人教版高中数学必修4全册

合集下载

高中人教版数学必修4课件:第1章-1.3-第1课时-公式二、公式三和公式四-

高中人教版数学必修4课件:第1章-1.3-第1课时-公式二、公式三和公式四-

α+cos 2
α2-1=m22-1.]
(2)[解] ∵cos(α-75°)=-13<0,且 α 为第四象限角,
∴sin(α-75°)=- 1-cos2α-75°
=-
1--132=-2 3 2,
∴sin(105°+α)=sin[180°+(α-75°)]
=-sin(α-75°)=2
2 3.
1.例 3(2)条件不变,求 cos(255°-α)的值.
sin2α-75°+cos2α-75°=1,
由csoinsαα--7755°°=-5,
解得sinα-75°=-52626, 或
cosα-75°=
26 26
sinα-75°=5 2626,
(舍)
cosα-75°=-
26 26 .
所以sin(105°+α)=sin[180°+(α-75°)]
=-sin(α-75°)=5
(1)1 [cos-siαntπa-nα7π+α=cos αstainnαπ+α=cossαin·tαan α=ssiinn αα= 1.]
(2)[解] 原式=[-sinα+-1c8o0s°α]·c·soisn1α80°+α =sinα+1s8in0°αccoossα180°+α =-ssininααc-oscαos α=1.
[探究问题] 1.利用诱导公式化简 sin(kπ+α)(其中 k∈Z)时,化简结果与 k 是否有关? 提示:有关.因为k是奇数还是偶数不确定. 当k是奇数时,即k=2n+1(n∈Z),sin(kπ+α)=sin(π+α)=-sin α; 当k是偶数时,即k=2n(n∈Z),sin(kπ+α)=sin α.
明确三角函数式化简的原则和方向 1切化弦,统一名. 2用诱导公式,统一角. 3用因式分解将式子变形,化为最简.

高中数学人教版A版必修4《两角和与差的正弦、余弦、正切公式》优质PPT课件

高中数学人教版A版必修4《两角和与差的正弦、余弦、正切公式》优质PPT课件
明目标、知重点
(3)sin
1π2-
3cos
π 12.

方法一
原式=212sin
1π2-
3 2 cos
π 12
=2sin
π 6sin
1π2-cos
π 6cos
π 12
=-2cosπ6+1π2=-2cos π4=- 2.
方法二
原式=212sin
1π2-
3 2 cos
π 12
=2cos
π 3sin
3.函数f(x)=sin x- 3cos x(x∈R)的值域是 [-2,2] .
解析
∵f(x)=212sin
x-
3 2 cos
x=2sinx-π3.
∴f(x)∈[-2,2].
明目标、知重点
1234
4.已知锐角
α、β
满足
sin
α
=2
5 5
,cos
β=
1100,则
α+β

.
解析 ∵α,β 为锐角,sin α=255,cos β= 1100,
1π2-sin
π 3cos
π 12
=2sin1π2-π3=-2sin
π4=-
2.
明目标、知重点
例 2 已知 α∈0,π2,β∈-π2,0,且 cos(α-β)=35,sin β=
-102,求 α 的值. 解 ∵α∈0,π2,β∈-π2,0,∴α-β∈(0,π). ∵cos(α-β)=35,∴sin(α-β)=45. ∵β∈-π2,0,sin β=-102,∴cos β=7102.
明目标、知重点
跟踪训练 2 已知 sin α=35,cos β=-153,α 为第二象限角,β

人教版高中数学必修4课后习题答案.docx

人教版高中数学必修4课后习题答案.docx

练习(第5页)1.锐布是第象限仙.第-象限伯不一定是锐伽;K角不I4F任何-个象限.不M Fit何个象限的角不一定是I'ifd;钝伯是第二象限角.第二象限角不-定是钝角.说明认眼-锐伯二“宜漫二“钝角”和“象限角"的区别与联系.2.三.三.ft.说明本题的II的是将终边相同的角的符号表示应用到他篇期性何财匕魂11联系实际•把教科竹中的除数36<>换成每个械期的天数7.利川r •■同汆”(这里.余数是3)来确定7*犬后.7 k犬前也都/星期1.这样的练习不难.可以L1答.3.(1)第象Wff|: <2)第四象限ftl: (3)第二象限/(J. (4)第三象限角.说明俺作出给定的角.并判定以第儿象限角.图略.4.(1) 3O5F2'.第四象限/th (2) 35%'.第一象限ff|; (3) 249*30*.第•:象限角.说明能企给定范围内找出"指定的角终边相同的角・并判定是第儿象限而.5.(1) <仞夕I 30:ri8'+&・360°, A€Z), - 496—2', — 136,42*. 223*I8,|(2)伊I "= 225- I * • 360°. ACZ}. - 585°, — 225°, 135°.说明用乘。

表,K法和符时写出勺指定角终边相同的的的集合.并在给定范国内找出勺指定的角经边相同的仙.练习(第9页〉1.(1> ⑵一?: (3)亨.说明能进存度弧度的换算.2.(1> 15。

<2> 240七(3) 54*.说明fOir*度'j度的换卓.3.(I) {a| a M. A€Z};(2) ja | «=-|+*», A£z}.说明用弧度MA示绕边分别在.r轴和.V袖匕的角的集合.4.(I ) cos 0. 75'>«» 0. 75;(2> tan 1. 2*<ian I. 2.说明体会同数伉木同时位的角对成的三角函数ffi诃能不同•并进一步认识两种爪位制.注意在用计算器求-ffimSffrt之询.卷先对计算器中角的模式进行设??.如求co* 0.75°之询,要将角模式设置为I对;(伯度;M);求CON。

人教版新课标高中数学必修4-全册教案【最新】

人教版新课标高中数学必修4-全册教案【最新】

1.1.1 任意角教学目标(一) 知识与技能目标理解任意角的概念(包括正角、负角、零角) 与区间角的概念. (二) 过程与能力目标会建立直角坐标系讨论任意角,能判断象限角,会书写终边相同角的集合;掌握区间角的集合的书写.(三) 情感与态度目标1. 提高学生的推理能力; 2.培养学生应用意识. 教学重点 任意角概念的理解;区间角的集合的书写. 教学难点终边相同角的集合的表示;区间角的集合的书写. 教学过程 一、引入:1.回顾角的定义①角的第一种定义是有公共端点的两条射线组成的图形叫做角.②角的第二种定义是角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形. 二、新课:1.角的有关概念: ①角的定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形. ②角的名称:③角的分类:④注意:⑴在不引起混淆的情况下,“角α ”或“∠α ”可以简化成“α ”; ⑵零角的终边与始边重合,如果α是零角α =0°; ⑶角的概念经过推广后,已包括正角、负角和零角. ⑤练习:请说出角α、β、γ各是多少度? 2.象限角的概念:①定义:若将角顶点与原点重合,角的始边与x 轴的非负半轴重合,那么角的终边(端点除外)在第几象限,我们就说这个角是第几象限角. 例1.如图⑴⑵中的角分别属于第几象限角?例2.在直角坐标系中,作出下列各角,并指出它们是第几象限的角.⑴ 60°; ⑵ 120°; ⑶ 240°; ⑷ 300°; ⑸ 420°; ⑹ 480°;答:分别为1、2、3、4、1、2象限角.正角:按逆时针方向旋转形零角:射线没有任何旋转形⑵B 1 y⑴O x45° B 2O x B 3y30°60o负角:按顺时针方向旋转形成的角 始边 终边顶点A O B3.探究:教材P3面终边相同的角的表示:所有与角α终边相同的角,连同α在内,可构成一个集合S ={ β | β = α + k ·360° ,k ∈Z},即任一与角α终边相同的角,都可以表示成角α与整个周角的和. 注意: ⑴ k ∈Z⑵ α是任一角;⑶ 终边相同的角不一定相等,但相等的角终边一定相同.终边相同的角有无限个,它们相差360°的整数倍;⑷ 角α + k ·720°与角α终边相同,但不能表示与角α终边相同的所有角.例3.在0°到360°范围内,找出与下列各角终边相等的角,并判断它们是第几象限角.⑴-120°;⑵640°;⑶-950°12'.答:⑴240°,第三象限角;⑵280°,第四象限角;⑶129°48',第二象限角; 例4.写出终边在y 轴上的角的集合(用0°到360°的角表示) . 解:{α | α = 90°+ n ·180°,n ∈Z}. 例5.写出终边在x y =上的角的集合S,并把S 中适合不等式-360°≤β<720°的元素β写出来. 4.课堂小结 ①角的定义; ②角的分类:③象限角;④终边相同的角的表示法. 5.课后作业:①阅读教材P 2-P 5; ②教材P 5练习第1-5题; ③教材P.9习题1.1第1、2、3题 思考题:已知α角是第三象限角,则2α,2α各是第几象限角? 解:αΘ角属于第三象限,∴ k ·360°+180°<α<k ·360°+270°(k ∈Z)因此,2k ·360°+360°<2α<2k ·360°+540°(k ∈Z) 即(2k +1)360°<2α<(2k +1)360°+180°(k ∈Z)故2α是第一、二象限或终边在y 轴的非负半轴上的角. 又k ·180°+90°<2α<k ·180°+135°(k ∈Z) . 当k 为偶数时,令k=2n(n ∈Z),则n ·360°+90°<2α<n ·360°+135°(n ∈Z) , 此时,2α属于第二象限角 当k 为奇数时,令k=2n+1 (n ∈Z),则n ·360°+270°<2α<n ·360°+315°(n ∈Z) , 此时,2α属于第四象限角 正角:按逆时针方向旋转形成的角 零角:射线没有任何旋转形成的角 负角:按顺时针方向旋转形成的角因此2α属于第二或第四象限角.1.1.2弧度制(一)教学目标(四) 知识与技能目标理解弧度的意义;了解角的集合与实数集R 之间的可建立起一一对应的关系;熟记特殊角的弧度数.(五) 过程与能力目标能正确地进行弧度与角度之间的换算,能推导弧度制下的弧长公式及扇形的面积公式,并能运用公式解决一些实际问题 (六) 情感与态度目标通过新的度量角的单位制(弧度制)的引进,培养学生求异创新的精神;通过对弧度制与角度制下弧长公式、扇形面积公式的对比,让学生感受弧长及扇形面积公式在弧度制下的简洁美. 教学重点弧度的概念.弧长公式及扇形的面积公式的推导与证明. 教学难点“角度制”与“弧度制”的区别与联系. 教学过程一、复习角度制:初中所学的角度制是怎样规定角的度量的? 规定把周角的3601作为1度的角,用度做单位来度量角的制度叫做角度制. 二、新课: 1.引 入:由角度制的定义我们知道,角度是用来度量角的, 角度制的度量是60进制的,运用起来不太方便.在数学和其他许多科学研究中还要经常用到另一种度量角的制度—弧度制,它是如何定义呢? 2.定 义我们规定,长度等于半径的弧所对的圆心角叫做1弧度的角;用弧度来度量角的单位制叫做弧度制.在弧度制下, 1弧度记做1rad .在实际运算中,常常将rad 单位省略. 3.思考:(1)一定大小的圆心角α所对应的弧长与半径的比值是否是确定的?与圆的半径大小有关吗?(2)引导学生完成P6的探究并归纳: 弧度制的性质: ①半圆所对的圆心角为;ππ=rr②整圆所对的圆心角为.22ππ=rr③正角的弧度数是一个正数. ④负角的弧度数是一个负数. ⑤零角的弧度数是零. ⑥角α的弧度数的绝对值|α|=. rl 4.角度与弧度之间的转换: ①将角度化为弧度:π2360=︒; π=︒180;rad 01745.01801≈=︒π;rad n n 180π=︒. ②将弧度化为角度:2360p =?;180p =?;1801()57.305718rad p¢=盎??;180( )nn p =?.5.常规写法:① 用弧度数表示角时,常常把弧度数写成多少π 的形式, 不必写成小数. ② 弧度与角度不能混用. 6.特殊角的弧度角度 0° 30° 45° 60° 9°120° 135° 150° 180° 270° 36° 弧度0 6π 4π 3π 2π 32π 43π 65π π23ππ2 7.弧长公式ll r r a a =??弧长等于弧所对应的圆心角(的弧度数)的绝对值与半径的积. 例1.把67°30'化成弧度. 例2.把rad 53π化成度. 例3.计算:4sin)1(π;5.1tan )2(.例4.将下列各角化成0到2π的角加上2k π(k ∈Z )的形式:319)1(π;︒-315)2(. 例5.将下列各角化成2k π + α(k ∈Z,0≤α<2π)的形式,并确定其所在的象限.319)1(π;631)2(π-. 解: (1),672319πππ+= 而67π是第三象限的角,193p\是第三象限角.(2) 315316,666p p pp -=-+\-Q 是第二象限角. .,,216. 是圆的半径是扇形弧长其中积公式利用弧度制证明扇形面例R l lR S =证法一:∵圆的面积为2R π,∴圆心角为1rad 的扇形面积为221R ππ,又扇形弧长为l,半径为R,∴扇形的圆心角大小为R l rad, ∴扇形面积lR R R l S 21212=⋅=. 证法二:设圆心角的度数为n ,则在角度制下的扇形面积公式为3602R n S π⋅=,又此时弧长180R n l π=,∴R l R R n S ⋅=⋅⋅=2118021π. 可看出弧度制与角度制下的扇形面积公式可以互化,而弧度制下的扇形面积公式显然要简洁得多.O R l22121:R lR S α==扇形面积公式7.课堂小结①什么叫1弧度角? ②任意角的弧度的定义③“角度制”与“弧度制”的联系与区别. 8.课后作业:①阅读教材P 6 –P 8;②教材P 9练习第1、2、3、6题; ③教材P10面7、8题及B2、3题.4-1.2.1任意角的三角函数(三)教学目的:知识目标:1.复习三角函数的定义、定义域与值域、符号、及诱导公式; 2.利用三角函数线表示正弦、余弦、正切的三角函数值;3.利用三角函数线比较两个同名三角函数值的大小及表示角的范围。

