数字低通巴特沃斯滤波器的设计实验报告
数字信号处理巴特沃斯模拟低通滤波器报告

数字信号处理巴特沃斯模拟低通滤波器报告————————————————————————————————作者:————————————————————————————————日期:《数字信号处理》课程设计报告设计课题巴特沃斯模拟低通滤波器专业班级08电气信1班姓名 ********************* 学号 080705135 080705117 080705125指导老师*****报告日期 2011年11月18日星期五目录一、滤波器简介 (3)1。
1模拟滤波器的工作原理 (3)1。
2 滤波器的主要技术指标 (4)二、模拟滤波器的设计 (5)2。
1 模拟滤波器的设计方法 (6)2。
2巴特沃斯滤波器设计原理 (7)2.3函数说明 (9)三、MATLAB仿真 (10)3。
1 MATLAB简介 (10)3。
2对巴特沃斯模拟低通滤波器的仿真 (10)3。
3用matlab计算出N,b,a 的值 (13)四、总结与反思 (14)五、参考文献 (14)六、程序清单 (14)巴特沃斯模拟低通滤波器摘要:MATLAB是矩阵实验室(Matrix Laboratory)之意。
她不仅具备卓越的数值计算能力,还提供了专业水平的符号计算,文字处理,可视化建模仿真和实时控制等功能。
本文主要基于MATLAB平台,实现信号分析与滤波器的设计.并改变滤波器参数或特性(低通、高通、带通或带阻),实现不同的滤波要求.本设计产生一个连续信号,包含低频,中频,高频分量,对其进行采样,进行频谱分析,使用矩形窗设计不同特性的数字滤波器对信号进行滤波处理,分析所设计滤波器(画出了频率特性曲线),并对信号进行滤波,画出滤波后信号的时域波形和频谱,并对滤波前后的信号进行对比,分析信号的变化,分析的结果表明初步实现了设计目标。
关键词:MATLAB、数字信号处理、巴特沃斯、模拟低通、滤波器一、滤波器简介从广义上讲,任何对某些频率(相对于其他频率来说)进行修正的系统称为滤波器。
数字低通巴特沃斯滤波器的设计实验报告

实验报告姓名:学号:实验日期:实验题目:数字低通巴特沃斯滤波器的设计实验目的:掌握IIR数字滤波器的设计方法实验内容:1.设计一个低通巴特沃斯模拟滤波器,绘制滤波器的的幅频响应及零极点图。
指标如下:通带截止频率:WP=1000HZ, 通带最大衰减:RP=3dB阻带截止频率:Ws=2000HZ, 阻带最小衰减:Rs=40 dB参考程序butter1.m2. 用冲激响应不变法和双线性变换法将一模拟低通滤波器转换为数字低通滤波器并图释H(S)和H(Z),采样频率Fs=1000Hz实验地点:4305机房实验结果:%巴特沃兹滤波器的幅频响应图subplot(1,2,1);%分两个窗口,幅频图在第一个窗口wp=1000;ws=2000;rp=3;rs=40; %设置指标[N,wn]=buttord(wp,ws,rp,rs,'s') %计算巴特沃斯低通滤波器的阶数和3dB截止频率[B,A]=butter(N,wn,'s'); %代入N和Wn设计巴特沃斯模拟低通滤波器[Z,P,K]=buttap(N); %计算滤波器的零、极点[h,w]=freqs(B,A,1024); %计算1024点模拟滤波器频率响应h,和对应的频率点w %画频率响应幅度图plot(w,20*log10(abs(h)/abs(h(1))))grid;xlabel('频率Hz');ylabel('幅度(dB)');%给x轴和y轴加标注title('巴特沃斯幅频响应') %给图形加标题axis([0,3000, -40,3]);line([0,2000],[-3,-3]);line([1000,1000],[-40,3]);%绘制巴特沃斯滤波器的极点图subplot(1,2,2) %在第二个窗口画极点图p=P';q=Z';x=max(abs([p,q]));x=x+0.1;y=x;axis([-x,x,-y,y]);axis('square')plot([-x,x],[0,0]);hold on plot([0,0],[-y,y]);hold on plot(real(p),imag(p),'x') 程序运行结果: N = 7wn = 1.0359e+003 Z = []P = -0.2225 + 0.9749i -0.2225 - 0.9749i -0.6235 + 0.7818i -0.6235 - 0.7818i -0.9010 + 0.4339i -0.9010 - 0.4339i -1.0000 K = 1.0000100020003000-40-35-30-25-20-15-10-50频率Hz幅度(d B )巴特沃斯幅频响应-2-1012-1.5-1-0.50.511.5b=1:a=[1,1000];w=[0:1000]*2*pi;%模拟频率为2 f ,其中f 取0~1000Hz [h,w]=freqs(b,a,w);%计算模拟滤波器的频率响应 subplot(2,2,1)plot(w/2/pi,abs(h)/abs(h(1)));grid;%画模拟滤波器幅频特性 title('模拟频率响应');xlabel('f(Hz)');ylabel('幅度'); Fs=1000;[bz,az]=impinvar(b,a,Fs); %冲激响应不变法设计数字滤波器 [bzl,azl]=bilinear(b,a,Fs); %双线性变换法设计数字滤波器 wz=[0:pi/512:pi]; hz1=freqz(bz,az,wz); hz2=freqz(bzl,azl,wz);subplot(2,2,2);plot(wz/pi,abs(hz1)/hz1(1));grid; %画出冲激响应不变法滤波器的幅频图, axis([0,1,0,1]) %数字频率wz 归一化为0~1 title('冲激响应不变法数字频率响应')subplot(2,2,3);plot(wz/pi,abs(hz2)/hz2(1));grid; %画出双线性变换法滤波器的幅频图, axis([0,1,0,1]) %数字频率wz 归一化为0~1 title(双线性变换法数字频率响应);500100000.51模拟频率响应f(Hz)幅度00.510.51冲激响应不变法数字频率响应00.510.51双线性变换法数字频率响应结果分析:总结:。
数字信号处理实验数字巴特沃思滤波器的设计

数字信号处理实验数字巴特沃思滤波器的设计数字信号处理技术是现代通信、音频、图像等领域中不可或缺的一门技术。
数字信号处理的核心是数字滤波器设计,本文将介绍一种常用的数字滤波器——数字巴特沃斯滤波器的设计方法。
一、数字滤波器简介数字滤波器是将连续时间信号转换成离散时间信号,实现对离散时间信号的滤波处理,具有实时性好、精度高、可重复性强等优点。
数字滤波器有两种类型:有限冲激响应(FIR)滤波器和无限冲激响应(IIR)滤波器。
二、数字巴特沃斯滤波器数字巴特沃斯滤波器是一种常用的IIR滤波器,其主要特点是具有平坦的通/阻带,通/阻带边缘陡峭。
因此在实际应用中,数字巴特沃斯滤波器应用较为广泛。
数字巴特沃斯滤波器的设计方法一般包括以下步骤:确定滤波器类型、确定通/阻带的截止频率、确定滤波器的阶数、计算滤波器的系数。
1、确定滤波器类型在实际应用中,数字巴特沃斯滤波器有四种类型:低通、高通、带通和带阻滤波器,应根据实际需求选择。
2、确定通/阻带的截止频率通常情况下,固定本例中采用的是低通滤波器,需要确定的就是通带和阻带的截止频率。
对于低通滤波器,通带截止频率ωc应该比信号频率fs的一半小,阻带截止频率ωs 应该比ωc大一些,通常ωs/ωc取0.5~0.7比较好。
滤波器的阶数一般是与滤波器的性能相关的。
阶数越高,性能越好,但同时计算量也会更大。
在实际应用中,一般取4~8的阶数即可。
4、计算滤波器的系数根据上述参数计算滤波器的系数,这里介绍两种常用的方法:一种是脉冲响应不变法(Impulse Invariant Method),另一种是双线性变换法(Bilinear Transformation)。
脉冲响应不变法是一种较为简单的设计方法,但由于其数字滤波器与连续时间滤波器之间的不同,可能会引入一定程度的失真。
双线性变换法可以使二阶系统和一阶系统的增益分别为1和0dB,这是一种比较理想的设计方法。
