ∈M B .a ∉MC .a =MD .a ≠M3.下列图形中,不能确定y 是x 的函数的是( )4..A ={x ∈N |1≤x ≤10},B ={x ∈R |x 2+x -6=0},则图中阴影部分表示的集合为( )A .{2}B .{3}C .{-3,2}D .{-2,3}5.已知f (x -1)=x 2+4x -5,则f (x )的表达式是( )A .f (x )=x 2+6x B .f (x )=x 2+8x +7C .f (x )=x 2+2x -3 D .f (x )=x 2+6x -106.集合M =}|1,2nx x n Z ⎧=+∈⎨⎩,N =}1|,m 2x x m Z ⎧=+∈⎨⎩,则两集合M ,N 的关系为( )A .M ∩N =∅B .M =NC .M ⊆ND .N ⊆M7.已知121,2(x)1(x 1)1,x 2x x f f ⎧-<⎪⎪=⎨⎪-+≥⎪⎩,则f(14)+f(76)=( )A.-16B.16C.56D.-568.若函数y =ax +1在[1,2]上的最大值与最小值的差为2,则实数a 的值是( )A .2 B .-2 C .2或-2 D .09.已知集合A ={x ∈N |x 2+2x -3≤0},B ={C |C ⊆A },则集合B 中元素的个数为( )A .2B .3 C .4D .510.已知函数25,1(x),1x ax x f ax x ⎧---≤⎪=⎨>⎪⎩,是R 上的增函数,则实数a 的取值范围是( )A .[-3,0) B .(-∞,-2]C .[-3,-2]D .(-∞,0)11.下列函数中,不满足f (2018x )=2018f (x )的是( )A .f (x )=|x | B .f (x )=x -|x |C .f (x )=x +2D .f (x )=-2x12.已知集合A ={x ∈N |x 2-2x -3≤0},B ={1,3},定义集合A ,B 之间的运算“*”:A *B ={x |x =x 1+x 2,x 1∈A ,x 2∈B },则A *B 中的所有元素数字之和为( )A .15B .16C .20D .21二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.下列各组函数:①f (x )=x 2-xx ,g (x )=x -1;②f (x )=xx ,g (x )=x x ;③f (x )=(x +3)2,g (x )=x +3;④f (x )=x +1,g (x )=x +x 0;⑤汽车匀速运动时,路程与时间的函数关系f (t )=80t (0≤t ≤5)与一次函数g (x )=80x (0≤x ≤5).其中表示相等函数的是________(填上所有正确的序号).14.已知f (x )=x 5+ax 3+bx -8,若f (-3)=10,则f (3)=________.15.若集合A ={(x ,y )|y =3x 2-3x +1},B ={(x ,y )|y =x },则集合A ∩B 中的元素个数为________.16.若函数f (x )=ax 2+abx +b 的定义域为{x |1≤x ≤2},则a +b 的值为________.三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)已知全集U ={x|x -2≥0或x -1≤0},A ={x|x<1或x>3},B ={x|x≤1或x>2}.求A∩B ,A ∪B ,(∁U A)∩(∁U B),(∁U A)∪(∁U B).18.(本小题满分12分)设全集U =R ,A ={x |1≤x ≤3},B ={x |2<x <4},C ={x |a ≤x ≤a +1}.(1)分别求A ∩B ,A ∪(∁U B );(2)若B ∪C =B ,求实数a 的取值范围.19.(本小题满分12分)定义在[-2,2]上的偶函数f(x)在区间[0,2]上是减函数,若f(1-m)<f(m).求实数m 的取值范围.20.(本小题满分12分)设集合A ={0,-4},B ={x |x 2+2(a +1)x +a 2-1=0,x ∈R }.若A ∩B =B.求实数a 的取值范围.21.(本小题满分12分)已知函数222,0(x)0,0,0x x x f x x mx x ⎧-+>⎪==⎨⎪+<⎩,是奇函数.(1)求实数m 的值;(2)若函数f (x )在区间[-1,a -2]上单调递增,求实数a 的取值范围.22.(本小题满分12分)已知函数f(x)=2x +1x +1.(1)判断函数在区间[1,+∞)上的单调性,并用定义证明你的结论;(2)求该函数在区间[1,4]上的最大值与最小值.第一章集合与函数概念单元检测卷(B)(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项符合题目要求)1.下列能构成集合的是( )A.中央电视台著名节目主持人B.我市跑得快的汽车C.上海市所有的中学生︒︒︒D.sin30,tan45,cos60【答案】:C【解析】:A,B,D中研究的对象不确定,因此不能构成集合.2. 设集合M是由不小于23的数组成的集合,a=11,则下列关系中正确的是( )A.a∈M B.a∉M C.a=M D.a≠M【答案】:B【解析】:判断一个元素是否属于某个集合,关键是看这个元素是否具有这个集合中元素的特征,若具有就是,否则不是.∵11<23,∴a∉M.3.下列图形中,不能确定y是x的函数的是( )【答案】:D【解析】:任作一条垂直于x轴的直线x=a,移动直线,根据函数的定义可知此直线与函数图象至多有一个交点.结合选项可知D不满足要求,因此不表示函数关系.4..A={x∈N|1≤x≤10},B={x∈R|x2+x-6=0},则图中阴影部分表示的集合为( )A .{2}B .{3}C .{-3,2}D .{-2,3}5.已知f (x -1)=x 2+4x -5,则f (x )的表达式是( )A .f (x )=x 2+6x B .f (x )=x 2+8x +7C .f (x )=x 2+2x -3 D .f (x )=x 2+6x -10【答案:】A【解析】:法一 设t =x -1,则x =t +1,∵f (x -1)=x 2+4x -5,∴f (t )=(t +1)2+4(t +1)-5=t 2+6t ,f (x )的表达式是f (x )=x 2+6x ;法二 ∵f (x -1)=x 2+4x -5=(x -1)2+6(x -1),∴f (x )=x 2+6x ;∴f (x )的表达式是f (x )=x 2+6x .故选A .6.集合M =}|1,2nx x n Z ⎧=+∈⎨⎩,N =}1|,m 2x x m Z ⎧=+∈⎨⎩,则两集合M ,N 的关系为( )A .M ∩N =∅B .M =NC .M ⊆ND .N ⊆M【答案】:D【解析】:由题意,对于集合M ,当n 为偶数时,设n =2k (k ∈Z ),则x =k +1(k ∈Z ),当n 为奇数时,设n =2k +1(k ∈Z ),则x =k +1+12(k ∈Z ),∴N ⊆M ,故选D.7.已知121,2(x)1(x 1)1,x 2x x f f ⎧-<⎪⎪=⎨⎪-+≥⎪⎩,则f(14)+f(76)=( )A.-16B.16C.56D.-56【答案】:A【解析】:f(14)=2×14-1=-12,f(76)=f(76-1)+1=f(16)+1=2×16-1+1=13,∴f(14)+f(76)=-16,故选A.8.若函数y =ax +1在[1,2]上的最大值与最小值的差为2,则实数a 的值是( )A .2 B .-2 C .2或-2 D .0【答案】:C【解析】:由题意a ≠0,当a >0时,有(2a +1)-(a +1)=2,解得a =2;当a <0时,有(a +1)-(2a +1)=2,解得a =-2,综上知a =±2.9.已知集合A ={x ∈N |x 2+2x -3≤0},B ={C |C ⊆A },则集合B 中元素的个数为( )A .2B .3 C .4D .5【答案】:C【解析】:A ={x ∈N|(x +3)(x -1)≤0}={x ∈N|-3≤x ≤1}={0,1},共有22=4个子集,因此集合B 中元素的个数为4,选C.10.已知函数25,1(x),1x ax x f ax x ⎧---≤⎪=⎨>⎪⎩,是R 上的增函数,则实数a 的取值范围是( )A .[-3,0) B .(-∞,-2]C .[-3,-2] D .(-∞,0)【答案】:C【解析】:若f (x )是R 上的增函数,则应满足21201151a a a a ⎧-≥⎪⎪<⎨⎪⎪--⨯-≤⎩,解得-3≤a ≤-2.11.下列函数中,不满足f (2018x )=2018f (x )的是( )A .f (x )=|x | B .f (x )=x -|x |C .f (x )=x +2 D .f (x )=-2x【答案】:C【解析】: 若f (x )=|x |,则f (2018x )=|2018x |=2018|x |=2018f (x );若f (x )=x -|x |,则f (2018x )=2018x -|2018x |=2018(x -|x |)=2018f (x );若f (x )=x +2,则f (2018x )=2018x +2,而2018f (x )=2018x +2018×2,故f (x )=x +2不满足f (2018x )=2018f (x );若f (x )=-2x ,则f (2018x )=-2×2018x =2018×(-2x )=2018f (x ).故选C.12.已知集合A ={x ∈N |x 2-2x -3≤0},B ={1,3},定义集合A ,B 之间的运算“*”:A *B ={x |x =x 1+x 2,x 1∈A ,x 2∈B },则A *B 中的所有元素数字之和为( )A .15B .16C .20D .21【答案】:D【解析】:由x 2-2x -3≤0,得(x +1)(x -3)≤0,得A ={0,1,2,3}.因为A *B ={x |x =x 1+x 2,x 1∈A ,x 2∈B }所以A *B 中的元素有:0+1=1,0+3=3,1+1=2,1+3=4,2+1=3(舍去),2+3=5,3+1=4(舍去), 3+3=6,所以A *B ={1,2,3,4,5,6},所以A *B中的所有元素数字之和为21.二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.下列各组函数:①f (x )=x 2-x x ,g (x )=x -1;②f (x )=xx ,g (x )=x x ;③f (x )=(x +3)2,g (x )=x +3;④f (x )=x +1,g (x )=x +x 0;⑤汽车匀速运动时,路程与时间的函数关系f (t )=80t (0≤t ≤5)与一次函数g (x )=80x (0≤x ≤5).其中表示相等函数的是________(填上所有正确的序号).【答案】:⑤【解析】: ①f (x )与g (x )的定义域不同,不是同一函数;②f (x )与g (x )的解析式不同,不是同一函数;③f (x )=|x +3|,与g (x )的解析式不同,不是同一函数;④f (x )与g (x )的定义域不同,不是同一函数;⑤f (x )与g (x )的定义域、值域、对应关系皆相同,故是同一函数.14.已知f (x )=x 5+ax 3+bx -8,若f (-3)=10,则f (3)=________.【答案】:-26【解析】:法一 由f (x )=x 5+ax 3+bx -8,得f (x )+8=x 5+ax 3+bx .令G (x )=x 5+ax 3+bx =f (x )+8,∵G (-x )=(-x )5+a (-x )3+b (-x )=-(x 5+ax 3+bx )=-G (x ),∴G (x )是奇函数,∴G (-3)=-G (3),即f (-3)+8=-f (3)-8.又f (-3)=10,∴f (3)=-f (-3)-16=-10-16=-26.法二 由已知条件,得5353(3)(3)(3)(3)8,(3)3338f a b f a b ⎧-=-+-+--⎨=+⋅+⋅-⎩①②①+②得f (3)+f (-3)=-16,又f (-3)=10,∴f (3)=-26.15.若集合A ={(x ,y )|y =3x 2-3x +1},B ={(x ,y )|y =x },则集合A ∩B 中的元素个数为________.【答案】:2【解析】:法一:由集合的意义可知,A ∩B 表示曲线y =3x 2-3x +1与直线y =x 的交点构成的集合.联立得方程组2331y x x y x ⎧=-+⎨=⎩,解得1313x y ⎧=⎪⎪⎨⎪=⎪⎩,或11x y =⎧⎨=⎩故A ∩B =()11,,1,133⎧⎫⎛⎫⎨⎬ ⎪⎝⎭⎩⎭,所以A ∩B 中含有2个元素.法二:由集合的意义可知,A ∩B 表示曲线y =3x 2-3x +1与直线y =x 的交点构成的集合.因为3x 2-3x +1=x 即3x 2-4x +1=0的判别式Δ>0,所以该方程有两个不相等的实根,所以A ∩B 中含有2个元素.16.