实验五FIR数字滤波器的设计
FIR滤波器设计实验报告

FIR滤波器设计实验报告实验报告:FIR滤波器设计一、实验目的:本实验旨在通过设计FIR滤波器,加深对数字信号处理中滤波器原理的理解,掌握FIR滤波器的设计方法和调试技巧。
二、实验原理:在窗函数法中,常用的窗函数有矩形窗、三角窗、汉明窗和黑曼窗等。
根据实际需求选择适当的窗口函数,并通过将窗口函数应用到理想低通滤波器的冲激响应中,得到FIR滤波器的冲激响应。
三、实验步骤:1.确定滤波器的阶数和截止频率。
2.选择适当的窗口函数,如汉明窗。
3.计算出理想低通滤波器的冲激响应。
4.将选定的窗口函数应用到理想低通滤波器的冲激响应中。
5.得到FIR滤波器的冲激响应。
四、实验结果:假设要设计一个阶数为10的FIR滤波器,截止频率为800Hz,采样频率为1600Hz。
1.选择汉明窗作为窗口函数。
2.根据采样频率和截止频率计算出理想低通滤波器的冲激响应。
假设截止频率为f_c,则理想低通滤波器的冲激响应为:h(n) = 2f_c * sinc(2f_c * (n - (N-1)/2))其中,sinc(x)为正弦函数sin(x)/x。
3.将汉明窗应用到理想低通滤波器的冲激响应中,得到FIR滤波器的冲激响应。
具体计算过程如下:h(n) = w(n) * h_ideal(n)其中,w(n)为汉明窗:w(n) = 0.54 - 0.46 * cos(2πn/(N-1))h_ideal(n)为理想低通滤波器的冲激响应。
4.计算得到FIR滤波器的冲激响应序列。
五、实验总结:本次实验通过设计FIR滤波器,加深了对数字信号处理中滤波器原理的理解。
掌握了FIR滤波器的设计方法和调试技巧。
通过设计阶数为10的FIR滤波器,截止频率为800Hz,采样频率为1600Hz的实例,了解了窗函数法设计FIR滤波器的具体步骤,并得到了滤波器的冲激响应。
【备注】以上内容仅为参考,具体实验报告内容可能根据实际情况有所调整。
FIR数字滤波器设计与软件实现实验报告222

FIR数字滤波器设计与软件实现实验报告222 FIR数字滤波器设计与软件实现实验报告222实验标题:FIR数字滤波器设计与软件实现实验目的:1.学习FIR数字滤波器的基本原理和设计方法;2.掌握使用MATLAB软件进行FIR数字滤波器设计的方法;3.通过实验验证FIR数字滤波器的性能和效果。
实验器材与软件:1.个人计算机;2.MATLAB软件。
实验步骤:1.确定所需的滤波器类型和设计要求;2.根据设计要求选择合适的滤波器设计方法,如窗函数法、最优化方法等;3.使用MATLAB软件进行滤波器设计,并绘制滤波器的频率响应曲线;4.将设计好的滤波器用于信号处理,观察滤波效果。
实验结果与分析:1.进行实验前,首先确定滤波器的类型和设计要求。
例如,我们选择低通滤波器,要求通带频率为1kHz,阻带频率为2kHz,通带最大衰减为1dB,阻带最小衰减为60dB。
2.在MATLAB软件中,我们选择窗函数法进行滤波器设计。
根据设计要求,选择合适的窗函数,如矩形窗、汉宁窗等。
根据设计要求和窗函数的特点,确定滤波器的长度N和窗函数的参数。
3. 使用MATLAB中的fir1函数进行滤波器设计,并绘制滤波器的频率响应曲线。
根据频率响应曲线,可以分析滤波器的性能是否符合设计要求。
4. 将设计好的滤波器用于信号处理,观察滤波效果。
在MATLAB中,可以使用filter函数对信号进行滤波处理,然后绘制原始信号和滤波后的信号的时域波形和频谱图进行对比分析。
实验结论:1.通过本次实验,我们学习了FIR数字滤波器的基本原理和设计方法;2.掌握了使用MATLAB软件进行FIR数字滤波器设计的方法;3.实验结果显示,设计的FIR数字滤波器可以满足设计要求,具有良好的滤波效果。
4.FIR数字滤波器在数字信号处理中具有广泛的应用前景,对于滤除噪声、改善信号质量等方面有重要意义。
实验五FIR数字滤波器的设计

实验五FIR数字滤波器的设计FIR数字滤波器(Finite Impulse Response)是一种数字滤波器,它的输出仅由有限数量的输入样本决定。