四、实验步骤本实验采用Matlab软件进行数字滤波器的设计,具体步骤如下:1、打开Matlab软件,新建一个.m文件;2、输入需要滤波的数字信号,此处可以使用Matlab自带的signal工具箱中的一些模拟信号;4、使用filter函数实现数字滤波器对信号的滤波过程;5、通过比较信号的频谱图,评估滤波器的性能。
DSP综合性实验报告 数字巴特沃斯滤波器设计

重庆交通大学信息科学与工程学院综合性实验报告姓名:学号:班级:实验项目名称:数字巴特沃斯滤波器设计实验项目性质:设计性试验实验所属课程:数字信号处理实验室(中心):现代电子实验中心指导教师:实验完成时间: 2012 年 12 月 12 日一、实验目的:1、进一步熟悉和掌握MATLAB软件的应用和操作,增强对于MATLAB实际设计运用能力;2、熟悉巴特沃斯滤波器的设计思路,了解一些关于巴特沃斯滤波器的相关问题,增加知识面;3、熟悉至少一种(冲激响应不变法或者双线性法)数字滤波器的设计方案,尽量在此基础上做出更多、更好的成就。
二、实验内容及要求:<一>实验内容:通过运用冲激响应不变法设计巴特沃斯数字滤波器;并能够运用自己所设计出来的滤波器来实现滤波,最后输出所滤波的波形等。
<二>实验要求:在实验的过程中,尽量自己独立完成实验或者是按小组完成,独立地查找相关资料并完成程序的编写、链接、编译、运行等;我所做的程序中,要求如下:直接设定采样周期为T为2,抽样频率fs为1/T,要求:通过设置相关参数如通带截止频率、阻带截止频率、通带内最大衰减、阻带内最小衰减等,采用输入信号为x=sin(2*0.2*pi*n)+2*sin(2*1.5*pi*n)+sin(2*pi*40*n);最后自己设计出滤波器三、实验原理:根据巴特沃斯滤波器的设计方法,应用冲激响应不变法设计数字滤波器。
四、实验仪器、材料:Pc机一台MATLAB 软件平台五、实验过程及原始记录:T=2; %设置采样周期为2fs=1/T; %采样频率为周期倒数Wp=0.25*pi/T; %Wp通带截止频率Ws=0.35*pi/T; %Ws阻带截止频率Ap=20*log10(1/0.9); %Ap通带内最大衰减As=20*log10(1/0.18); %As阻带内最小衰减n=0:1:80;x=sin(2*0.2*pi*n)+2*sin(2*1.5*pi*n)+sin(2*pi*40*n); %输入信号[N,Wc]=buttord(Wp,Ws,Ap,As,'s'); %调用buttord函数确定巴特沃斯滤波器阶数N为阶数,Wc为3dB通带截止频率[B,A]=butter(N,Wc,'s'); %调用butter函数设计巴特沃斯滤波器开始数字滤波器的设计W=linspace(0,pi,400*pi); %指定一段频率值hf=freqs(B,A,W); %计算模拟滤波器的幅频响应[D,C]=impinvar(B,A,fs); %调用脉冲响应不变法Hz=freqz(D,C,W); %返回freqz频率响应subplot(3,1,1);plot(W/pi,abs(Hz)/abs(Hz(1))); %绘出巴特沃斯数字低通滤波器的幅频特性曲线grid on;title('巴特沃斯数字滤波器'); xlabel('Frequency/Hz');ylabel('Magnitude');y=filter(B,A,x);subplot(3,1,3);plot(y)title('滤波之后的图像') xlabel('n');ylabel('幅度');subplot(3,1,2);plot(n,x)title('原始图像')xlabel('n');ylabel('幅度');六、实验结果及分析:<一>实验结果如下:<二>实验分析:通过对以上程序的执行,对输入以上源图像的前提下,可以得到如上图所示的图形,通过对比可以发现,滤波器已经实现滤波,达到了预期效果。
巴特沃斯数字低通滤波器课程设计

巴特沃斯数字低通滤波器课程设计目录1.题目.......................................................................................... .22.要求 (2)3.设计原理 (2)3.1 数字滤波器基本概念 (2)3.2 数字滤波器工作原理 (2)3.3 巴特沃斯滤波器设计原理 (3)3.4脉冲响应不法 (5)3.5实验所用MATLAB函数说明 (7)4.设计思路 (9)5、实验内容 (9)5.1实验程序 (9)5.2实验结果分析 (13)6.设计总结 (13)7.参考文献 (14)一、题目:巴特沃斯数字低通滤波器二、要求:利用脉冲响应不变法设计巴特沃斯数字低通滤波器,通带截止频率100HZ,阻带截止频率120Hz,采样频率1000HZ,通带最大衰减为0.5HZ,阻带最小衰减为10HZ,画出幅频、相频相应曲线。
