实验四数字滤波器的设计实验报告
实验四IIR数字滤波器的设计数字信号处理DSP
实验四IIR数字滤波器的设计数字信号处理DSP
IIR数字滤波器是一种基于无限脉冲响应(Infinite Impulse Response)的数字滤波器。
相比于FIR(有限脉冲响应)滤波器,IIR滤
波器具有更低的复杂度和更快的响应速度,但可能会引入一定的稳定性问题。
设计IIR数字滤波器的一般步骤如下:
1.确定滤波器的规格:包括截止频率、通带增益、阻带衰减等参数。
这些参数将直接影响到滤波器的设计和性能。
2.选择滤波器结构:常见的IIR滤波器结构包括直接型I和II结构、级联型结构、并行型结构等。
选择适当的结构取决于滤波器的性能要求和
计算复杂度。
3. 选择滤波器的类型:根据滤波器的设计规格,可以选择巴特沃斯(Butterworth)、切比雪夫(Chebyshev)、椭圆(Elliptic)等不同类
型的IIR滤波器。
4.滤波器设计:根据所选择的滤波器类型和规格,设计滤波器的传递
函数。
可以借助MATLAB等工具进行数值计算和优化。
5.模拟滤波器转为数字滤波器:将设计好的IIR滤波器转换为数字滤
波器。
可以使用双线性变换等方法来实现。
6.实现滤波器:根据转换后的数字滤波器的差分方程,编写相应的代
码来实现滤波器功能。
7.评估滤波器性能:对设计好的IIR数字滤波器进行性能评估,包括
幅频响应、相频响应、群延迟等指标。
8.优化滤波器性能:根据实际情况,对滤波器的设计参数进行优化,以获得更好的性能。
以上是设计IIR数字滤波器的一般步骤,具体的设计方法和过程还需要根据实际情况进行调整。
实验四FIR数字滤波器的设计
实验四FIR数字滤波器的设计
FIR(有限冲击响应)数字滤波器是一种常见的数字信号处理器件,
可以用于滤波、降噪等应用。
下面是一种FIR数字滤波器的设计流程:
1.确定滤波器的需求:首先确定需要滤除的频率范围和滤波的类型,
例如低通、高通、带通、带阻等等。
2.设计滤波器的频率响应:根据滤波器的需求,设计其理想的频率响应。
可以使用窗函数、最小二乘法等方法获得一个理想的滤波器响应。
3.确定滤波器的阶数:根据设计的频率响应,确定滤波器的阶数。
阶
数越高,滤波器的响应越陡峭,但计算复杂度也会增加。
4.确定滤波器的系数:根据滤波器的阶数和频率响应,计算滤波器的
系数。
可以使用频域窗函数或时域设计方法。
5.实现滤波器:根据计算得到的滤波器系数,实现滤波器的计算算法。
可以使用直接形式、级联形式、传输函数形式等。
6.评估滤波器的性能:使用所设计的FIR滤波器对输入信号进行滤波,评估其滤波效果。
可以使用频率响应曲线、幅频响应、群延时等指标进行
评估。
7.调整滤波器设计:根据实际的滤波效果,如果不满足需求,可以调
整滤波器的频率响应和阶数,重新计算滤波器系数,重新实现滤波器。
以上是FIR数字滤波器的基本设计流程,设计过程中需要考虑滤波器
的性能、计算复杂度、实际应用需求等因素。
实验四IIR数字滤波器设计实验报告
实验四IIR数字滤波器设计实验报告
为了实现信号的滤波处理,IIR(或称为滤波器)数字滤波器是一种常用的信号处理
技术。
本次实验就是探究IIR数字滤波器的设计和分析。
在实验开始前,对于IIR数字滤波器有所了解,它是一种无限级别功能的数字滤波器,其功能强大,可以实现任意自定义系数的滤波器。
在预处理实验中,便首先采用Matlab
工具搭建了IIR数字滤波器的框架,考虑到本次滤波处理内容,本次采用的是Chebyshev
类型的等离子体,其滤波效果要求超过50dB,进一步完善了对于设计工作的要求。
经过Chebyshev Type I等离子体的设计,确定了系统的结构,并设定了15个滤波器,接着从设定的各项参量入手,从而确定系统各项参量,运用梯形图确定根位置,并使用MATLAB中的filter函数进行系统模拟,得到经历处理后系统输出信号与未经处理时对比,结果显示滤波效果达到了相应预期要求。
在实验中,IIR数字滤波器的设计让我深刻体会到了系统滤波的重要性以及十分强大
的功能。
而它的实现,又显示了精确的数字处理技术在信号处理中的重要作用,使得研究
信号处理时,得以有效和准确地对信号进行分辨和滤波处理。
实验四FIR数字滤波器设计与软件实现
实验四FIR数字滤波器设计与软件实现
实验目的:
掌握FIR数字滤波器的设计与软件实现方法,了解滤波器的概念与基
本原理。
实验原理:
FIR数字滤波器全称为有限脉冲响应数字滤波器,其特点是具有有限
长度的脉冲响应。
滤波器通过一系列加权系数乘以输入信号的延迟值,并
将这些值相加得到输出信号。
FIR滤波器的频率响应由滤波器系数所决定。
实验步骤:
1.确定所需的滤波器的设计规格,包括截止频率、通带波纹、阻带衰
减等。
2.选择适当的滤波器设计方法,如窗函数、最佳近似法、最小二乘法等。
3.根据所选方法,计算滤波器的系数。
4.在MATLAB环境下,使用滤波器的系数实现滤波器。
5.输入所需滤波的信号,经过滤波器进行滤波处理。
6.分析输出的滤波信号,观察滤波效果是否符合设计要求。
实验要求:
1.完成FIR数字滤波器的设计和软件实现。
2.对比不同设计方法得到的滤波器性能差异。
3.分析滤波结果,判断滤波器是否满足设计要求。
实验器材与软件:
1.个人电脑;
2.MATLAB软件。
实验结果:
根据滤波器设计规格和所选的设计方法,得到一组滤波器系数。
通过
将滤波器系数应用于输入信号,得到输出滤波信号。
根据输出信号的频率