设计FIR数字滤波器的步骤如下:1.确定滤波器的要求:首先需要明确滤波器的频率响应、截止频率、通带和阻带的幅频响应等要求。
2.选择滤波器类型:根据实际需求选择合适的滤波器类型,如低通滤波器、高通滤波器、带通滤波器或带阻滤波器等。
3.确定滤波器的阶数:根据滤波器类型和要求,确定滤波器的阶数。
通常情况下,滤波器的阶数越高,能够实现更陡峭的频率响应,但会引入更多的计算复杂度。
4.设计滤波器的理想频率响应:根据滤波器的要求和类型,设计滤波器的理想频率响应。
可以使用常用的频率响应设计方法,如窗函数法、最小最大法或线性相位法等。
这些方法可以实现平滑的频率响应或者良好的阻带衰减。
5.确定滤波器的系数:根据设计的理想频率响应,通过反变换或优化算法确定滤波器的系数。
常用的优化算法包括频域方法、时域方法、最小二乘法或最小相位法等。
6.实现滤波器:将所得的滤波器系数转化为滤波器的差分方程形式或直接计算滤波器的频域响应。
7.评估滤波器性能:使用合适的测试信号输入滤波器,并对滤波器的输出进行评估。
可以使用指标,如频率响应曲线、幅度响应误差、相位响应误差或阻带衰减等指标来评估滤波器性能。
8.优化滤波器性能:根据评估结果,进行必要的修改和优化设计,以满足滤波器的要求。
通过以上步骤,可以设计出满足需求的FIR数字滤波器。
需要注意的是,FIR数字滤波器设计的复杂度和性能需要权衡与平衡,以满足实际应用的要求。
FIR滤波器设计实验报告

FIR滤波器设计实验报告实验目的:学习和掌握有限脉冲响应(FIR)滤波器的设计方法,了解数字滤波器的原理和实现。
实验器材:计算机、Matlab软件、FIR滤波器设计工具。
实验原理:1.确定滤波器的规格:包括通带频率、阻带频率、通带纹波、阻带衰减等参数。
2. 根据滤波器规格选择合适的FIR滤波器设计方法:常见的设计方法有窗函数法、频域近似法、Remez算法等。
3.根据设计方法计算FIR滤波器的系数:根据设计方法的不同,计算滤波器的系数也有所区别。
4.对FIR滤波器进行验证和优化:可以通过频率响应、幅频特性等指标对滤波器进行调整,并进行验证。
实验步骤:1.确定滤波器规格:设置通带频率为3kHz,阻带频率为5kHz,通带纹波为0.01dB,阻带衰减为40dB。
2.选择窗函数法进行FIR滤波器设计。
3.根据滤波器规格计算滤波器的阶数。
4.根据阶数选择合适的窗函数。
5.计算FIR滤波器的系数。
6.通过绘制滤波器的频率响应曲线进行验证。
7.分析滤波器的性能,并对滤波器进行优化。
实验结果:根据以上步骤进行设计和计算,得到了FIR滤波器的系数,利用Matlab绘制了滤波器的频率响应曲线。
分析和讨论:根据频率响应曲线,可以看出滤波器在通带频率范围内有较好的衰减效果,滤波器的阻带频率范围内衰减也满足要求。
但是在通带和阻带之间存在一定的过渡带,可能会对信号造成一部分的失真。
因此,可以考虑进一步优化滤波器的设计,使其在通带和阻带之间的过渡带更加平滑,减小失真的影响。
结论:通过本次实验,我们学习并掌握了FIR滤波器的设计方法,了解了数字滤波器的原理和实现。
在实际应用中,可以根据需要选择合适的FIR滤波器设计方法,并根据滤波器的规格进行计算和调整。
通过不断优化和验证,可以得到满足要求的FIR滤波器,实现对数字信号的滤波处理。
数字信号处理实验五.FIR数字滤波器设计与软件实现

实验五:FIR数字滤波器设计与软件实现一、实验指导1.实验目的(1)掌握用窗函数法设计FIR数字滤波器的原理和方法。
(2)掌握用等波纹最佳逼近法设计FIR数字滤波器的原理和方法。
(3)掌握FIR滤波器的快速卷积实现原理。
(4)学会调用MATLAB函数设计与实现FIR滤波器。
2.实验内容及步骤(1)认真复习第七章中用窗函数法和等波纹最佳逼近法设计FIR数字滤波器的原理;(2)调用信号产生函数xtg产生具有加性噪声的信号xt,并自动显示xt及其频谱,如图1所示;图1 具有加性噪声的信号x(t)及其频谱如图(3)请设计低通滤波器,从高频噪声中提取xt中的单频调幅信号,要求信号幅频失真小于0.1dB,将噪声频谱衰减60dB。
先观察xt的频谱,确定滤波器指标参数。
(4)根据滤波器指标选择合适的窗函数,计算窗函数的长度N,调用MATLAB函数fir1设计一个FIR低通滤波器。