高中数学人教版必修4教案

高中数学人教版必修4教案

1.1.1 任意角教学目标(一) 知识与技能目标理解任意角的概念(包括正角、负角、零角) 与区间角的概念. (二) 过程与能力目标会建立直角坐标系讨论任意角,能判断象限角,会书写终边相同角的集合;掌握区间角的集合的书写.(三) 情感与态度目标1. 提高学生的推理能力; 2.培养学生应用意识. 教学重点任意角概念的理解;区间角的集合的书写. 教学难点终边相同角的集合的表示;区间角的集合的书写. 教学过程 一、引入:1.回顾角的定义①角的第一种定义是有公共端点的两条射线组成的图形叫做角.②角的第二种定义是角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形. 二、新课:1.角的有关概念: ①角的定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形. ②角的名称:③角的分类: ④注意:⑴在不引起混淆的情况下,“角α ”或“∠α ”可以简化成“α ”; ⑵零角的终边与始边重合,如果α是零角α =0°; ⑶角的概念经过推广后,已包括正角、负角和零角. ⑤练习:请说出角α、β、γ各是多少度? 2.象限角的概念:①定义:若将角顶点与原点重合,角的始边与x 轴的非负半轴重合,那么角的终边(端点除外)在第几象限,我们就说这个角是第几象限角. 例1.如图⑴⑵中的角分别属于第几象限角?例2.在直角坐标系中,作出下列各角,并指出它们是第几象限的角.⑴ 60°; ⑵ 120°; ⑶ 240°; ⑷ 300°; ⑸ 420°; ⑹ 480°;正角:按逆时针方向旋转形成的角 零角:射线没有任何旋转形成的角负角:按顺时针方向旋转形成的角 顶点AO答:分别为1、2、3、4、1、2象限角. 3.探究:教材P3面终边相同的角的表示:所有与角α终边相同的角,连同α在内,可构成一个集合S ={ β | β = α + k ·360° ,k ∈Z},即任一与角α终边相同的角,都可以表示成角α与整个周角的和. 注意: ⑴ k ∈Z⑵ α是任一角;⑶ 终边相同的角不一定相等,但相等的角终边一定相同.终边相同的角有无限个,它们相差360°的整数倍;⑷ 角α + k ·720°与角α终边相同,但不能表示与角α终边相同的所有角.例3.在0°到360°范围内,找出与下列各角终边相等的角,并判断它们是第几象限角.⑴-120°;⑵640°;⑶-950°12'.答:⑴240°,第三象限角;⑵280°,第四象限角;⑶129°48',第二象限角; 例4.写出终边在y 轴上的角的集合(用0°到360°的角表示) . 解:{α | α = 90°+ n ·180°,n ∈Z}. 例5.写出终边在x y =上的角的集合S,并把S 中适合不等式-360°≤β<720°的元素β写出来. 4.课堂小结 ①角的定义; ②角的分类:③象限角;④终边相同的角的表示法. 5.课后作业:①阅读教材P 2-P 5; ②教材P 5练习第1-5题; ③教材P.9习题1.1第1、2、3题 思考题:已知α角是第三象限角,则2α,2α各是第几象限角? 解:α 角属于第三象限,∴ k ·360°+180°<α<k ·360°+270°(k ∈Z)因此,2k ·360°+360°<2α<2k ·360°+540°(k ∈Z) 即(2k +1)360°<2α<(2k +1)360°+180°(k ∈Z)故2α是第一、二象限或终边在y 轴的非负半轴上的角. 又k ·180°+90°<2α<k ·180°+135°(k ∈Z) . 当k 为偶数时,令k=2n(n ∈Z),则n ·360°+90°<2α<n ·360°+135°(n ∈Z) , 此时,2α属于第二象限角 当k 为奇数时,令k=2n+1 (n ∈Z),则n ·360°+270°<2α<n ·360°+315°(n ∈Z) , 此时,2α属于第四象限角 正角:按逆时针方向旋转形成的角 零角:射线没有任何旋转形成的角负角:按顺时针方向旋转形成的角因此2α属于第二或第四象限角.1.1.2弧度制(一)教学目标(四) 知识与技能目标理解弧度的意义;了解角的集合与实数集R 之间的可建立起一一对应的关系;熟记特殊角的弧度数.(五) 过程与能力目标能正确地进行弧度与角度之间的换算,能推导弧度制下的弧长公式及扇形的面积公式,并能运用公式解决一些实际问题 (六) 情感与态度目标通过新的度量角的单位制(弧度制)的引进,培养学生求异创新的精神;通过对弧度制与角度制下弧长公式、扇形面积公式的对比,让学生感受弧长及扇形面积公式在弧度制下的简洁美. 教学重点弧度的概念.弧长公式及扇形的面积公式的推导与证明. 教学难点“角度制”与“弧度制”的区别与联系. 教学过程一、复习角度制:初中所学的角度制是怎样规定角的度量的? 规定把周角的3601作为1度的角,用度做单位来度量角的制度叫做角度制. 二、新课: 1.引 入:由角度制的定义我们知道,角度是用来度量角的, 角度制的度量是60进制的,运用起来不太方便.在数学和其他许多科学研究中还要经常用到另一种度量角的制度—弧度制,它是如何定义呢? 2.定 义我们规定,长度等于半径的弧所对的圆心角叫做1弧度的角;用弧度来度量角的单位制叫做弧度制.在弧度制下, 1弧度记做1rad .在实际运算中,常常将rad 单位省略. 3.思考:(1)一定大小的圆心角α所对应的弧长与半径的比值是否是确定的?与圆的半径大小有关吗?(2)引导学生完成P6的探究并归纳: 弧度制的性质: ①半圆所对的圆心角为;ππ=rr②整圆所对的圆心角为.22ππ=rr③正角的弧度数是一个正数. ④负角的弧度数是一个负数. ⑤零角的弧度数是零. ⑥角α的弧度数的绝对值|α|=. rl 4.角度与弧度之间的转换: ①将角度化为弧度:π2360=︒; π=︒180;rad 01745.01801≈=︒π;rad n n 180π=︒. ②将弧度化为角度:︒=3602π;︒=180π;815730.57)180(1'︒=︒≈︒=πrad ;︒=) 180 (πn n . 5.常规写法:① 用弧度数表示角时,常常把弧度数写成多少π 的形式, 不必写成小数. ② 弧度与角度不能混用.αα⋅=⇒=r l rl弧长等于弧所对应的圆心角(的弧度数)的绝对值与半径的积. 例1.把67°30'化成弧度. 例2.把rad 53π化成度. 例3.计算:4sin)1(π;5.1tan )2(.例4.将下列各角化成0到2π的角加上2k π(k ∈Z )的形式:319)1(π;︒-315)2(. 例5.将下列各角化成2k π + α(k ∈Z,0≤α<2π)的形式,并确定其所在的象限.319)1(π;631)2(π-. 解: (1),672319πππ+=而67π是第三象限的角,319π∴是第三象限角.(2) 631,656631ππππ-∴+-=- 是第二象限角. .,,216. 是圆的半径是扇形弧长其中积公式利用弧度制证明扇形面例R l lR S =证法一:∵圆的面积为2R π,∴圆心角为1rad 的扇形面积为221R ππ,又扇形弧长为l,半径为R,∴扇形的圆心角大小为Rlrad, ∴扇形面积lR R R l S 21212=⋅=.证法二:设圆心角的度数为n ,则在角度制下的扇形面积公式为3602R n S π⋅=,又此时弧长180R n l π=,∴R l R R n S ⋅=⋅⋅=2118021π. 可看出弧度制与角度制下的扇形面积公式可以互化,而弧度制下的扇形面积公式显然要简洁得多.O R l22121:R lR S α==扇形面积公式7.课堂小结①什么叫1弧度角? ②任意角的弧度的定义③“角度制”与“弧度制”的联系与区别.8.课后作业:①阅读教材P 6 –P 8;②教材P 9练习第1、2、3、6题; ③教材P10面7、8题及B2、3题.4-1.2.1任意角的三角函数(三)教学目的:知识目标:1.复习三角函数的定义、定义域与值域、符号、及诱导公式; 2.利用三角函数线表示正弦、余弦、正切的三角函数值;3.利用三角函数线比较两个同名三角函数值的大小及表示角的范围。

高一数学人教版(必修1~必修4)全套教案集(共4册)精品打包下载

高一数学人教版(必修1~必修4)全套教案集(共4册)精品打包下载
(3)能使用 图表达集合间的关系,体会直观图示对理解抽象概念的作用.
2.过程与方法
让学生通过观察身边的实例,发现集合间的基本关系,体验其现实意义.
3.情感.态度与价值观
(1)树立数形结合的思想.
(2)体会类比对发现新结论的作用.
二.教学重点.难点
重点:集合间的包含与相等关系,子集与其子集的概念.
难点:难点是属于关系与包含关系的区别.
(5)海南省在2004年9月之前建成的所有立交桥;
(6)到一个角的两边距离相等的所有的点;
(7)方程 的所有实数根;
(8)不等式 的所有解;
(9)国兴中学2004年9月入学的高一学生的全体.
2.教师组织学生分组讨论:这9个实例的共同特征是什么?
3.每个小组选出——位同学发表本组的讨论结果,在此基础上,师生共同概括出9个实例的特征,并给出集合的含义.
(六)承上启下,留下悬念
1.课后书面作业:第13页习题1.1A组第4题.
2.元素与集合的关系有多少种?如何表示?类似地集合与集合间的关系又有多少种呢?如何表示?请同学们通过预习教材.
§1.1.2集合间的基本关系
一.教学目标:
1.知识与技能
(1)了解集合之间包含与相等的含义,能识别给定集合的子集。
(2)理解子集.真子集的概念。
第一章集合与函数概念
集合
函数及其表示
函数的基本性质
第二章基本初等函数(Ⅰ)
指数函数
对数函数
幂函数
第三章函数的应用
函数与方程
函数模型及其应用
第一章集合与函数
§1.1.1集合的含义与表示
一.教学目标:
l.知识与技能
(1)通过实例,了解集合的含义,体会元素与集合的属于关系;

人教版高中数学必修四平面向量的基本定理及坐标表示课件 (3)