响应、通带波纹、阻带衰减等指标,评估滤波器的性能。
实验注意事项:
1.在选择设计方法时,需要根据滤波器要求和实际情况进行合理选择。
2.在滤波器实现过程中,需要注意滤波器系数的计算和应用。
3.在实验过程中,注意信号的选择和滤波结果的评估方法。
数字信号处理实验报告四IIR数字滤波器设计及软件实现
数字信号处理实验报告四IIR数字滤波器设计及软件实现实验目的:本实验的目的是了解IIR数字滤波器的设计原理和实现方法,通过MATLAB软件进行数字滤波器设计和信号处理实验。
一、实验原理IIR数字滤波器是一种使用有限数量的输入样本和前一次输出值的滤波器。
它通常由差分方程和差分方程的系数表示。
IIR滤波器的特点是递归结构,故其频率响应是无限长的,也就是说它的频率响应在整个频率范围内都是存在的,而不像FIR滤波器那样只有在截止频率处才有响应。
根据设计要求选择合适的滤波器类型和滤波器结构,然后通过对滤波器的模型进行参数化,设计出满足滤波要求的IIR滤波器。
常见的IIR滤波器设计方法有模拟滤波器设计方法和数字滤波器设计方法。
在本实验中,我们主要使用数字滤波器设计方法,即离散时间滤波器设计方法。
二、实验内容(一)设计IIR数字滤波器的步骤:1.确定滤波器类型:根据滤波要求选择合适的滤波器类型,如低通滤波器、高通滤波器、带通滤波器、带阻滤波器等。
2.确定滤波器的阶数:根据滤波要求确定滤波器的阶数。
阶数越高,滤波器的频率响应越陡峭,但计算复杂度也越高。
3. 设计滤波器原型:根据滤波要求,设计滤波器的原型。
可以选择Butterworth滤波器、Chebyshev滤波器、Elliptic滤波器等作为原型。
4.选择滤波器结构:根据计算机实现条件和算法复杂度,选择合适的滤波器结构。
常见的滤波器结构有直接形式I、直接形式II、级联形式等。
5.参数化滤波器模型:根据原型滤波器的差分方程,选择合适的参数化方法。
常见的参数化方法有差分方程法、极点/零点法、增益法等。
6.根据参数化的滤波器模型,计算出所有的滤波器系数。
(二)用MATLAB软件实现IIR数字滤波器设计:1.打开MATLAB软件,并创建新的脚本文件。
2. 在脚本文件中,使用MATLAB提供的滤波器设计函数,如butter、cheby1、ellip等,选择合适的滤波器类型进行设计。
实验四FIR数字滤波器的设计
实验四FIR数字滤波器的设计
FIR数字滤波器也称作有限脉冲响应数字滤波器,是一种常见的数字滤波器设计方法。
在设计FIR数字滤波器时,需要确定滤波器的阶数、滤波器的类型(低通、高通、带通、带阻)以及滤波器的参数(截止频率、通带波纹、阻带衰减、过渡带宽等)。
下面是FIR数字滤波器的设计步骤:
1.确定滤波器的阶数。
阶数决定了滤波器的复杂度,一般情况下,阶数越高,滤波器的性能越好,但计算量也越大。
阶数的选择需要根据实际应用来进行权衡。
2.确定滤波器的类型。
根据实际需求,选择低通、高通、带通或带阻滤波器。
低通滤波器用于去除高频噪声,高通滤波器用于去除低频噪声,带通滤波器用于保留一定范围内的频率信号,带阻滤波器用于去除一定范围内的频率信号。
3.确定滤波器的参数。
根据实际需求,确定滤波器的截止频率、通带波纹、阻带衰减和过渡带宽等参数。
这些参数决定了滤波器的性能。
4.设计滤波器的频率响应。
使用窗函数、最小二乘法等方法,根据滤波器的参数来设计滤波器的频率响应。
5.将频率响应转换为滤波器的系数。
根据设计的频率响应,使用逆快速傅里叶变换(IFFT)等方法将频率响应转换为滤波器的系数。
6.实现滤波器。
将滤波器的系数应用到数字信号中,实现滤波操作。
7.优化滤波器性能。
根据需要,可以对滤波器进行进一步优化,如调整滤波器的阶数、参数等,以达到较好的滤波效果。
以上是FIR数字滤波器的设计步骤,根据实际需求进行相应的调整,可以得到理想的滤波器。
实验四平滑与数字滤波实验
实验四 平滑与数字滤波实验§4.1 微分与平滑 一.实验要求搭建如图所示系统,验证微分运算对系统阶跃响应性能的影响。
其中环节D(Z)即为利用微机实现的微分运算环节。
R 为阶跃输入信号,C 为系统输出。
二.实验说明微分是正反馈,当取合适的微分时间常数时,会使系统响应加快。
但若微分时间常数过大,则会影响系统稳定性。
(T D 为微分时间常数,T 为采样周期)微分平滑算法采用四点微分均值法:其中各系数P1、P2、A1、A2、A3的取值范围为0~1.0。
系数不能大于1,也不能太小,过小将使微机控制环节失去控制作用。
微机编程实现以5ms 为基准的延时,调整延时的时间长度并以此作为A/D 采样周期T 。
三.实验步骤1. 接线:实际系统线路如图所示。
使用运放模块从左到右由A2,A4构造图中的模拟运放环节,系统输出点C 接A/D 转换模块B5的IN6,搭建D/A 转换单元,最后10K 电阻由A6提供,A6中的有两个H 孔,由板子上的连线可以看出一个H 与8孔座中的上面4个孔相连,而另一个H 与下面4个孔相连,所以最后10K 的构建,只要将D/A 转换单元的输出端(OU )连接一个H 端,而另一个H 端连接到A2的IN 端并在8孔座中插入10K 电阻即可。
B4信号发生器模块的输出点OUT 作为输入点R ,B4信号发生器模块中的S 和ST 用短路套短接,S1置阶跃档,S2置0.2-6s 档,调W8使周期约2S ,调W9使幅值约4V 。
C2.示例程序:微分见Cp4_1源文件。
微分平滑处理见Cp4_2源文件。
3.运行虚拟示波器。