并编写程序,调用MATLAB快速卷积函数fftfilt实现对xt的滤波。
绘图显示滤波器的频响特性曲线、滤波器输出信号的幅频特性图和时域波形图。
(4)重复(3),滤波器指标不变,但改用等波纹最佳逼近法,调用MATLAB函数remezord和remez设计FIR数字滤波器。
并比较两种设计方法设计的滤波器阶数。
提示:○1MATLAB函数fir1的功能及其调用格式请查阅教材;○2采样频率Fs=1000Hz,采样周期T=1/Fs;○3根据图1(b)和实验要求,可选择滤波器指标参数:通带截止频率fp=120Hz,阻带截至频率fs=150Hz,换算成数字频率,通带截止频率p 20.24pfωπ=T=π,通带最大衰为0.1dB,阻带截至频率s 20.3sfωπ=T=π,阻带最小衰为60dB。
○4实验程序框图如图2所示,供读者参考。
图2 实验程序框图4.思考题(1)如果给定通带截止频率和阻带截止频率以及阻带最小衰减,如何用窗函数法设计线性相位低通滤波器?请写出设计步骤.(2)如果要求用窗函数法设计带通滤波器,且给定通带上、下截止频率为pl ω和pu ω,阻带上、下截止频率为sl ω和su ω,试求理想带通滤波器的截止频率cl cu ωω和。
实验五 FIR数字滤波器的设计

实验六 FIR 数字滤波器的设计一、实验目的1.熟悉FIR 滤波器的设计基本方法2.掌握用窗函数设计FIR 数字滤波器的原理与方法。
二、实验内容1.FIR 数字滤波器的设计方法FIR 滤波器的设计问题在于寻求一系统函数)(z H ,使其频率响应)(ωj e H 逼近滤波器要求的理想频率响应)(ωj d e H ,其对应的单位脉冲响应为)(n h d 。
(1)用窗函数设计FIR 滤波器的基本原理设计思想:从时域从发,设计)(n h 逼近理想)(n h d 。
设理想滤波器)(ωj d e H 的单位脉冲响应为)(n h d 。
以低通线性相位FIR 数字滤波器为例。
⎰∑--∞-∞===ππωωωωωπd e e H n h e n he H jn j d d jn n d j d )(21)()()( (6-1) )(n h d 一般是无限长的,且是非因果的,不能直接作为FIR 滤波器的单位脉冲响应。
要想得到一个因果的有限长的滤波器h(n),最直接的方法是截断)()()(n w n h n h d =,即截取为有限长因果序列,并用合适的窗函数进行加权作为FIR 滤波器的单位脉冲响应。
按照线性相位滤波器的要求,h(n)必须是偶对称的。
对称中心必须等于滤波器的延时常数,即⎩⎨⎧-==2/)1()()()(N a n w n h n h d (6-2) 用矩形窗设计的FIR 低通滤波器,所设计滤波器的幅度函数在通带和阻带都呈现出振荡现象,且最大波纹大约为幅度的9%,这个现象称为吉布斯(Gibbs )效应。
为了消除吉布斯效应,一般采用其他类型的窗函数。
(2) 典型的窗函数① 矩形窗(Rectangle Window))()(n R n w N = (6-3)② 三角形窗(Bartlett Window)⎪⎩⎪⎨⎧-≤<----≤≤-=121,122210,12)(N n N N n N n N n n w (6-4) ③ 汉宁(Hanning)窗,又称升余弦窗)()]12cos(1[21)(n R N n n w N --=π (6-5) ④ 汉明(Hamming)窗,又称改进的升余弦窗)()]12cos(46.054.0[)(n R N n n w N --=π (6-6) ⑤ 布莱克曼(Blankman)窗,又称二阶升余弦窗)()]14cos(08.0)12cos(5.042.0[)(n R N n N n n w N -+--=ππ (6-7) ⑥ 凯泽(Kaiser)窗 10,)())]1/(21[1()(020-≤≤---=N n I N n I n w ββ (6-8) 其中:β是一个可选参数,用来选择主瓣宽度和旁瓣衰减之间的交换关系,一般说来,β越大,过渡带越宽,阻带越小衰减也越大。
实验五FIR数字滤波器的设计

实验五FIR数字滤波器的设计
FIR数字滤波器的设计可以分为以下几个步骤:
1.确定滤波器的类型和规格:根据实际需求确定滤波器的类型(如低通、高通、带通等)以及滤波器的截止频率、通带衰减以及阻带衰减等规格。
2.选择滤波器的窗函数:根据滤波器的规格,选择合适的窗函数(如矩形窗、汉宁窗、布莱克曼窗等)。
窗函数的选择会影响滤波器的频率响应以及滤波器的过渡带宽度等特性。
3.确定滤波器的阶数:根据滤波器的规格和窗函数的选择,确定滤波器的阶数。
通常来说,滤波器的阶数越高,滤波器的性能越好,但相应的计算和处理也会更加复杂。
4.设计滤波器的频率响应:通过在频率域中设计滤波器的频率响应来满足滤波器的规格要求。
可以使用频率采样法、窗函数法或优化算法等方法。
5. 将频率响应转换为差分方程:通过逆Fourier变换或其他变换方法,将频率响应转换为滤波器的差分方程表示。
6.量化滤波器的系数:将差分方程中的连续系数离散化为滤波器的实际系数。
7.实现滤波器:使用计算机编程、数字信号处理芯片或FPGA等方式实现滤波器的功能。
8.测试滤波器性能:通过输入一组测试信号并观察输出信号,来验证滤波器的性能是否符合设计要求。
需要注意的是,FIR数字滤波器的设计涉及到频率域和时域的转换,以及滤波器系数的选择和调整等过程,需要一定的信号处理和数学背景知识。
数字信号管理方案计划实验报告实验五

物理与电子信息工程学院实验报告实验课程名称:数字信号处理实验名称:FIR数字滤波器设计与软件实现班级:1012341姓名:严娅学号:101234153成绩:_______实验时间:2012年12月20 日一、实验目的(1)掌握用窗函数法设计FIR 数字滤波器的原理和方法。
(2)掌握用等波纹最佳逼近法设计FIR 数字滤波器的原理和方法。
(3)掌握FIR 滤波器的快速卷积实现原理。
(4)学会调用MATLAB 函数设计与实现FIR 滤波器。
二、实验原理1、用窗函数法设计FIR 数字滤波器的原理和方法。
如果所希望的滤波器的理想频率响应函数为 )(ωj d e H ,则其对应的单位脉冲响应为)(n h d =π21ωωωππd e e H j j d )(⎰- (2-1)窗函数设计法的基本原理是用有限长单位脉冲响应序列)(n h 逼近)(n h d 。
由于)(n h d 往往是无限长序列,且是非因果的,所以用窗函数)(n ω将)(n h d 截断,并进行加权处理,得到:)(n h =)(n h d )(n ω (2-2))(n h 就作为实际设计的FIR 数字滤波器的单位脉冲响应序列,其频率响应函数)(ωj d e H 为:)(ωj d e H =∑-=-1)(N n j e n h ω (2-3) 式中,N 为所选窗函数)(n ω的长度。
由第七章可知,用窗函数法设计的滤波器性能取决于窗函数)(n ω的类型及窗口长度N 的取值。
设计过程中,要根据对阻带最小衰减和过渡带宽度的要求选择合适的窗函数类型和窗口长度N 。
各种类型的窗函数可达到的阻带最小衰减和过渡带宽度见第七章。
这样选定窗函数类型和长度N 后,求出单位脉冲响应)(n h =)(n h d ·)(n ω,并按式(2-3)求出)(ωj e H 。
)(ωj e H 是否满足要求,要进行验算。
一般在)(n h 尾部加零使长度满足于2的整数次幂,以便用FFT 计算)(ωj e H 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验六 FIR 数字滤波器的设计一、实验目的1.熟悉FIR 滤波器的设计基本方法2.掌握用窗函数设计FIR 数字滤波器的原理与方法。
二、实验内容1.FIR 数字滤波器的设计方法FIR 滤波器的设计问题在于寻求一系统函数)(z H ,使其频率响应)(ωj eH 逼近滤波器要求的理想频率响应)(ωj d e H ,其对应的单位脉冲响应为)(n h d 。
(1)用窗函数设计FIR 滤波器的基本原理设计思想:从时域从发,设计)(n h 逼近理想)(n h d 。
设理想滤波器)(ωj d eH 的单位脉冲响应为)(n h d 。
以低通线性相位FIR 数字滤波器为例。