人教版高中数学必修四平面向量的基本定理及坐标表示课件 (3)
互相垂直
填要点·记疑点
单位向量
xi+yj
有序数对(x,y)
a=(x,y)
2.平面向量的坐标运算(1)若a=(x1,y1),b=(x2,y2),则a+b= ,即两个向量和的坐标等于这两个向量相应坐标的和.
(x,y)
(x2-x1,y2-y1)
(x1+x2,y1+y2)
反思与感悟 选定基底之后,就要“咬定”基底不放,并围绕它做中心工作,千方百计用基底表示目标向量.要充分利用平面几何知识,将平面几何知识中的性质、结论与向量知识有机结合,具体问题具体分析,从而解决问题.
反思与感悟 用基底表示向量的关键是利用三角形或平行四边形将基底和所要表示的向量联系起来.解决此类题时,首先仔细观察所给图形.借助于平面几何知识和共线向量定理,结合平面向量基本定理解决.
跟踪训练3 如图,已知△ABC是等边三角形.
解 (1)∵△ABC为等边三角形,∴∠ABC=60°.
如图,延长AB至点D,使AB=BD,
∵∠DBC=120°,
解 ∵E为BC的中点,∴AE⊥BC,
当堂测·查疑缺
1
2
3
4
1.等边△ABC中, 与的夹角是( )A.30° B.45° C.60° D.120°
D
1
2
3
4
2.设e1、e2是不共线的两个向量,给出下列四组向量:①e1与e1+e2;②e1-2e2与e2-2e1;③e1-2e2与4e2-2e1;④e1+e2与e1-e2.其中能作为平面内所有向量的一组基底的序号是_________.(写出所有满足条件的序号)解析 对于③4e2-2e1=-2e1+4e2=-2(e1-2e2),∴e1-2e2与4e2-2e1共线,不能作为基底.
思考2 把一个向量分解为两个互相垂直的向量,叫做把向量正交分解.如图,向量i、j是两个互相垂直的单位向量,向量a与i的夹角是30°,且|a|=4,以向量i、j为基底,向量a如何表示?

高中数学人教版必修4知识点汇总

高中数学人教版必修4知识点汇总

1”作巧
妙的变形,
1. 3 诱导公式
1、诱导公式(五)
sin(
ห้องสมุดไป่ตู้) cos
2
cos(
) sin
2
2、诱导公式(六)
sin(
) cos
2
总结为一句话:函数正变余,符号看象限
小结:
①三角函数的简化过程图:
cos(
) sin
2
任意负角的 三角函数
公式一或三 任意正角的 三角函数
公式一或二或四 00~3600 间角 的三角函数
..
..
1.1 . 1 任意角
1.角的有关概念: ①角的定义:
角可以看成平面一条射线绕着端点从一个位置旋转到另一个位置所形成的图形.
②角的名称:
始边 B
终边
③角的分类:
O
A
顶点
正角:按逆时针方向旋转形成的角
零角:射线没有任何旋转形成的角
负角:按顺时针方向旋转形成的角
④注意: ⑴在不引起混淆的情况下, “角α ”或“∠α ”可以简化成“α ”; ⑵零角的终边与始边重合,如果α是零角α =0 °; ⑶角的概念经过推广后,已包括正角、负角和零角. 2.象限角的概念: ①定义:若将角顶点与原点重合, 角的始边与 x 轴的非负半轴重合, 那么角的终边 ( 端点除外 ) 在第几象限,我们就说这个角是第几象限角.
tan cot
1(
k ,k
Z) ;
2
③对这些关系式不仅要牢固掌握,还要能灵活运用(正用、反用、变形用) ,如:
cos
1 sin2

2
sin
2
1 cos

cos
sin 等。

人教版高中数学必修四 (空间中点、线、面的位置关系)

人教版高中数学必修四 (空间中点、线、面的位置关系)

教案漂市一中钱少锋点A不在直线l上l A∉2.两条直线位置关系符号表示图形表示直线a与l 相交Ala=直线a与l 平行l a//直线a与l 异面异面与la异面直线的定义:空间中的两条直线既不平行也相交,则称这两条直线异面.两条直线异面,则它们不同在任何一个平面内. 用平面衬托的方法表示异面直线.3.点与平面空间中的平面也可看成这个平面上的所有点组成的集合.位置关系符号表示图形表示点A 在平面α内 α∈A点A 不是平面α内的点 α∉A4. 直线与平面(1)直线在平面α内(或平面α过直线l ):直线l 上的所有点都在平面α内,记作α⊂l .(2)直线l 在平面α外:直线l 上至少有一个点不在平面α内,记作α⊄l .①直线l 与平面α相交:直线l 与平面α有且只有一个公共点A ,记作A l =α .②直线l 与平面α平行:直线l 与平面α没有公共点,记作α//l .5. 平面与平面 位置关系 符号表示 图形表示平面βα与相交l =βα平面βα与平行βα//三、直线与平面垂直1. 直线与平面垂直的定义:如果直线l与平面α相交于点A,且对平面α内任意一条过点A的直线m,都有ml⊥,则称直线l与平面α垂直(或l是平面α的一条垂线,α是直线l的一个垂面),记作α⊥l.其中点A称为垂足.2.点与面的距离:给定空间中的一个平面α及一个点A,过点A作只可以作平面α的一条垂线,如果记垂足为B,则称B为A在平面α内的射影(也称投影),线段AB为平面α的垂线段,AB的长为点A到平面α的距离.3.直线与平面的距离:当直线与平面平行时,直线上任意一点到平面的距离称为这条直线到这个平面的距离;4.两个平行平面的距离:当平面与平面平行时,一个平面上的任意一点到另一个平面的距离称为这两平行平面之间的距离.以可以取其中任一点来作点面距来求线面距离.两个平面平行时,其中一个平面的每一点到另一个平面距离都相等,所以可以转化为点面距来处理.例题例1 判断下列命题是否正确.(1)若直线l上有无数个点不在平面α内,则α//l.( )(2)若直线l与平面α平行,则l与平面α内的任意一条直线都平行. ( )(3)若直线l与平面α平行,则l与平面α内的任意一条直线都没有公共点. ( )【答案】(1)错;(2)错;(3)对.例2 在正方体1111DCBAABCD-中,(1)与直线1AA异面的棱有条;(2)与直线BA1相交的棱有条;(3)直线BA1与直线CB1的位置关系是;(4)直线BA1与直线CD1的位置关系对线面平行关系的定义的认识,线与面没有公共点即线与平面中的所有线都没有公共点,且直线上的所有点都不在平面内,这与直线上无数个点都不在平面上不同.两条直线的平行依赖于在同一平面内没有公共点,所以仅由直线与平面平行不可得到.是 .【答案】(1)排除相交和平行的情况,4条;(2)从一个顶点出发的棱有3条,所以共有6条; (3)异面,通过找到衬托平面来判断; (4)平行.例3 已知1111D C B A ABCD -是长方体,且2,3,41===AA AD AB .(1)求点A 到平面11B BCC 的距离;(2)求直线AB 到平面1111D C B A 的距离;(3)求平面11A ADD 与平面11B BCC 之间的距离. 【答案】(1)4;(2)2;(3)4.在正方体内,判断两条直线的位置关系,通过对图形的观察,熟练掌握位置关系描述和判断的方法.通过找线面垂直,完成距离的求解.【素材积累】1、一个房产经纪人死后和上帝的对话一个房产经纪人死后,和上帝喝茶。

人教版高中数学高一A版必修4 第二章第四节平面向量的数量积(第三课时)

人教版高中数学高一A版必修4 第二章第四节平面向量的数量积(第三课时)