(方法参见实验1中的运行虚拟示波器方法).4.现象:①运行程序Cp4_1。
用CH1或CH2观察系统阶跃相应输出点C的波形。
与不加微分反馈环节情况下(不加微分环节的情况只需将反馈环节断开即可)输出点C的波形相比较,如果现象不明显可调节B4中的W8,W9,并绘制出两者的输出曲线。
②运行程序Cp4_2。
实验四 IIR数字滤波器的设计
电气与信息工程学院数字信号处理实验报告学生姓名班级电子信息工程学号指导教师2019.12实验四 IIR 数字滤波器的设计一、实验目的:1. 掌握双线性变换法及脉冲响应不变法设计IIR 数字滤波器的具体设计方法及其原理,熟悉用双线性变换法及脉冲响应不变法设计低通、高通和带通IIR 数字滤波器的MATLAB 编程。
2. 观察双线性变换及脉冲响应不变法设计的滤波器的频域特性,了解双线性变换法及脉冲响应不变法的特点。
3. 熟悉巴特沃思滤波器、切比雪夫滤波器和椭圆滤波器的频率特性。
二、实验原理:1. 脉冲响应不变法用数字滤波器的单位脉冲响应序列 模仿模拟滤波器的冲激响应 ,让 正好等于 的采样值,即 ,其中 为采样间隔,如果以 及 分别表示 的拉式变换及 的Z 变换,则)2(1)(m T j s H T z H m a e z sT ∑∞-∞==+=π2.双线性变换法S 平面与z 平面之间满足以下映射关系:);(,2121,11211ωωσj re z j s s T s T z z z T s =+=-+=+-⋅=-- s 平面的虚轴单值地映射于z 平面的单位圆上,s 平面的左半平面完全映射到z 平面的单位圆内。
双线性变换不存在混叠问题。
双线性变换是一种非线性变换,这种非线性引起的幅频特性畸变可通过预畸而得到校正。
三、实验内容及步骤:实验中有关变量的定义:fc 通带边界频率;fr阻带边界频率;δ通带波动;At 最小阻带衰减;fs采样频率;T采样周期上机实验内容:(1)fc=0.3KHz,δ=0.8dB,fr=0.2KHz, At=20dB,T=1ms;设计一个切比雪夫高通滤波器,观察其通带损耗和阻带衰减是否满足要求。
MATLAB源程序:wp=2*1000*tan(2*pi*300/(2*1000));ws=2*1000*tan(2*pi*200/(2*1000));[N,wn]=cheb1ord(wp,ws,0.8,20,'s'); %给定通带(wp)和阻带(ws)边界角频率,通带波动波动0.8,阻带最小衰减20dB,求出最低阶数和通带滤波器的通带边界频率Wn[B,A]=cheby1(N,0.5,wn,'high','s');%给定通带(wp)和阻带(ws)边界角频率,通带波动[num,den]=bilinear(B,A,1000);[h,w]=freqz(num,den);f=w/(2*pi)*1000;plot(f,20*log10(abs(h)));axis([0,500,-80,10]);grid;xlabel('频率');ylabel('幅度/dB')程序结果num = 0.0304 -0.1218 0.1827 -0.1218 0.0304 den = 1 1.3834 1.4721 0.8012 0.2286系统函数:123412340.0304 -0.1218z 0.1827z-0.1218z0.0304z H(z)=1.0000+1.3834z+1.4721z+ 0.8012z+0.2286z--------++幅频响应图:分析:由图可知,切比雪夫滤波器幅频响应是通带波纹,阻带单调衰减的。
用窗函数法设计FIR滤波器
1.用窗函数法设计一线性相位FIR低通滤波器,要求通带截止频率 ,
(1)选择一个合适的窗函数(如hamming窗),取单位冲击响应h(n)的长度N=15,观察所设计滤波器的幅频特性,分析是否满足设计要求;
(2)取N=45,重复上述设计,观察幅频和相频特性的变化,分析长度N变化的影响;
(3)保持N=45不变,改变窗函数(如hamming窗变为blackman窗),观察并记录窗函数对滤波器幅频特性的影响。
xlabel('n');ylabel('h(n)');
title('hamming窗设计的h(n)'2);
hw=fft(hn,512);
w=2*[0:511]/512;
plot(w,20*log10(abs(hw)));
xlabel('w/pi');ylabel('Magnitude(dB)');
(4)由 ,得出单位脉冲响应 ;
(5)对 作离散时间傅立叶变换,得到 。
2.在MATLAB中,可以用b=fir1(N,Wn,’ftype’,taper)等函数辅助设计FIR数字滤波器。N代表滤波器阶数;Wn代表滤波器的截止频率(归一化频率),当设计带通和带阻滤波器时,Wn为双元素相量;ftype代表滤波器类型,如’high’高通,’stop’带阻等;taper为窗函数,默认为海明窗,窗函数实现需要用窗函数blackman,hamming,hanningchebwin,kaiser产生。
用窗函数法设计FIR滤波器是在时域进行的,先用傅里叶变换求出理想滤波器单位抽样相应hd(n),然后加时间窗w(n)对其进行截断,以求得FIR 滤波器的单位抽样响应h(n)。
DSP试验4巴特沃斯滤波器的设计与实现精
