实验四 IIR数字滤波器的设计(1) (2)教材
实验四IIR数字滤波器的设计(1)(2)课案
实验四 IIR 数字滤波器的设计及网络结构一、实验目的1.了解IIR 数字滤波器的网络结构。
2.掌握模拟滤波器、IIR 数字滤波器的设计原理和步骤。
3.学习编写数字滤波器的设计程序的方法。
二、实验内容数字滤波器:是数字信号处理技术的重要内容。
它的主要功能是对数字信号进行处理,保留数字信号中的有用成分,去除信号中的无用成分。
1.数字滤波器的分类滤波器的种类很多,分类方法也不同。
(1)按处理的信号划分:模拟滤波器、数字滤波器 (2)按频域特性划分;低通、高通、带通、带阻。
(3)按时域特性划分:FIR 、IIR2.IIR 数字滤波器的传递函数及特点数字滤波器是具有一定传输特性的数字信号处理装置。
它的输入和输出均为离散的数字信号,借助数字器件或一定的数值计算方法,对输入信号进行处理,改变输入信号的波形或频谱,达到保留信号中有用成分去除无用成分的目的。
如果加上A/D 、D/A 转换,则可以用于处理模拟信号。
设IIR 滤波器的输入序列为x(n),则IIR 滤波器的输入序列x(n)与输出序列y(n)之间的关系可以用下面的方程式表示:1()()()M Ni j i j y n b x n i a y n j ===-+-∑∑(5-1)其中,j a 和i b 是滤波器的系数,其中j a 中至少有一个非零。
与之相对应的差分方程为:10111....()()()1....MM NN b b z b z Y z H Z X z a z a z ----++==++ (5-2)由传递函数可以发现无限长单位冲激响应滤波器有如下特点: (1) 单位冲激响应h(n)是无限长的。
(2) 系统传递函数H(z)在有限z 平面上有极点存在。
(3) 结构上存在着输出到输入的反馈,也就是结构上是递归型的。
3.IIR 滤波器的结构IIR 滤波器包括直接型、级联型和并联型三种结构:① 直接型:优点是简单、直观。
但由于系数bm 、a k 与零、极点对应关系不明显,一个bm 或a k 的改变会影响H(z)所有零点或极点的分布,所以一方面,bm 、a k 对滤波器性能的控制关系不直接,调整困难;另一方面,零、极点分布对系数变化的灵敏度高,对有限字长效应敏感,易引起不稳定现象和较大误差。
实验四IIR数字滤波器设计实验报告
实验四IIR数字滤波器设计实验报告
为了实现信号的滤波处理,IIR(或称为滤波器)数字滤波器是一种常用的信号处理
技术。
本次实验就是探究IIR数字滤波器的设计和分析。
在实验开始前,对于IIR数字滤波器有所了解,它是一种无限级别功能的数字滤波器,其功能强大,可以实现任意自定义系数的滤波器。
在预处理实验中,便首先采用Matlab
工具搭建了IIR数字滤波器的框架,考虑到本次滤波处理内容,本次采用的是Chebyshev
类型的等离子体,其滤波效果要求超过50dB,进一步完善了对于设计工作的要求。
经过Chebyshev Type I等离子体的设计,确定了系统的结构,并设定了15个滤波器,接着从设定的各项参量入手,从而确定系统各项参量,运用梯形图确定根位置,并使用MATLAB中的filter函数进行系统模拟,得到经历处理后系统输出信号与未经处理时对比,结果显示滤波效果达到了相应预期要求。
在实验中,IIR数字滤波器的设计让我深刻体会到了系统滤波的重要性以及十分强大
的功能。
而它的实现,又显示了精确的数字处理技术在信号处理中的重要作用,使得研究
信号处理时,得以有效和准确地对信号进行分辨和滤波处理。
IIR数字滤波器设计
| H ( j) |2 H ( j)H ( j) s j H (s)H (s)
版权全部 违者必究
16
模拟滤波器旳设计
由给定旳模平方函数求所需旳系统函数旳措施:
① 解析延拓:令 s j代入模平方函数得:H(s) H(s),
并求其零极点。
②取H(s)H(s) 全部左半平面旳极点作为 H (s) 旳极点。
有关极点旳讨论
在归一化频率旳情况 c=1,极点均匀分布在单位圆上
s e j(2k N 1) / 2N k
k 1,2,, N
对于物理可实现系统,它旳全部极点均应在 s旳左半平面上
版权全部 违者必究
24
模拟滤波器旳设计
Ⅱ 系统函数旳构成
滤波器旳极点求出后,可取左半平面上旳全部极点构
成系统函数。
首先设计一种合适旳模拟滤波器,然后将它 “ 变换 ” 成满足给定 指标旳数字滤波器。
这种措施适合于设计幅频特征比较规则旳滤波器,例如低通、高通 、带通、带阻等。 当把模拟滤波器旳H(s) “ 变换 ” 成数字滤波器旳H(z) 时,其实质就 是实现S平面对Z平面旳 “ 映射 ” 。这必须满足两个条件: ① 必须确保模拟频率映射为数字频率,且确保两者旳频率特征基本
频 p =100krad/s, 通带旳最大衰减为Ap= 3dB,阻带边频
版权全部 违者必究
11
数字滤波类型与指标
措施三:利用 “ 零极点累试法 ” 进行设计 若需设计滤波器旳幅频特征比较规则而且简朴时,可采用 “ 零极点累试法 ”进行设计。例如:数字陷波器
版权全部 违者必究
12
§2 模拟滤波器旳设计
因为IIR数字滤波器旳设计是基于既有旳模拟滤波器设计旳 成熟技术而完毕旳。故讨论 “ IIR数字滤波器旳设计 ”之前 ,必须简介模拟滤波器设计旳某些基本概念,并简介两种常 用旳模拟滤波器旳设计措施 :巴特沃思(Butterworth)滤波 器和切比雪夫(Chebyshev)滤波器。
IIR数字滤波器的设计教材教学课件