若函数f (x )=ax 2+abx +b 的定义域为{x |1≤x ≤2},则a +b 的值为________.【答案】:-92【解析】:因为函数f (x )的定义域是不等式ax 2+abx +b ≥0的解集所以不等式ax 2+abx +b ≥0的解集为{x |1≤x ≤2},所以01212a b b a ⎧⎪<⎪+=-⎨⎪⎪⨯=⎩,解得323a b ⎧=-⎪⎨⎪=-⎩所以a +b =-32-3=-92.三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)已知全集U ={x|x -2≥0或x -1≤0},A ={x|x<1或x>3},B ={x|x≤1或x>2}.求A∩B ,A ∪B ,(∁U A)∩(∁U B),(∁U A)∪(∁U B).解:全集U ={x|x≥2或x≤1},∴A∩B =A ={x|x<1或x>3};A ∪B =B ={x|x≤1或x>2};(∁U A)∩(∁U B)=∁U (A ∪B)={2};(∁U A)∪(∁U B)=∁U (A∩B)={x|2≤x≤3或x =1}.18.(本小题满分12分)设全集U =R ,A ={x |1≤x ≤3},B ={x |2<x <4},C ={x |a ≤x ≤a +1}.(1)分别求A ∩B ,A ∪(∁U B );(2)若B ∪C =B ,求实数a 的取值范围.解:(1)由题意知,A ∩B ={x |1≤x ≤3}∩{x |2<x <4}={x |2<x ≤3}.易知∁U B ={x |x ≤2或x ≥4},所以A ∪(∁U B )={x |1≤x ≤3}∪{x |x ≤2或x ≥4}={x |x ≤3或x ≥4}.(2)由B ∪C =B ,可知C ⊆B ,易知2<a <a +1<4,解得2<a <3.故实数a 的取值范围是(2,3).19.(本小题满分12分)定义在[-2,2]上的偶函数f(x)在区间[0,2]上是减函数,若f(1-m)<f(m).求实数m 的取值范围.解:∵f(x)为偶函数,∴f(1-m)<f(m)可化为f(|1-m|)<f(|m|),又f(x)在[0,2]上是减函数,∴|1-m|>|m|,两边平方,得m<12,又f(x)定义域为[-2,2],∴{-2≤1-m ≤2,-2≤m ≤2,,解之得-1≤m≤2,综上得m ∈[-1,12).20.(本小题满分12分)设集合A ={0,-4},B ={x |x 2+2(a +1)x +a 2-1=0,x ∈R }.若A ∩B =B.求实数a 的取值范围.解:因为A ∩B =B ,所以B ⊆A ,因为A ={0,-4},所以B ⊆A 分以下三种情况:①当B =A 时,B ={0,-4},由此可知,0和-4是方程x 2+2(a +1)x +a 2-1=0的两个根,由根与系数的关系,得2224(1)4(1)02(1)410a a a a ⎧∆=+-->⎪-+=-⎨⎪-=⎩解得a =1;②当B ≠∅且B A ≠⊂时,B ={0}或B ={-4},且Δ=4(a +1)2-4(a 2-1)=0,解得a =-1,此时B ={0}满足题意;③当B =∅时,Δ=4(a +1)2-4(a 2-1)<0,解得a <-1.综上所述,所求实数a 的取值范围是(-∞,-1]∪{1}.21.(本小题满分12分)已知函数222,0(x)0,0,0x x x f x x mx x ⎧-+>⎪==⎨⎪+<⎩,是奇函数.(1)求实数m 的值;(2)若函数f (x )在区间[-1,a -2]上单调递增,求实数a 的取值范围.解:(1)设x <0,则-x >0,所以f (-x )=-(-x )2+2(-x )=-x 2-2x .又f (x )为奇函数,所以f (-x )=-f (x ),于是x <0时,f (x )=x 2+2x =x 2+mx ,所以m =2.(2)要使f (x )在[-1,a -2]上单调递增,所以2121a a ->-⎧⎨-≤⎩,解得:1<a ≤3故实数a 的取值范围是(1,3].22.(本小题满分12分)已知函数f(x)=2x +1x +1.(1)判断函数在区间[1,+∞)上的单调性,并用定义证明你的结论;(2)求该函数在区间[1,4]上的最大值与最小值.解:(1)f(x)在[1,+∞)上是增函数.证明如下:任取x 1,x 2∈[1,+∞),且x 1<x 2,f(x 1)-f(x 2)=2x 1+1x 1+1-2x 2+1x 2+1=x 1-x 2(x 1+1)(x 2+1).∵x 1-x 2<0,(x 1+1)(x 2+1)>0,∴f(x 1)<f(x 2).∴函数f(x)在[1,+∞)上是增函数. (2)由(1)知函数f(x)在[1,4]上是增函数,∴最大值为f(4)=2×4+14+1=95,最小值为f(1)=2×1+11+1=32.高中11。
集合与函数概念检测试题
数学必修一第一章检测试题(含答案)(集合与函数概念)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合}8,5,2{=M ,}10,9,8,5{=N ,则=N M (A )A .}10,9,8,5,2{B .}8,5{C .}10,9{D .}2{ 2.若集合{},,a b c 当中的元素是△ABC 的三边长,则该三角形是(C)A .正三角形B .等腰三角形C .不等边三角形D .等腰直角三角形 3.集合{1,2,3}的真子集共有(C)A .5个B .6个C .7个D .8个4.设A 、B 是全集U 的两个子集,且A ⊆B ,则下列式子成立的是(C)A .C U A ⊆C U BB .C U A ⋃C U B=UC .A ⋂C U B=φD .C U A ⋂B=φ5.已知}19,2,1{2-=a A ,B={1,3},A =B }3,1{,则=a (C)A .32B .23 C .32±D .23±6.函数x xx y +=的图象是(D)7.如果集合A={x|ax 2+2x +1=0}中只有一个元素,那么a 的值是(B)A .0B .0 或1C .1D .不能确定8.已知22(1)()(12)2(2)x x f x x x x x +≤-⎧⎪=-<<⎨⎪≥⎩,若()3f x =,则x 的值是(D)A .1B .1或32C .1,32或9.若2)2()1()(22--+-++=a a x a x a x f 是偶函数,则=a (B)A .1B .2C .3D .410.若)(x f 是R 上的奇函数,且当),0[+∞∈x 时,)1()(x x x f +=,则当)0,(-∞∈x 时,=)(x f (D)A .)1(x x +-B .)1(x x +C .)1(x x --D .)1(x x - 11.给定集合A B 、,定义 {|,,}A B x x m n m A n B ==-∈∈※.若 {4,5,6},{1,2,3}A B ==,则集合 A B※ 中的所有元素之和为 (A)A .15B .14C .27D .-1412.若f(x)=-x 2+2ax 与1)(+=x ax g 在区间[1,2]上都是减函数,则a 的值范围是 (D)A .)1,0()0,1(⋃-B .]1,0()0,1(⋃-C .(0,1)D .]1,0(二、填空题:本题共4小题,每小题4分,共16分.把答案填在题中的横线上. 13.函数b x a y +-=)1(在R 上是减函数,则a 的取值范围是1<a ; 14.设集合{1,2,3,4},{|22,}P Q x x x R ==-≤≤∈,则=Q P }2,1{15. 已知集合}41|{<≤=x x A ,}|{a x x B ≤=, 若A B ,则实数a 的取值范围为 4≥a16. 给出下列四个命题:①函数是定义域到值域的映射; ②x x x f -+-=12)(是函数;③函数)(3N x x y ∈=的图像是一条直线;④已知函数)(x f 的定义域为R ,对任意实数1x ,2x ,且≠1x 2x ,都有0)()(2121<--x f x f x x ,则)(x f 在R 上是减函数.其中正确命题的序号是①④.(写出你认为正确的所有命题序号)三、解答题:本大题共6小题,共74分.解答应写出必要的文字说明、证明过程及演算步骤. 17.(本题满分12分)已知全集U R =,集合{|14}A x x =≤<,{|315}B x x x =-<+, 求:(Ⅰ)A B ; (Ⅱ)()U C A B ; 解:(Ⅰ)由已知得: )3,1[)4,1[)3,(=⋂∴=-∞=B A A B(Ⅱ)由已知得:),4[)1,(+∞⋃-∞=A C U),4[)3,()(+∞⋃-∞=⋃B A C U18.(本题满分12分)求下列函数的定义域:(Ⅰ)y =(Ⅱ)121y x =+-.解:(Ⅰ)由已知得⎪⎪⎩⎪⎪⎨⎧≤⇒≥--≥⇒≥+4304321012x x x x∴函数的定义域为]43,21[-(Ⅱ)由已知得:12012≠+∴≠-+x x∴函数的定义域),1()1,3()3,(+∞-⋃--⋃--∞19.(本题满分12分)(Ⅰ)集合}019|{22=-+-=a ax x x A ,}065|{2=+-=x x x B .若B A B A =,求a 的值.(Ⅱ)若集合5|{≤=x x M 或}7≥x ,}121|{-≤≤+=m x m x N ,且R N M = ,求实数m 的取值范围. 解:(Ⅰ)B A B A ⋂=⋃ B A =∴ ⎩⎨⎧=--=-∴61952a a 5=∴a (Ⅱ) 5|{≤=x x M 或}7≥x ,}121|{-≤≤+=m x m x N ,且R N M = ⎩⎨⎧≥⇒≥-≤⇒≤+∴4712451m m m m4=∴m 20.(本题满分12分)已知函数)(x f y =是二次函数,且8)0(=f ,12)()1(+-=-+x x f x f .(Ⅰ)求)(x f 的解析式;(Ⅱ)求证)(x f 在区间),1[+∞上是减函数.解:(Ⅰ)设c bx ax x f ++=2)(8)0(,)0(==∴f c f 又8=∴c又c x b x a x f ++++=+)1()1()1(2)(2)(])1()1([)()1(22b a axc bx ax c x b x a x f x f ++=++-++++=-+∴结合已知得12)(2+-=++x b a ax⎩⎨⎧=+-=∴122b a a 2,1=-=∴b a82)(2++-=∴x x x f(Ⅱ)证明:设任意的),1[,21+∞∈x x 且21x x <则)2)(()(2)()82()82()()(121221212222212121-+-=-+-=++--++-=-x x x x x x x x x x x x x f x f又由假设知012>-x x 而112≥>x x 0212>-+∴x x∴0)2)((1212>-+-x x x x0)()(21>-x f x f )()(21x f x f >∴)(x f 在区间),1[+∞上是减函数.21.(本题满分12分)已知函数)()1(1)1()(2R a x a xa x a x f ∈+-++-=.(Ⅰ)讨论)(x f 的奇偶性;(Ⅱ)当)(x f 为奇函数时,判断)(x f 在区间),0(+∞上的单调性,并用单调性的定义证明你的结论.解:(Ⅰ)①当1=a 时,x xx f 22)(-=,其定义域为),0()0,(+∞⋃-∞关于原点对称。
高一数学必修一集合与函数的概念单元测试题附答案解析