实验四巴特沃斯数字滤波器的设计与实现1.数字滤波器的设计参数滤波器的4个重要的通带、阻带参数为:f p:通带截止频率(Hz)f s:阻带起始频率(Hz)R p :通带内波动(dB),即通带内所允许的最大衰减;R s:阻带内最小衰减设采样速率(即奈奎斯特速率)为f N,将上述参数中的频率参数转化为归一化角频率参数:-■ p :通带截止角频率(rad/s),- f p/(f N /2);''s:阻带起始角频率(rad/s),(二f s/( f N/2)通过以上参数就可以进行离散滤波器的设计。
低通滤波器情况:采样频率为8000Hz,要求通带截止频率为1500Hz,阻带起始频率为2000Hz,通带内波动3dB,阻带内最小衰减为50dB,则■ p=1500/4000,- s=2000/4000,R p=3dB,R s=50dB。
高通滤波器情况:采样频率为8000Hz,要求通带截止频率为1500Hz,阻带起始频率为1000Hz,通带内波动3dB,阻带内最小衰减为65dB,则■ p=1500/4000,- s=1000/4000,R p=3dB,R s=65dB。
带通滤波器情况:采样频率为8000Hz,要求通带截止频率为[800Hz,1500Hz],阻带起始频率为[500Hz ,1800Hz],通带内波动3dB,阻带内最小衰减为45dB ,则灼p=[800/4000,1500/4000],■ s=[500/4000,1800/4000],R p=3dB,R s=45dB。
带阻滤波器情况:采样频率为8000Hz,要求通带截止频率为[800Hz,1500Hz],阻带起始频率为[1000Hz,1300Hz],通带内波动3dB,阻带内最小衰减为55dB,则■ p=[800/4000,1500/4000],■ s=[1000/4000,1300/4000],R p=3dB,R s=45dB。
2.巴特沃斯滤波器设计1)巴特沃斯滤波器阶数的选择:在已知设计参数■-p,'s, R p, R s之后,可利用“ buttord”命令可求出所需要的滤波器的阶数和3dB截止频率,其格式为:[n , Wn]=buttord[Wp , Ws, Rp, Rs],其中Wp, Ws, Rp, Rs 分别为通带截止频率、阻带起始频率、通带内波动、阻带内最小衰减。
实验四IIR数字滤波器设计及软件实现
实验四IIR数字滤波器设计及软件实现IIR数字滤波器是一种重要的信号处理工具,常用于音频处理、图像处理、通信系统等领域。
本实验旨在通过软件实现IIR数字滤波器的设计和使用。
实验目标:1.了解IIR数字滤波器的基本原理和结构。
2. 学会使用Matlab等软件工具进行IIR数字滤波器设计和模拟。
实验步骤:1.确定滤波器的要求:包括滤波器的类型(低通、高通、带通、带阻)、通带和阻带的频率范围、通带和阻带的衰减要求等。
2.根据滤波器的要求选择适合的设计方法:常见的设计方法包括脉冲响应、巴特沃斯、切比雪夫、椭圆等。
3. 使用Matlab等软件工具进行滤波器设计:根据选择的设计方法,使用相应的函数或工具箱进行滤波器的设计。
4.评估滤波器性能:通过频率响应曲线、幅频特性、相频特性等评估滤波器的性能,比如阻带衰减、通带波动等。
5.应用滤波器:将设计好的滤波器应用到实际信号中,观察滤波效果。
6.优化滤波器性能(可选):根据实际应用需求,对滤波器的设计进行调整和优化。
实验注意事项:1.在进行滤波器设计时,要根据实际应用需求选择合适的滤波器类型和设计方法。
2.在评估滤波器性能时,要对设计结果进行全面的分析,包括滤波器的频率响应、幅频特性、相频特性等。
3.在实际应用过程中,可以根据实际需求对设计结果进行优化和调整,以达到更好的滤波效果。
参考资料:1.陈志骏等编著,《信号与系统实验指导书》。
2. Proakis, J. G., & Manolakis, D. G. (1996). Digital signal processing: principles, algorithms, and applications. Pearson Education India.。
实验四IIR数字滤波器设计及软件实现实验报告
实验四IIR数字滤波器设计及软件实现实验报告一、实验目的(1)熟悉用双线性变换法设计IIR数字滤波器的原理与方法;(2)学会调用MATLAB信号处理工具箱中滤波器设计函数(或滤波器设计分析工具fdatool)设计各种IIR数字滤波器,学会根据滤波需求确定滤波器指标参数。
(3)掌握IIR数字滤波器的MATLAB实现方法。
(3)通过观察滤波器输入输出信号的时域波形及其频谱,建立数字滤波的概念。
二、实验原理设计IIR数字滤波器一般采用间接法(脉冲响应不变法和双线性变换法),应用最广泛的是双线性变换法。
基本设计过程是:①先将给定的数字滤波器的指标转换成过渡模拟滤波器的指标;②设计过渡模拟滤波器;③将过渡模拟滤波器系统函数转换成数字滤波器的系统函数。
MATLAB信号处理工具箱中的各种IIR数字滤波器设计函数都是采用双线性变换法。
第六章介绍的滤波器设计函数butter、cheby1 、cheby2 和ellip可以分别被调用来直接设计巴特沃斯、切比雪夫1、切比雪夫2和椭圆模拟和数字滤波器。
本实验要求读者调用如上函数直接设计IIR数字滤波器。
本实验的数字滤波器的MATLAB实现是指调用MATLAB信号处理工具箱函数filter对给定的输入信号x(n)进行滤波,得到滤波后的输出信号y(n)。
三、实验内容及步骤(1)调用信号产生函数mstg产生由三路抑制载波调幅信号相加构成的复合信号st,该函数还会自动绘图显示st的时域波形和幅频特性曲线,如图10.4.1所示。
由图可见,三路信号时域混叠无法在时域分离。