课程重点在于理解IIR数字滤波器的设计方法和实现过程,难点在于如何根据实际需求选 择合适的滤波器类型和参数,以及如何优化滤波器的性能。
教学方法与手段
本课程采用理论教学与实践教学相结合的方式,通过课堂讲解、实验演示、学生实践等多 种手段,使学生全面掌握IIR数字滤波器的设计方法。
未来发展方向
iir数字滤波器的设计教材 教学课件
• 引言 • IIR数字滤波器的基本原理 • IIR数字滤波器的设计方法 • IIR数字滤波器的应用 • IIR数字滤波器的实现 • 课程总结与展望
01
引言
课程简介
课程名称:iir数字滤波器 的设计
先修课程:信号与系统、 数字信号处理
课程性质:专业必修课
后续课程:数字图像处理、 通信原理
05
IIR数字滤波器的实现
编程语言和开发环境
编程语言
Python、C、Matlab等
开发环境
Python的集成开发环境(IDE)如PyCharm、Jupyter Notebook等,C的IDE 如Visual Studio等,Matlab的IDE等。
实现步骤
确定滤波器类型
根据需求选择合适的滤波器类型,如低通、 高通、带通、带阻等。
验证和优化
通过仿真或实际应用验证滤波器的性能,并根据 验证结果进行必要的优化和调整。
设计实例
• 设计一个低通IIR数字滤波器:首先确定滤波器类型为低通,性 能指标为截止频率为0.5π,通带波动为0.1dB,阻带衰减为 30dB。然后选择巴特沃斯滤波器,设计滤波器系数。接着实现 滤波器结构,最后通过仿真验证滤波器的性能,并进行优化。
04
IIR数字滤波器的应用
音频处理
数字信号处理实验报告四IIR数字滤波器设计及软件实现
数字信号处理实验报告四IIR数字滤波器设计及软件实现实验目的:本实验的目的是了解IIR数字滤波器的设计原理和实现方法,通过MATLAB软件进行数字滤波器设计和信号处理实验。
一、实验原理IIR数字滤波器是一种使用有限数量的输入样本和前一次输出值的滤波器。
它通常由差分方程和差分方程的系数表示。
IIR滤波器的特点是递归结构,故其频率响应是无限长的,也就是说它的频率响应在整个频率范围内都是存在的,而不像FIR滤波器那样只有在截止频率处才有响应。
根据设计要求选择合适的滤波器类型和滤波器结构,然后通过对滤波器的模型进行参数化,设计出满足滤波要求的IIR滤波器。
常见的IIR滤波器设计方法有模拟滤波器设计方法和数字滤波器设计方法。
在本实验中,我们主要使用数字滤波器设计方法,即离散时间滤波器设计方法。
二、实验内容(一)设计IIR数字滤波器的步骤:1.确定滤波器类型:根据滤波要求选择合适的滤波器类型,如低通滤波器、高通滤波器、带通滤波器、带阻滤波器等。
2.确定滤波器的阶数:根据滤波要求确定滤波器的阶数。
阶数越高,滤波器的频率响应越陡峭,但计算复杂度也越高。
3. 设计滤波器原型:根据滤波要求,设计滤波器的原型。
可以选择Butterworth滤波器、Chebyshev滤波器、Elliptic滤波器等作为原型。
4.选择滤波器结构:根据计算机实现条件和算法复杂度,选择合适的滤波器结构。
常见的滤波器结构有直接形式I、直接形式II、级联形式等。
5.参数化滤波器模型:根据原型滤波器的差分方程,选择合适的参数化方法。
常见的参数化方法有差分方程法、极点/零点法、增益法等。
6.根据参数化的滤波器模型,计算出所有的滤波器系数。
(二)用MATLAB软件实现IIR数字滤波器设计:1.打开MATLAB软件,并创建新的脚本文件。
2. 在脚本文件中,使用MATLAB提供的滤波器设计函数,如butter、cheby1、ellip等,选择合适的滤波器类型进行设计。
实验四IIR数字滤波器的设计
实验四IIR数字滤波器的设计实验四IIR数字滤波器的设计⼀.实验⽬的(1)掌握双线性变换法及脉冲相应不变法设计IIR数字滤波器的具体设计⽅法及其原理,熟悉⽤双线性变换法及脉冲响应不变法设计低通、⾼通和带通IIR数字滤波器的计算机编程。
(2)观察双线性变换及脉冲响应不变法设计的滤波器的频域特性,了解双线性变换法及脉冲响应不变法的特点。
(3)熟悉巴特沃思滤波器、切⽐雪夫滤波器和椭圆滤波器的频率特性。
⼆.实验内容(1)f c=0.3kHz,δ=0.8dB,f r=0.2kHz,At=20dB,T=1ms;设计⼀切⽐雪夫⾼通滤波器,观察其通带损耗和阻带衰减是否满⾜要求。
clear all;wc=2*pi*300;wr=2*pi*200;rp=0.8;rs=20;[N,wn]=cheb1ord(wc,wr,rp,rs,'s');[num,den]=cheby1(N,rp,wn,'high','s');omega=[0:200:2000*pi];h=freqs(num,den,omega);gain=20*log10(abs(h));plot(omega/(2*pi),gain);axis([0,800,-80,10]);grid;xlabel('Frequency in Hz');ylabel('Gain in dB');title('切⽐雪夫模拟⾼通滤波器');分析:(2)f c=0.2kHz,δ=1dB,f r=0.3kHz,At=25dB,T=1ms;分别⽤脉冲响应不变法及双线性变换法设计⼀巴特沃思数字低通滤波器,观察所设计数字滤波器的幅频特性曲线,记录带宽和衰减量,检查是否满⾜要求。
⽐较这两种⽅法的优缺点。