高一数学必修一集合与函数的概念单元测试附答案解析时间:120分钟满分:150分一、选择题本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的1.设集合M={x|x2+2x=0,x∈R},N={x|x2-2x=0,x∈R},则M∪N=A.{0} B.{0,2} C.{-2,0} D.{-2,0,2}2.设f:x→|x|是集合A到集合B的映射,若A={-2,0,2},则A∩B=A.{0} B.{2} C.{0,2} D.{-2,0}3.fx是定义在R上的奇函数,f-3=2,则下列各点在函数fx图象上的是A.3,-2 B.3,2 C.-3,-2 D.2,-34.已知集合A={0,1,2},则集合B={x-y|x∈A,y∈A}中元素的个数是A.1 B.3 C.5 D.95.若函数fx满足f3x+2=9x+8,则fx的解析式是A.fx=9x+8 B.fx=3x+2 C.fx=-3x-4 D.fx=3x+2或fx=-3x-4 6.设fx=错误!则f5的值为A.16 B.18 C.21 D.247.设T={x,y|ax+y-3=0},S={x,y|x-y-b=0},若S∩T={2,1},则a,b的值为A.a=1,b=-1 B.a=-1,b=1C.a=1,b=1 D.a=-1,b=-18.已知函数fx的定义域为-1,0,则函数f2x+1的定义域为A.-1,1 C.-1,09.已知A={0,1},B={-1,0,1},f是从A到B映射的对应关系,则满足f0>f1的映射有A.3个B.4个C.5个D.6个10.定义在R上的偶函数fx满足:对任意的x1,x2∈-∞,0x1≠x2,有x2-x1fx2-fx1>0,则当n∈N时,有A.f-n<fn-1<fn+1 B.fn-1<f-n<fn+1C.fn+1<f-n<fn-1 D.fn+1<fn-1<f-n11.函数fx是定义在R上的奇函数,下列说法:①f0=0;②若fx在0,+∞上有最小值为-1,则fx在-∞,0上有最大值为1;③若fx在1,+∞上为增函数,则fx在-∞,-1上为减函数;④若x>0时,fx=x2-2x,则x<0时,fx=-x2-2x.其中正确说法的个数是A.1个 B.2个 C.3个 D.4个12.fx满足对任意的实数a,b都有fa+b=fa·fb且f1=2,则错误!+错误!+错误!+…+错误!=A.1006 B.2014 C.2012 D.1007二、填空题本大题共4小题,每小题5分,共20分.把答案填在题中横线上13.函数y=错误!的定义域为________.14.fx=错误!若fx=10,则x=________.15.若函数fx=x+abx+2a常数a,b∈R是偶函数,且它的值域为-∞,4,则该函数的解析式fx=________.16.在一定范围内,某种产品的购买量y吨与单价x元之间满足一次函数关系,如果购买1000吨,每吨为800元,购买2000吨,每吨为700元,那么客户购买400吨,单价应该是________元.三、解答题本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤17.本小题满分10分已知集合A={x|2≤x≤8},B={x|1<x<6},C={x|x>a},U=R.1求A∪B,U A∩B;2若A∩C≠,求a的取值范围.18.本小题满分12分设函数fx=错误!.1求fx的定义域;2判断fx的奇偶性;3求证:f错误!+fx=0.19.本小题满分12分已知y=fx是定义在R上的偶函数,当x≥0时,fx=x2-2x.1求当x<0时,fx的解析式;2作出函数fx的图象,并指出其单调区间.20.本小题满分12分已知函数fx=错误!,1判断函数在区间1,+∞上的单调性,并用定义证明你的结论.2求该函数在区间1,4上的最大值与最小值.21.本小题满分12分已知函数fx的定义域为0,+∞,且fx为增函数,fx·y=fx+fy.1求证:f错误!=fx-fy;2若f3=1,且fa>fa-1+2,求a的取值范围.22.本小题满分12分某商场经销一批进价为每件30元的商品,在市场试销中发现,此商品的销售单价x元与日销售量y件之间有如下表所示的关系:1在所给的坐标图纸中,根据表中提供的数据,描出实数对x,y的对应点,并确定y与x 的一个函数关系式.2设经营此商品的日销售利润为P元,根据上述关系,写出P关于x的函数关系式,并指出销售单价x为多少元时,才能获得最大日销售利润1.解析M={x|xx+2=0.,x∈R}={0,-2},N={x|xx-2=0,x∈R}={0,2},所以M∪N={-2,0,2}.答案D2. 解析依题意,得B={0,2},∴A∩B={0,2}.答案C3. 解析∵fx是奇函数,∴f-3=-f3.又f-3=2,∴f3=-2,∴点3,-2在函数fx的图象上.答案A4. 解析逐个列举可得.x=0,y=0,1,2时,x-y=0,-1,-2;x=1,y=0,1,2时,x-y =1,0,-1;x=2,y=0,1,2时,x-y=2,1,0.根据集合中元素的互异性可知集合B的元素为-2,-1,0,1,2.共5个.答案C5. 解析∵f3x+2=9x+8=33x+2+2,∴fx=3x+2.答案B6. 解析f5=f5+5=f10=f15=15+3=18.答案B7. 解析依题意可得方程组错误!错误!答案C8. 解析由-1<2x+1<0,解得-1<x<-错误!,故函数f2x+1的定义域为错误!.答案B9. 解析当f0=1时,f1的值为0或-1都能满足f0>f1;当f0=0时,只有f1=-1满足f0>f1;当f0=-1时,没有f1的值满足f0>f1,故有3个.答案A10.解析由题设知,fx在-∞,0上是增函数,又fx为偶函数,∴fx在0,+∞上为减函数.∴fn+1<fn<fn-1.又f-n=fn,∴fn+1<f-n<fn-1.答案C11. 解析①f0=0正确;②也正确;③不正确,奇函数在对称区间上具有相同的单调性;④正确.答案C12. 解析因为对任意的实数a,b都有fa+b=fa·fb且f1=2,由f2=f1·f1,得错误!=f1=2,由f4=f3·f1,得错误!=f1=2,……由f2014=f2013·f1,得错误!=f1=2,∴错误!+错误!+错误!+…+错误!=1007×2=2014.答案B13. 解析由错误!得函数的定义域为{x|x≥-1,且x≠0}.答案{x|x≥-1,且x≠0}14. 解析当x≤0时,x2+1=10,∴x2=9,∴x=-3.当x>0时,-2x=10,x=-5不合题意,舍去.∴x=-3.答案-315. 解析fx=x+abx+2a=bx2+2a+abx+2a2为偶函数,则2a+ab=0,∴a=0,或b=-2.又fx的值域为-∞,4,∴a≠0,b=-2,∴2a2=4.∴fx=-2x2+4.答案-2x2+416. 解析设一次函数y=ax+ba≠0,把错误!和错误!代入求得错误!∴y=-10x+9000,于是当y=400时,x=860.答案86017. 解1A∪B={x|2≤x≤8}∪{x|1<x<6}={x|1<x≤8}.A={x|x<2,或x>8}.U∴U A∩B={x|1<x<2}.2∵A∩C≠,∴a<8.18. 解1由解析式知,函数应满足1-x2≠0,即x≠±1.∴函数fx的定义域为{x∈R|x≠±1}.2由1知定义域关于原点对称,f-x=错误!=错误!=fx.∴fx为偶函数.3证明:∵f错误!=错误!=错误!,fx=错误!,∴f错误!+fx=错误!+错误!=错误!-错误!=0.19. 解1当x<0时,-x>0,∴f-x=-x2-2-x=x2+2x.又fx是定义在R上的偶函数,∴f-x=fx.∴当x<0时,fx=x2+2x.2由1知,fx=错误!作出fx的图象如图所示:由图得函数fx的递减区间是-∞,-1,0,1.fx的递增区间是-1,0,1,+∞.20. 解1函数fx在1,+∞上是增函数.证明如下:任取x1,x2∈1,+∞,且x1<x2,fx-fx2=错误!-错误!=错误!,1∵x1-x2<0,x1+1x2+1>0,所以fx1-fx2<0,即fx1<fx2,所以函数fx在1,+∞上是增函数.2由1知函数fx在1,4上是增函数,最大值f4=错误!,最小值f1=错误!.21. 解1证明:∵fx=f错误!=f错误!+fy,y≠0∴f错误!=fx-fy.2∵f3=1,∴f9=f3·3=f3+f3=2.∴fa>fa-1+2=fa-1+f9=f9a-1.又fx在定义域0,+∞上为增函数,∴错误!∴1<a<错误!.22. 解1由题表作出30,60,40,30,45,15,50,0的对应点,它们近似地分布在一条直线上,如图所示.设它们共线于直线y=kx+b,则错误!错误!∴y=-3x+1500≤x≤50,且x∈N,经检验30,60,40,30也在此直线上.∴所求函数解析式为y=-3x+1500≤x≤50,且x∈N.2依题意P=yx-30=-3x+150x-30=-3x-402+300.∴当x=40时,P有最大值300,故销售单价为40元时,才能获得最大日销售利润.。
高中数学必修一集合与函数的概念知识点+练习题含答案解析(非常详细)
第一部分集合与函数的概念知识点整理第一章集合与函数概念一:集合的含义与表示1、集合的含义:集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个整体。
把研究对象统称为元素,把一些元素组成的总体叫集合,简称为集。
2、集合的中元素的三个特性:(1)元素的确定性:集合确定,则一元素是否属于这个集合是确定的:属于或不属于。
(2)元素的互异性:一个给定集合中的元素是唯一的,不可重复的。
(3)元素的无序性:集合中元素的位置是可以改变的,并且改变位置不影响集合3、集合的表示:{…}(1)用大写字母表示集合:A={我校的篮球队员},B={1,2,3,4,5} (2)集合的表示方法:列举法与描述法。
a、列举法:将集合中的元素一一列举出来 {a,b,c……}b、描述法:①区间法:将集合中元素的公共属性描述出来,写在大括号内表示集合。
{x R| x-3>2} ,{x| x-3>2}②语言描述法:例:{不是直角三角形的三角形}③Venn图:画出一条封闭的曲线,曲线里面表示集合。
4、集合的分类:(1)有限集:含有有限个元素的集合(2)无限集:含有无限个元素的集合(3)空集:不含任何元素的集合5、元素与集合的关系:(1)元素在集合里,则元素属于集合,即:a∈A(2)元素不在集合里,则元素不属于集合,即:a¢A注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集 N*或 N+整数集Z有理数集Q实数集R6、集合间的基本关系(1).“包含”关系(1)—子集定义:如果集合A的任何一个元素都是集合B的元素,我们说这两个集合有包含关系,称集合A是集合B的子集。
记作:BA⊆(或B⊇A)注意:BA⊆有两种可能(1)A是B的一部分;(2)A与B是同一集合。
反之: 集合A不包含于集合B,或集合B不包含集合A,记作A⊆/ B或B⊇/A(2).“包含”关系(2)—真子集如果集合BA⊆,但存在元素x∈B且x¢A,则集合A是集合B的真子集如果A⊆B,且A≠B那就说集合A是集合B的真子集,记作A B(或B A)读作A真含与B(3).“相等”关系:A=B“元素相同则两集合相等”如果A⊆B 同时 B⊆A 那么A=B(4). 不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集,空集是任何非空集合的真子集。
高一数学必修1《集合与函数概念》测试卷(含答案)
高一数学必修1《集合与函数概念》测试卷(含答案)第一章(一)《集合与函数概念》测试卷考试时间:120分钟满分:150分一.选择题(本大题共12小题,每小题5分,共60分)1.下列叙述正确的是()A.函数的值域就是其定义中的数集BB.函数y=f(x)的图像与直线x=m至少有一个交点C.函数是一种特殊的映射D.映射是一种特殊的函数2.如果A={x|x>-1},则下列结论正确的是()A.XXXB.{}⊆AC.{}∈AD.∅∈A3.设f(x)=(2a-1)x+b在R上是减函数,则有()A.a≥1/2B.a≤1/2C.a>1/2D.a<1/24.定义在R上的偶函数f(x),对任意x1,x2∈[0,+∞)(x1≠x2),有|x1-x2|<π/2,则有()A.f(3)<f(-2)<f(1)B.f(1)<f(-2)<f(3)C.f(-2)<f(1)<f(3)D.f(3)<f(1)<f(-2)5.若奇函数f(x)在区间[1,3]上为增函数,且有最小值,则它在区间[-3,-1]上()A.是减函数,有最小值0B.是增函数,有最小值0C.是减函数,有最大值0D.是增函数,有最大值06.设f:x→x是集合A到集合B的映射,若A={-2,0,2},则AB等于()A.{}B.{2}C.{0,2}D.{-2,0}7.定义两种运算:a⊕b=ab,a⊗b=a²+b²,则函数f(x⊗3-3)为()A.奇函数B.偶函数C.既不是奇函数又不是偶函数D.既是奇函数又是偶函数8.若函数f(x)是定义域在R上的偶函数,在(-∞,0)上是减函数,且f(-2)=1/4,则使f(x)<1/4的x的取值范围为()A.(-2,2)B.(-2,0)∪(0,2)C.(-∞,-2)∪(2,+∞)D.(-∞,-2]∪[2,+∞)9.函数f(x)=x+(x|x|)的图像是()10.设f(x)是定义域在R上的奇函数,f(x+2)=-f(x),当|x|<1时,f(x)=x,则f(7.5)的值为()A.-0.5B.0.5C.-5.5D.7.511.已知f(-2x+1)=x²+1,且-1/2≤x≤1/2,则f(x)的值域为()A.[1,5/4]B.[1/4,5/4]C.[0,5/4]D.[1/4,2]12.设f(x)是定义在R上的奇函数,且f(x)在[-2,2]上单调递增,则f(x)在(-∞,-2)∪(2,+∞)上()A.单调递减B.单调不增也不减C.单调递增D.无法确定第一章(一)《集合与函数概念》测试卷考试时间:120分钟满分:150分一、选择题(本大题共12小题,每小题5分,共60分)1.下列叙述正确的是()A。
高一数学集合与函数的概念试题答案及解析