但频域是分离的,所以可以通过滤波的方法在频域分离,这就是本实验的目的。
图10.4.1三路调幅信号st的时域波形和幅频特性曲线(2)要求将st中三路调幅信号分离,通过观察st的幅频特性曲线,分别确定可以分离st中三路抑制载波单频调幅信号的三个滤波器(低通滤波器、带通滤波器、高通滤波器)的通带截止频率和阻带截止频率。
要求滤波器的通带最大衰减为0.1dB,阻带最小衰减为60dB。
实验四 数字滤波器的结构
制直接型和并联型的信号流图。
六、实验报告要求
简述实验目的和实验原理。
列写练习题的代码并绘制程序产生的图
形。
总结实验中你的收获和体会。
a=[1];
[sos,g]=tf2sos(b,a)
程序运行结果:
sos =1.0000 g =2 级联型的表达式
0.9500
0 1.2500
1.0000 1.0000
0 0
0 0
1.0000 -0.5000
H ( z ) 2(1 0.95 z 1 )(1 0.5 z 1 1.25 z 2 )
一个离散LSI系统可以用系统函数表示:
Y ( z ) b( z ) H ( z) X ( z ) a( z )
m0 N
b
M
m
z m
1 ak z k
k 1
b0 b1 z 1 b2 z 2 ... bm z m 1 a1 z 1 a2 z 2 ... ak z k
实验四 数字滤波器的结构
一、实验目的
加深对数字滤波器分类与结构的了解。 掌握数字滤波器的基本结构及其相互间
的转换方法。
学习利用MATLAB语言进行数字滤波器各
种结构相互间转换。
二、实验原理及方法
数字滤波器的分类
数字滤波器从滤波功能上可以分为低通、高通、带通、
带阻以及全通滤波器;根据系统的单位冲激响应的特 性,又可以分为有限长(FIR)和无限长(IIR)冲激 响应滤波器。
也可用差分方程表示:
y (n) ak y (n k ) bm x(n m)
k 1 m 0 N M
以上两个公式中,当ak至少有一个不为0时,则在有限
实验四IIR数字滤波器的设计实验报告
实验四IIR数字滤波器的设计实验报告
实验材料:
Matlab2023a软件
实验目的:
1、了解和掌握IIR滤波器的基本设计方法;
2、掌握基于频响特性的滤波器设计方法,熟悉Matlab中滤波器设计函数的使用;
3、实验中设计一组窄带通滤波器,掌握滤波器图形的绘制和滤波器参数的计算方法.
一、实验内容
本次实验中,我们设计一个窄带通滤波器,频率响应为:
截止频率为:0.3πrad/s;
抑制频率为:0.4πrad/s;
频率带宽为:≤ 0.1πrad/s;
通带增益为:≥0dB;
抑制区增益为:≤-40dB.
二、实验步骤
1、设计并绘制IIR滤波器的频率响应:绘制滤波器的通带和抑制区的频率响应;
2、确定IIR滤波器的极点数:根据上述设计要求,确定滤波器的极
点数;
3、使用matlab设计IIR滤波器:使用matlab设计IIR滤波器,调
节滤波器的极点数、滤波器的通带增益、频率带宽和抑制区增益,调节滤
波器的频率响应;
4、绘制滤波器的极点图:使用matlab绘制滤波器的极点图,并观察
滤波器的极点分布;
5、绘制滤波器的频率响应:使用matlab绘制滤波器的实际频率响应;。
实验四IIR数字滤波器设计及软件实现实验报告
实验四IIR数字滤波器设计及软件实现实验报告
摘要
本报告介绍了有关IIR数字滤波器设计的实验,以及使用MATLAB进
行的软件实施验证实验。
实验结果表明,IIR滤波器的设计和实施过程中,模糊C不做任何处理,也能实现意料之外的良好滤波效果。
1.介绍
本文介绍了实验四的IIR数字滤波器设计与软件实现实验。
在完成本
实验之前,学生完成了实验一,实验二和实验三,分别设计了低通滤波器、带通滤波器和高通滤波器。
在本实验中,学生将总结前三个实验的知识,
设计和实施一个二阶高通滤波器,以及一个四阶带阻滤波器。
2.实验方法
本实验使用了MATLAB编程语言,用于设计和实施IIR滤波器,包括
一个二阶的高通滤波器和一个四阶的带阻滤波器。
首先,选择预定义的滤
波器系统函数,并调整其参数,以实现特定的滤波器性能。
然后,针对调
整好的滤波器,编写MATLAB代码,实施设计的滤波器。
3.实验结果
(1)二阶高通滤波器
二阶高通滤波器的设计参数如下:
参数,值
-----------------,----------
截止频率,0.25Hz
最小插入损耗,0dB 最大衰减率,40dB。
fir数字滤波器设计实验报告
fir数字滤波器设计实验报告fir数字滤波器设计实验报告引言:数字滤波器是一种广泛应用于信号处理和通信系统中的重要工具。
其中,有一类常见的数字滤波器是FIR(Finite Impulse Response)数字滤波器。
FIR数字滤波器具有线性相位特性、稳定性好、易于设计和实现等优点,被广泛用于音频处理、图像处理、通信系统等领域。
本实验旨在通过设计一个FIR数字滤波器,探索其设计原理和实际应用。
一、实验目的本实验的目的是通过设计一个FIR数字滤波器,实现对特定信号的滤波处理。
具体来说,我们将学习以下几个方面的内容:1. FIR数字滤波器的基本原理和特点;2. FIR数字滤波器的设计方法和流程;3. 使用MATLAB软件进行FIR数字滤波器的设计和仿真。
二、实验原理1. FIR数字滤波器的基本原理FIR数字滤波器是一种线性时不变系统,其输出仅与当前输入和过去若干个输入有关,没有反馈回路。
这种特性使得FIR数字滤波器具有线性相位特性,适用于对信号的频率响应要求较高的应用场景。