⎰∑--∞-∞===ππωωωωωπd e e H n h e n he H jn j d d jn n d j d )(21)()()( (6-1) )(n h d 一般是无限长的,且是非因果的,不能直接作为FIR 滤波器的单位脉冲响应。
要想得到一个因果的有限长的滤波器h(n),最直接的方法是截断)()()(n w n h n h d =,即截取为有限长因果序列,并用合适的窗函数进行加权作为FIR 滤波器的单位脉冲响应。
按照线性相位滤波器的要求,h(n)必须是偶对称的。
对称中心必须等于滤波器的延时常数,即⎩⎨⎧-==2/)1()()()(N a n w n h n h d (6-2) 用矩形窗设计的FIR 低通滤波器,所设计滤波器的幅度函数在通带和阻带都呈现出振荡现象,且最大波纹大约为幅度的9%,这个现象称为吉布斯(Gibbs )效应。
为了消除吉布斯效应,一般采用其他类型的窗函数。
(2) 典型的窗函数① 矩形窗(Rectangle Window))()(n R n w N = (6-3)② 三角形窗(Bartlett Window)⎪⎩⎪⎨⎧-≤<----≤≤-=121,122210,12)(N n N N n N n N n n w (6-4) ③ 汉宁(Hanning)窗,又称升余弦窗)()]12cos(1[21)(n R N n n w N --=π (6-5) ④ 汉明(Hamming)窗,又称改进的升余弦窗)()]12cos(46.054.0[)(n R N n n w N --=π (6-6) ⑤ 布莱克曼(Blankman)窗,又称二阶升余弦窗)()]14cos(08.0)12cos(5.042.0[)(n R N n N n n w N -+--=ππ (6-7) ⑥ 凯泽(Kaiser)窗 10,)())]1/(21[1()(020-≤≤---=N n I N n I n w ββ (6-8) 其中:β是一个可选参数,用来选择主瓣宽度和旁瓣衰减之间的交换关系,一般说来,β越大,过渡带越宽,阻带越小衰减也越大。
I 0(·)是第一类修正零阶贝塞尔函数。
若阻带最小衰减表示为s s A δ10log 20-=,β的确定可采用下述经验公式:⎪⎩⎪⎨⎧>-≤<-+-≤=50)7.8(1102.05021)21(07886.0)21(5842.02104.0s s s s s s A A A A A A β (6-9) 若滤波器通带和阻带波纹相等即δp=δs 时,滤波器节数可通过下式确定:136.1495.7+∆-=F A N s (6-10) 式中:πωωπω22p s F -=∆=∆ (3)利用窗函数设计FIR 滤波器的具体步骤如下:1、确定数字滤波器的性能要求,临界频率}{k w ,滤波器单位脉冲响应长度N 。
2、根据性能要求,合理选择单位脉冲响应h(n)的奇偶对称性,从而确定理想频率响应)(jw d e H 的幅频特性和相频特性。
3、求理想单位脉冲响应)(n h d ,在实际计算中,可对)(jw d e H 采样,并对其求IDFT 的)(n h M ,用)(n h M 代替)(n h d 。
4、选择适当的窗函数w (n ),根据)()()(n W n h n h N d ⋅=求所需设计的FIR 滤波器单位脉冲响应。
5、求)(jw d e H ,分析其幅频特性,若不满足要求,可适当改变窗函数形式或长度N ,重复上述设计过程,以得到满意的结果。
2.FIR 数字滤波器的Matlab 实现MATLAB 提供的相关函数,函数调用格式:b=fir1(n,wn,’ftype’,window)其中,n ——FIR 滤波器的阶数,对于高通、带阻滤波器n 取偶数。
wn ——为滤波器截止频率(归一化频率);‘ftype ’——为滤波器类型;如’high ’为高通,’stop ’为带阻等;window ——窗函数(列向量、其长度为n+1),缺省时,自动取Hamming 窗。
MATLAB 提供了几个窗函数:wd=boxcar(N)――返回N 点矩形窗函数wd=triang(N)――返回N 点三角窗函数wd=hanning(N)――返回N 点汉宁窗函数wd=hamming(N)――返回N 点汉明窗函数wd=Blackman(N)――返回N 点布莱克曼函数wd=kaiser(N,beta)――返回给定beta 值时N 点凯泽窗函数【实例6-1】根据以下技术指示,设计一个数字FIR 低通滤波器。