高一数学集合与函数的概念试题答案及解析1. 设集合,,则() A .B .C .D .【答案】A【解析】由题意得,,,∴,故选A.【考点】1.解一元二次不等式;2.集合的交集.2. 下列命题正确的是( ) A .∁U (∁U P )={P}B .若M={1,∅,{2}},则{2}⊆MC .∁R Q=QD .若N={1,2,3},S={x|x ⊆N},则N ∈S【答案】D【解析】根据集合的定义和补集运算法则,集集合子集的性质,对A 、B 、C 、D 四个选项进行一一判断;解:A 、∁U (∁U P )=p ,∵{P},∴p ∈{P},故A 错误;B 、集合M 中的元素,有1和,∅,{2},知1是数,∅,{2}是集合,∴1和,∅,{2},不能构成集合B ,故B 错误;C 、∵∁R Q 为无理数集,而Q 为有理数集,故C 错误;D 、∵N={1,2,3},S={x|x ⊆N},∴N 的所有子集构成集合S ,∴N ∈S ,故D 正确; 故选D .点评:此题主要考查集合的定义及其元素与集合的关系,注意集合的三个性质:确定性,互异性,无序性,此题是一道基础题.3. 已知M={y|y=x 2+1,x ∈R},N={y|y=﹣x 2+1,x ∈R},则M∩N=( ) A .{0,1} B .{(0,1)} C .{1} D .以上均不对【答案】C【解析】根据函数值域求得集合M=[1,+∞),N}=(﹣∞,1],根据集合交集的求法求得M∩N . 解;集合M={y|y=x 2+1,x ∈R}=[1,+∞), N={y|y=﹣x 2+1,x ∈R}=(﹣∞,1], ∴M∩N={1} 故选C .点评:此题是个基础题.考查交集及其运算,以及函数的定义域和圆的有界性,同时考查学生的计算能力.4. 集合A 1,A 2满足A 1∪A 2=A ,则称(A 1,A 2)为集合A 的一种分拆,并规定:当且仅当A 1=A 2时,(A 1,A 2)与(A 2,A 1)为集合A 的同一种分拆,则集合A={a ,b ,c}的不同分拆种数为多少?【答案】27种【解析】考虑集合A 1为空集,有一个元素,2个元素,和集合A 相等四种情况,由题中规定的新定义分别求出各自的分析种数,然后把各自的分析种数相加,即可求出值.当A 1为A 时,A 2可取A 的任何子集,此时A 2有8种情况,故拆法为8种;总之,共27种拆法. 解:当A 1=φ时,A 2=A ,此时只有1种分拆;当A1为单元素集时,A2=∁AA1或A,此时A1有三种情况,故拆法为6种;当A1为双元素集时,如A1={a,b},A2={c}、{a,c}、{b,c}、{a,b,c},此时A1有三种情况,故拆法为12种;当A1为A时,A2可取A的任何子集,此时A2有8种情况,故拆法为8种;综上,共27种拆法.点评:本题属于创新型的概念理解题,准确地理解拆分的定义,以及灵活运用集合并集的运算和分类讨论思想是解决本题的关键所在.5.已知a∈R,b∈R,A={2,4,x2﹣5x+9},B={3,x2+ax+a},C={x2+(a+1)x﹣3,1}:求(1)A={2,3,4}的x值;(2)使2∈B,B⊊A,求a,x的值;(3)使B=C的a,x的值.【答案】(1)x=2或x=3;(2)当x=2时,a=﹣;当x=3时,a=﹣;(3){x|x=﹣1或3} {a|a=﹣6或﹣2}.【解析】(1)解方程x2﹣5x+9=3即可求得x值;(2)由x2+ax+a=2与x2﹣5x+9=3联立即可求得a,x的值;(3)x2+(a+1)x﹣3=3与x2+ax+a=1即可求得a,x的值.解:(1)依题意,x2﹣5x+9=3,∴x=2或x=3;(2)∵2∈B,B⊊A,∴x2+ax+a=2且x2﹣5x+9=3,当x=2时,a=﹣;当x=3时,a=﹣;(3)∵B={3,x2+ax+a}=C={x2+(a+1)x﹣3,1},∴整理得:x=5+a,将x=5+a代入x2+ax+a=1得:a2+8a+12=0,解得a=﹣2或a=﹣6.当a=﹣2时,x=3或﹣1;当a=﹣6时,x=﹣1或x=7(当a=﹣6,x=7时代入x2+(a+1)x﹣3="3" 不成立所以舍去).综上所述{x|x=﹣1或3} {a|a=﹣6或﹣2}.点评:本题考查集合关系中的参数取值问题,考查方程思想运算能力,属于中档题.6.若,则的值为A.0B.1C.D.1或【答案】C【解析】由已知得,则有,又,。
集合与函数概念测试,附有详细答案
集合与函数概念一、选择题:1.已知集合{}|110,P x Nx =∈≤≤ {}2|60,Q x R x x =∈+-=则P QI 等于( D ).A. {}1,2,3B. {}2,3C. {}1,2D. {}2 2.已知集合{1,2,3,4,5,6,7}U =,{2,4,5,7}A =,{3,4,5}B =,则()()UU A B = 痧( D ). A. {1,6} B. {4,5} C. {2,3,4,5,7} D. {1,2,3,6,7} 3.设()f x 是R 上的任意函数,下列叙述正确的是( C )A. ()()f x f x -是奇函数B. ()()f x f x -是奇函数C. ()()f x f x +-是偶函数D. ()()f x f x --是偶函数4.设集合{}12A =,,则满足{}123A B = ,,的集合B 的个数是( C ). A. 1B. 3C. 4D. 85、下列表示图形中的阴影部分的是【A 】A 、()()A CBC U I U B 、()()A B A C U I U C 、()()A B B C U I UD 、()A B C U I6、若集合}1,1{-=A ,}1|{==mx x B ,且A B A =U ,则m 的值为【 D 】A 、1B 、1-C 、1或1-D 、1或1-或07、已知函数()()2212f x x a x =+-+在区间(]4,∞-上是减函数,则实数a 的取值范围是【 A 】 A 、3a ≤- B 、3a ≥- C 、5a ≤ D 、3a ≥8、)127()2()1()(22+-+-+-=m m x m x m x f 为偶函数,则m 的值是【 B 】A 、1B 、2C 、 3D 、 4 9、若偶函数)(x f 在(]1,-∞-上是增函数,则下列关系式中成立的是【 D 】A 、)2()1()23(f f f <-<- B 、)2()23()1(f f f <-<-C 、)23()1()2(-<-<f f fD 、 )1()23()2(-<-<f f f 10、设()f x 是奇函数,且在(0,)+∞内是增函数,又(3)0f -=,则()0x f x ⋅<的解集是【 D 】A 、{}|303x x x -<<>或B 、{}|303x x x <-<<或C 、{}|33x x x <->或D 、{}|3003x x x -<<<<或 二、填空题:11、用最恰当的符号填空≠⊂① 0__∈_Z,5∉N, 16_∈__Q ② 若{}2|A x x x ==,则-1∉A③ ∅ ={}2|10x x +=④ {}0,1≠⊂N ⑤ {}2|x x x =≠⊃{}0 12、若集合{}|37A x x =≤<,{}|210B x x =<<,则A B =U {}|210x x << 13、已知{}21B y y x ==+,{}221,A y y x x ==-+-则A B =I {}|0y y ≤ 14、若函数2()(2)(1)3f x k x k x =-+-+是偶函数,则)(x f 的递减区间是[)0,+∞15、奇函数()f x 在区间[3,7]上是增函数,在区间[3,6]上的最大值为8,最小值为1-,则2(6)(3)f f -+-=___15___三、解答题:16、若集合{}{}2|60,|10M x x x N x ax =+-==-=,且N M⊆,求实数a 的值.16解:由26023x x x +-=⇒=-或,因此,{}2,3M =-.(i )若0a =时,得N =∅,此时,NM⊆;(ii )若0a ≠时,得1{}Na =. 若N M⊆,满足1123a a ==-或,解得1123a a ==-或.故所求实数a 的值为0或12或13-.17、设集合{|(3)()0,}A x x x a a R =--=∈,{|(4)(1)0}B x x x =--=,求A B , A B.(教材P 14 B 组题2)17解:{1,4}B =.当3a =时,{3}A =,则{1,3,4}A B = ,A B =∅ ; 当1a =时,{1,3}A =,则{1,3,4}A B = ,{1}A B = ; 当4a =时,{3,4}A =,则{1,3,4}A B = ,{4}A B = ;当3a ≠且1a ≠且4a ≠时,{3,}A a =,则{1,3,4,}A B a = ,A B =∅ .18、设集合A ={x |240x x +=}, B ={x |222(1)10x a x a +++-=,a R ∈},若A B =B ,求实数a 的值.19解:先化简集合A ={4,0}-. 由A B =B ,则B ⊆A ,可知集合B 可为∅,或为{0},或{-4},或{4,0}-.(i )若B =∅,则224(1)4(1)0a a ∆=+--<,解得a <1-; (ii )若0∈B ,代入得2a 1-=0⇒a =1或a =1-, 当a =1时,B =A ,符合题意;当a =1-时,B ={0}⊆A ,也符合题意.(iii )若-4∈B ,代入得2870a a -+=⇒a =7或a =1, 当a =1时,已经讨论,符合题意;当a =7时,B ={-12,-4},不符合题意. 综上可得,a =1或a ≤1-.19、已知函数[]2()22,5,5f x x ax x =++∈-。
集合与函数概念基础测试题含详解
集合与函数概念基础测试题一、单选题(每小题5分,共60分。
)1.已知集合A ={x ∈N |-2<x <3},B ={x |-3<x <1},则A ∩B 等于( ) A .{x |-2<x <1}B .{x |-3<x <3}C .{-1,0}D .{0}2.设集合{}0,1,3,5,6,8U =, {}A 1,5,8B {2}==,,则()UA B =( )A .{}0,2,3,6B .{}0,3,6C .{}1,2,5,8D .∅3.已知集合M =}{46y y x =-+,P ={(x ,})32y y x =+,则M P 等于( )A .(1,2)B .{}{}12⋃C .(){}1,2 D .∅ 4.已知函数定义域是,则的定义域( )A .B .C .D .5.已知集合{}2|3100M x x x =--<,{N x y ==,且M 、N 都是全集R (R 为实数集)的子集,则如图所示韦恩图中阴影部分所表示的集合为( )A .{}35x x <≤ B .{3x x <-或}5x >C .{}32x x -≤≤-D .{}35x x -≤≤6.设集合{}2,5,6A =,{}250B x x x m =-+=,若{}2A B ⋂=,则B =( )A .{}2,3B .{}2C .{}3D .{}1,6-7.设,,能表示从集合A 到集合B 的函数关系的图象是( )A .B .C .D .8.下列各组函数是同一函数的是( ) A .x y x=与y =1B .2x y x=与 y =xC .321x xy x +=+与 y =xD .y =y =x ﹣19.下列函数中,不满足:(2)2()f x f x =的是( ) A .()=f x xB .()f x x x =-C .()1f x x =+D .()f x x =-10.已知8)(35-++=bx ax x x f ,且10)1(=f ,则)1(-f 等于( ) A .-18 B . -26 C .-10 D .10 11.若函数()y f x =的定义域是[]0,2016,则函数(1)()1f xg x x +=-的定义域是( ) A .[]1,2015- B .[)(]1,11,2015-⋃ C .[]0,2016D .[)(]1,11,2016-⋃12.设函数()221,12,1x x f x x x x ⎧-≤=⎨+->⎩,则()12f f ⎛⎫ ⎪ ⎪⎝⎭的值为( ) A .1516B .2716-C .89D .18二、填空题(每小题5分,共20分。
集合与函数测试题(含答案)