clear all;wc=2*pi*200;wr=2*pi*300;rp=1;rs=25;fs=1000;[N,wn]=buttord(wc,wr,rp,rs,'s');[B,A]=butter(N,wn,'s');[num1,den1]=impinvar(B,A,fs);%脉冲相应不变法[h1,w]=freqz(num1,den1);w1=2*fs*tan(wc/(2*fs));w2=2*fs*tan(wr/(2*fs));[N,wn]=buttord(w1,w2,rp,rs,'s')[B,A]=butter(N,wn,'s');[num2,den2]=bilinear(B,A,fs);%双线性变换法[h2,w]=freqz(num2,den2);f=w/pi*500;plot(f,20*log10(abs(h1)),'-.',f,20*log10(abs(h2)),'-');axis([0,500,-80,10]);grid;xlabel('Frequency in Hz');ylabel('Gain in dB');title('巴特沃思数字低通滤波器');legend('脉冲相应不变法','双线性变换法',1);分析:(3)利⽤双线性变换法分别设计满⾜下列指标的巴特沃思型、切⽐雪夫型和椭圆型数字低通滤波器,并作图验证设计结果:f c=1.2kHz,δ≤0.5dB,f r=2kHz,,At≥40dB,f s=8kHz。
IIR数字滤波器设计(Ⅰ)要点
一、实验题目:IIR数字滤波器设计(Ⅰ)二、实验内容:数字滤波器是对数字信号实现滤波的线性时不变系统。
数字滤波实质上是一种运算过程,实现对信号的运算处理。
输入数字信号(数字序列)通过特定的运算转变为输出的数字序列,因此,数字滤波器本质上是一个完成特定运算的数字计算过程,也可以理解为是一台计算机。
描述离散系统输出与输入关系的卷积和差分方程只是给数字信号滤波器提供运算规则,使其按照这个规则完成对输入数据的处理。
时域离散系统的频域特性:,其中、分别是数字滤波器的输出序列和输入序列的频域特性(或称为频谱特性),是数字滤波器的单位取样响应的频谱,又称为数字滤波器的频域响应。
输入序列的频谱经过滤波后,因此,只要按照输入信号频谱的特点和处理信号的目的,适当选择,使得滤波后的满足设计的要求,这就是数字滤波器的滤波原理。
数字滤波器根据其冲激响应函数的时域特性,可分为两种,即无限长冲激响应(IIR)数字滤波器和有限长冲激响应(FIR)数字滤波器。
IIR 数字滤波器的特征是,具有无限持续时间冲激响应,需要用递归模型来实现,其差分方程为:系统函数为:设计IIR滤波器的任务就是寻求一个物理上可实现的系统函数H(z),使其频率响应H(z)满足所希望得到的频域指标,即符合给定的通带截止频率、阻带截止频率、通带衰减系数和阻带衰减系数。
设计一个数字巴特沃斯低通滤波器,设计指标如下:W p=0.2Π, R P=1dBW s=0.3Π, A s=15dB采样时间间隔S。
T1三、实验要求:(1)用单位冲激响应不变变换法进行设计。
(2)给出详细的滤波器设计说明书。
(3)给出经过运行是正确的程序清单并加上详细的注释。
(4)画出所设计滤波器的幅度特性和相位特性。
四.程序与实验说明:1.利用模拟滤波器设计IIR数字滤波器方法(1)根据所给出的数字滤波器性能指标计算出相应的模拟滤波器的设计指标。
(2)根据得出的滤波器性能指标设计出相应的模拟滤波器的系统函数H(S)。
实验四IIR数字滤波器设计及软件实现实验报告(word文档)
实验四 IIR 数字滤波器设计及软件实现实验报告实验四 IIR 数字滤波器设计及软件实现实验报告一、实验目的(1)熟悉用双线性变换法设计IIR 数字滤波器的原理与方法;(2)学会调用 MATLAB信号办理工具箱中滤波器设计函数(或滤波器设计解析工具fdatool)设计各种IIR 数字滤波器,学会依照滤波需求确定滤波器指标参数。
(3)掌握 IIR 数字滤波器的 MATLAB实现方法。
(3)经过观察滤波器输入输出信号的时域波形及其频谱,建立数字滤波的看法。
二、实验原理设计 IIR 数字滤波器一般采用间接法(脉冲响应不变法和双线性变换法),应用最广泛的是双线性变换法。
基本设计过程是:①先将给定的数字滤波器的指标变换成过渡模拟滤波器的指标;②设计过渡模拟滤波器;③将过渡模拟滤波器系统函数变换成数字滤波器的系统函数。
MATLAB信号办理工具箱中的各种IIR 数字滤波器设计函数都是采用双线性变换法。
第六章介绍的滤波器设计函数butter、cheby1、cheby2和ellip能够分别被调用来直接设计巴特沃斯、切比雪夫1、切比雪夫 2 和椭圆模拟和数字滤波器。
本实验要求读者调用如上函数直接设计IIR 数字滤波器。
本实验的数字滤波器的MATLAB实现是指调用MATLAB信号办理工具箱函数filter对给定的输入信号x(n) 进行滤波,获取滤波后的输出信号y(n )。
三、实验内容及步骤(1)调用信号产生函数mstg 产生由三路控制载波调幅信号相加构成的复合信号st ,该函数还会自动绘图显示st 的时域波形和幅频特点曲线,如图所示。
由图可见,三路信号时域混叠无法在时域分别。
但频域是分其他,因此能够经过滤波的方法在频域分别,这就是本实验的目的。
图三路调幅信号st 的时域波形和幅频特点曲线( 2)要求将st 中三路调幅信号分别,经过观察st 的幅频特点曲线,分别确定能够分实验四 IIR 数字滤波器设计及软件实现实验报告离 st 中三路控制载波单频调幅信号的三个滤波器 (低通滤波器、 带通滤波器、 高通滤波器)的通带截止频率和阻带截止频率。
数字信号处理实验四 IIR滤波器设计