第二章第四节平面向量的数量积第三课时整体设计教学分析平面向量的数量积,教材将其分为两部分.在第一部分向量的数量积中,首先研究平面向量所成的角,其次,介绍了向量数量积的定义,最后研究了向量数量积的基本运算法则和基本结论;在第二部分平面向量数量积的坐标表示中,在平面向量数量积的坐标表示的基础上,利用数量积的坐标表示研讨了平面向量所成角的计算方式,得到了两向量垂直的判定方法,本节是平面向量数量积的第二部分.前面我们学习了平面向量的数量积,以及平面向量的坐标表示.那么在有了平面向量的坐标表示以及坐标运算的经验和引进平面向量的数量积后,就顺其自然地要考虑到平面向量的数量积是否也能用坐标表示的问题.另一方面,由于平面向量数量积涉及了向量的模、夹角,因此在实现向量数量积的坐标表示后,向量的模、夹角也都可以与向量的坐标联系起来.利用平面向量的坐标表示和坐标运算,结合平面向量与平面向量数量积的关系来推导出平面向量数量积以及向量的模、夹角的坐标表示.教师应在坐标基底向量的数量积的基础上,推导向量数量积的坐标表示.通过例题分析、课堂训练,让学生总结归纳出对于向量的坐标、数量积、向量所成角及模等几个因素,知道其中一些因素,求出其他因素基本题型的求解方法.平面向量数量积的坐标表示是在学生学习了平面向量的坐标表示和平面向量数量积的基础上进一步学习的,这都为数量积的坐标表示奠定了知识和方法基础.三维目标1.通过探究平面向量的数量积的坐标运算,掌握两个向量数量积的坐标表示方法.2.掌握两个向量垂直的坐标条件以及能运用两个向量的数量积的坐标表示解决有关长度、角度、垂直等几何问题.3.通过平面向量数量积的坐标表示,进一步加深学生对平面向量数量积的认识,提高学生的运算速度,培养学生的运算能力和创新能力,提高学生的数学素质.重点难点教学重点:平面向量数量积的坐标表示.教学难点:向量数量积的坐标表示的应用.课时安排1课时教学过程导入新课思路1.平面向量的表示方法有几何法和坐标法,向量的表示形式不同,对其运算的表示方式也会改变.向量的坐标表示为我们解决有关向量的加、减、数乘运算带来了极大的方便.上一节,我们学习了平面向量的数量积,那么向量的坐标表示,对平面向量的数量积的表示方式又会带来哪些变化呢?由此直接进入主题.思路2.在平面直角坐标系中,平面向量可以用有序实数对来表示,两个平面向量共线的条件也可以用坐标运算的形式刻画出来,那么学习了平面向量的数量积之后,它能否用坐标来表示?若能,如何通过坐标来实现呢?平面向量的数量积还会是一个有序实数对吗?同时,平面向量的模、夹角又该如何用坐标来表示呢?通过回顾两个向量的数量积的定义和向量的坐标表示,在此基础上引导学生推导、探索平面向量数量积的坐标表示.推进新课新知探究提出问题①平面向量的数量积能否用坐标表示?②已知两个非零向量a =(x 1,y 1),b =(x 2,y 2),怎样用a 与b 的坐标表示a·b 呢?③怎样用向量的坐标表示两个平面向量垂直的条件?④你能否根据所学知识推导出向量的长度、距离和夹角公式?活动:教师引导学生利用前面所学知识对问题进行推导和探究.前面学习了向量的坐标可以用平面直角坐标系中的有序实数对来表示,而且我们也知道了向量的加、减以及实数与向量积的线性运算都可以用坐标来表示.两个向量共线时它们对应的坐标也具备某种关系,那么我们就自然而然地想到既然向量具有数量积的运算关系,这种运算关系能否用向量的坐标来表示呢?教师提示学生在向量坐标表示的基础上结合向量的坐标运算进行推导数量积的坐标表示.教师可以组织学生到黑板上板书推导过程,教师给予必要的提示和补充.推导过程如下:∵a =x 1i +y 1j ,b =x 2i +y 2j ,∴a·b =(x 1i +y 1j )·(x 2i +y 2j )=x 1x 2i 2+x 1y 2i·j +x 2y 1i·j +y 1y 2j 2.又∵i·i =1,j·j =1,i·j =j·i =0,∴a·b =x 1x 2+y 1y 2.教师给出结论性的总结,由此可归纳如下:1°平面向量数量积的坐标表示两个向量的数量积等于它们对应坐标的乘积的和,即a =(x 1,y 1),b =(x 2,y 2),则a·b =x 1x 2+y 1y 2.2°向量模的坐标表示若a =(x ,y ),则|a |2=x 2+y 2,或|a |=x 2+y 2. 如果表示向量a 的有向线段的起点和终点的坐标分别为(x 1,y 1)、(x 2,y 2),那么 a =(x 2-x 1,y 2-y 1),|a |=(x 2-x 1)2+(y 2-y 1)2. 3°两向量垂直的坐标表示设a =(x 1,y 1),b =(x 2,y 2),则a ⊥b ⇔x 1x 2+y 1y 2=0.4°两向量夹角的坐标表示设a 、b 都是非零向量,a =(x 1,y 1),b =(x 2,y 2),θ是a 与b 的夹角,根据向量数量积的定义及坐标表示,可得cos θ=a·b |a||b|=x 1x 2+y 1y 2x 21+y 21·x 22+y 22.讨论结果:略.应用示例例1已知A (1,2),B (2,3),C (-2,5),试判断△ABC 的形状,并给出证明.活动:教师引导学生利用向量数量积的坐标运算来解决平面图形的形状问题.判断平面图形的形状,特别是三角形的形状时主要看边长是否相等,角是否为直角.可先作出草图,进行直观判定,再去证明.在证明中若平面图形中有两个边所在的向量共线或者模相等,则此平面图形与平行四边形有关;若三角形的两条边所在的向量模相等或者由两边所在向量的数量积为零,则此三角形为等腰三角形或者为直角三角形.教师可以让学生多总结几种判断平面图形形状的方法.解:在平面直角坐标系中标出A (1,2),B (2,3),C (-2,5)三点,我们发现△ABC 是直角三角形.下面给出证明.∵AB →=(2-1,3-2)=(1,1),AC →=(-2-1,5-2)=(-3,3),∴AB →·AC →=1×(-3)+1×3=0.∴AB →⊥AC →.∴△ABC 是直角三角形.点评:本题考查的是向量数量积的应用,利用向量垂直的条件和模长公式来判断三角形的形状.当给出要判定的三角形的顶点坐标时,首先要作出草图,得到直观判定,然后对你例2(1)已知三点A (2,-2),B (5,1),C (1,4),求∠BAC 的余弦值;(2)a =(3,0),b =(-5,5),求a 与b 的夹角.活动:教师让学生利用向量的坐标运算求出两向量a =(x 1,y 1)与b =(x 2,y 2)的数量积a·b =x 1x 2+y 1y 2和模|a |=x 21+y 21,|b |=x 22+y 22的积,其比值就是这两个向量夹角的余弦值,即cos θ=a·b |a||b|=x 1x 2+y 1y 2x 21+y 21·x 22+y 22.当求出两向量夹角的余弦值后再求两向量的夹角大小时,需注意两向量夹角的范围是0≤θ≤π.学生在解这方面的题目时需要把向量的坐标表示清楚,以免出现不必要的错误.解:(1)AB →=(5,1)-(2,-2)=(3,3),AC →=(1,4)-(2,-2)=(-1,6),∴AB →·AC →=3×(-1)+3×6=15.又∵|AB →|=32+32=32,|AC →|=(-1)2+62=37,∴cos ∠BAC =AB →·AC →|AB →||AC →|=1532·37=57474. (2)a·b =3×(-5)+0×5=-15,|a|=3,|b |=5 2.设a 与b 的夹角为θ,则cos θ=a·b |a||b |=-153×52=-22. 又∵0≤θ≤π,∴θ=3π4. 点评:本题考查的是利用向量的坐标表示来求两向量的夹角.利用基本公式进行运算与例3已知|a |=3,b =(2,3),试分别解答下面两个问题:(1)若a ⊥b ,求a ;(2)若a ∥b ,求a .活动:对平面中的两向量a =(x 1,y 1)与b =(x 2,y 2),要让学生在应用中深刻领悟其本质属性,向量垂直的坐标表示x 1x 2+y 1y 2=0与向量共线的坐标表示x 1y 2-x 2y 1=0很容易混淆,应仔细比较并熟记,当难以区分时,要从意义上鉴别,两向量垂直是a·b =0,而共线是方向相同或相反.教师可多加强反例练习,多给出这两种类型的变形训练.解:(1)设a =(x ,y ),由|a |=3且a ⊥b ,得⎩⎪⎨⎪⎧x 2+y 2=|a |2=9,2x +3y =0, 解得⎩⎨⎧ x =-91313,y =61313或⎩⎨⎧ x =91313,y =-61313. ∴a =(-91313,61313)或a =(91313,-61313). (2)设a =(x ,y ),由|a |=3且a ∥b ,得⎩⎪⎨⎪⎧x 2+y 2=|a |2=9,3x -2y =0, 解得⎩⎨⎧ x =61313,y =91313或⎩⎨⎧ x =-61313,y =-91313.∴a =(61313,91313)或a =(-61313,-91313). 点评:本题主要考查学生对公式的掌握情况,学生能熟练运用两向量的坐标运算来判断知能训练课本本节练习.解答:1.|a|=5,|b|=29,a·b =-7.2.a·b =8,(a +b )·(a -b )=-7,a·(a +b )=0,(a +b )2=49.3.a·b =1,|a|=13,|b|=74,θ≈88°.课堂小结1.在知识层面上,先引导学生归纳平面向量数量积的坐标表示,向量的模,两向量的夹角,向量垂直的条件.其次引导学生总结数量积的坐标运算规律,夹角和距离公式、两向量垂直的坐标表示.2.在思想方法上,教师与学生一起回顾探索过程中用到的思维方法和数学思想方法,定义法,待定系数法等.作业课本习题2.4 A组8、9、10.设计感想由于本节课是对平面向量的进一步探究与应用,是对平面向量几何意义的综合研究提高,因此教案设计流程是探究、发现、应用、提高,这符合新课程理念,符合新课标要求.我们知道平面向量的数量积是本章最重要的内容,也是高考中的重点,既有选择题、填空题,也有解答题(大多同立体几何、解析几何综合考查),故学习时要熟练掌握基本概念和性质及其综合运用.而且数量积的坐标表示又是向量运算的一个重要内容,用坐标表示直角坐标平面内点的位置,是解析几何的一个基本特征,从而以坐标为桥梁可以建立向量与解析几何的内在联系.以三角函数表示点的坐标,又可以沟通向量与三角函数的相互关系,由此就产生出一类向量与解析几何及三角函数交汇的综合性问题.平面向量数量积的坐标表示使得向量数量积的应用更为方便,也拓宽了向量应用的途径.通过学习本节的内容,要更加加深对向量数量积概念的理解,同时善于运用坐标形式运算解决数量问题,尤其是有关向量的夹角、长度、垂直等,往往可以使问题简单化.灵活使用坐标形式,综合处理向量的线性运算、数量积、平行等,综合地解决向量综合题,体现数形结合的思想.在本节的学习中可以通过对实际问题的抽象来培养学生分析问题、解决问题和应用知识解决问题的意识与能力.备课资料一、|a·b|≤|a||b|的应用若a=(x1,y1),b=(x2,y2),则平面向量的数量积的性质|a·b|≤|a||b|的坐标表示为x1x2+y1y2≤x21+y21x22+y22⇔(x1x2+y1y2)2≤(x21+y21)(x22+y22).不等式(x1x2+y1y2)2≤(x21+y21)(x22+y22)有着非常广泛的应用,由此还可以推广到一般(柯西不等式):(a1b1+a2b2+…+a n b n)2≤(a21+a22+…+a2n)(b21+b22+…+b2n).例1(1)已知实数x,y满足x+y-4=0,则x2+y2的最小值是________;(2)已知实数x,y满足(x+2)2+y2=1,则2x-y的最大值是________.解析:(1)令m=(x,y),n=(1,1).∵|m·n|≤|m||n|,∴|x+y|≤x2+y2·2,即2(x2+y2)≥(x+y)2=16.∴x2+y2≥8,故x2+y2的最小值是8.(2)令m=(x+2,y),n=(2,-1),2x-y=t.由|m·n|≤|m||n|,得|2(x+2)-y|≤(x+2)2+y2·5=5,即|t+4|≤ 5.解得-4-5≤t≤5-4.故所求的最大值是5-4.答案:(1)8 (2)5-4例2已知a,b∈R,θ∈(0,π2),试比较a2cos2θ+b2sin2θ与(a+b)2的大小.解:构造向量m=(acosθ,bsinθ),n=(cosθ,sinθ),由|m·n|≤|m||n|得(a cos θcos θ+b sin θsin θ)2≤(a 2cos 2θ+b 2sin 2θ)(cos 2θ+sin 2θ), ∴(a +b )2≤a 2cos 2θ+b 2sin 2θ. 同类变式:已知a ,b ∈R ,m ,n ∈R ,且mn ≠0,m 2n 2>a 2m 2+b 2n 2,令M =m 2+n 2,N =a +b ,比较M 、N 的大小.解:构造向量p =(a n ,b m),q =(n ,m ),由|p ·q |≤|p ||q |得 (a n ×n +b m ×m )2≤(a 2n 2+b 2m 2)(m 2+n 2)=a 2m 2+b 2n 2n 2m 2(m 2+n 2)<m 2+n 2, ∴M >N .例3设a ,b ∈R ,A ={(x ,y )|x =n ,y =na +b ,n ∈Z },B ={(x ,y )|x =m ,y =3m 2+15,m ∈Z },C ={(x ,y )|x 2+y 2≤144}是直角坐标平面xOy 内的点集,讨论是否存在a 和b ,使得A ∩B ≠∅与(a ,b )∈C 能同时成立.解:此问题等价于探求a 、b 是否存在的问题,它满足⎩⎪⎨⎪⎧na +b =3n 2+15,①a 2+b 2≤144. ② 设存在a 和b 满足①②两式,构造向量m =(a ,b ),n =(n,1).由|m ·n |2≤|m |2|n |2得(na +b )2≤(n 2+1)(a 2+b 2),∴(3n 2+15)2≤144(n 2+1)⇒n 4-6n 2+9≤0.解得n =±3,这与n ∈Z 矛盾,故不存在a 和b 满足条件.二、备用习题1.若a =(2,-3),b =(x,2x ),且a ·b =43,则x 等于( ) A .3 B.13C .-13D .-3 答案:C2.设a =(1,2),b =(1,m ),若a 与b 的夹角为钝角,则m 的取值范围是( )A .m >12B .m <12C .m >-12D .m <-12答案:D3.若a =(cos α,sin α),b =(cos β,sin β),则( )A .a ⊥bB .a ∥bC .(a +b )⊥(a -b )D .(a +b )∥(a -b )答案:C4.与a =(u ,v )垂直的单位向量是( )A .(-v u 2+v 2,u u 2+v2) B .(v u 2+v 2,-u u 2+v2) C .(v u 2+v 2,u u 2+v 2) D .(-v u 2+v 2,u u 2+v 2)或(v u 2+v 2,-u u 2+v2) 答案:D5.已知向量a =(cos23°,cos67°),b =(cos68°,cos22°),u =a +t b (t ∈R ),求u 的模的最小值.答案:解:|a |=cos 223°+cos 267°=cos 223°+sin 223°=1,同理有|b |=1.又a ·b =cos23°cos68°+cos67°cos22°=cos23°cos68°+sin23°sin68°=cos45°=22, ∴|u |2=(a +t b )2=a 2+2t a·b +t 2b 2=t 2+2t +1=(t +22)2+12≥12. 当t =-22时,|u |min =22. 6.已知△ABC 的三个顶点为A (1,1),B (3,1),C (4,5),求△ABC 的面积.答案:分析:S △ABC =12|AB →||AC →|sin ∠BAC ,而|AB →|,|AC →|易求,要求sin ∠BAC 可先求出cos ∠BAC .解:∵AB →=(2,0),AC →=(3,4),|AB →|=2,|AC →|=5,∴cos ∠BAC =AB →·AC →|AB →||AC →|=2×3+0×42×5=35. ∴sin ∠BAC =45. ∴S △ABC =12|AB →||AC →|sin ∠BAC =12×2×5×45=4. 三、新教材新教法的二十四个“化”字诀新课导入新颖化,揭示概念美丽化;纵横相联过程化,探索讨论热烈化;探究例题多变化,引导思路发散化;学生活动主体化,一石激浪点拨化;大胆猜想多样化,论证应用规律化;变式训练探究化,课堂教学艺术化;学法指导个性化,对待学生情感化;作业抛砖引玉化,选题质量层次化;学生学习研究化,知识方法思想化;抓住闪光激励化,教学相长平等化;教学意识超前化,与时俱进媒体化;灵活创新智慧化,学生素质国际化.。