集合与函数测试题一.选择题(本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中只有一个是符合题目要求的)1.已知命题“012,2<++∈∃ax x x R ”是真命题,则实数a 的取值范围是 ( ) A .)1,(--∞B .),1(+∞C .),1()1,(+∞--∞D .(—1,1)2、若{}8222<≤∈=-xZ x A {}1log R <∈=x x B x ,则)(C R B A ⋂的元素个数为( ) A.0 B.1 C.2 D.33、 设1a >,函数()log a f x x =在区间[,2]a a 上的最大值与最小值之差为12,则a =( ) A .2 B .4 C .22 D .24、 在R 上定义的函数()x f 是偶函数,且()()x f x f -=2,若()x f 在区间[]2,1是减函数, 则函数 ()x f ( )A.在区间[]1,2--上是减函数,区间[]4,3上是增函数B.在区间[]1,2--上是减函数,区间[]4,3上是减函数C.在区间[]1,2--上是增函数,区间[]4,3上是增函数D.在区间[]1,2--上是增函数,区间[]4,3上是减函数 5 .设⎭⎬⎫⎩⎨⎧-∈3,21,1,1α,则使函数αx y =的定义域为R 且为奇函数的所有α的值为( ) A. -1,3 B.-1,1 C. 1,3 D.-1,1,36.已知(31)4,1()log ,1a a x a x f x x x -+<⎧=⎨>⎩是(,)-∞+∞上的减函数,那么a 的取值范围是 A.(0,1) B.1(0,)3 C.1[,1)7 D.11[,)737.若函数2)1(log )(223++++=x x b ax x f 在)0,(-∞上有最小值-5,(a ,b 为常 数),则函数)(x f 在),0(+∞上( )A .有最大值9B .有最小值5C .有最大值3D .有最大值58.函数|3||4|92-++-=x x x y 的图象关于 ( )A .x 轴对称B .y 轴对称C .原点对称D .直线0=-y x 对称9.若函数21(1)()lg (1)x x f x x x ⎧+≤=⎨>⎩,则f(f(10)=( )A .lg101B .2C .1D .010.设函数)(x f 是定义在R 上的奇函数,且对任意R ∈x 都有)4()(+=x f x f ,当 )02(,-∈x 时, x x f 2)(=,则)2011()2012(f f -的值为( ) A.21-B.21C. 2D.2-二、填空题(本大题共5个小题,每小题5分,共20分,把正确答案填在题中横线上)11 设函数()f x =cx bax ++2的图象如下图所示,则a 、b 、c 的大小关系是 -_____________ 11-1-1Oxy12. .函数()y f x =是R 上的偶函数,且在(,0]-∞上是增函数,若()(2)f a f ≤,则实数a 的取值范 围是______13、函数x x f 6log 21)(-=的定义域为__14、若24log 3,(22)x x x -=-=则___15. 已知函数)(x f 是定义在),(∞+∞-上的偶函数. 当)0,(∞-∈x 时,4)(x x x f -=,则当 ),0(∞+∈x 时,=)(x f三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)16.(本小题满分10分) 计算:(1)0021)51(1212)4(2---+-+-(2)91log 161log 25log 532∙∙18.(本小题满分12分)已知函数()f x 在定义域()0,+∞上为增函数,且满足()()()(),31f xy f x f y f =+=(1)求()()9,27f f 的值 (2)解不等式()()82f x f x +-<19. (12分)已知函数2()(8),f x ax b x a ab =+---的零点是-3和2. (Ⅰ)求函数()f x 的解析式;(Ⅱ)当函数f (x )的定义域是[0,1]时,求函数()f x 的值域.20..(本小题满分12分) 定义在非零实数集上的函数()f x 满足()()(),f xy f x f y =+且()f x 是区间()0,+∞上的增函数()1求(1),(1)f f -的值; ()2求证:()()f x f x -=; ()3解不等式1(2)()02f f x +-≤.21.(本小题满分14分)设二次函数2()(,,)f x ax bx c a b c R =++∈满足下列条件:①当x ∈R 时,()f x 的最小值为0,且f (x -1)=f (-x -1)成立; ②当x ∈(0,5)时,x ≤()f x ≤21x -+1恒成立。
必修1第一章集合与函数的概念检测题(含答案)
必修1第一章综合检测一、选择题(每小题5分,共10个小题)1.如图是集合的知识结构图,如果要加入“全集”,则应该放在( )A .“集合的概念”的下位B .“集合的表示”的下位C .“基本关系”的下位D .“基本运算”的下位 2.已知集合32A x x Z Z x ⎧⎫=∈∈⎨⎬-⎩⎭且,则集合A 中的元素个数为( ) A.2 B.3 C.4 D.5 3.已知定义在(-1,1)上的奇函数()f x 为减函数,且(1)(2)0f a f a -+<,则a 的取值范围( ) A. (,1)-∞- B.(1,-+∞) C. (11,22-) D.(10,2) 4.设全集}02|},51|{,2=--∈=≤≤∈==x x R x B x N x A R U ,则图中阴影表示的集合为( )A .{-1}B .{2}C .{3,4,5}D .{3,4}5.若a 是常数,函数()f x 对于任何的非零实数x 都有1()()1f af x x x=--,且(1)1f =,则不等式()0f x x -≥的解集为( ) A .1(,](0,1]5-∞- B .1(,][1,)5-∞-+∞ C . 1[,0)(0,1]5-D .1[,0)[1,)5-+∞6.设集合}5,4,3,2,1{},1,0,2{=-=N M ,映射N M f →:使得对任意的M x ∈,都有)()(x xf x f x ++是奇数,则这样的映射f 的个数是( )A .45B .27C .15D .11 7.设U 为全集,M , P 是U 的两个子集,且P P M C U = )(,则=P M ( )A . MB . PC . P C UD . φ8.设,则函数的图像大致形状是( )9.已知()f x 为偶函数,当0x ≥时,()()211f x x =--+,则满足()12f f a ⎡⎤=⎣⎦的实数a 的个数为( ). A .2 B .4 C .6 D .8xyOa xyOaxyOaxyOaAB CD()y x x a =-0a >AMEPDCB N F 10.对于函数()y f x =,如果存在区间[,]m n ,同时满足下列条件:①()f x 在[,]m n 内是单调的;②当定义域是[,]m n 时,()f x 的值域也是[,]m n ,则称[,]m n 是该函数的“和谐区间”.若函数11()(0)a f x a a x+=->存在“和谐区间”,则a 的取值范围是( ) A .(0,1) B . (0,2) C .15(,)22D .(1,3)二、填空题(每小题5分,共5个小题)11.对于集合B A ,,我们把集合},|{B x A x x ∉∈且叫做集合A 与B 的差集,记作B A -.若集合B A ,都是有限集,设集合B A -中元素的个数为)(B A f -,则对于集合},1{},3,2,1{a B A ==,有=-)(B A f __________ 12.将一张坐标纸折叠一次,使点(10,0)与(-6,8)重合,则与点(-4,2)重合的点是 . 13.如图,已知边长为8米的正方形钢板有一个角锈蚀,其中4AE =米,6CD =米. 为了合理利用这块钢板,将在五边形ABCDE 内截取一个矩形块BNPM ,使点P 在边DE 上. 则矩形BNPM 面积的最大值为____14.若对于任意的[]3,1∈x , 02)1(2≥+--+a x a x 恒成立, 则实数a 的取值范围是 . 15.已知函数()f x 满足:(1)f =41,4()()()().(,)f x f y f x y f x y x y R ⋅=++-∈.则(2010)f =_________ 三、解答题(共6个小题)16.已知集合{}{}(2)(1)0,(1)()0A x x x B x ax x a =++≤=-+>,,A B a ⊆且求的范围.17.已知函数2()1xf x x =+,()1,1x ∈-(1)判断此函数的奇偶性;(2)判断函数的单调性,并加以证明.(3)解不等式()()10f x f x -->18.随着机构改革工作的深入进行,各单位要减员增效,有一家公司现有职员2a 人(140<2a <420,且a 为偶数),每人每年可创利10万元.据评估,在经营条件不变的前提下,若裁员x 人,则留岗职员每人每年多创利0.1x 万元,但公司需付下岗职员每人每年4万元的生活费,并且该公司正常运转情况下,所裁人数不超过50人,为获得最大的经济效益,该公司应裁员多少人?19.设bx ax x f +=2)(,求满足下列条件的实数a 的值:至少有一个正实数b ,使函数)(x f 的定义域和值域相同。
集合与函数概念(含答案)
集合与函数概念一、选择题1.设全集U ={(x ,y )| x ∈R ,y ∈R },集合M =⎭⎬⎫⎩⎨⎧1=2-3-|),(x y y x , P ={(x ,y )| y ≠x +1},那么C U (M ∪P )等于( ). A .∅B .{(2,3)}C .(2,3)D .{(x ,y )| y =x +1}2.假设A ={a ,b },B ⊆A ,则集合B 中元素的个数是( ). A .0B .1C .2D .0或1或23.函数y =f (x )的图象与直线x =1的公共点数目是( ). A .1B .0C .0或1D .1或24.设函数f (x )=2x +3,g (x +2)=f (x ),则g (x )的表达式是( ). A .2x +1B .2x -1C .2x -3D .2x +75. 已知函数f (x )=ax 3+bx 2+cx +d 的图象如下图,则( ). A .b ∈(-∞,0) B .b ∈(0,1) C .b ∈(1,2)D .b ∈(2,+∞)6.设函数f (x )=⎩⎨⎧00++2 x c x c bx x ,,≤, 假设f (-4)=f (0),f (-2)=-2,则关于x 的方程f (x )=x 的解的个数为( ).A .1B .2C .3D .47.设集合A ={x | 0≤x ≤6},B ={y | 0≤y ≤2},以下从A 到B 的对应法则f 不是映射的是( ).A .f :x →y =21x B .f :x →y =31xC .f :x →y =41x D .f :x →y =61x 8.有下面四个命题:①偶函数的图象一定与y 轴相交; ②奇函数的图象一定通过原点; ③偶函数的图象关于y 轴对称;④既是奇函数,又是偶函数的函数一定是f (x )=0(x ∈R ). 其中正确命题的个数是( ). A .1B .2C .3D .4(第5题) >9.函数y=x2-6x+10在区间(2,4)上是().A.递减函数B.递增函数C.先递减再递增D.先递增再递减10.二次函数y=x2+bx+c的图象的对称轴是x=2,则有().A.f(1)<f(2)<f(4)B.f(2)<f(1)<f(4)C.f(2)<f(4)<f(1)D.f(4)<f(2)<f(1)二、填空题11.集合{3,x,x2-2x}中,x应满足的条件是.12.假设集合A={x | x2+(a-1)x+b=0}中,仅有一个元素a,则a=___,b=___.13.建造一个容积为8 m3,深为2 m的长方体无盖水池,如果池底和池壁的造价每平方米分别为120元和80元,那么水池的最低总造价为元.14.已知f(x+1)=x2-2x,则f(x)=;f(x-2)=.15.y=(2a-1)x+5是减函数,求a的取值范围.16.设f(x)是R上的奇函数,且当x∈[0,+∞)时,f(x)=x(1+x3),那么当x∈(-∞,0]时,f(x)=.三、解答题17.已知集合A={x∈R| ax2-3x+2=0},其中a为常数,且a∈R.①假设A是空集,求a的范围;②假设A中只有一个元素,求a的值;③假设A中至多只有一个元素,求a的范围.18.已知M={2,a,b},N={2a,2,b2},且M=N,求a,b的值.19.证明f(x)=x3在R上是增函数.20.判断以下函数的奇偶性: (1)f (x )=3x 4+21x ;(2)f (x )=(x -1)xx-+11; (3)f (x )=1-x +x -1;(4)f (x )=12-x +21x -第一章 集合与函数概念参考答案一、选择题1.B 2.D 3.C 4.B 5.A 6.C 7.A 8.A 9.C 10.B . 二、填空题11.x ≠3且x ≠0且x ≠-1.12.a =31,b =91.13.1 760元.14.f (x )=x 2-4x +3,f (x -2)=x 2-8x +15. 15.(-∞,21). 16.x (1-x 3). 三、解答题17.解:①∵A 是空集, ∴方程ax 2-3x +2=0无实数根.∴⎩⎨⎧∆,a a 08-9=,0 解得a >89.②∵A 中只有一个元素,∴方程ax 2-3x +2=0只有一个实数根.当a =0时,方程化为-3x +2=0,只有一个实数根x =32; 当a ≠0时,令Δ=9-8a =0,得a =89,这时一元二次方程ax 2-3x +2=0有两个相等的实数根,即A 中只有一个元素.由以上可知a =0,或a =89时,A 中只有一个元素. ③假设A 中至多只有一个元素,则包括两种情形:A 中有且仅有一个元素;A 是空集.由①②的结果可得a =0,或a ≥89.18.解:根据集合中元素的互异性,有≠ <⎩⎨⎧==⎩⎨⎧==ab b a b b a a 2222或解得 或或再根据集合中元素的互异性,得或19.证明:设x 1,x 2∈R 且x 1<x 2,则f (x 1)-f (x 2)=31x -32x =(x 1-x 2)(21x +x 1x 2+22x ).又21x +x 1x 2+22x =(x 1+21x 2)2+4322x . 由x 1<x 2得x 1-x 2<0,且x 1+21x 2与x 2不会同时为0, 否则x 1=x 2=0与x 1<x 2矛盾,所以 21x +x 1x 2+22x >0.因此f (x 1)- f (x 2)<0,即f (x 1)<f (x 2), f (x )=x 3 在 R 上是增函数.20.解:(1)∵ 函数定义域为{x | x ∈R ,且x ≠0}, f (-x )=3(-x )4+21)(-x =3x 4+21x =f (x ),∴f (x )=3x 4+21x 是偶函数. (2)由xx-+11≥0⇔⎩⎨⎧≠01--1+1x x x ))(( 解得-1≤x <1. ∴ 函数定义域为x ∈[-1,1),不关于原点对称,∴f (x )=(x -1)xx-11+为非奇非偶函数.(3)f (x )=1-x +x -1定义域为x =1,∴ 函数为f (x )=0(x =1),定义域不关于原点对称, ∴f (x )=1-x +x -1为非奇非偶函数. (4)f (x )=1-2x +2-1x 定义域为≥ -10≥1-22x x ⇒ x ∈{±1},∴函数变形为f (x )=0 (x =±1),∴f (x )=1-2x +2-1x 既是奇函数又是偶函数.a =0b =1 a =0b =0a =41b =21 a =0b =1 a =41 b =21 ≥0。