实验四 IIR 滤波器设计一、教学目的和任务1.熟悉用双线性变换法设计IIR 数字滤波器的原理和方法; 2.了解用脉冲响应不变法设计IIR 数字滤波器的原理和方法;3.掌握双线性变换及脉冲响应不变法设计的滤波器的频域特性,了解双线性变换法及脉冲响应不变法的特点;4.掌握数字滤波器的计算机仿真方法。
二、实验原理介绍IIR 数字滤波器的系统函数为1z -的有理分式:1011()1Nk k N k k b zH z a z -=-==+∑∑设计IIR 滤波器的系统函数,就是要确定()H z 的阶数N 及分子分母多项式的系数k a 和k b ,使其()()j j z e H e H z ωω==满足指定的频率特性。
由于模拟滤波器的设计有许多简单而严谨的设计公式和大量的图表可以利用,因此IIR 滤波器设计的方法之一是:先设计一个合适的模拟滤波器,然后将模拟滤波器通过适当的变换转换成满足给定指标的数字滤波器。
1、Butterworth 模拟低通滤波器幅度平方函数: 221()1a Nc H j Ω=⎛⎫Ω+ ⎪Ω⎝⎭其中,N 为滤波器的阶数,c Ω为通带截止频率。
2.Chebyshev 模拟低通滤波器2221()1()a NcH j C εΩ=Ω+Ω幅度平方函数:3、脉冲响应不变法原理用数字滤波器的单位脉冲响应序列h(n)逼近模拟滤波器的冲激响应()a h t ,让h(n)正好等于()a h t 的采样值,即:()()a h n h nT = 其中,T 为采样间隔。
如果以()a H s 和H(z)分别表示()a h t 的拉氏变换及h(n)的Z 变换,则:12ˆ()()sTa a z e k H z H s H s j k T T π∞==-∞⎛⎫==- ⎪⎝⎭∑4、双线性变换法原理双线性变换法是通过两次映射采用非线性频率压缩的方法,将整个频率轴上的频率范围压缩到 ±π/T 之间,再用sTz e =转换到z 平面上,从而使数字滤波器的频率响应与模拟滤波器的频率响应相似。
实验四 IIR数字滤波器的设计(1) (2)
实验四 IIR 数字滤波器的设计及网络结构一、实验目的1.了解IIR 数字滤波器的网络结构。
2.掌握模拟滤波器、IIR 数字滤波器的设计原理和步骤。
3.学习编写数字滤波器的设计程序的方法。
二、实验内容数字滤波器:是数字信号处理技术的重要内容。
它的主要功能是对数字信号进行处理,保留数字信号中的有用成分,去除信号中的无用成分。
1.数字滤波器的分类滤波器的种类很多,分类方法也不同。
(1)按处理的信号划分:模拟滤波器、数字滤波器 (2)按频域特性划分;低通、高通、带通、带阻。
(3)按时域特性划分:FIR 、IIR2.IIR 数字滤波器的传递函数及特点数字滤波器是具有一定传输特性的数字信号处理装置。
它的输入和输出均为离散的数字信号,借助数字器件或一定的数值计算方法,对输入信号进行处理,改变输入信号的波形或频谱,达到保留信号中有用成分去除无用成分的目的。
如果加上A/D 、D/A 转换,则可以用于处理模拟信号。
设IIR 滤波器的输入序列为x(n),则IIR 滤波器的输入序列x(n)与输出序列y(n)之间的关系可以用下面的方程式表示:1()()()M Ni j i j y n b x n i a y n j ===-+-∑∑(5-1)其中,j a 和i b 是滤波器的系数,其中j a 中至少有一个非零。
与之相对应的差分方程为:10111....()()()1....MM NN b b z b z Y z H Z X z a z a z ----++==++ (5-2)由传递函数可以发现无限长单位冲激响应滤波器有如下特点: (1) 单位冲激响应h(n)是无限长的。
(2) 系统传递函数H(z)在有限z 平面上有极点存在。
(3) 结构上存在着输出到输入的反馈,也就是结构上是递归型的。
3.IIR 滤波器的结构IIR 滤波器包括直接型、级联型和并联型三种结构:① 直接型:优点是简单、直观。
但由于系数bm 、a k 与零、极点对应关系不明显,一个bm 或a k 的改变会影响H(z)所有零点或极点的分布,所以一方面,bm 、a k 对滤波器性能的控制关系不直接,调整困难;另一方面,零、极点分布对系数变化的灵敏度高,对有限字长效应敏感,易引起不稳定现象和较大误差。
实验四IIR数字滤波器的设计数字信号处理DSP
实验四IIR数字滤波器的设计数字信号处理DSP
IIR(Infinite Impulse Response)数字滤波器是一种常用的数字信
号处理技术,用于对信号进行滤波。
其特点是具有无限脉冲响应,通过对
输入信号和滤波器的系数进行运算,可以得到输出信号。
设计一个IIR数字滤波器的步骤如下:
1.确定滤波器的类型:根据滤波器的要求,选择滤波器的类型,如低
通滤波器、高通滤波器、带通滤波器等。
2.确定滤波器的阶数:滤波器的阶数决定了滤波器的复杂度和性能。
一般来说,阶数越高,滤波器的性能越好,但计算复杂度也会增加。
3.确定滤波器的频率响应:根据滤波器的类型和要求,确定滤波器的
频率响应。
可以使用一些滤波器设计工具或者数学模型来计算频率响应。
4.设计滤波器的传递函数:根据所选的滤波器类型和频率响应,设计
滤波器的传递函数。
传递函数描述了滤波器的输入输出关系。
5.将传递函数转换为差分方程:将滤波器的传递函数转换为差分方程,形式为y(n)=b0*x(n)+b1*x(n-1)+...-a1*y(n-1)-a2*y(n-2)-...,其中
y(n)为输出信号,x(n)为输入信号。
6.计算滤波器的系数:根据差分方程,计算滤波器的系数,即b0、
b1、..、a1、a2、..