2017-2018学年高中数学必修4全册学案含解析人教A版287P

2017-2018学年高中数学必修4全册学案含解析人教A版287P

2017~2018学年人教A版高中数学必修4全册学案解析目录✧第一章三角函数1.1.1任意角✧第一章三角函数1.1.2蝗制✧第一章三角函数1.2.1任意角的三角函数第一课时三角函数的定义✧第一章三角函数1.2.1任意角的三角函数第二课时三角函数线及其应用✧第一章三角函数1.2.2同角三角函数的基本关系✧第一章三角函数1.3三角函数的诱导公式一✧第一章三角函数1.3三角函数的诱导公式二✧第一章三角函数1.4.1正弦函数余弦函数的图象✧第一章三角函数1.4.2正弦函数余弦函数的性质一✧第一章三角函数1.4.2正弦函数余弦函数的性质二✧第一章三角函数1.4.3正切函数的性质与图象✧第一章三角函数1.5函数y=Asinωx+φ的图象一✧第一章三角函数1.5函数y=Asinωx+φ的图象二✧第一章三角函数1.6三角函数模型的简单应用✧第二章平面向量2.1平面向量的实际背景及基本概念✧第二章平面向量2.2.1向量加法运算及其几何意义✧第二章平面向量2.2.2向量减法运算及其几何意义✧第二章平面向量2.2.3向量数乘运算及其几何意义✧第二章平面向量2.3.1平面向量基本定理✧第二章平面向量2.3.2平面向量的正交分解及坐标表示2.3.3平面向量的坐标运算✧第二章平面向量2.3.4平面向量共线的坐标表示✧第二章平面向量2.4.1平面向量数量积的物理背景及其含义✧第二章平面向量2.4.2平面向量数量积的坐标表示模夹角✧第二章平面向量2.5平面向量应用举例✧第三章三角恒等变换3.1.1两角差的余弦公式✧第三章三角恒等变换3.1.2两角和与差的正弦余弦正切公式1 ✧第三章三角恒等变换3.1.2两角和与差的正弦余弦正切公式2 ✧第三章三角恒等变换3.1.3二倍角的正弦余弦正切公式✧第三章三角恒等变换3.2简单的三角恒等变换1.1.1任意角[提出问题]问题1:当钟表慢了(或快了),我们会将分针按某个方向转动,把时间调整准确.在调整的过程中,分针转动的角度有什么不同?提示:旋转方向不同.问题2:在体操或跳水比赛中,运动员会做出“转体两周”“向前翻腾两周半”等动作,做上述动作时,运动员分别转体多少度?提示:顺时针方向旋转了720°或逆时针方向旋转了720°,顺时针方向旋转了900°.[导入新知]角的分类1.按旋转方向2.(1)角的终边在第几象限,则称此角为第几象限角;(2)角的终边在坐标轴上,则此角不属于任何一个象限.[化解疑难]1.任意角的概念认识任意角的概念应注意三个要素:顶点、始边、终边.(1)用旋转的观点来定义角,就可以把角的概念推广到任意角,包括任意大小的正角、负角和零角.(2)对角的概念的认识关键是抓住“旋转”二字.①要明确旋转方向;②要明确旋转角度的大小;③要明确射线未作任何旋转时的位置.2.象限角的前提条件角的顶点与坐标原点重合,角的始边与x轴的非负半轴重合.[提出问题]在条件“角的顶点与坐标原点重合,始边与x轴非负半轴重合”下,研究下列角:30°,390°,-330°.问题1:这三个角的终边位置相同吗?提示:相同.问题2:如何用含30°的式子表示390°和-330°?提示:390°=1×360°+30°,-330°=-1×360°+30°.问题3:确定一条射线OB,以它为终边的角是否唯一?提示:不唯一.[导入新知]终边相同的角所有与角α终边相同的角,连同角α在内,可构成一个集合S={}β|β=α+k·360°,k∈Z,即任一与角α终边相同的角,都可以表示成角α与整数个周角的和.[化解疑难]所有与角α终边相同的角,连同角α在内可以用式子k·360°+α,k∈Z表示,在运用时需注意以下几点.(1)k是整数,这个条件不能漏掉.(2)α是任意角.(3)k·360°,k∈Z与α之间用“+”连接,如k·360°-30°,k∈Z应看成k·360°+(-30°),k∈Z.(4)终边相同的角不一定相等,终边相同的角有无数个,它们相差周角的整数倍;相等的角终边一定相同.[例1] 已知角的顶点与坐标原点重合,始边落在x轴的非负半轴上,作出下列各角,并指出它们是第几象限角.(1)-75°;(2)855°;(3)-510°.[解] 作出各角,其对应的终边如图所示:(1)由图①可知:-75°是第四象限角.(2)由图②可知:855°是第二象限角.(3)由图③可知:-510°是第三象限角.[类题通法]象限角的判断方法(1)根据图形判定,在直角坐标系中作出角,角的终边落在第几象限,此角就是第几象限角.(2)根据终边相同的角的概念把角转化到0°~360°范围内,转化后的角在第几象限,此角就是第几象限角.[活学活用]在直角坐标系中,作出下列各角,在0°~360°范围内,找出与其终边相同的角,并判定它是第几象限角.(1)360°;(2)720°;(3)2 012°;(4)-120°.解:如图所示,分别作出各角,可以发现:(1)360°=0°+360°,(2)720°=0°+2×360°,因此,在0°~360°范围内,这两个角均与0°角终边相同.所以这两个角不属于任何一个象限.(3)2 012°=212°+5×360°,所以在0°~360°范围内,与2 012°角终边相同的角是212°,所以2 012°是第三象限角.(4)-120°=240°-360°,所以在0°~360°范围内,与-120°角终边相同的角是240°,所以-120°是第三象限角.[例2] (1)720°≤β<360°的元素β写出来.(2)分别写出终边在下列各图所示的直线上的角的集合.(3)写出终边落在图中阴影部分(包括边界)的角的集合.[解] (1)与角α=- 1 910°终边相同的角的集合为{}β|β=-1 910°+k ·360°,k ∈Z .∵-720°≤β<360°,∴-720°≤-1 910°+k ·360°<360°,∴31136≤k <61136, 故k =4,5,6.k =4时,β=-1 910°+4×360°=-470°.k =5时,β=-1 910°+5×360°=-110°.k =6时,β=-1 910°+6×360°=250°.(2)①在0°~360°范围内,终边在直线y =0上的角有两个,即0°和180°,因此,所有与0°角终边相同的角构成集合S 1={β|β=0°+k ·360°,k ∈Z},而所有与180°角终边相同的角构成集合S 2={β|β=180°+k ·360°,k ∈Z},于是,终边在直线y =0上的角的集合为S =S 1∪S 2={β|β=k ·180°,k ∈Z}.②由图形易知,在0°~360°范围内,终边在直线y =-x 上的角有两个,即135°和315°,因此,终边在直线y =-x 上的角的集合为S ={β|β=135°+k ·360°,k ∈Z}∪{β|β=315°+k ·360°,k ∈Z}={β|β=135°+k ·180°,k ∈Z}.③终边在直线y =x 上的角的集合为{β|β=45°+k ·180°,k ∈Z},结合②知所求角的集合为S ={β|β=45°+k ·180°,k ∈Z}∪{β|β=135°+k ·180°,k ∈Z}={β|β=45°+2k ·90°,k ∈Z}∪{β|β=45°+(2k +1)·90°,k ∈Z}={β|β=45°+k ·90°,k ∈Z}.(3)终边落在OA 位置上的角的集合为{α|α=90°+45°+k ·360°,k ∈Z}={α|α=135°+k ·360°,k ∈Z},终边落在OB 位置上的角的集合为{β|β=-30°+k ·360°,k ∈Z},故阴影部分角的集合可表示为{α|-30°+k ·360°≤α≤135°+k ·360°,k ∈Z}.[类题通法]1.常用的三个结论(1)终边相同的角之间相差360°的整数倍.(2)终边在同一直线上的角之间相差180°的整数倍.(3)终边在相互垂直的两直线上的角之间相差90°的整数倍.2.区域角是指终边落在坐标系的某个区域的角,其写法可分三步(1)先按逆时针方向找到区域的起始和终止边界;(2)由小到大分别标出起始、终止边界对应的一个角α,β,写出所有与α,β终边相同的角;(3)用不等式表示区域内的角,组成集合.[活学活用]1.将下列各角表示为α+k·360°(k∈Z,0°≤α<360°)的形式,并指出是第几象限角.(1)420°;(2)-495°;(3)1 020°.答案:(1)420°=60°+360°第一象限角(2)-495°=225°-2×360°第三象限角(3)1 020°=300°+2×360°第四象限角2.已知角α的终边在如图所示的阴影部分内,试指出角α的取值范围.答案:{α|30°+k·180°≤α<105°+k·180°,k∈Z}分别是第几象限角?[例3] 若α是第二象限角,则2α,2[解] (1)∵α是第二象限角,∴90°+k·360°<α<180°+k·360°(k∈Z),∴180°+k·720°<2α<360°+k·720°(k∈Z),∴2α是第三或第四象限的角,或角的终边在y轴的非正半轴上.(2)∵α是第二象限角,∴90°+k·360°<α<180°+k·360°(k∈Z),∴45°+k ·180°<α2<90°+k ·180°(k ∈Z). ①当k =2n (n ∈Z)时,45°+n ·360°<α2<90°+n ·360°(n ∈Z), 即α2是第一象限角; ②当k =2n +1(n ∈Z)时,225°+n ·360°<α2<270°+n ·360°(n ∈Z), 即α2是第三象限角. 故α2是第一或第三象限角. [类题通法]1.n α所在象限的判断方法确定n α终边所在的象限,先求出n α的范围,再直接转化为终边相同的角即可. 2.αn 所在象限的判断方法已知角α所在象限,要确定角αn所在象限,有两种方法: (1)用不等式表示出角αn的范围,然后对n 的取值分情况讨论:被n 整除;被n 除余1;被n 除余2;……;被n 除余n -1.从而得出结论.(2)作出各个象限的从原点出发的n 等分射线,它们与坐标轴把周角分成4n 个区域.从x 轴非负半轴起,按逆时针方向把这4n 个区域依次循环标上1,2,3,4.标号为几的区域,就是根据α终边所在的象限确定αn 的终边所落在的区域.如此,αn所在的象限就可以由标号区域所在的象限直观地看出.[活学活用]已知角α为第三象限角,试确定角2α,α2分别是第几象限角. 答案:2α可能是第一象限角、第二象限角或终边在y 轴非负半轴上的角α2可能是第二象限角或第四象限角1.角的概念的易错点[典例] 下列说法中正确的是( )A.三角形的内角必是第一、二象限角B.第一象限角必是锐角C.不相等的角终边一定不相同D.若β=α+k·360°(k∈Z),则α和β终边相同[解析] 90°角可以是三角形的内角,但它不是第一、二象限角;390°角是第一象限角,但它不是锐角;390°角和30°角不相等,但终边相同,故A、B、C均不正确.对于D,由终边相同的角的概念可知正确.[答案] D[易错防范]1.若三角形是直角三角形,则有一个角为直角,且直角的终边在y轴的非负半轴上,不属于任何象限.若忽视此点,则易错选A.2.锐角是第一象限角,但第一象限角不一定是锐角,如380°角为第一象限角,但它不是锐角.若混淆这两个概念,则易误选B.3.当角的范围扩充后,相差k·360°(k∈Z)的角的终边相同.若忽视此点,易错选C.4.解决好此类问题应注意以下三点:(1)弄清直角和象限角的区别,把握好概念的实质内容.(2)弄清锐角和象限角的区别.(3)对角的认识不能仅仅局限于0°~360°.[成功破障]下列说法:①锐角都是第一象限角;②第一象限角一定不是负角;③第二象限角大于第一象限角;④第二象限角是钝角;⑤小于180°的角是钝角、直角或锐角.其中正确命题的序号为________.答案:①[随堂即时演练]1.把一条射线绕着端点按顺时针方向旋转240°所形成的角的大小是( )A.120°B.-120°C.240° D.-240°答案:D2.与-457°角的终边相同的角的集合是( )A.{α|α=457°+k·360°,k∈Z}B.{α|α=97°+k·360°,k∈Z}C.{α|α=263°+k·360°,k∈Z}D.