高一数学集合与函数概念试题答案及解析
高一数学集合与函数概念试题答案及解析1.如图所示,是全集,是的子集,则阴影部分所表示的集合是()A.A∩B B.B∩A C.D.A∩B【答案】B【解析】根据韦恩图可知,阴影部分所表示的集合是B∩ A.【考点】本小题主要考查集合关系的判断.点评:判断集合的关系可以借助韦恩图进行.2.下列函数中是偶函数的是()()A.B.C.D.【答案】A【解析】因为选项A是偶函数,选项B,定义域不关于原点对称,不是偶函数,选项C中,是奇函数,选项D,非奇非偶函数。
选A.3.已知函数,则【答案】2【解析】因为函数,那么可知,故答案为2.4.当时,函数和的图象只可能是()【答案】A【解析】对于A:是减函数;A符合;对于B:是增函数;B不符合;对于C:是减函数;B不符合;对于D:是增函数;B不符合;故选A5.已知关于x的方程2a-7a+3=0有一个根是2, 求a的值和方程其余的根【答案】a=或a=3;a=时,x=2或x=1-log3;a=3时,x=2或x=-1-log2【解析】解: 2a-7a+3="0," a=或a=3.a=时, 方程为: 8·()-14·()+3=0x=2或x=1-log 3a=2时, 方程为: ·2-·2+3=0x=2或x=-1-log26.若函数y=(2k+1)x+b在R上是减函数,则()A.k>B.k<C.k>-D.k<-【答案】D【解析】由已知,2k+1<0,解得k<-.7.,B=且,则的值是 ( )A.B.C.D.【答案】B【解析】得或.经检验只有符合题意.8.设,则: , .【答案】【解析】,.9.已知集合若,则实数的取值范围是【答案】【解析】则得又10.设集合,且求的值.【答案】a=4或a=2,-2【解析】解:当B={1,a-1}时,有a-1=3,当时,C中方程无根.即;当时若C={1},有1-m+1=0;若C={3},有若C={1,3},m无解.由上述得:a=4或a=2,-211.设,其中,如果,求实数的取值范围。
高一数学上册集合与函数概念试题
1、下列哪个选项描述的集合是空集?A、{x | x > 5 且 x < 3}B、{x | x 是自然数且 x < 1}C、{x | x 是实数}D、{x | x = x + 1}(解析:A选项描述了一个不可能满足的条件,因为没有一个数同时大于5且小于3,所以该集合为空集。
B选项描述的自然数中小于1的只有0,但自然数通常从1开始计数,若从0开始则不为空集,此处按常规理解应为空集;C选项描述了所有实数,显然不是空集;D选项描述的方程无解,但作为一个集合表达式,它表示的是满足该条件的x的集合,而该条件无解,所以集合为空。
)(答案:A)2、设A = {1, 2, 3},B = {x | x 是A中的元素且 x + 1 ∈ A},则集合B为?A、{1, 2}B、{2}C、{1, 3}D、{3}(解析:根据集合B的定义,我们需要找出A中那些加1后仍在A中的元素。
对于A中的元素1,1+1=2在A中;对于元素2,2+1=3在A中;但对于元素3,3+1=4不在A中。
因此,集合B = {1, 2}。
)(答案:A)3、下列哪个选项描述的集合与集合{2, 3, 4}相等?A、{x | x 是大于1且小于5的整数}B、{x | x 是偶数且 x < 4}C、{x | x 是质数且 x > 1}D、{x | x 是2, 3, 5中的任意一个数}(解析:A选项描述的是大于1且小于5的整数,即{2, 3, 4},与给定集合相等。
B选项描述的是小于4的偶数,即{2};C选项描述的是大于1的质数,即{2, 3}(质数定义为只有1和它本身两个正因数的自然数,且大于1);D选项描述的是2, 3, 5中的数,即{2, 3, 5}。
)(答案:A)4、设集合A = {x | x 是正整数且 x ≤ 5},则A的子集个数为?A、5B、15C、31D、32(解析:集合A = {1, 2, 3, 4, 5},含有5个元素。
高一数学集合与函数概念试题答案及解析
高一数学集合与函数概念试题答案及解析1.已知函数.(1)若关于的方程只有一个实数解,求实数的取值范围;(2)若当时,不等式恒成立,求实数的取值范围;(3)探究函数在区间上的最大值(直接写出结果,不需给出演算步骤).【答案】(1)(2)(3)当时,在上的最大值为;当时,在上的最大值为;当时,在上的最大值为0.【解析】(1)方程,即,变形得,显然,已是该方程的根,从而欲使原方程只有一解,即要求方程有且仅有一个等于1的解或无解,结合图形得. ……4分(2)不等式对恒成立,即(*)对恒成立,①当时,(*)显然成立,此时;②当时,(*)可变形为,令因为当时,,当时,,所以,故此时.综合①②,得所求实数的取值范围是. ……8分(3)因为=……10分①当时,结合图形可知在上递减,在上递增,且,经比较,此时在上的最大值为.②当时,结合图形可知在,上递减,在,上递增,且,,经比较,知此时在上的最大值为.③当时,结合图形可知在,上递减,在,上递增,且,,经比较,知此时在上的最大值为.④当时,结合图形可知在,上递减,在,上递增,且, ,经比较,知此时在上的最大值为.当时,结合图形可知在上递减,在上递增,故此时在上的最大值为.综上所述,当时,在上的最大值为;当时,在上的最大值为;当时,在上的最大值为0. ……15分【考点】本小题主要考查由方程根的情况求参数的取值范围、恒成立问题的求解和含参数的二次函数的最值问题,考查学生数形结合思想和分类讨论思想的应用.点评:恒成立问题一般转化为最值问题解决;分类讨论时,要尽量做到不重不漏.2.若在区间上是增函数,则实数的取值范围是【答案】【解析】因为,要使函数在区间上是增函数,需要,即实数的取值范围是.【考点】本小题主要考查由函数的单调性求解参数的取值范围.点评:求解此类函数的单调性,需要分离参数,再结合初等函数的单调性求解.3.(10分)集合A是函数的定义域,,求,,.【答案】,,【解析】本试题主要是考查了函数的定义域以及集合的运算的综合运用。
必修一第一章集合与函数概念同步练习(含答案)
第一章 集合与函数概念同步练习1.1.1 集合的含义与表示 一. 选择题:1.下列对象不能组成集合的是( )A.小于100的自然数B.大熊猫自然保护区C.立方体内若干点的全体D.抛物线2x y =上所有的点 2.下列关系正确的是( )A.N 与+Z 里的元素都一样B.},,{},,{c a b c b a 与为两个不同的集合C.由方程0)1(2=-x x 的根构成的集合为}1,1,0{D.数集Q 为无限集 3.下列说法不正确的是( )A.*0N ∈B.Z ∉1.0C.N ∈0D.Q ∈24.方程⎩⎨⎧-=-=+3212y x y x 的解集是( )A.}1,1{-B.)1,1(-C.)}1,1{(-D.1,1-二.填空题:5.不大于6的自然数组成的集合用列举法表示______________.6.试用适当的方式表示被3除余2的自然数的集合____________.7.已知集合}7,3,2,0{=M ,由M 中任取两个元素相乘得到的积组成的集合为 ________. 8.已知集合}012{2=++∈=x ax R x M 只含有一个元素,则实数=a ______,若M 为空集,可a 的取值范围为_________.三.解答题:9.代数式}{)8(2x x x ∈-- ,求实数x 的值。
10.设集合A=},,2),{(N y x x y y x ∈+-=,试用列举法表示该集合。
11.已知}33,2{12+++∈x x x 试求实数x 的值。
1.1.2 集合的含义与表示一. 选择题:1.集合Φ与}0{的关系,下列表达正确的是( ) A.φ=}0{ B.φ⊆}0{ C.}0{∈φ D.φ}0{⊇2.已知集合A=}3,2,1{,则下列可以作为A 的子集的是( )A.}4,1{B.}3,2{C.}4,2{D.}4,3,1{ 3.集合},,{c b a 的非空真子集个数是( )A.5B.6C.7D.8 4.已知集合M={正方形},N={菱形},则( )A.N M =B.N M ∈C.M ≠⊂ND.N ≠⊂M二.填空题5.用适当的符号填空①},2_____{0Z n n x x ∈=②}_____{1质数③},,_____{}{c b a a ④}0))((_____{},{=--b x a x x b a ⑤},12______{},14{++∈+=∈+=N k k x x N k k x x 6.写出集合}1{2=x x 的所有子集_______________________7.设集合}{},63{a x x B x x A <=≤<-=,且满足A ≠⊂,B 则实数a 的取值范围是_________三.解答题8.已知集合B 满足}2,1{≠⊂B ⊆}5,4,3,2,1{,试写出所有这样的集合 9.已知}5{>=x x A ,}3{x x B <=,试判断A 与B 的关系 10.已知A=}3,4,1{},2,1{a B a =+,且B A ⊆,求a 的值1.1.3集合的基本运算(一)一.选择题1.已知集合A=}4,3,2,1{,}6,4,1{=B ,则=B A I ( ) A.}4,2,1{ B.}6,4,3,2,1{ C.}4,1{ D.}4,3,1{2.设A=}2{->x x ,}21{<<-=x x B ,则=B A Y ( ) A.R B.}2{<x x C.}1{->x x D.}2{->x x3.设{=A 等腰三角形} ,B={等边三角形},C={直角三角形},=C B A I Y )(( ) A.{等腰三角形} B.{直角三角形} C.φ D.{等腰直角三角形}4.已知集合}90{<<∈=x Z x M ,},2{+∈==N n n x x N ,则=N M I ( )A.{}6,4,2B.{}8,6,4,2C.{}7,6,5,4,3,2D.{}8,7,6,5,4,3,2,1 二.填空题5.{偶数}I {奇数}=__________.6.已知集合}31{<≤-=x x A ,}13{≤<-=x x B ,则=B A I __________.7.若集合A B A =I ,则=B A Y ___________.8.已知集合}33{<≤-=x x A ,}2{≤=x x B ,则=B A Y ___________.三.解答题9.集合},,523),{(R y x y x y x A ∈=-=},,132),{(R y x y x y x B ∈-=+=,求 B A I 10.已知集合},3,1{a A =,}1,1{2+-=a a B ,且A B A =Y ,求a 的值 11.已知集合},02{2=+-∈=b ax x R x A }05)2(6{2=++++∈=b x a x R x B且}21{=B A I ,求B A Y1.1.3集合的基本运算(二)一.选择题1.已知全集R U =,集合}1{<=x x M ,则M C u 为( ) A.}1{≥x x B.}1{>x x C.}1{<x x D.}1{≤x x2.设全集}4,3,2{=U ,}2,3{-=a A ,}3{=A C u ,则a 的值是( ) A.7 B.1- C.17-或 D.71-或3.已知全集R U =,集合}32{<≤-=x x A ,则A C u =( )A.}32{≥-≤x x x 或B.}32{>-≤x x x 或C.}32{>-<x x x 或D.}32{≥-<x x x 或 4.已知全集}8,7,6,5,4,3,2,1{=U ,集合}5,4,3{=A ,}6,3,1{=B ,那么集合 C={2,7,8}可以表示为( )A.B C uB.B A IC.B C A C u u ID.B C A C u u Y二.填空题5.设全集R U =,}62{<≤=x x A ,}4{≤=x x B ,则B A I =__,__=B C A u I ,__=B A C u I .6.全集=U {三角形},=A {直角三角形},则A C u =____________.7.设全集}4,3,2,1,0{=U }3,2,1,0{=A ,}4,3,2{=B ,则=B A C u I ____8.已知全集},2,1,0{=U 且}2{=A C u ,则A 的真子集共有___个.三.解答题9.设全集R U =,集合},43{R x x x M ∈<≤-=,},51{R x x x N ∈≤<-=,求①N M Y ②N C M C u u I10.设全集=U {1,2,3,4,5,6,7,8,9},集合}2{=B A I ,}9,1{=B C A C u u I ,}8,6,4{=B A C u I ,求B A ,11.