7.实现滤波器:将计算得到的滤波器系数应用到滤波器的实现中,可
以使用C语言、MATLAB等工具进行实现。
8.评估滤波器性能:根据设计要求和信号特点,评估滤波器的性能,
如频率响应、幅频响应等。
通过上述步骤,可以设计出满足要求的IIR数字滤波器,并用于数字信号处理中。
实验四IIR数字滤波器设计及软件实现
实验四IIR数字滤波器设计及软件实现IIR数字滤波器是一种重要的信号处理工具,常用于音频处理、图像处理、通信系统等领域。
本实验旨在通过软件实现IIR数字滤波器的设计和使用。
实验目标:1.了解IIR数字滤波器的基本原理和结构。
2. 学会使用Matlab等软件工具进行IIR数字滤波器设计和模拟。
实验步骤:1.确定滤波器的要求:包括滤波器的类型(低通、高通、带通、带阻)、通带和阻带的频率范围、通带和阻带的衰减要求等。
2.根据滤波器的要求选择适合的设计方法:常见的设计方法包括脉冲响应、巴特沃斯、切比雪夫、椭圆等。
3. 使用Matlab等软件工具进行滤波器设计:根据选择的设计方法,使用相应的函数或工具箱进行滤波器的设计。
4.评估滤波器性能:通过频率响应曲线、幅频特性、相频特性等评估滤波器的性能,比如阻带衰减、通带波动等。
5.应用滤波器:将设计好的滤波器应用到实际信号中,观察滤波效果。
6.优化滤波器性能(可选):根据实际应用需求,对滤波器的设计进行调整和优化。
实验注意事项:1.在进行滤波器设计时,要根据实际应用需求选择合适的滤波器类型和设计方法。
2.在评估滤波器性能时,要对设计结果进行全面的分析,包括滤波器的频率响应、幅频特性、相频特性等。
3.在实际应用过程中,可以根据实际需求对设计结果进行优化和调整,以达到更好的滤波效果。
参考资料:1.陈志骏等编著,《信号与系统实验指导书》。
2. Proakis, J. G., & Manolakis, D. G. (1996). Digital signal processing: principles, algorithms, and applications. Pearson Education India.。
实验四IIR数字滤波器设计及软件实现实验报告
实验四IIR数字滤波器设计及软件实现实验报告一、实验目的(1)熟悉用双线性变换法设计IIR数字滤波器的原理与方法;(2)学会调用MATLAB信号处理工具箱中滤波器设计函数(或滤波器设计分析工具fdatool)设计各种IIR数字滤波器,学会根据滤波需求确定滤波器指标参数。
(3)掌握IIR数字滤波器的MATLAB实现方法。
(3)通过观察滤波器输入输出信号的时域波形及其频谱,建立数字滤波的概念。
二、实验原理设计IIR数字滤波器一般采用间接法(脉冲响应不变法和双线性变换法),应用最广泛的是双线性变换法。
基本设计过程是:①先将给定的数字滤波器的指标转换成过渡模拟滤波器的指标;②设计过渡模拟滤波器;③将过渡模拟滤波器系统函数转换成数字滤波器的系统函数。
MATLAB信号处理工具箱中的各种IIR数字滤波器设计函数都是采用双线性变换法。
第六章介绍的滤波器设计函数butter、cheby1 、cheby2 和ellip可以分别被调用来直接设计巴特沃斯、切比雪夫1、切比雪夫2和椭圆模拟和数字滤波器。
本实验要求读者调用如上函数直接设计IIR数字滤波器。
本实验的数字滤波器的MATLAB实现是指调用MATLAB信号处理工具箱函数filter对给定的输入信号x(n)进行滤波,得到滤波后的输出信号y(n)。
三、实验内容及步骤(1)调用信号产生函数mstg产生由三路抑制载波调幅信号相加构成的复合信号st,该函数还会自动绘图显示st的时域波形和幅频特性曲线,如图10.4.1所示。
由图可见,三路信号时域混叠无法在时域分离。
但频域是分离的,所以可以通过滤波的方法在频域分离,这就是本实验的目的。
图10.4.1三路调幅信号st的时域波形和幅频特性曲线(2)要求将st中三路调幅信号分离,通过观察st的幅频特性曲线,分别确定可以分离st中三路抑制载波单频调幅信号的三个滤波器(低通滤波器、带通滤波器、高通滤波器)的通带截止频率和阻带截止频率。
要求滤波器的通带最大衰减为0.1dB,阻带最小衰减为60dB。
IIR数字滤波器的设计实验报告
IIR数字滤波器的设计一、实验目的:掌握冲激相应不变法和双线性变换法设计IIR数字滤波器的原理和方法;观察冲激相应不变法和双线性变换法设计IIR数字滤波器的频率特性;了解冲激相应不变法和双线性变换法的特点和区别。
二、实验原理:无限长单位冲激响应(IIR)数字滤波器的设计思想:a)设计一个合适的模拟滤波器b)利用一定的变换方法将模拟滤波器转换成满足预定指标的数字滤波器切贝雪夫I型:通带中是等波纹的,阻带是单调的切贝雪夫II型:通带中是单调的,阻带是等波纹的1.用冲击响应不变法设计一个低通切贝雪夫I型数字滤波器通带上限截止频率为400Hz阻带截止频率为600Hz通带最大衰减为0.3分贝阻带最小衰减为60分贝抽样频率1000Hz2.用双线性变换法设计切贝雪夫II型高通滤波器通带截止频率2000Hz阻带截止频率1500Hz通带最大衰减0.3分贝阻带最小衰减50分贝抽样频率20000Hz四、实验程序:1)Wp=2*pi*400;Ws=2*pi*600;Rp=0.3;Rs=60;Fs=1000;[N,Wn]=cheb1ord(Wp,Ws,Rp,Rs,'s'); [Z,P,K]=cheb1ap(N,Rp);[A,B,C,D]=zp2ss(Z,P,K);[At,Bt,Ct,Dt]=lp2lp(A,B,C,D,Wn); [num1,den1]=ss2tf(At,Bt,Ct,Dt);[num2,den2]=impinvar(num1,den1,Fs); [H,W1]=freqs(num1,den1);figure(1)subplot(2,1,1);semilogx(W1/pi/2,20*log10(abs(H)));grid; xlabel(' 频率/ Hz');ylabel(' 模拟滤波器幅值(db)');[H,W2]=freqz(num2,den2,512,'whole',Fs); subplot(2,1,2);plot(W2,20*log10(abs(H)));grid;xlabel(' 频率/ Hz');ylabel(' 数字滤波器幅值(db)'); [H,W]=freqz(num2,den2,512,'whole'); figure(2)subplot(2,1,1);8plot(W/2/pi,20*log10(abs(H)));grid; xlabel(' 数字角频率/ pi');ylabel(' 数字滤波器幅值(db)'); %xlabel(' 频率/ Hz'); %ylabel(' 幅值'); subplot(2,1,2);%stem(W/pi,abs(H));grid;%figure(3)%semilogx(W1,W2);%grid;plot(W/2/pi,angle(H)/pi);grid;xlabel(' 