并假设一个信号x(t)=sin(2*pi*f1*t)+sin(2*pi*f2*t),其中f1=50HZ,f2=200HZ。
用此信号验证滤波器设计的正确性。
三、设计原理1、数字滤波器的基本概念所谓数字滤波器,是指输入、输出均为数字信号,通过数值运算处理改变输入信号所含频率成分的相对比例,或者滤波器除某些频率成分的数字器件或程序,因此,数字滤波的概念和模拟滤波相同,只是的形式和实现滤波方法不同。
正因为数字滤波通过数值运算实现滤波,所以数字滤波处理精度高、稳定、体积小、质量轻、灵活、不存在阻抗匹配问题,可以实验模拟滤波器无法实现的特殊滤波功能。
如果要处理的是模拟信号,可通过A\DC和D\AC,在信号形式上进行匹配转换,同样可以使用数字滤波器对模拟信号进行滤波。
2、数字滤波器的工作原理数字滤波器是一个离散时间系统,输入x(n)是一个时间序列,输出y(n)也是一个时间序列。
如数字滤波器的系统函数为H(Z),其脉冲响应为h(n),则在时间域内存在下列关系y(n)=x(n) h(n)在Z域内,输入输出存在下列关系Y(Z)=H(Z)X(Z)式中,X(Z),Y(Z)分别为输入x(n)和输出y(n)的Z 变换。
低通滤波器-实验报告

1.概述低通滤波器LPF是滤除噪声用得最多的滤波器。
由于高阶有源低通滤波器的每个滤波节皆由二阶滤波器和一阶滤波器组成。
我们设计一个巴特沃兹二阶有源低通滤波器。
并使用电子电路仿真软件进行性能仿真。
(2)巴特沃斯低通滤波器的幅频特性为:n c uo u A j A 211)(⎪⎪⎭⎫ ⎝⎛+=ωωω . . . . . . (1)其中Auo 为通带内的电压放大倍数,ωC 为截止角频率,n 称为滤波器的阶。
从(1)式中可知,当ω=0时,(1)式有最大值1;ω=ωC 时,(1)式等于0.707,即Au 衰减了 3dB ;n 取得越大,随着ω的增加,滤波器的输出电压衰减越快,滤波器的幅频特性 越接近于理想特性。
当 ω>>ωC 时, n c uo u A j A ⎪⎪⎭⎫ ⎝⎛≈ωωω1)( . . . . . . (2) 两边取对数,得:lg 20cuo u n A j A ωωωlg 20)(-≈ . . . . . . (3) 此时阻带衰减速率为: -20ndB/十倍频或-6ndB/倍频,该式称为计算公式。
2.工作原理图图2-1低通滤波器原理图2-2低通滤波器原理图工作原理:(1)滤波器是具有频率选择作用的电路或运算处理系统。
滤波处理可以利用模拟电路实现,也可以利用数字运算处理系统实现。
滤波器的工作原理是当信号与噪声分布在不同频带中时,可以在频率与域中实现信号分离。
在实际测量系统中,噪声与信号的频率往往有一定的重叠,如果重叠不严重,仍可利用滤波器有效地抑制噪声功率,提高测量精度。
任何复杂地滤波网络,可由若干简单地、相互隔离地一阶与二阶滤波电路级联等效构成。
一阶滤波电路只能构成低通和高通滤波器,而不能构成带通和带阻。
可先设计一个一阶滤波电路来熟悉电路设计思路以及器件使用要求和软件地进一步学习。
有源滤波器地设计,主要包括确定传递函数,选择电路结构,选择有源器件与计算无源元件参数四个过程。
巴特沃斯滤波器的特点是通频带内的频率响应曲线最大限度平坦,没有起伏,而在阻频带则逐渐下降为零。
巴特沃斯低通滤波器课程设计

电路基础课程设计巴特沃斯低通滤波器设计目标:通带边界频率ωc=4396rad/s (f c=700Hz);通带最大衰减αmax=3dB;阻带边界频率ωs=26376rad/s(f s=4200Hz); 阻带最小衰减αmin=30dB;1.设计步骤⑴设计电压转移函数①将给定的电压衰减技术指标进行频率归一化选取归一化角频率ωr=ωc,这样通带边界频率Ωc=ωc/ ωr=1,阻带边界频率Ωs=ωs/ ωr=ωs/ωc。