已知}1,4,2{2+-=x x U ,}1,2{+=x B ,}7{=B C u ,求x 的值1.2.1函数的概念(一)一.选择题1.函数13)(+=x x f 的定义域为( )A.)31,(--∞B.),31(+∞- C.),31[+∞- D.]31,(--∞2.已知函数q px x x f ++=2)(满足0)2()1(==f f ,则)1(-f 的值为( ) A.5 B.5- C.6 D.6-3.下列函数中)()(x g x f 与表示同一函数的是( )A.1)()(0==x g x x f 与 B.xx x g x x f 2)()(==与C.22)1()()(+==x x g x x f 与D.33)()(x x g x x f ==与 4.下列各图象中,哪一个不可能为)(x f y =的图象( )二.填空题5.已知x x x f 2)(2-=,则=)2(f ______________.6.已知12)1(2+=+x x f ,则=)(x f ______________.7.已知)(x f 的定义域为],4,2[则)23(-x f 的定义域为_______________. 8.函数11)(22---=x x x f 的定义域为______________.三.解答题9.设⎩⎨⎧≥+<-=)0(22)0(12)(2x x x x x f ,求)2(-f 和)3(f10.求下列函数的定义域 (1)321)(+=x x f (2)x x x g -++=1)10()(011.已知)(x f 为一次函数,且34)]([+=x x f f ,求)(x fx(D)(B)(C) (A)x1.2.1函数的概念(二)一、 选择题1.函数x x y 22-=的定义域为}3,2,1,0{,其值域为( ) A.}3,0,1{- B.}3,2,1,0{ C.}31{≤≤-y y D.}30{≤≤y y2.函数)(11)(2R x xx f ∈+=的值域是( ) A.)1,0( B.]1,0( C.)1,0[ D.]1,0[ 3.下列命题正确的有( ) ①函数是从其定义域到值域的映射②x x x f -+-=23)(是函数③函数)(2N x x y ∈=的图象是一条直线④x x g xx x f ==)()(2与是同一函数 A.1个 B.2个 C.3个 D.4个 4.函数xx x y -+=)32(的定义域为( )A.⎭⎬⎫⎩⎨⎧-≠<230x x x 且B.{}0<x xC.{}0>x xD.⎭⎬⎫⎩⎨⎧-≠≠∈230x x R x 且二.填空题5.已知函数⎪⎩⎪⎨⎧≥<<--≤+=2,221,1,2)(2x x x x x x x f ,若3)(=x f ,则x 的值为__________.6.设函数33)(2+-=x x x f ,则)()(a f a f --等于____________.7.设函数x x x f --=1)(,则=)]1([f f ____________.8.函数[]3,1,322∈+-=x x x y 的值域是________________.三.解答题9.求函数242x x y --=的值域10.已知函数1122---=x x y ,求20072008y x +的值 11.已知函数bax xx f +=)((a .0≠a ,b 且为常数)满足1)2(=f ,x x f =)(有唯一解,求函数)(x f y =的解析式和)]3([-f f 的值.1.2.2 函数表示法(一) 一、 选择题1.设集合{}c b a A ,,=,集合B=R ,以下对应关系中,一定能成建立A 到B 的映射的是( )A.对A 中的数开B.对A 中的数取倒数C.对A 中的数取算术平方D.对A 中的数开立方2.某人从甲村去乙村,一开始沿公路乘车,后来沿小路步行,图中横轴表示走的时间,纵轴表示某人与乙村的距离,则较符合该人走法的图是( )3.已知函数23)12(+=+x x f ,且2)(=a f ,则a 的值等于( )A.8B.1C.5D.1-4.若x xx f -=1)1(,则当10≠≠x x 且时,)(x f 等于( )A.x 1B.11-xC.x -11D.11-x二.填空题5.若[]36)(+=x x g f ,且12)(+=x x g ,则=)(x f ______________.6.二次函数的图象如图所示,则此函数的解析式为___________.ttt ABDC7.已知函数⎩⎨⎧<≥=0,0,)(2x x x x x f 则=-)2(f ________,)4(f =_______8.集合}5,3,1{-=B ,12)(-=x x f 是A 到B 的函数,则集合 A 可以表示为____________________三.解答题9.已知函数)(x f 是一次函数,且14)]([-=x x f f ,求)(x f 的解析式10.等腰三角形的周长为24,试写出底边长y 关于腰长x 的函数关系式,并画出它的图象 11.作出函数31--+=x x y 的图象,并求出相应的函数值域1.2.2 函数表示法(二) 一、 选择题1.已知集合{}{}20,40≤≤=≤≤=y y B x x A ,按对应关系f ,不能成为从A 至B 的映射的一个是( ) A.x y x f 21:=→ B.2:-=→x y x f C.x y x f =→: D.2:-=→x y x f2.如图,函数1+=x y 的图象是( )y3.设}8,6,2,1,0,21{},4,2,1,0{==B A ,下列对应关系能构成A 到B 的映射的是( )A.1:3-→x x fB.2)1(:-→x x fC.12:-→x x fD.x x f 2:→4.已知函数⎩⎨⎧>+-≤+=1,31,1)(x x x x x f ,则⎥⎦⎤⎢⎣⎡)25(f f =( ) A.21 B.23 C.25 D.29 二.填空题5.设函数⎪⎪⎩⎪⎪⎨⎧≥<≤-<≤-+=2,320,2101,22)(x x x x x x f ,则)43(-f 的值为______, )(x f 的定义域为_____.6.)(x f 的图象如图,则)(x f =____________.7.对于任意R x ∈都有)(2)1(x f x f =+,当10≤≤x 时,)5.1-的值是____________.8.23)1(+=+x x f ,且2)(=a f ,则a 的值等于____________.三.解答题9.作出下列函数的图象(1)x y -=1,)2(≤∈x Z x 且 (2)3422--=x x y ,)30(<≤xA B CD10.已知函数⎩⎨⎧<+≥-=4),3(4,4)(x x f x x x f ,求)1(-f 的值11.求下列函数的解析式(1)已知)(x f 是二次函数,且1)()1(,2)0(-=-+=x x f x f f ,求)(x f (2)已知x x f x f 5)()(3=-+,求)(x f1.3.1 函数单调性与最大(小)值(一) 一.选择题1.若),(b a 是函数)(x f y =的单调递增区间,()b a x x ,,21∈,且21x x <,( ) A.)()(21x f x f < B.)()(21x f x f = C.)()(21x f x f > D.以上都不正确2.下列结论正确的是( )A.函数x y -=在R 上是增函数B.函数2x y =在R 上是增函数C.x y =在定义域内为减函数D.xy 1=在)0,(-∞上为减函数 3.函数111--=x y ( ) A.在),1(+∞-内单调递增 B.在),1(+∞-内单调递减 C.在),1(+∞内单调递增 D.在),1(+∞内单调递减 4.下列函数在区间),0(+∞上为单调增函数的是( ) A.x y 21-= B.x x y 22+= C.2x y -= D.xy 2=二.填空题5.已知函数)(x f 在),0(+∞上为减函数,那么)1(2+-a a f 与)43(f 的大小关系是________.6.函数)(x f y =7.已知13)(22-+-=a ax ax x f )0(<a ,则3(f ______.8.函数342+--=x x y 的单调递增区间为_______,当=x _______时,y 有最______值为____.三.解答题9.已知)(x f y =在定义域)1,1(-上为减函数,且)1()1(2-<-a f a f 求a 的取值范围。
高一数学人教版必修一第一章《集合与函数概念》综合测试题(含答案)
第一章集合与函数概念综合测试题、选择题1函数讨二2x -1的定义域是()2•已知集合 A 到B 的映射f:x T y=2x+1,那么集合A 中元素2在B 中对应的元素是( )A • 2B • 6C • 5D • 83•设集合 A 二{x|1 ::: x ::: 2}, B 二{x|x ::: a}.若 A B,则 a 的范围是()A • a_2B • a < 1C • a - 1D . a 乞 24•函数y =(k • 2)x • 1在实数集上是减函数,则 k 的范围是()A • k l :—2B • k z ;—2C • k ^ -2D • k-25•全集 U ={ 0,1,3,5,6,8},集合 A = { 1 , 5, 8 }, B ={2},则(6 A ) B =()A (2,;)B.[];)2 2—1 C.(「2) -1D.( =,2]B • { 0,3,6} {2,1,5,8} D • {0,2,3,6}F列各组函数中,表示同一函数的是(0 x y =x ,y =A •xB y = .x -1 . x 1, y = . x2 -1—2Dy=|x|,y = (、x)F列函数是奇函数的是(1A • y =x2B • y =2x2 3 (一“)若奇函数f x在1,3】上为增函数,且有最小值0,则它在1-3,-1】上A •是减函数,有最小值C •是减函数,有最大值设集合M = X - 2乞x -2 :f,B •是增函数,D •是增函数,N 二:y0 -有最小值有最大值y乞2:,给出下列四个图形,其中能表示集合M为定义域,N为值域的函数关系的是()x2 x 010. 已知f (x) X=0,则 f [ f (-3)]等于( )0 x cO2A . 0 B. n C. n D. 9二. 填空题r X +5(XA 1) nt211. 已知f(x—1)=x2,贝y f(x)= .14.已知f (x) = 2 ,则2x +1(x 兰1)f[f(1)> _______________________ .212. 函数y = x -6x的减区间是_____________ .13•设偶函数f (x)的定义域为R,当x・[0, •::)时f(x)是增函数,则f (2), f (二),f (-3)的大小关系是_________________________三、解答题14.设U =R, A x _1[ B J x 0 :: x :: 5?,求C u 切B 和A C U B .15. 求下列函数的定义域(4)f(X)x —22(2) f(x)|x| -216.集合A = 'xx2• 4x = 0; B -汉x2• 2 a T x • a2-1 = 0若A B = B求a 的取值范围。
高中数学第一章集合与函数概念1