FIR数字滤波器的输出可以通过卷积运算来计算,即将输入信号与滤波器的冲激响应进行卷积运算。
2. FIR数字滤波器的设计方法FIR数字滤波器的设计方法有很多种,常见的包括窗函数法、频率采样法和最优化方法等。
在本实验中,我们将使用窗函数法进行FIR数字滤波器的设计。
窗函数法的基本思想是将理想滤波器的频率响应与一个窗函数相乘,从而得到实际可实现的滤波器。
三、实验步骤1. 确定滤波器的设计要求在设计FIR数字滤波器之前,我们首先需要明确滤波器的设计要求。
包括滤波器的通带、阻带、过渡带的频率范围和响应要求等。
2. 选择窗函数和滤波器的阶数根据设计要求,选择合适的窗函数和滤波器的阶数。
常见的窗函数有矩形窗、汉宁窗、汉明窗等。
不同的窗函数对滤波器的性能有一定影响,需要根据实际情况进行选择。
3. 计算滤波器的冲激响应利用所选窗函数和滤波器的阶数,计算滤波器的冲激响应。
实验四-IIR数字滤波器的设计实验报告
实验四-IIR数字滤波器的设计实验报告数字信号处理实验报告实验四 IIR数字滤波器的设计学生姓名张志翔班级电子信息工程1203班学号12401720522指导教师2015.4.29实验四 IIR 数字滤波器的设计一、实验目的:1. 掌握双线性变换法及脉冲响应不变法设计IIR 数字滤波器的具体设计方法及其原理,熟悉用双线性变换法及脉冲响应不变法设计低通、高通和带通IIR 数字滤波器的MATLAB 编程。
2. 观察双线性变换及脉冲响应不变法设计的滤波器的频域特性,了解双线性变换法及脉冲响应不变法的特点。
3. 熟悉Butterworth 滤波器、切比雪夫滤波器和椭圆滤波器的频率特性。
二、实验原理: 1. 脉冲响应不变法用数字滤波器的单位脉冲响应序列 模仿模拟滤波器的冲激响应 ,让 正好等于 的采样值,即 ,其中 为采样间隔,如果以 及 分别表示 的拉式变换及 的Z 变换,则)2(1)(m T j s H T z H m a e z sT ∑∞-∞==+=π2.双线性变换法S 平面与z 平面之间满足以下映射关系:);(,2121,11211ωωσj re z j s sT s T z z z T s =+=-+=+-⋅=--s 平面的虚轴单值地映射于z 平面的单位圆上,s 平面的左半平面完全映射到z 平面的单位圆内。
双线性变换不存在混叠问题。
双线性变换是一种非线性变换,这种非线性引起的幅频特性畸变可通过预畸而得到校正。
三、实验内容及步骤:实验中有关变量的定义:fc 通带边界频率; fr阻带边界频率;δ通带波动;At 最小阻带衰减; fs采样频率; T采样周期(1) =0.3KHz, δ=0.8Db, =0.2KHz, At =20Db,T=1ms;设计一个切比雪夫高通滤波器,观察其通带损耗和阻带衰减是否满足要求。
MATLAB源程序:wp=2*1000*tan(2*pi*300/(2*1000));ws=2*1000*tan(2*pi*200/(2*1000));[N,wn]=cheb1ord(wp,ws,0.8,20,'s'); %给定通带(wp)和阻带(ws)边界角频率,通带波动波动0.8,阻带最小衰减20dB,求出最低阶数和通带滤波器的通带边界频率Wn[B,A]=cheby1(N,0.5,wn,'high','s');%给定通带(wp)和阻带(ws)边界角频率,通带波动[num,den]=bilinear(B,A,1000);[h,w]=freqz(num,den);f=w/(2*pi)*1000;plot(f,20*log10(abs(h)));axis([0,500,-80,10]);grid;xlabel('频率');ylabel('幅度/dB')程序结果num = 0.0304 -0.1218 0.1827 -0.1218 0.0304 den = 1 1.3834 1.4721 0.8012 0.2286系统函数:123412340.0304 -0.1218z 0.1827z-0.1218z0.0304z H(z)=1.0000+1.3834z+1.4721z+ 0.8012z+0.2286z--------++幅频响应图:分析:由图可知,切比雪夫滤波器幅频响应是通带波纹,阻带单调衰减的。
实验四 IIR数字滤波器设计
图I 5阶Butterworth 数字高通滤波器试验四IIR 数字滤波器的设计与MATLAB 实现一、试验目的:1、要求把握∏R 数字滤波器的设计原理、方法、步骤。
2、能够依据滤波器设计指标进行滤波器设计。
3、把握数字巴特沃斯滤波器和数字切比雪夫滤波器的设计原理和步骤。
二、试验原理:∏R 数字滤波器的设计方法:频率变换法、数字域直接设计以及计算机帮助等。
这里只介绍频率变换法。
由模拟低通滤波器到数字低通滤波器的转换,基本设计 过程:1、将数字滤波器的设计指标转换为模拟滤波器指标2、设计模拟滤波器G (S )3、将G (S )转换为数字滤波器H (Z )在低通滤波器设计基础上,可以得到数字高通、带通、带阻滤波器的设计流程如 下:1、给定数字滤波器的设计要求(高通、带通、带阻)2、转换为模拟(高通、带通、带阻)滤波器的技术指标3、转换为模拟低通滤波器的指标4、设计得到满意3步骤中要求的低通滤波器传递函数5、通过频率转换得到模拟(高通、带通、带阻)滤波器6、变换为数字(高通、带通、带阻)滤波器三、标准数字滤波器设计函数MATLAB 供应了一组标准的数字滤波器设计函数,大大简化了滤波器设计过程。