数字角频率/ pi');ylabel(' 相角/ pi');2)Wp=2*pi*2000;Ws=2*pi*1500;Rp=0.3;Rs=50;Fs=20000;[N,Wn]=cheb2ord(Wp,Ws,Rp,Rs,'s'); [Z,P,K]=cheb2ap(N,Rs);[A,B,C,D]=zp2ss(Z,P,K);[At,Bt,Ct,Dt]=lp2hp(A,B,C,D,Wn); [num1,den1]=ss2tf(At,Bt,Ct,Dt); [num2,den2]=bilinear(num1,den1,Fs); [H,W]=freqz(num2,den2);subplot(2,1,1);plot(W*Fs/2/pi,20*log10(abs(H)));grid; xlabel(' 数字角频率/ Hz');ylabel(' 幅值(dby)');subplot(2,1,2);plot(W*Fs/2/pi,angle(H)/pi);grid; xlabel(' 数字角频率/ Hz');ylabel(' 相角/ pi');五、仿真图形:六、实验分析:1.在第一个实验中模拟滤波器的频率响应曲线延伸无穷,而数字滤波器只给出500Hz一下的频谱是什么原因?答:模拟滤波器的频率响应从负无穷至正无穷,经过采样后,变到(0,2π)。
实验四 IIR数字滤波器的设计与滤波
实验四 IIR 数字滤波器的设计与滤波一、巴特沃斯模拟滤波器的设计1. 模拟滤波器的设计参数模拟滤波器的4个重要的通带、阻带参数为:p f 或Omegap :通带截止频率 s f 或Omegas :阻带截至频率p R :通带内波动(dB),即通带内所允许的最大衰减;s R :阻带内最小衰减通过以上参数就可以进行模拟滤波器的设计。
2. 巴特沃斯模拟滤波器设计1) 巴特沃斯滤波器阶数的选择:在已知设计参数p f ,s f ,p R ,s R 之后,可利用“buttord ”命令可求出所需要的滤波器的阶数和3dB 截止频率,其格式为:[N ,Omegac]=buttord[fp ,fs ,Rp ,Rs ,’s ’],其中fp ,fs ,Rp ,Rs 分别为通带截止频率、阻带起始频率、通带内波动、阻带内最小衰减。
返回值N 为滤波器的最低阶数,Wc 为3dB 截止频率。
2) 巴特沃斯滤波器系数计算:由巴特沃斯滤波器的阶数N 以及3dB 截止频率Omegac 可以计算出对应传递函数H(z)的分子分母系数,MATLAB 提供的命令如下:● 巴特沃斯低通滤波器系数计算:[b ,a]=butter(N,Omegac),其中b 为H(z)的分子多项式系数,a 为H(z)的分母多项式系数● 巴特沃斯高通滤波器系数计算:[b ,a]=butter(N,Omegac,’High ’)● 巴特沃斯带通滤波器系数计算:[b ,a]=butter(N ,[Omega1,Omega2]),其中[Omega1,Omega2]为通带截止频率,是2元向量,需要注意的是该函数返回的是2N 阶滤波器系数。
● 巴特沃斯带阻滤波器系数计算:[b ,a]=butter(N ,[Omega1,Omega2],’stop ’),其中[Omega1,Omega2]为通带截止频率,是2元向量,需要注意的是该函数返回的也是2N 阶滤波器系数。
二、巴特沃斯数字滤波器的设计1. 数字滤波器的设计参数滤波器的4个重要的通带、阻带参数为:p f :通带截止频率(Hz ) s f :阻带起始频率(Hz )p R :通带内波动(dB ),即通带内所允许的最大衰减; s R :阻带内最小衰减设采样速率(即奈奎斯特速率)为N f ,将上述参数中的频率参数转化为归一化频率参数:p ω:归一化通带截止频率,)2//(N p p f f =ω;s ω:归一化阻带截至频率,)2//(N s s f f =ω通过以上参数就可以进行数字滤波器的设计。
实验四 IIR数字滤波器设计
图I 5阶Butterworth 数字高通滤波器试验四IIR 数字滤波器的设计与MATLAB 实现一、试验目的:1、要求把握∏R 数字滤波器的设计原理、方法、步骤。
2、能够依据滤波器设计指标进行滤波器设计。
3、把握数字巴特沃斯滤波器和数字切比雪夫滤波器的设计原理和步骤。
二、试验原理:∏R 数字滤波器的设计方法:频率变换法、数字域直接设计以及计算机帮助等。
这里只介绍频率变换法。
由模拟低通滤波器到数字低通滤波器的转换,基本设计 过程:1、将数字滤波器的设计指标转换为模拟滤波器指标2、设计模拟滤波器G (S )3、将G (S )转换为数字滤波器H (Z )在低通滤波器设计基础上,可以得到数字高通、带通、带阻滤波器的设计流程如 下:1、给定数字滤波器的设计要求(高通、带通、带阻)2、转换为模拟(高通、带通、带阻)滤波器的技术指标3、转换为模拟低通滤波器的指标4、设计得到满意3步骤中要求的低通滤波器传递函数5、通过频率转换得到模拟(高通、带通、带阻)滤波器6、变换为数字(高通、带通、带阻)滤波器三、标准数字滤波器设计函数MATLAB 供应了一组标准的数字滤波器设计函数,大大简化了滤波器设计过程。
1 > butter例题1设计一个5阶Butterworth 数字高通滤波器,阻带截止频率为250Hz ,设 采样频率为IKHz.I k H J-∣H ∏ t er (5. 250/500.' high')L z, ∣>, kJ but i er(5t 250 500, , ∣∣ i glιt)f r eqz (b 1 5 I 2, I 000)50 100 150 200 250 300 350 400 450 500 Frequency (Hz) o o o o opo 1 3 in 3 3w=⅛e2 50 100 150 200 250 300 350 400 450 500 Fιequetιcy (Hz) - A ・ > A ・o o o o o o o o o 力 o o 1 -23 < 京⅛cy.⅛)φseud2、chebyl 和cheby2例题2设,十一个7阶chebyshevll型数字低通滤波器,截止频率为3000Hz,Rs=30dB,采样频率为IKHz。
IIR数字滤波器的原理及设计课件
n
n k1
Ts N Ak e z skTs 1 n k1 n0
Ts
N
Ak
k11eskTs
z1
(6.66)
上式中的幂级数收敛应该满足条件:| eskTs z1 |1即
| z || eskTs |
实际上,只要将模拟滤波器的系统函数 Ha(s)分解为 (6.63)式所示的部分分式之和的形式,立即就可以写出相 应的数字滤波器的系统函数H(z)。
谱Xa ()的周期延拓,即
X a()T 1n Xa(ns)
而
X a( )X(ej)X(ej Ts)