{α|α=-263°+k·360°,k∈Z}答案:C3.下列说法中正确的序号有________.①-65°是第四象限角;②225°是第三象限角;③475°是第二象限角;④-315°是第一象限角.答案:①②③④4.在0°~360°范围内与-1 050°终边相同的角是________,它是第________象限角.答案:30°一5.试写出终边在直线y=-3x上的角的集合S,并把S中适合不等式-180°≤α<180°的元素α写出来.答案:S={α|α=120°+k·180°,k∈Z} 适合不等式-180°≤α<180°的元素α为-60°,120°[课时达标检测]一、选择题1.-435°角的终边所在的象限是( )A.第一象限B.第二象限C.第三象限 D.第四象限答案:D2.终边在第二象限的角的集合可以表示为( )A.{α|90°<α<180°}B.{α|90°+k·180°<α<180°+k·180°,k∈Z}C.{α|-270°+k·180°<α<-180°+k·180°,k∈Z}D.{α|-270°+k·360°<α<-180°+k·360°,k∈Z}答案:D3.若α是第四象限角,则-α一定是( )A.第一象限角 B.第二象限角C.第三象限角 D.第四象限角答案:A4.集合M={α|α=k·90°,k∈Z}中各角的终边都在( )A.x轴非负半轴上B.y轴非负半轴上C.x轴或y轴上D.x轴非负半轴或y轴非负半轴上答案:C5.角α与角β的终边关于y轴对称,则α与β的关系为( )A.α+β=k·360°,k∈ZB.α+β=k·360°+180°,k∈ZC.α-β=k·360°+180°,k∈ZD.α-β=k·360°,k∈Z答案:B二、填空题6.已知角α=-3 000°,则与角α终边相同的最小正角是________.答案:240°7.如果将钟表拨快10分钟,则时针所转成的角度是________度,分针所转成的角度是________度.答案:-5 -608.已知角2α的终边在x轴的上方,那么α是第________象限角.答案:一或三三、解答题9.如果θ为小于360°的正角,这个角θ的4倍角的终边与这个角的终边重合,求θ的值.解:由题意得4θ=θ+k·360°,k∈Z,∴3θ=k·360°,θ=k·120°,又0°<θ<360°,∴θ=120°或θ=240°.10.已知α,β都是锐角,且α+β的终边与-280°角的终边相同,α-β的终边与670°角的终边相同,求角α,β的大小.解:由题意可知,α+β=-280°+k·360°,k∈Z.∵α,β都是锐角,∴0°<α+β<180°.取k=1,得α+β=80°.①α-β=670°+k·360°,k∈Z,∵α,β都是锐角,∴-90°<α-β<90°.取k=-2,得α-β=-50°.②由①②,得α=15°,β=65°.11.写出终边在下列各图所示阴影部分内的角的集合.解:先写出边界角,再按逆时针顺序写出区域角,则得(1){α|30°+k·360°≤α≤150°+k·360°,k∈Z};(2){α|150°+k·360°≤α≤390°+k·360°,k∈Z}.1.1.2 弧 度 制[提出问题]问题1:在角度制中,把圆周等分成360份,其中的一份是多少度? 提示:1°.问题2:半径为1的圆的周长是2π,即周长为2π时,对应的圆心角是360°,那么弧长为π时,对应的圆心角是多少?提示:180°.问题3:在给定半径的圆中,弧长一定时,圆心角确定吗? 提示:确定. [导入新知] 1.角度制与弧度制 (1)角度制①定义:用度作为单位来度量角的单位制. ②1度的角:周角的1360作为一个单位. (2)弧度制①定义:以弧度作为单位来度量角的单位制. ②1弧度的角:长度等于半径长的弧所对的圆心角. 2.任意角的弧度数与实数的对应关系正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0. 3.角的弧度数的计算如果半径为r 的圆的圆心角α所对弧的长为l ,那么,角α的弧度数的绝对值是|α|=l r.[化解疑难]角度制和弧度制的比较(1)弧度制与角度制是以不同单位来度量角的单位制. (2)1弧度的角与1度的角所指含义不同,大小更不同.(3)无论是以“弧度”还是以“度”为单位来度量角,角的大小都是一个与“半径”大小无关的值.(4)用“度”作为单位度量角时,“度”(即“°”)不能省略,而用“弧度”作为单位度量角时,“弧度”二字或“rad”通常省略不写.[提出问题]问题1:周角是多少度?是多少弧度? 提示:360°,2π.问题2:半圆所对的圆心角是多少度?是多少弧度? 提示:180°,π.问题3:既然角度与弧度都是角的度量单位制,那么它们之间如何换算? 提示:π=180°. [导入新知]1.弧度与角度的换算[化解疑难]角度与弧度互化的原则和方法 (1)原则:牢记180°=π rad , 充分利用1°=π180 rad ,1 rad =⎝⎛⎭⎪⎫180π°进行换算.(2)方法:设一个角的弧度数为α,角度数为n , 则α rad =⎝⎛⎭⎪⎫α·180π°;n °=n ·π180 rad.[扇形的弧长及面积公式设扇形的半径为R ,弧长为l ,α(0<α<2π)为其圆心角,则扇形的弧长及面积公式的记忆(1)扇形的弧长公式的实质是角的弧度数的计算公式的变形:|α|=l r⇔l =r |α|. (2)扇形的面积公式S =12lR 与三角形的面积公式极为相似(把弧长看作底,把半径看作高),可以类比记忆.[例1] (1)72°;(2)-300°;(3)2;(4)-2π9.[解] (1)72°=72×π180=2π5;(2)-300°=-300×π180=-5π3;(3)2=2×⎝⎛⎭⎪⎫180π°=⎝ ⎛⎭⎪⎫360π°;(4)-2π9=-⎝ ⎛⎭⎪⎫2π9×180π°=-40°.[类题通法] 角度与弧度互化技巧在进行角度与弧度的换算时,抓住关系式π rad =180°是关键,由它可以得到:度数×π180=弧度数,弧度数×180π=度数. [活学活用]已知α=15°,β=π10,γ=1,θ=105°,φ=7π12,试比较α,β,γ,θ,φ的大小.答案:α<β<γ<θ=φ[例2] 2. (2)已知一半径为R 的扇形,它的周长等于所在圆的周长,那么扇形的圆心角是多少弧度?面积是多少?[解] (1)4(2)设扇形的弧长为l ,由题意得2πR =2R +l ,所以l =2(π-1)R ,所以扇形的圆心角是lR=2(π-1),扇形的面积是12Rl =(π-1)R 2.[类题通法]弧度制下涉及扇形问题的攻略(1)明确弧度制下扇形的面积公式是S =12lr =12|α|r 2(其中l 是扇形的弧长,r 是扇形的半径,α是扇形的圆心角).(2)涉及扇形的周长、弧长、圆心角、面积等的计算,关键是先分析题目已知哪些量求哪些量,然后灵活运用弧长公式、扇形面积公式直接求解或列方程(组)求解.注意:运用弧度制下的弧长公式及扇形面积公式的前提是α为弧度. [活学活用]已知扇形的周长是30 cm ,当它的半径和圆心角各取什么值时,才能使扇形的面积最大?最大面积是多少?答案:r =152 cm 时,α=2,扇形面积最大,最大面积为2254cm 2.[例3] 的角的集合.[解] (1)如题图①,∵330°角的终边与-30°角的终边相同,将-30°化为弧度,即-π6, 而75°=75×π180=5π12,∴终边落在阴影部分内(不包括边界)的角的集合为⎩⎨⎧θ⎪⎪⎪⎭⎬⎫2k π-π6<θ<2k π+5π12,k ∈Z .(2)如题图②,∵30°=π6,210°=7π6,这两个角的终边所在的直线相同,因此终边在直线AB 上的角为α=k π+π6,k ∈Z ,又终边在y 轴上的角为β=k π+π2,k ∈Z ,从而终边落在阴影部分内(不包括边界)的角的集合为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫θ⎪⎪⎪k π+π6<θ<k π+π2,k ∈Z . [类题通法]用弧度制表示角应关注的三点(1)用弧度表示区域角,实质是角度表示区域角在弧度制下的应用,必要时需进行角度与弧度的换算.注意单位要统一.(2)在表示角的集合时,可以先写出一周范围(如-π~π,0~2π)内的角,再加上2k π,k ∈Z.(3)终边在同一直线上的角的集合可以合并为{x |x =α+k π,k ∈Z};终边在相互垂直的两直线上的角的集合可以合并为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =α+k ·π2,k ∈Z. 在进行区间合并时,一定要做到准确无误. [活学活用]以弧度为单位,写出终边落在直线y =-x 上的角的集合. 答案:αα=34π+k π,k ∈Z1.弧度制下的对称关系[典例] 若角α的终边与角π6的终边关于直线y =x 对称,且α∈(-4π,4π),则α=________.[解析] 如图所示,设角π6的终边为OA ,OA 关于直线y =x 对称的射线为OB ,则以OB 为终边且在0到2π之间的角为π3,故以OB 为终边的角的集合为αα=π3+2k π,k ∈Z.∵α∈(-4π,4π), ∴-4π<π3+2k π<4π(k ∈Z),∴-136<k <116(k ∈Z).∵k ∈Z ,∴k =-2,-1,0,1,∴α=-11π3,-5π3,π3,7π3.[答案] -11π3,-5π3,π3,7π3[多维探究]在弧度制下,常见的对称关系如下(1)若α与β的终边关于x 轴对称,则α+β=2k π(k ∈Z); (2)若α与β的终边关于y 轴对称,则α+β=(2k +1)π(k ∈Z); (3)若α与β的终边关于原点对称,则α-β=(2k +1)π(k ∈Z); (4)若α与β的终边在一条直线上,则α-β=k π(k ∈Z). [活学活用]1.若α和β的终边关于x 轴对称,则α可以用β表示为( ) A .2k π+β (k ∈Z) B .2k π-β (k ∈Z) C .k π+β (k ∈Z) D .k π-β (k ∈Z) 答案:B2.在平面直角坐标系中,α=-2π3,β的终边与α的终边分别有如下关系时,求β.(1)若α,β的终边关于x 轴对称; (2)若α,β的终边关于y 轴对称; (3)若α,β的终边关于原点对称; (4)若α,β的终边关于直线x +y =0对称. 答案:(1)β=2π3+2k π,k ∈Z(2)β=-π3+2k π,k ∈Z(3)β=π3+2k π,k ∈Z(4)β=π6+2k π,k ∈Z[随堂即时演练]1.下列命题中,错误的是( )A .“度”与“弧度”是度量角的两种不同的度量单位B .1°的角是周角的1360,1 rad 的角是周角的12πC .1 rad 的角比1°的角要大D .用弧度制度量角时,角的大小与圆的半径有关 答案:D2.若α=-2 rad ,则α的终边在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限答案:C3.-135°化为弧度为______,11π3化为角度为______.答案:-34π 660°4.已知半径为12 cm ,弧长为8π cm 的弧,其所对的圆心角为α,则与角α终边相同的角的集合为______________.答案:⎩⎨⎧α⎪⎪⎪⎭⎬⎫α=2π3+2k π,k ∈Z5.设角α=-570°,β=3π5.(1)将α用弧度制表示出来,并指出它所在的象限;(2)将β用角度制表示出来,并在-720°~0°之间找出与它有相同终边的所有角. 答案:(1)α=-19π6;α在第二象限;(2)β=108°;在-720°~0°之间与β有相同终边的角的大小为-612°和-252°.[课时达标检测]一、选择题1.下列命题中,正确的是( ) A .1弧度是1度的圆心角所对的弧 B .1弧度是长度为半径长的弧 C .1弧度是1度的弧与1度的角之和 D .1弧度是长度等于半径长的弧所对的圆心角 答案:D2.1 920°化为弧度数为( ) A.163 B.323 C.16π3D.32π3答案:D 3.29π6是( ) A .第一象限角 B .第二象限角 C .第三象限角 D .第四象限角答案:B4.