1.1.2 集合间的基本关系1.已知集合A={x|x2-1=0},则下列式子表示不正确的是( B )(A)1∈A (B){-1}∈A(C)⌀⊆A (D){1,-1}⊆A解析:由题知A={1,-1}.对于B中,两集合间的关系符号应当是子集或是真子集,而不是∈符号.故选B.2.满意{a,b}M{a,b,c,d,e}的集合M的个数为( A )(A)6 (B)7 (C)8 (D)9解析:由题意得,满意{a,b}M{a,b,c,d,e}的集合M有{a,b,c},{a,b,d},{a,b,e},{a,b,c,d},{a,b,c,e},{a,b,d,e},共有6个.故选A.3.已知集合A={1,2,3},B={(x,y)|x∈A,y∈A,x+y∈A},则集合B的子集的个数为( C )(A)4 (B)7(C)8 (D)16解析:因为集合A={1,2,3},B={(x,y)|x∈A,y∈A,x+y∈A},所以集合B={(1,1),(1,2),(2,1)},集合B的子集的个数为8.故选C.4.以下四个关系:⌀∈{0},0∈⌀,{⌀}⊆{0},⌀{0},其中正确的个数是( A )(A)1 (B)2(C)3 (D)4解析:集合与集合间的关系是⊆,因此⌀∈{0}错误,{⌀}⊆{0}错误,空集不含有任何元素,因此0∈⌀错误,因此正确的有1个.故选A.5.设A={x|2≤x≤6},B={x|2a≤x≤a+3},若B⊆A,则实数a的取值范围是( C )(A)1≤a≤3 (B)a≥3(C)a≥1 (D)1<a<3解析:要使B⊆A,①当B≠⌀时,需有解得1≤a≤3.②当B=⌀时,需有2a>a+3,解得a>3,综上,a≥1,故选C.6.已知集合A={x∈Z|x2+3x<0},则满意条件B⊆A的集合B的个数为( C )(A)2 (B)3 (C)4 (D)8解析:由集合A={x∈Z|x2+3x<0}={-1,-2},由B⊆A,所以集合B的个数为22=4,故选C.7.已知集合A={0,1},B={-1,0,a+3},且A⊆B,则a等于( C )(A)1 (B)0(C)-2 (D)-3解析:由题意得a+3=1,a=-2,选C.8.已知集合M={-1,0,1},N={x|x=ab,a,b∈M,a≠b},则集合N的真子集个数为( D )(A)8 (B)7 (C)4 (D)3解析:N={0,-1},所以真子集有3个.故选D.9.写出集合A={x|x2-4=0}的全部子集: .解析:因为A={-2,2},所以全部子集为⌀,{-2},{2},{-2,2}.答案:⌀,{-2},{2},{-2,2}10.若{1,a,}={0,a2,a+b},则a2 018+b2 019= .解析:由{1,a,}={0,a2,a+b},知0∈{1,a,}.所以b=0,此时有{1,a,0}={0,a2,a}.所以a2=1,a=±1.当a=1时,不满意互异性,所以a=-1.所以a2 018+b2 019=1.答案:111.已知集合A={-1,0,a},B={0,}.若B⊆A,则实数a的值为.解析:因为B⊆A,所以∈A.所以=a,解得a=1或a=0(舍去).答案:112.若集合A={x|(k+2)x2+2kx+1=0}有且仅有2个子集,则满意条件的实数k的个数是.解析:要使得一个集合有且仅有2个子集,则须使集合有且仅有1个元素,因此方程(k+2)x2+2kx+1=0要么有且仅有一个实根,即k+2=0,k=-2;要么有且仅有两个相等的实根.由Δ=(2k)2-4(k+2)=0得k=-1或k=2.因此满意条件的实数k的个数是3.答案:313.已知集合A={x∈R|x2-3x+4=0},B={x∈R|(x+1)(x2+3x-4)=0},要使A P⊆B,求满意条件的集合P.解:由A={x∈R|x2-3x+4=0}=⌀,B={x∈R|(x+1)(x2+3x-4)=0}={-1,1,-4},且A P⊆B,则集合P非空,且其元素全属于集合B.综上所述,P可以为{1}或{-1}或{-4}或{-1,1}或{-1,-4}或{1,-4}或{-1,1,-4}.14.已知集合A={x|x2≤4},集合B={x|x2-(2m+1)x+m2+m<0}.(1)求集合A,B;(2)若B⊆A,求m的取值范围.解:(1)A={x|x2≤4}={x|-2≤x≤2}.(x-m)[x-(m+1)]<0,即B={x|m<x<m+1}.(2)B⊆A⇒⇒-2≤m≤1.15.设集合A={x|x2+4x=0,x∈R},B={x|x2+2(a+1)x+a2-1=0,x∈R}.(1)若B⊆A,求实数a的取值范围;(2)若A⊆B,求实数a的取值范围.解:(1)A={x|x2+4x=0}={-4,0},因为B⊆A,所以分B=A和B A两种状况探讨:①当A=B时,B={-4,0},即-4,0是方程x2+2(a+1)x+a2-1=0的两根,于是得a=1;②当B A时,若B=⌀,则Δ=4(a+1)2-4(a2-1)<0,解得a<-1.若B≠⌀,则B={-4}或{0},Δ=4(a+1)2-4(a2-1)=0,解得a=-1,验证知B={0}满意条件.综上可知,所求实数a的值满意a=1或a≤-1.(2)若A⊆B,而A={-4,0},所以B中必含这两个元素.又集合B为方程x2+2(a+1)x+a2-1=0的根构成的集合,最多有2个元素.所以此时必有A=B.由(1)知,此时a=1.16.已知集合A={x|x≥-1},则正确的是( D )(A)0⊆A (B){0}∈A (C)⌀∈A (D){0}⊆A解析:元素与集合的关系是属于、不属于,集合与集合的关系是包含、不包含;A错;应有0∈A,B错,应为{0}A,C错,应为⌀ A.故选D.17.若集合A={a|a=3n+1,n∈Z},B={b|b=3n-2,n∈Z},C={c|c=6n+1,n∈Z},则A,B,C的关系为( C )(A)C B A (B)A B=C(C)C B=A (D)A=B=C解析:由于3n-2=3(n-1)+1,n-1∈Z,所以A=B,由于c=6n+1=3(2n)+1,2n∈Z,2n为偶数,所以C A,所以C A=B.故选C.18.已知非空集合A={x|a≤x<5},B={x|x>2},且满意A⊆B,则实数a的取值范围是.解析:因为A⊂B,所以a>2.又因为A为非空集合,所以a<5.因此实数a的取值范围是{a|2<a<5}.答案:(2,5)19.设集合M={x|ax2-2x+2=0,x∈R}至多有一个元素,则实数a的取值范围为.解析:由题意知M只有一个元素或为空集,那么a=0或Δ=(-2)2-4×2a=4-8a≤0,所以a=0或a≥.答案:a=0或a≥20.集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1}.(1)若B⊆A,求实数m的取值范围;(2)当x∈Z时,求A的非空真子集的个数;(3)当x∈R时,不存在元素x使x∈A且x∈B同时成立,求实数m的取值范围.名师点拨:若一个集合中含有m个元素(m∈N*),则其子集数为2m个,真子集为2m-1个,非空真子集为2m-2个.解:(1)当m+1>2m-1,即m<2时,B=⌀满意题意;当m+1≤2m-1,即m≥2时,要使B⊆A成立,则有m+1≥-2且2m-1≤5,可得-3≤m≤3,即2≤m≤3.综上可知,当m≤3时,B⊆A.(2)当x∈Z时,A={-2,-1,0,1,2,3,4,5},共8个元素,故A的非空真子集的个数为28-2=254(个).(3)因为x∈R,A={x|-2≤x≤5},B={x|m+1≤x≤2m-1},且不存在元素x使x∈A且x∈B同时成立,所以A,B没有公共元素.当m+1>2m-1,即m<2时,B=⌀满意题意;当m+1≤2m-1,即m≥2时,要使A,B没有公共元素,则有或解得m>4.综上所述,当m<2或m>4时,不存在元素x使x∈A且x∈B同时成立.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《集合与函数的概念》测试题
一、选择题(每小题5分,60分)
1、设集合{}Z x x x A ∈<≤-=,23,{}N x x x B ∈≤+=,31,则B A ⋃中元素的个数是( )
A .5
B .6
C .7
D .8
2、若全集U N =,{}260,M x x x N =->∈,则U C M =( )
A.{}2,1
B. {}3,2,1
C.{}2,1,0
D.{}3,2,1,0
3、下列四个方程中表示y 是x 的函数的是()
(1) 26x y -= 2(2) 1x y += 2(3) 1x y += (4) x = A.(1)(2) B.(1)(4) C.(3)(4) D.(1)(2)(4)
4、下列各组函数中,两个函数相等的是( )
A.()()1f x g x x ==-
B.()()f x g x ==
C.2(),()f x g x ==
D.()1,()1f x x g x =-=
5、设函数221,11
(),()(2)2,1x x f x f f x x x ⎧-≤=⎨+->⎩则的值为(
)
A.1516
B.2716-
C.89
D.18
6、设集合M=},21
4|{},,412|{Z k k x x N Z k k x x ∈+==∈+=,则( )
A .M =N
B .M N
C .M N
D .M ∩=N ∅
7、1)3()(2-++=x a x x f 在),1[+∞上是增函数,则a 的取值范围是( )
A.5-≤a
B. 5-≥a
C.1-<a
D. 1->a
8、下列四个函数中,满足“对任意12,(0,)x x ∈+∞,都有1212[()()]()0f x f x x x -->”的是(
) A.()3f x x =- B.2()3f x x x =- C.()f x x =- D.1
()1f x x =-+
9、若函数()y f x =的定义域是[0,2],则函数(2)
()1f x g x x =-的定义域是( )
A.[0,1]
B.[0,1)
C.[0,1][1,4]
D.(0,1)
10、若函数)(x f 是定义在R 上的偶函数,在区间)0,(-∞上是减函数,且0)2(=f ,
则使0)(<x f 的x 的取值范围为( )
A .)2,(-∞
B .),2(+∞
C .)2,2(-
D .),2()2,(+∞--∞
11.下列四个命题
(1)f(x)=x x -+-12有意义; (2)函数是其定义域到值域的映射;
(3)函数y=2x(x N ∈)的图象是一直线;
(4)函数y=⎪⎩⎪⎨⎧<-≥0,0,22x x x x 的图象是抛物线,其中正确的命题个数是 ( )
A .1
B .2
C .3
D .4 12.设函数f (x )是(-∞,+∞)上的减函数,又若a ∈R ,则
( ) A .f (a )>f (2a ) B .f (a 2)<f (a) C .f (a 2+a )<f (a )
D .f (a 2+1)<f (a ) 二、填空题(每小题4分,共16分)
13. 函数2
1)(--=x x x f 的定义域为 ___________. 14.()f x 是偶函数,当0x >时,3()f x x x =-,则0x <时,()f x =________.
15.设集合{}21<<-=x x A ,{}
a x x B <=,若φ≠⋂B A ,则a 的取值范围为______________. 16.若函数 f (x )=(K-2)x 2+(K-1)x +3是偶函数,则f (x )的递减区间是 .
三、解答题(共74分)
17.(本题满分12分)已知,全集U={x |-5≤x ≤3},
A={x |-5≤x <-1},B={x |-1≤x <1},求C U A ,
C U B ,(C U A)∩(C U B),(C U A)∪(C U B),
C U (A ∩B),C U (A ∪B),并指出其中相关的集合.
18.(本题满分12分))设{}042=+=x x x A ,{}R x a x a x x B ∈=-+++=,01)1(222,若B
A ,求a 值。
19.(本题满分12分)已知函数(),(1) 2.a f x x f x
=+
=且 (1)求a 的值;
(2)判断函数()f x 的奇偶性;
(3)探求()f x 在区间(0,1)的单调性,并加以证明。
20.(本题满分12分)已知()f x 是定义在R 上的奇函数,且当0x >时,3()1f x x x =++,求()f x 的解析式。
21.(本题满分12分)设函数12)(2+-=mx x x f ,求函数)(x f 在[]4,0上的最小值
22(本题满分12分)设函数)(x f 在()3,3-上是奇函数,且对任意y x ,都有)()()(y x f y f x f -=-,当0<x 时,0)(>x f ,2)1(-=f
(1)求)2(f 的值; (2)判断)(x f 的单调性,并证明;
(3)若函数)23()1()(x f x f x g -+-=,求不等式0)(≤x g 的解集。
参考答案
一.选择题:B D D D A BBDBCAD
二.填空题 13.[1,2)(2,)+∞ 14. 3x x -+ 15. (1,)-+∞ 16 . [)+∞,0
17. 解: C U A={x |-1≤x ≤3};C U B={x |-5≤x <-1或1≤x ≤3};
(C U A)∩(C U B)= {x |1≤x ≤3};(C U A)∪(C U B)= {x |-5≤x ≤3}=U ;
C U (A ∩B)=U ;C U (A ∪B)= {x |1≤x ≤3}.
相等集合有(C U A)∩(C U B)= C U (A ∪B);(C U A)∪(C U B)= C U (A ∩B)
18.解:}0,4{}04{2-==+=x x x A ,B 集中的)1(8)1(4)1(42
2+=--+=∆a a a
19.(1)1
(2)(3)()(0,1)a f x =解:奇函数在上是减函数,证明略。
20.解:2221)(12)(m m x mx x x f -+-=+-=
∴ )(x f 的图象开口向上,对称轴是m x =
当4≥m 时,)(x f 在[]4,0上是单调递减,m f x f 817)4()(min -== 当40<<m 时,)(x f 在[]m ,0上递减,在[]4,m 上递增,2min 1)()(m m f x f -== 当0≤m 时,)(x f 在[]4,0上是单调递增,1)0()(min ==f x f
∴ 综上得:⎪⎩⎪⎨⎧≥-<<-≤=)
4(817)40(1)
0(1)(2min x m x m m x f
21.解:2221)(12)(m m x mx x x f -+-=+-=
∴ )(x f 的图象开口向上,对称轴是m x =
当4≥m 时,)(x f 在[]4,0上是单调递减,m f x f 817)4()(min -== 当40<<m 时,)(x f 在[]m ,0上递减,在[]4,m 上递增,2min 1)()(m m f x f -== 当0≤m 时,)(x f 在[]4,0上是单调递增,1)0()(min ==f x f
∴ 综上
得:
⎪⎩⎪⎨⎧≥-<<-≤=)
4(817)
40(1)
0(1
)(2min x m x m m x f。