(6.67) (6.68)
其中 Ts ,和 分别为数字角频率和模拟角频
率。也就是说,离散信号的频谱既可表示为数字频率的函
数也可表示为模拟频率的函数。又知道,对于离散信号的
傅里叶变换,有:
e e
Ha(jΩ))就是模拟滤波器的频率响应。如果对ha(t)抽样,
则由(6.70)式可知,有:
e T sha(ns)Tjn T s H a( n s)
n
n
(6.71)
令h(n) = Tsha(nTs),并以表示h(n)的频谱,也就是以h(n) 为冲激响应的数字滤波器的频率响应,于是由(6.71)式可
6.4.1 冲激响应不变法的变换方法
模拟滤波器的系统函数通常可以表示为:
M
M
ai si
(ssi )
Ha(s)
i0 N
A i1 N
bksk
(s sk )
k0
k1
(6.62)
而且一般都满足M<N,因此,可以将上式化为部分分式之
和的形式,即:
Ha(s)
N k1
实验四IIR数字滤波器的设计实验报告
实验四IIR数字滤波器的设计实验报告实验四:IIR数字滤波器的设计实验目的:1.了解IIR数字滤波器的基本原理和设计流程;2.学习使用MATLAB进行IIR数字滤波器的设计;3.实际设计一个IIR数字滤波器,并对输入信号进行滤波处理。
实验设备:1.计算机2.MATLAB软件实验原理:IIR数字滤波器是一种非线性滤波器,可以通过差分方程的形式表示。
其特点是具有无穷长的单位脉冲响应,即滤波器对输入信号的响应是无限长的。
IIR数字滤波器的设计一般包括两个方面:滤波器的结构和滤波器的参数。
其中,滤波器的结构包括滤波器的拓扑结构和级联结构,滤波器的参数包括滤波器的截止频率、通带增益、阻带衰减等。
实验步骤:1.确定滤波器的类型(低通滤波器、高通滤波器、带通滤波器等);2.根据滤波器的要求,设计滤波器的截止频率、通带增益、阻带衰减等参数;3.根据滤波器的类型和参数,选择合适的滤波器结构和滤波器参数;4.使用MATLAB软件进行IIR数字滤波器的设计,编写相应的代码;5.载入输入信号,并对输入信号进行滤波处理;6.分析输出信号的频谱特性和时域波形。
实验结果:通过实验,我们成功设计了一个IIR数字滤波器,并对输入信号进行了滤波处理。
实验结果显示,滤波器能够有效地去除输入信号中的高频噪声,得到了更清晰的输出信号。
输出信号的频谱特性和时域波形符合设计要求。
实验结论:IIR数字滤波器是一种常用的数字滤波器,具有较好的滤波效果和较低的计算复杂度。
通过实验,我们深入了解了IIR数字滤波器的设计原理和流程,并成功应用于实际信号处理中。
实验结果表明,IIR数字滤波器能够有效地去除输入信号中的噪声,提取出所需的信号信息。
这对于信号处理和通信系统设计具有重要意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验四 IIR 数字滤波器的设计及网络结构一、实验目的1.了解IIR 数字滤波器的网络结构。
2.掌握模拟滤波器、IIR 数字滤波器的设计原理和步骤。
3.学习编写数字滤波器的设计程序的方法。
二、实验内容数字滤波器:是数字信号处理技术的重要内容。
它的主要功能是对数字信号进行处理,保留数字信号中的有用成分,去除信号中的无用成分。
1.数字滤波器的分类滤波器的种类很多,分类方法也不同。
(1)按处理的信号划分:模拟滤波器、数字滤波器 (2)按频域特性划分;低通、高通、带通、带阻。
(3)按时域特性划分:FIR 、IIR2.IIR 数字滤波器的传递函数及特点数字滤波器是具有一定传输特性的数字信号处理装置。
它的输入和输出均为离散的数字信号,借助数字器件或一定的数值计算方法,对输入信号进行处理,改变输入信号的波形或频谱,达到保留信号中有用成分去除无用成分的目的。
如果加上A/D 、D/A 转换,则可以用于处理模拟信号。
设IIR 滤波器的输入序列为x(n),则IIR 滤波器的输入序列x(n)与输出序列y(n)之间的关系可以用下面的方程式表示:1()()()M Ni j i j y n b x n i a y n j ===-+-∑∑(5-1)其中,j a 和i b 是滤波器的系数,其中j a 中至少有一个非零。
与之相对应的差分方程为:10111....()()()1....MM NN b b z b z Y z H Z X z a z a z ----++==++ (5-2)由传递函数可以发现无限长单位冲激响应滤波器有如下特点: (1) 单位冲激响应h(n)是无限长的。
(2)系统传递函数H(z)在有限z平面上有极点存在。
(3)结构上存在着输出到输入的反馈,也就是结构上是递归型的。
3.IIR滤波器的结构IIR滤波器包括直接型、级联型和并联型三种结构:①直接型:优点是简单、直观。
但由于系数bm 、a k与零、极点对应关系不明显,一个bm 或a k的改变会影响H(z)所有零点或极点的分布,所以一方面,bm 、a k对滤波器性能的控制关系不直接,调整困难;另一方面,零、极点分布对系数变化的灵敏度高,对有限字长效应敏感,易引起不稳定现象和较大误差。
Matlab实现:filter( )函数实现IIR数字滤波器直接形式。
格式为: y=filter(b,a,x)b,a为差分方程输入、输出系数向量(或系统函数的分子、分母多项式,降幂),x 为输入序列,y为输出序列。
其中,传递函数(tf)形式NNMMzazazbzbbzH----++++++=11111)(若则a=[1 a1 a2… a N]b=[b0 b1 b2… b M]②级联型:基于因式分解,将系统函数H(z)分解为因子乘积的形式。
(5-3)级联型结构:Matlab实现:tf2zp( )函数用于求系统函数的零、极点和增益常数,zp2sos ( )函数则根据tf2zp( )函数结果求出各基本节系数。
格式为:[z,p,K]=tf2zp(b,a);sos=zp2sos(z,p,K);b,a为差分方程输入、输出系数向量(系统函数的分子、分母多项式,降幂)。
其中,零极点增益形式(zp):∏∏-=--=---=1111)1()1()(NkkMiizzz zkzH若则零点向量z=[z1 z2… z M-1];极点向量p=[z1,z2,…,z N-1]001201212111211()()11MmN Nmm k kkNk k kk kkkb zz zH z K K H zz za zββαα---=---===++===+++∑∏∏∑k为系统增益。
二阶分式形式(sos)为:把H(z)划成二阶因式∏∏==----++++==NkNk kkkkkkk zzzzzHzH1122112211)()(αααβββ则其二阶因式为:⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=NNNNNbbbbbaabbbaabbbsos212122122212022111211101111③并联型:基于部分分式展开,将系统函数H(z)分解为部分分式和的形式。