圆弧长度等于其所在圆内接正三角形的边长,则该圆弧所对圆心角的弧度数为( ) A.π3B.2π3C. 3 D .2答案:C5.集合P ={α|2k π≤α≤(2k +1)π,k ∈Z},Q ={α|-4≤α≤4},则P ∩Q 等于( ) A .∅B .{α|-4≤α≤-π,或0≤α≤π}C .{α|-4≤α≤4}D .{α|0≤α≤π} 答案:B二、填空题6.用弧度制表示终边落在x 轴上方的角的集合为________. 答案:{α|2k π<α<2k π+π,k ∈Z}7.如果一个圆的半径变为原来的一半,而弧长变为原来的32倍,则该弧所对的圆心角是原来的________倍.答案:38.若角α的终边与85π的终边相同,则在[0,2π]上,终边与α4的终边相同的角有________.答案:2π5,9π10,7π5,19π10三、解答题9.已知α=-800°.(1)把α改写成β+2k π(k ∈Z,0≤β<2π)的形式,并指出α是第几象限角;(2)求γ,使γ与α的终边相同,且γ∈⎝ ⎛⎭⎪⎫-π2,π2.解:(1)∵-800°=-3×360°+280°,280°=149π,∴α=-800°=14π9+(-3)×2π.∵α与角14π9终边相同,∴α是第四象限角.(2)∵与α终边相同的角可写为2k π+14π9,k ∈Z 的形式,而γ与α的终边相同,∴γ=2k π+14π9,k ∈Z.又γ∈⎝ ⎛⎭⎪⎫-π2,π2,∴-π2<2k π+14π9<π2,k ∈Z , 解得k =-1,∴γ=-2π+14π9=-4π9.10.如图,动点P ,Q 从点A (4,0)出发,沿圆周运动,点P 按逆时针方向每秒钟转π3弧度,点Q 按顺时针方向每秒钟转π6弧度,求P ,Q 第一次相遇时所用的时间及P ,Q 点各自走过的弧长.解:设P ,Q 第一次相遇时所用的时间是t ,则t ·π3+t ·⎪⎪⎪⎪⎪⎪-π6=2π, 所以t =4(s),即P ,Q 第一次相遇时所用的时间为4 s.P 点走过的弧长为4π3×4=16π3,Q 点走过的弧长为2π3×4=8π3.11.如图,已知扇形AOB 的圆心角为120°,半径长为6,求弓形ACB 的面积.解:∵120°=120180π=23π,∴l =6×23π=4π,∴AB 的长为4π.∵S 扇形OAB =12lr =12×4π×6=12π,如图所示,作OD ⊥AB ,有S △OAB =12×AB ×OD =12×2×6cos 30°×3=9 3.∴S 弓形ACB =S 扇形OAB -S △OAB =12π-9 3. ∴弓形ACB 的面积为12π-9 3.1.2.1 任意角的三角函数第一课时 三角函数的定义[提出问题使锐角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,在终边上任取一点P ,PM ⊥x 轴于M ,设P (x ,y ),|OP |=r .问题1:角α的正弦、余弦、正切分别等于什么? 提示:sin α=yr ,cos α=x r ,tan α=y x.问题2:对于确定的角α,sin α,cos α,tan α是否随P 点在终边上的位置的改变而改变?提示:否.问题3:若|OP |=1,则P 点的轨迹是什么?这样表示sin α,cos α,tan α有何优点?提示:P 点的轨迹是以原点O 为圆心,以1为半径的单位圆,即P 点是单位圆与角α终边的交点,在单位圆中定义sin α,cos α,tan α更简便.[导入新知]1.任意角三角函数的定义(1)单位圆:在直角坐标系中,以原点O 为圆心,以单位长度为半径的圆称为单位圆. (2)单位圆中任意角的三角函数的定义:设α是一个任意角,它的终边与单位圆交于点P (x ,y ),那么y 叫做α的正弦,记作sin α,即sin α=y ;x 叫做α的余弦,记作cosα,即cos α=x ;yx 叫做α的正切,记作tan α,即tan α=y x(x ≠0).2.三角函数正弦、余弦、正切都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,它们统称为三角函数.[化解疑难]对三角函数定义的理解(1)三角函数是一种函数,它满足函数的定义,可以看成是从角的集合(弧度制)到一个比值的集合的对应.(2)三角函数是用比值来定义的,所以三角函数的定义域是使比值有意义的角的范围.(3)三角函数是比值,是一个实数,这个实数的大小与点P(x,y)在终边上的位置无关,只由角α的终边位置决定,即三角函数值的大小只与角有关.[提出问题]问题1:若角α是第二象限角,则它的正弦、余弦和正切值的符号分别怎样?提示:若角α为第二象限角,则x<0,y>0, sin α>0,cos α<0,tan α<0.问题2:当角α是第四象限角时,它的正弦、余弦和正切值的符号分别怎样?提示:sin α<0,cos α>0,tan α<0.问题3:取角α分别为30°,390°,-330°,它们的三角函数值是什么关系?为什么?提示:相等.因为它们的终边重合.问题4:取α=90°,-90°时,它们的正切值存在吗?提示:不存在.[导入新知]1.三角函数的定义域2.三角函数值的符号[化解疑难]巧记三角函数值的符号三角函数值的符号变化规律可概括为“一全正、二正弦、三正切、四余弦”.即第一象限各三角函数值均为正,第二象限只有正弦值为正,第三象限只有正切值为正,第四象限只有余弦值为正.[提出问题]问题:若角α与β的终边相同,根据三角函数的定义,你认为sin α与sin β,cos α与cos β,tan α与tan β之间有什么关系?提示:sin α=sin β,cos α=cos β,tan α=tan β. [导入新知]终边相同的角的同一三角函数的值(1)终边相同的角的同一三角函数的值相等. (2)公式:sin(α+k ·2π)=sin_α, cos(α+k ·2π)=cos_α,tan(α+k ·2π)=tan_α,其中k ∈Z. [化解疑难]诱导公式一的结构特点(1)其结构特点是函数名相同,左边角为α+k ·2π,右边角为α.(2)由公式一可知,三角函数值有“周而复始”的变化规律,即角的终边每绕原点旋转一周,函数值将重复出现.(3)此公式也可以记为:sin(α+k ·360°)=sin α,cos(α+k ·360°)=cos α,tan(α+k ·360°)=tan α,其中k ∈Z.[例1] ,cos α=________,tan α=________.(2)已知角α的终边落在直线3x +y =0上,求sin α,cos α,tan α的值. [解] (1)-1213 513 -125(2)直线3x +y =0,即y =-3x ,经过第二、四象限,在第二象限取直线上的点(-1,3),则r =-2+32=2,所以sin α=32,cos α=-12,tan α=-3;在第四象限取直线上的点(1,-3),则r =12+-32=2,所以sin α=-32,cos α=12,tan α=- 3.[类题通法]利用三角函数的定义求值的策略(1)已知角α的终边在直线上求α的三角函数值时,常用的解题方法有以下两种: ①先利用直线与单位圆相交,求出交点坐标,然后利用三角函数的定义求出相应的三角函数值.②注意到角的终边为射线,所以应分两种情况来处理,取射线上任一点坐标(a ,b ),则对应角的正弦值sin α=b a 2+b2,余弦值cos α=a a 2+b2,正切值tan α=ba. (2)当角的终边上的点的坐标以参数的形式给出时,要根据问题的实际情况对参数进行分类讨论.[活学活用]已知角α终边上一点P 的坐标为(4a ,-3a )(a ≠0),求2sin α+cos α的值. 答案:2sin α+cos α=⎩⎪⎨⎪⎧-25,a >0,25,a <0[例2] (1)若sin αtan α<0,且tan α<0,则角α是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角(2)判断下列各式的符号:①sin 105°·cos 230°;②cos 3·tan ⎝ ⎛⎭⎪⎫-2π3. [解] (1)C(2)①∵105°,230°分别为第二、第三象限角,∴sin 105°>0,cos 230°<0.于是sin 105°·cos 230°<0. ②∵π2<3<π,∴3是第二象限角,∴cos 3<0.又∵-2π3是第三象限角,∴tan ⎝ ⎛⎭⎪⎫-2π3>0,∴cos 3·tan ⎝ ⎛⎭⎪⎫-2π3<0. [类题通法]三角函数值的符号规律(1)当角θ为第一象限角时,sin θ>0,cos θ>0或sin θ>0,tan θ>0或cos θ>0,tan θ>0,反之也成立;(2)当角θ为第二象限角时,sin θ>0,cos θ<0或sin θ>0,tan θ<0或cos θ<0,tan θ<0,反之也成立;(3)当角θ为第三象限角时,sin θ<0,cos θ<0或sin θ<0,tan θ>0或cos θ<0,tan θ>0,反之也成立;(4)当角θ为第四象限角时,sin θ<0,cos θ>0或sin θ<0,tan θ<0或cos θ>0,tan θ<0,反之也成立.[活学活用]已知点P (tan α,cos α)在第三象限,则角α的终边在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 答案:B[例3] (1)sin(-1 395°)cos 1 110°+cos(-1 020°)·sin 750°;(2)sin ⎝⎛⎭⎪⎫-11π6+cos 12π5tan 4π. [解] (1)原式=sin(-4×360°+45°)cos(3×360°+30°)+cos(-3×360°+60°)sin(2×360°+30°)=sin 45°cos 30°+cos 60°sin 30° =22×32+12×12=64+14=1+64. (2)原式=sin ⎝ ⎛⎭⎪⎫-2π+π6+cos ⎝ ⎛⎭⎪⎫2π+2π5·tan(4π+0)=sin π6+cos 2π5×0=12.[类题通法]诱导公式一的应用策略应用诱导公式一时,先将角转化为0~2π范围内的角,再求值.对于特殊角的三角函数值一定要熟记.[活学活用]求下列各式的值:(1)sin 25π3+tan ⎝⎛⎭⎪⎫-15π4; (2)sin 810°+cos 360°-tan 1 125°. 答案:(1)32+1 (2)11.应用三角函数定义求值[典例] (12分)已知角α的终边过点P (-3m ,m )(m ≠0),求α的正弦、余弦、正切值.[解题流程][规范解答] 由题意可得: 由|OP |=-3m 2+m 2=分)(1)当m >0时,|OP |=10|m |=10m ,(4分)则sin α=m10m=1010,cos α=-3m10m=-3 1010,tan α=m-3m =-13.(7分)[名师批注]由于题目条件中只告诉m ≠0,不知道m 的符|OP |=\r(10)|m |.此处极易忽视此点,误认为|OP |=\r(10)m ,从而导致解题不完整而失分.(2)当m <0时,|OP |=10|m |分)则sin α=-1010,cos α=3 1010,tan α=-13.(12分)根据正切函数的定义tan α=yx,本题中tan α的取值与m 的符号无关,即无论m >0还是m <0,tan α都是m -3m =-13.[活学活用]已知角α的终边上一点P (-3,y )(y ≠0),且sin α=24y ,求cos α,tan α的值.解:当y =5时,cos α=-64,tan α=-153; 当y =-5时,cos α=-64,tan α=153.[随堂即时演练]1.已知角α的终边经过点(-4,3),则cos α=( ) A.45 B.35 C .-35D .-45答案:D2.若三角形的两内角α,β满足sin αcos β<0,则此三角形必为( ) A .锐角三角形 B .钝角三角形 C .直角三角形 D .以上三种情况都可能 答案:B3.计算:sin ⎝ ⎛⎭⎪⎫-196π=________. 答案:124.已知角θ的顶点为坐标原点,始边为x 轴的非负半轴,若P (4,y )是角θ终边上。