②根据归一化的技术指标求出电压转移函数巴特沃斯低通滤波器的阶数n=Log(100.1αmin−1) 2Log(Ωs)带入数据求得n=1.93 取整得n=2由a k=2sin(2k−1)π2n,b k=1和H(s)=U out(s)U in(s)=∏A ks2+a k s+b kn2k=1可得到电压转移函数H(s)=U out(s)U in(s)=1s2+√2s+1将转移函数进行反归一化,即另s=sωc 得到实际转移函数H(s)=U out(s)U in(s)=1s243962+√2s4396+1⑵转移函数的实现选取下图作为实现转移函数的具体电路:列节点方程求解转移函数节点1 U1(1R1+1R2+s∗C1)−1R1U in−1R2−s∗C1∗U2=0节点2 (1R2+s∗C2)U2−1R2U1=0又有U out=U3解得H(s)=U outU in=11+(R2+R2)s∗C2+C1C2R1R2s2对比解得的电压转移函数和推得的电压转移函数里各项的系数并且令R1= R2,C1=1μF,可以得到C1=11000000F=1μFR1=250000√21099Ω=321.705ΩR2=250000√21099Ω==321.705ΩC2=12000000F=0.5μF因实验室没有0.5μF的电容因此取C2=0.47μF2.计算机仿真⑴软件环境:Multisim 10⑵电路图:⑶仿真结果:①700Hz下的波形图②4200Hz下的波形图③波特图◎700Hz下衰减2.673dB◎4200Hz下衰减30.491dB3.实验室实际操作因实验室没有0.5μF的电容和321.705Ω的电阻,因此取C2=0.47μFR1=R2=330Ω实际连电路时,选取集成电路块的第1、2、3引脚分别作为放大器的输出端、负端和正端,第4和11引脚作为供电端,C2一端连接电压源的接地线。
巴特沃斯低通滤波器的设计精编资料

巴特沃斯低通滤波器的设计巴特沃斯低通滤波器的设计1、巴特沃斯滤波器的介绍巴特沃斯低通滤波器的幅度平方函数定义为2221|()|1NH j C λλ=+其中C 为一常数参数,N 为滤波器阶数,λ为归一化低通截止频率,/p λ=ΩΩ。
式中N 为整数,是滤波器的阶次。
巴特沃斯低通滤波器在通带内具有最大平坦的振幅特性,这就是说,N 阶低通滤波器在0Ω=处幅度平方函数的前2N-1阶导数等于零,在阻带内的逼近是单调变化的。
巴特沃斯低通滤波器的振幅特性如图a 所示。
滤波器的特性完全由其阶数N 决定。
当N 增加时,滤波器的特性曲线变得更陡峭,这时虽然由a 式决定了在p Ω=Ω处的幅度函数总是衰减3dB ,但是它们将在通带的更大范围内接近于1,在阻带内更迅速的接近于零,因而振幅特性更接近于理想的矩形频率特性。
滤波器的振幅特性对参数N 的依赖关系如图a 所示。
设归一化巴特沃斯低通滤波器的归一化频率为λ,归一化传递函数为()H p ,其中p j λ=,则可得:2221()1(1)N Np jH j C pλλ==+-p 图a 巴特沃斯低通滤波器的振幅特性由于221()()()1()a a jsNcH s H s AsjΩ=--=Ω=+Ω所以巴特沃斯滤波器属于全极点滤波器。
2、常用设计巴特沃斯低通滤波器指标pλ:通带截止频率;pα:通带衰减,单位:dB;sλ:阻带起始频率;sα:阻带衰减,单位:dB。
说明:(1)衰减在这里以分贝(dB)为单位;即222110lg10lg1()NCH jαλλ⎡⎤==+⎣⎦(2)当3dBα=时p CΩ=Ω为通常意义上的截止频率。
(3)在滤波器设计中常选用归一化的频率/Cλ=ΩΩ,即1,p sp sp pλλΩΩ===ΩΩ图b 为巴特沃斯低通滤波器指标3、设计巴特沃斯低通滤波器的方法如下:(1)计算归一化频率1p p pλΩ==Ω,ss pλΩ=Ω。
(2) 根据设计要求按照210101pC α=-和lg lg saN λ=其中a =特沃斯滤波器的参数C 和阶次N ;注意当3p dB α=时 C=1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验报告
姓名:学号:实验日期:
实验题目:数字低通巴特沃斯滤波器的设计
实验目的:掌握IIR数字滤波器的设计方法
实验内容:
1.设计一个低通巴特沃斯模拟滤波器,绘制滤波器的的幅频响应及零极点图。
指标如下:
通带截止频率:WP=1000HZ, 通带最大衰减:RP=3dB
阻带截止频率:Ws=2000HZ, 阻带最小衰减:Rs=40 dB
参考程序butter1.m
2. 用冲激响应不变法和双线性变换法将一模拟低通滤波器转换为数字低通滤波器
并图释H(S)和H(Z),采样频率Fs=1000Hz
实验地点:4305机房
实验结果:
%巴特沃兹滤波器的幅频响应图
subplot(1,2,1);%分两个窗口,幅频图在第一个窗口
wp=1000;ws=2000;rp=3;rs=40; %设置指标
[N,wn]=buttord(wp,ws,rp,rs,'s') %计算巴特沃斯低通滤波器的阶数和3dB截止频率[B,A]=butter(N,wn,'s'); %代入N和Wn设计巴特沃斯模拟低通滤波器
[Z,P,K]=buttap(N); %计算滤波器的零、极点
[h,w]=freqs(B,A,1024); %计算1024点模拟滤波器频率响应h,和对应的频率点w %画频率响应幅度图
plot(w,20*log10(abs(h)/abs(h(1))))
grid;
xlabel('频率Hz');ylabel('幅度(dB)');%给x轴和y轴加标注
title('巴特沃斯幅频响应') %给图形加标题
axis([0,3000, -40,3]);
line([0,2000],[-3,-3]);
line([1000,1000],[-40,3]);
%绘制巴特沃斯滤波器的极点图
subplot(1,2,2) %在第二个窗口画极点图
p=P';q=Z';
x=max(abs([p,q]));
x=x+0.1;y=x;
axis([-x,x,-y,y]);
axis('square')
plot([-x,x],[0,0]);hold on plot([0,0],[-y,y]);hold on plot(real(p),imag(p),'x') 程序运行结果: N = 7
wn = 1.0359e+003 Z = []
P = -0.2225 + 0.9749i -0.2225 - 0.9749i -0.6235 + 0.7818i -0.6235 - 0.7818i -0.9010 + 0.4339i -0.9010 - 0.4339i -1.0000 K = 1.0000
10002000
3000-40
-35-30
-25-20-15-10
-50频率Hz
幅度(d B )
巴特沃斯幅频响
应
-2-1012
-1.5-1
-0.5
0.5
1
1.5
b=1:a=[1,1000];
w=[0:1000]*2*pi;%模拟频率为2 f ,其中f 取0~1000Hz [h,w]=freqs(b,a,w);%计算模拟滤波器的频率响应 subplot(2,2,1)
plot(w/2/pi,abs(h)/abs(h(1)));grid;%画模拟滤波器幅频特性 title('模拟频率响应');
xlabel('f(Hz)');ylabel('幅度'); Fs=1000;
[bz,az]=impinvar(b,a,Fs); %冲激响应不变法设计数字滤波器 [bzl,azl]=bilinear(b,a,Fs); %双线性变换法设计数字滤波器 wz=[0:pi/512:pi]; hz1=freqz(bz,az,wz); hz2=freqz(bzl,azl,wz);
subplot(2,2,2);plot(wz/pi,abs(hz1)/hz1(1));grid; %画出冲激响应不变法滤波器的幅频图, axis([0,1,0,1]) %数字频率wz 归一化为0~1 title('冲激响应不变法数字频率响应')
subplot(2,2,3);plot(wz/pi,abs(hz2)/hz2(1));grid; %画出双线性变换法滤波器的幅频图, axis([0,1,0,1]) %数字频率wz 归一化为0~1 title(双线性变换法数字频率响应);
50010000
0.5
1
模拟频率响应
f(Hz)
幅度
00.51
0.5
1
冲激响应不变法数字频率响应00.51
0.5
1
双线性变换法数字频率响应
结果分析:
总结:。