wp=0.2π,ws=0.3π,Rp=0.25dB,Rs=50dB因为衰减为50dB ,可选择的窗口有汉明窗和布莱克曼窗。
而汉明窗有较小的过度带,因此具有较小的阶数,因此选用汉明窗。
解:源程序如下:>> wp=0.2*pi;ws=0.3*pi;deltaw=ws-wp;>> N0=ceil(6.6*pi/deltaw);% 查表根据汉明窗设计计算所需的滤波器h(n)的长度, %ceil(x)取大于等于x的最小整数>> N=N0+mod(N0+1,2);%为实现第一类偶对称滤波器,应确保长度N为奇数>> wdhm=hamming(N);%求窗函数>> wc=(ws+wp)/2;%求截止频率>> tao=(N-1)/2;n=0:N-1;m=n-tao+eps;%求理想脉冲响应>> hd=sin(wc*m)./(pi*m);%>> hn=hd.*wdhm';%设计的脉冲响应>> 或 wc=(wp+ws)/2/pi; 取关于pi归一化的频率>>hn=fir1(N-1,wc,hamming(N))>>subplot(2,2,1),stem(n,hd);xlabel('n');ylabel('hd(n)');title('ÀíÏëÂö³åÏìÓ¦')>>subplot(2,2,2),stem(n,wdhm);xlabel('n');ylabel('wdhm');title('ººÃ÷´°')>>subplot(2,2,3),stem(n,Hhm);xlabel('n');ylabel('h(n)');title('Éè¼ÆÂ˲¨Æ÷µÄÂö³åÏìÓ¦')>> b=hd.*wdhm';>> [H,w]=freqz(b,1);>> subplot(2,2,4),plot(w,20*log10(abs(H)));grid;title('·ù¶ÈÏìÓ¦')【实例6-2】根据给定的滤波器指标,设计一款FIR滤波器:针对一个含有5Hz、15Hz和30Hz的混和正弦波信号,设计一个FIR带通滤波器。
参数要求:采样频率fs=100Hz,通带下限截止频率fc1=10Hz,通带上限截止频率fc2=20Hz,过渡带宽6Hz,通阻带波动0.01,采用凯塞窗设计。
解:源程序如下:fc1=10; fc2=20; fs=100;[n,Wn,beta,ftype]=kaiserord([7 13 17 23],[0 1 0],[0.01 0.01 0.01],100);w1=2*fc1/fs; w2=2*fc2/fs;window=kaiser(n+1,beta); %使用kaiser窗函数b=fir1(n,[w1 w2],window); %使用标准频率响应的%加窗设计函数fir1freqz(b,1,512); %数字滤波器频率响应t = (0:100)/fs;s = sin(2*pi*t*5)+sin(2*pi*t*15)+sin(2*pi*t*30);sf = filter(b,1,s); %对信号s进行滤波smp=512;f=100*(0:256)/smp;S=fft(s,smp);SF=fft(sf,smp);%f=1000*(0:256)/512; %设置频率轴(横轴)坐标,1000为采样频率;figuresubplot(2,2,1); plot(t,s) %画出时域内的信号subplot(2,2,2); plot(t,sf) %画出时域内的信号subplot(2,2,3); plot(f,abs(S)(1:257)); %画出频域内的信号subplot(2,2,4); plot(f,abs(SF)(1:257)); %画出频域内的信号三、思考题1、用窗函数法设计线性相位FIR低通滤波器,通带截止频率Wp=0.5π,Ws=0.6π,阻带衰减不小于40dB,通带衰减不大于3dB.四、实验报告要求1. 简述实验原理及目的。
2.给出实验结果,并对结果作出分析。
3. 记录调试运行情况及所遇问题的解决方法。
4.简要回答思考题。
(注:文档可能无法思考全面,请浏览后下载,供参考。
可复制、编制,期待你的好评与关注)。