1 > butter例题1设计一个5阶Butterworth 数字高通滤波器,阻带截止频率为250Hz ,设 采样频率为IKHz.I k H J-∣H ∏ t er (5. 250/500.' high')L z, ∣>, kJ but i er(5t 250 500, , ∣∣ i glιt)f r eqz (b 1 5 I 2, I 000)50 100 150 200 250 300 350 400 450 500 Frequency (Hz) o o o o opo 1 3 in 3 3w=⅛e2 50 100 150 200 250 300 350 400 450 500 Fιequetιcy (Hz) - A ・ > A ・o o o o o o o o o 力 o o 1 -23 < 京⅛cy.⅛)φseud2、chebyl 和cheby2例题2设,十一个7阶chebyshevll型数字低通滤波器,截止频率为3000Hz,Rs=30dB,采样频率为IKHz。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数字信号处理实验报告实验四 IIR数字滤波器的设计学生姓名张志翔班级电子信息工程1203班学号指导教师实验四 IIR数字滤波器的设计一、实验目的:1. 掌握双线性变换法及脉冲响应不变法设计IIR数字滤波器的具体设计方法及其原理,熟悉用双线性变换法及脉冲响应不变法设计低通、高通和带通IIR数字滤波器的MATLAB编程。
2. 观察双线性变换及脉冲响应不变法设计的滤波器的频域特性,了解双线性变换法及脉冲响应不变法的特点。
3.熟悉Butterworth滤波器、切比雪夫滤波器和椭圆滤波器的频率特性。
二、实验原理:1.脉冲响应不变法用数字滤波器的单位脉冲响应序列模仿模拟滤波器的冲激响应 ,让正好等于的采样值,即,其中为采样间隔,如果以及分别表示的拉式变换及的Z变换,则2.双线性变换法S平面与z平面之间满足以下映射关系:s平面的虚轴单值地映射于z平面的单位圆上,s平面的左半平面完全映射到z平面的单位圆内。
双线性变换不存在混叠问题。
双线性变换是一种非线性变换,这种非线性引起的幅频特性畸变可通过预畸而得到校正。
三、实验内容及步骤:实验中有关变量的定义:fc 通带边界频率; fr阻带边界频率;δ通带波动;At 最小阻带衰减; fs采样频率; T采样周期(1) =0.3KHz, δ=0.8Db, =0.2KHz, At =20Db,T=1ms;设计一个切比雪夫高通滤波器,观察其通带损耗和阻带衰减是否满足要求。
MATLAB源程序:wp=2*1000*tan(2*pi*300/(2*1000));ws=2*1000*tan(2*pi*200/(2*1000));[N,wn]=cheb1ord(wp,ws,0.8,20,'s'); %给定通带(wp)和阻带(ws)边界角频率,通带波动波动0.8,阻带最小衰减20dB,求出最低阶数和通带滤波器的通带边界频率Wn[B,A]=cheby1(N,0.5,wn,'high','s');%给定通带(wp)和阻带(ws)边界角频率,通带波动[num,den]=bilinear(B,A,1000);[h,w]=freqz(num,den);f=w/(2*pi)*1000;plot(f,20*log10(abs(h)));axis([0,500,-80,10]);grid;xlabel('频率');ylabel('幅度/dB')程序结果num = 0.0304 -0.1218 0.1827 -0.1218 0.0304 den = 1 1.3834 1.4721 0.8012 0.2286系统函数:123412340.0304 -0.1218z 0.1827z-0.1218z0.0304z H(z)=1.0000+1.3834z+1.4721z+ 0.8012z+0.2286z--------++幅频响应图:分析:由图可知,切比雪夫滤波器幅频响应是通带波纹,阻带单调衰减的。
δ=0.8,fr=0.2kHz,At=30Db,满足设计要求(2)fc=0.2kHz,δ=1dB,fr=0.3kHz,At=25dB,T=1ms;分别用脉冲响应不变法及双线性变换法设计一Butterworth数字低通滤波器,观察所设计数字滤波器的幅频特性曲线,记录带宽和衰减量,检查是否满足要求。
比较这两种方法的优缺点。
MATLAB源程序:T = 0.001;fs = 1000;fc = 200;fr = 300;wp1 = 2*pi*fc;wr1 = 2*pi*fr;[N1,wn1] = buttord(wp1,wr1,1,25,'s')[B1,A1] = butter(N1,wn1,'s');[num1,den1] = impinvar(B1,A1,fs);%脉冲响应不变法[h1,w] = freqz(num1,den1);wp2 = 2*fs*tan(2*pi*fc/(2*fs))wr2 = 2*fs*tan(2*pi*fr/(2*fs))[N2,wn2] = buttord(wp2,wr2,1,25,'s')[B2,A2] = butter(N2,wn2,'s');[num2,den2] = bilinear(B2,A2,fs);%双线性变换法[h2,w] = freqz(num2,den2);f = w/(2*pi)*fs;plot(f,20*log10(abs(h1)),'-.',f,20*log10(abs(h2)),'-');axis([0,500,-100,10]);grid;xlabel('频率/Hz ');ylabel('幅度/dB')title('巴特沃思数字低通滤波器');legend('脉冲相应不变法','双线性变换法',1);结果分析:脉冲响应不变法的低通滤波器系统函数:num1 -2.3647 0.0002 0.0153 0.0995 0.1444 0.06110.0075 0.0002 3.6569 0den1 1 -1.9199 2.5324 -2.2053 1.3868 -0.6309 0.2045 -0.0450 0.0060 -0.0004双线性变换法设计的低通滤波器系统函数:num2 0.0179 0.1072 0.2681 0.3575 0.26810.1072 0.0179den2 1 -0.6019 0.9130 -0.2989 0.1501 -0.02080.0025分析:脉冲响应不变法的频率变化是线性的,数字滤波器频谱响应出现了混叠,影响了过渡带的衰减特性,并且无传输零点;双线性变化法的频率响应是非线性的,因而消除了频谱混叠,在f=500Hz出有一个传输零点。
脉冲响应不变法的一个重要特点是频率坐标的变换是线性的,ω=ΩΤ,ω与Ω是线性关系:在某些场合,要求数字滤波器在时域上能模仿模拟滤波器的功能时,如要实现时域冲激响应的模仿,一般使用脉冲响应不变法。
脉冲响应不变法的最大缺点:有频谱周期延拓效应,因此只能用于带限的频响特性,如衰减特性很好的低通或带通,而高频衰减越大,频响的混淆效应越小,至于高通和带阻滤波器,由于它们在高频部分不衰减,因此将完全混淆在低频响应中,此时可增加一保护滤波器,滤掉高于的频带,再用脉冲响应不变法转换为数字滤波器,这会增加设计的复杂性和滤波器阶数,只有在一定要满足频率线性关系或保持网络瞬态响应时才采用。
双线性变换法的主要优点是S平面与Z平面一一单值对应,s平面的虚轴(整个jΩ)对应于Z平面单位圆的一周,S平面的Ω=0处对应于Z平面的ω=0处,Ω= ∞处对应于Z平面的ω= π处,即数字滤波器的频率响应终止于折叠频率处,所以双线性变换不存在混迭效应。
双线性变换缺点: Ω与ω成非线性关系,导致:a. 数字滤波器的幅频响应相对于模拟滤波器的幅频响应有畸变,(使数字滤波器与模拟滤波器在响应与频率的对应关系上发生畸变)。
b. 线性相位模拟滤波器经双线性变换后,得到的数字滤波器为非线性相位。
c.要求模拟滤波器的幅频响应必须是分段恒定的,故双线性变换只能用于设计低通、高通、带通、带阻等选频滤波器。
(3)利用双线性变换法分别设计满足下列指标的Butterworth型、Chebyshev型和椭圆型数字低通滤波器,并作图验证设计结果:fc=1.2kHz ,δ≤0.5dB ,fr=2kHz , At≥40dB, fs=8kHz,比较这种滤波器的阶数。
MATLAB源程序:clear all;wc=2*pi*1200;wr=2*pi*2000;rp=0.5;rs=40;fs=8000;w1=2*fs*tan(wc/(2*fs));w2=2*fs*tan(wr/(2*fs));[Nb,wn]=buttord(w1,w2,rp,rs,'s') %巴特沃思[B,A]=butter(Nb,wn,'s');[num1,den1]=bilinear(B,A,fs);[h1,w]=freqz(num1,den1);[Nc,wn]=cheb1ord(w1,w2,rp,rs,'s') %切比雪夫[B,A]=cheby1(Nc,rp,wn,'s');[num2,den2]=bilinear(B,A,fs);[h2,w]=freqz(num2,den2);[Ne,wn]=ellipord(w1,w2,rp,rs,'s') %椭圆型[B,A]=ellip(Ne,rp,rs,wn,'low','s');[num3,den3]=bilinear(B,A,fs);[h3,w]=freqz(num3,den3);f=w/(2*pi)*fs;plot(f,20*log10(abs(h1)),'-',f,20*log10(abs(h2)),'--',f,20*log 10(abs(h3)),':');axis([0,4000,-100,10]);grid;xlabel('Frequency in Hz'); ylabel('Gain in dB');title('三种数字低通滤波器');legend('巴特沃思数字低通滤波器','切比雪夫数字低通滤波器','椭圆数字低通滤波器',3);巴特沃思数字低通滤波器的系统函数系数:num1= 0.0032 0.0129 0.0302 0.0453 0.0453 0.03020.0129 0.0032 0.0003den1= -2.7996 4.4581 -4.5412 3.2404 -1.6330 0.5780 -0.1370 0.0197 -0.0013切比雪夫数字低通滤波器的系统函数系数:num2= 0.0026 0.0132 0.0264 0.0264 0.0132 0.0026den2= 1 -2.9775 4.2932 -3.5124 1.6145 -0.3334椭圆数字低通滤波器的系统函数系数:num3= 0.03887 0.0363 0.0665 0.0363 0.0389den3= 1 -2.1444 2.3658 -1.3250 0.3332程序结果图:分析:设计结果表明,巴特沃思数字低通滤波器、切比雪夫数字低通滤波器、椭圆数字低通滤波器的阶数分别是9、5、4阶。