(5-4)并联型结构:Matlab实现:residue( )函数可以实现并联型结构,有两种格式:[K,r,p]=residue(b,a);[b,a]=residue(b,a);其中,部分分式形式:)(1)1()1()(1)()1(1)1()(NMnzNMkkznpnrzprzH----+-+++-++-=若则极点向量 p=[p(1) p(2) … p(n)]其对应系数向量r=[r(1) r(2) … r(n)]余数多项式系数向量k=[k(1) k(2) … k(M-N+1)]【实例5-1】已知三阶IIR数字滤波器的系统函数001001001211121()()11MmN Nmm k kkNk k kk kkkb zzH z K K H zz za zγγαα--=---===+==+=++++∑∑∑∑321216131********)(------++++=z z z z z z H 求:①直接形式的单位采样响应h(n);②级联型结构的各基本节系数; ③并联型结构的部分分式系数。
解:MATLAB 源程序为 ①b=[3,5/3,2/3];a=[1,1/6,1/3,-1/6]; x=[1,zeros(1,50)]; y=filter(b,a,x); n=0:50;plot(n,y); ②b=[3,5/3,2/3,0];a=[1,1/6,1/3,-1/6]; [z,p,K]=tf2zp(b,a); sos=zp2sos(z,p,K);③b=[3,5/3,2/3];a=[1,1/6,1/3,-1/6]; [K,r,p]=residue(b,a); KK1=[K(1),K(2)]; zz1=[z(1),z(2)];[b2,a2]=residue(KK1,zz1,0);5.IIR 数字滤波器的具体设计(1)巴氏模拟原型滤波器的设计巴氏模拟低通滤波器幅度平方函数为NCj H 211)(⎪⎪⎭⎫ ⎝⎛ΩΩ+=ΩMATLAB 工具箱函数buttap,buttord 和butter 是巴氏滤波器设计函数。
1)[Z,P,K]=buttap(N)该格式用于计算N 阶巴氏归一化(3dB 截止频率Ωc=1)模拟低通原型滤波器系统函数的零、极点和增益。
得到的系统函数为:)())(()())(()(2121N N a p p p p p p z p z p z p Kp G ------=如果要从计算得到的零、极点得到系统函数的分子和分母向量B 和A ,可以调用结构转换函数[B,A]=zp2tf(Z,P,K)。
2)[N,wc]=buttord(wp,ws,Rp,Rs,’s ’)该格式用于计算巴氏滤波器的阶数N 和3dB 截止频率wc 。
其中: N ——滤波器的阶数。
Wc ——3dB 截止频率的归一化值。
wp 、ws ——通带、阻带边界频率的归一化值。
要求:1ws 0,1wp 0≤≤≤≤,1表示数字频率π。
Rp 、Rs ——通带最大、阻带最小衰减。
s ——可选项,直接设计模拟滤波器,此时wp 和ws 均为实际模拟角频率。
3)[B,A]=butter(N,wc,’ftype ’,’s ’)计算N 阶巴氏数字滤波器系统函数分子和分母多项式的系数向量B 和A 。
【实例5-2】已知通带截止频率kHz f p 5=,通带最大衰减dB a p 5=,阻带截止频率kHz f s 12=,阻带最小衰减dB a s 30=,设计巴特沃斯型模拟低通滤波器。
解:MATLAB 源程序为Wp=2*pi*5000;Ws=2*pi*12000;Rp=5;As=30; [N,Wc]=buttord(Wp,Ws,Rp,Rs,'s'); [B,A]=butter(N,Wc,'s'); freqs(B,A);【实例5-3】设计阶数为3,5,10,15的巴氏模拟原型滤波器。
并画出幅频响应曲线。
解:MATLAB 源程序为 for i=1:4;switch icase 1 N=3; case 2 N=5; case 3 N=10; case 4; N=15; end;[z,p,k]=buttap(N); [b,a]=zp2tf(z,p,k); [h,w]=freqs(b,a,n); Ah=abs(h);subplot(2,2,i),plot(w,Ah);axis([0 2 0 1]); xlabel('w/wc');ylabel('|H(jw)|.^2');title(['filer N=',num2str(N)]);grid;end;【实例5-4】设通带、阻带截止频率fp=0.5kHz 、fs=1.2kHz ,通带、阻带最大衰减Rp=1dB,Rs=30dB ,要求设计巴氏低通滤波器。
解:MATLAB源程序为:>> OmegaP=2*pi*500;OmegaS=2*pi*1200;>> Rp=1;Rs=30;>> [N,OmegaC]=buttord(OmegaP,OmegaS,Rp,Rs,'s'); %确定阶数N>> [z0,p0,k0]=buttap(N);%确定传递函数>> z=z0*OmegaC;%去归一化>> k=k0*OmegaC^N;>> p=p0*OmegaC;>> bs=k*real(poly(z));>> as=real(poly(p));>> freqs(bs,as);(2)IIR数字滤波器的设计模拟滤波器Ha(s) 转换成数字滤波器H(z)应满足要求: (1) 因果稳定的模拟滤波器转换成数字滤波器,仍是因果稳定的;(2)数字滤波器的频率响应模仿模拟滤波器的频响,s 平面的虚轴映射z平面的单位圆,相应的频率之间成线性关系。
脉冲响应不变法和双线性变换法都满足如上要求。
①脉冲响应不变法用数字滤波器的单位脉冲响应序列h(n)模仿模拟滤波器的冲激响应h a(t),让h(n)正好等于h a(t)的采样值,即h(n)=h a(nT),其中T为采样间隔。
②双线性变换法s平面与z平面之间满足以下映射关系:1111--+-=z z ss 平面的虚轴单值地映射于z 平面的单位圆上,s 平面的左半平面完全映射到z 平面的单位圆内。
双线性变换不存在混叠问题。
双线性变换时一种非线性变换)2/(ωtg =Ω,这种非线性引起的幅频特性畸变可通过预畸而得到校正。
以低通数字滤波器为例,将设计步骤归纳如下:(1)确定数字滤波器的性能指标:通带临界频率f p 、阻带临界频率f s ;通带内的最大衰减R p ;阻带内的最小衰减R s ;(2)确定相应的数字角频率,ωp=2πfp;ωs =2πf s ; (3)计算经过预畸的相应模拟低通原型的频率,)2/(ωtg =Ω;(4)根据Ωp 和Ωs 计算模拟低通原型滤波器的阶数N ,并求得低通原型的传递函数H a (s); (5)用上面的双线性变换公式代入H a (s),求出所设计的传递函数H(z); (6)分析滤波器特性,检查其指标是否满足要求。