人教版高中数学必修4课后习题答案详解

人教版高中数学必修4课后习题答案详解

第二章平面向量2.1平面向量的实际背景及基本概念练习(P77)1、略. 2、AB ,BA . 这两个向量的长度相等,但它们不等.3、2AB, 2.5CD,3EF ,22GH .4、(1)它们的终点相同;(2)它们的终点不同.习题2.1 A 组(P77)1、30°45°CAOB(2)D CBA. 3、与DE 相等的向量有:,AF FC ;与EF 相等的向量有:,BD DA ;与FD 相等的向量有:,CE EB .4、与a 相等的向量有:,,CO QP SR ;与b 相等的向量有:,PM DO ;与c 相等的向量有:,,DC RQ ST5、332AD. 6、(1)×;(2)√;(3)√;(4)×.习题2.1 B 组(P78)1、海拔和高度都不是向量. 2、相等的向量共有24对.模为1的向量有18对. 其中与AM 同向的共有6对,与AM 反向的也有6对;与AD 同向的共有3对,与AD 反向的也有6对;模为2的向量共有4对;模为2的向量有2对水流方向CDAB2.2平面向量的线性运算练习(P84)1、图略. 2、图略. 3、(1)DA ;(2)CB .4、(1)c ;(2)f ;(3)f ;(4)g .练习(P87)1、图略. 2、DB ,CA ,AC ,AD ,BA .3、图略.练习(P90)1、图略. 2、57ACAB ,27BC AB . 说明:本题可先画一个示意图,根据图形容易得出正确答案. 值得注意的是BC与AB 反向. 3、(1)2ba ;(2)74b a ;(3)12ba ;(4)89ba . 4、(1)共线;(2)共线.5、(1)32a b ;(2)111123a b ;(3)2ya .6、图略.习题2.2 A 组(P91)1、(1)向东走20 km ;(2)向东走 5 km ;(3)向东北走102km ;(4)向西南走52km ;(5)向西北走102km ;(6)向东南走102km. 2、飞机飞行的路程为700 km ;两次位移的合成是向北偏西53°方向飞行500 km.3、解:如右图所示:AB 表示船速,AD 表示河水的流速,以AB 、AD 为邻边作□ABCD ,则AC 表示船实际航行的速度.在Rt △ABC 中,8AB ,2AD,所以222282217ACABAD 因为tan 4CAD ,由计算器得76CAD 所以,实际航行的速度是217km/h ,船航行的方向与河岸的夹角约为76°.4、(1)0;(2)AB ;(3)BA ;(4)0;(5)0;(6)CB ;(7)0.5、略6、不一定构成三角形. 说明:结合向量加法的三角形法则,让学生理解,若三个非零向量的和为零向量,且这三个向量不共线时,则表示这三个向量的有向线段一定能构成三角形.7、略.8、(1)略;(2)当ab 时,a ba b9、(1)22a b ;(2)102210a b c ;(3)132a b ;(4)2()xy b .10、14a be ,124a b e e ,1232310a b e e .11、如图所示,OCa ,ODb ,DCb a ,BCa b .12、14AEb ,BC b a ,1()4DE b a ,34DB a ,34ECb ,1()8DN b a ,11()48AN AM a b . 13、证明:在ABC 中,,E F 分别是,AB BC 的中点,所以EF AC //且12EFAC ,即12EF AC ;同理,12HG AC ,所以EFHG .习题2.2 B 组(P92)1、丙地在甲地的北偏东45°方向,距甲地1400 km.2、不一定相等,可以验证在,a b 不共线时它们不相等.3、证明:因为MN AN AM ,而13AN AC ,13AM AB ,所以1111()3333MN AC AB AC AB BC .4、(1)四边形ABCD 为平行四边形,证略(2)四边形ABCD 为梯形.证明:∵13AD BC ,∴AD BC //且AD BC ∴四边形ABCD 为梯形.(3)四边形ABCD 为菱形.(第11题)(第12题)(第13题)EHGFDCAB丙甲乙(第1题)(第4题(2))BACD证明:∵AB DC ,∴AB DC //且AB DC∴四边形ABCD 为平行四边形又ABAD∴四边形ABCD 为菱形.5、(1)通过作图可以发现四边形ABCD 为平行四边形.证明:因为OA OBBA ,OD OC CD 而OA OC OB OD 所以OA OBOD OC所以BA CD ,即AB ∥CD .因此,四边形ABCD 为平行四边形. 2.3平面向量的基本定理及坐标表示练习(P100)1、(1)(3,6)a b ,(7,2)a b ;(2)(1,11)a b ,(7,5)a b ;(3)(0,0)a b ,(4,6)a b ;(4)(3,4)a b,(3,4)a b .2、24(6,8)a b ,43(12,5)a b .3、(1)(3,4)AB ,(3,4)BA ;(2)(9,1)AB ,(9,1)BA ;(3)(0,2)AB,(0,2)BA ;(4)(5,0)AB,(5,0)BA 4、AB ∥CD .证明:(1,1)AB,(1,1)CD,所以AB CD .所以AB ∥CD .5、(1)(3,2);(2)(1,4);(3)(4,5).6、10(,1)3或14(,1)37、解:设(,)P x y ,由点P 在线段AB 的延长线上,且32APPB ,得32A P P B(,)(2,3)(2,A P x y x y,(4,3)(,)(4,3)PB x y x y ∴3(2,3)(4,3)2x y x y ∴32(4)233(3)2x x y y (第4题(3))AD CBADMOBC(第5题)∴815x y,所以点P 的坐标为(8,15).习题2.3 A 组(P101)1、(1)(2,1);(2)(0,8);(3)(1,2).说明:解题时可设(,)B x y ,利用向量坐标的定义解题.2、123(8,0)F F F 3、解法一:(1,2)OA ,(53,6(1))(2,7)BC而ADBC ,(1,5)OD OA AD OA BC . 所以点D 的坐标为(1,5).解法二:设(,)D x y ,则((1),(2))(1,2)ADx y x y ,(53,6(1))(2,7)BC 由ADBC 可得,1227x y ,解得点D 的坐标为(1,5).4、解:(1,1)OA,(2,4)AB .1(1,2)2A C A B ,2(4,8)ADAB ,1(1,2)2AEAB . (0,3)O C O A A C ,所以,点C 的坐标为(0,3);(3,9)O D O A A D ,所以,点D 的坐标为(3,9);(2,1)O EO AA E ,所以,点E 的坐标为(2,1). 5、由向量,a b 共线得(2,3)(,6)x ,所以236x ,解得4x .6、(4,4)AB ,(8,8)CD,2CD AB ,所以AB 与CD 共线.7、2(2,4)OAOA ,所以点A 的坐标为(2,4);3(3,9)O B O B ,所以点B 的坐标为(3,9;故(3,9)(2,4)(5,5)A B习题2.3 B 组(P101)1、(1,2)OA ,(3,3)AB .当1t 时,(4,5)OP OA AB OB ,所以(4,5)P ;当12t 时,13357(1,2)(,)(,)22222OP OA AB ,所以57(,)22P ;当2t 时,2(1,2)(6,6)(5,4)OP OA AB ,所以(5,4)P ;当2t时,2(1,2)(6,6)(7,8)OP OA AB ,所以(7,8)P .2、(1)因为(4,6)AB ,(1,1.5)AC ,所以4AB AC ,所以A 、B 、C 三点共线;(2)因为(1.5,2)PQ ,(6,8)PR ,所以4PR PQ ,所以P 、Q 、R 三点共线;(3)因为(8,4)EF ,(1,0.5)EG ,所以8EFEG ,所以E 、F 、G三点共线. 3、证明:假设10,则由11220e e ,得2121e e .所以12,e e 是共线向量,与已知12,e e 是平面内的一组基底矛盾,因此假设错误,10.同理20.综上120.4、(1)19OP .(2)对于任意向量12OPxe ye ,,x y 都是唯一确定的,所以向量的坐标表示的规定合理.2.4平面向量的数量积练习(P106)1、1cos ,86242p q p q p q.2、当0a b时,ABC 为钝角三角形;当0a b 时,ABC 为直角三角形.3、投影分别为32,0,32. 图略练习(P107)1、22(3)45a ,225229b ,35427a b .2、8a b,()()7a b a b ,()0a b c ,2()49a b .3、1a b,13a,74b ,88.习题2.4 A 组(P108)1、63a b,222()225123a b aa b b,25123a b .2、BC 与CA 的夹角为120°,20BC CA .3、22223a baa b b,22235a baa b b.4、证法一:设a 与b 的夹角为.(1)当0时,等式显然成立;(2)当0时,a 与b ,a 与b 的夹角都为,所以()cos cosa b a b a b ()c o sa b a b ()cos cosa b a b a b 所以()()()a b a b a b ;(3)当0时,a 与b ,a 与b 的夹角都为180,则()cos(180)cosa ba b a b ()cos cos a b a b a b ()cos(180)cosa b ab a b 所以()()()a ba b a b ;综上所述,等式成立.证法二:设11(,)ax y ,22(,)b x y ,那么11221212()(,)(,)a bx y x y x x y y 112212121212()(,)(,)()a b x y x y x x y y x x y y 11221212()(,)(,)a b x y x y x x y y 所以()()()a ba b a b ;5、(1)直角三角形,B 为直角.证明:∵(1,4)(5,2)(6,6)BA,(3,4)(5,2)(2,2)BC ∴6(2)(6)20BA BC ∴BABC ,B 为直角,ABC 为直角三角形(2)直角三角形,A 为直角证明:∵(19,4)(2,3)(21,7)AB,(1,6)(2,3)(1,3)AC ∴2117(3)0AB AC ∴ABAC ,A 为直角,ABC 为直角三角形(3)直角三角形,B 为直角证明:∵(2,5)(5,2)(3,3)BA,(10,7)(5,2)(5,5)BC ∴35350BA BC ∴BABC ,B 为直角,ABC 为直角三角形6、135. 7、120. 22(23)(2)44361a b a b aa b b,于是可得6a b,1cos2a b a b ,所以120.8、23cos40,55. 9、证明:∵(5,2)(1,0)(4,2)AB,(8,4)(5,2)(3,6)BC ,(8,4)(4,6)(4,2)DC∴ABDC ,43(2)60AB BC ∴,,,A B C D 为顶点的四边形是矩形.10、解:设(,)ax y ,则2292xy y x,解得355655x y,或355655xy.于是3565(,)55a或3565(,)55a .11、解:设与a 垂直的单位向量(,)e x y ,则221420xyx y ,解得55255xy或55255xy. 于是525(,)55e或525(,)55e . 习题2.4 B 组(P108)1、证法一:0()0()a b a c a b a c a b c a b c 证法二:设11(,)ax y ,22(,)b x y ,33(,)c x y .先证()a ba c ab c 1212a bx x y y ,1313a cx x y y 由a b a c 得12121313x x y y x x y y ,即1231()()x x x y y y 而2323(,)b c x x y y ,所以()a b c 再证()ab c a b a c由()0a b c 得123123()()0x x x y y y ,即12121313x x y y x x y y ,因此a b a c 2、cos cos cossin sin OA OB AOBOA OB.3、证明:构造向量(,)ua b ,(,)v c d .c o s,u v u v u v,所以2222cos ,ac bd a bcd u v∴2222222222()()()cos,()()ac bd a b cd u vab c d 4、AB AC 的值只与弦AB 的长有关,与圆的半径无关.证明:取AB 的中点M ,连接CM ,则CMAB ,12AMAB 又cos AB AC AB AC BAC ,而AM BACAC所以212AB ACAB AMAB 5、(1)勾股定理:Rt ABC 中,90C,则222CACBAB证明:∵ABCB CA ∴2222()2AB CB CA CBCA CB CA .由90C,有CA CB ,于是0CA CB ∴222CA CBAB(2)菱形ABCD 中,求证:AC BD 证明:∵ACAB AD ,,DBAB AD ∴22()()AC DB AB AD AB AD ABAD .∵四边形ABCD 为菱形,∴AB AD ,所以22ABAD∴0AC DB,所以AC BD (3)长方形ABCD 中,求证:ACBD证明:∵四边形ABCD 为长方形,所以ABAD ,所以0AB AD ∴222222ABAB AD ADABAB AD AD .∴22()()AB AD AB AD ,所以22ACBD ,所以ACBD(4)正方形的对角线垂直平分. 综合以上(2)(3)的证明即可.2.5平面向量应用举例习题2.5 A 组(P113)1、解:设(,)P x y ,11(,)R x y 则1111(1,0)(,)(1,)RA x y x y ,(,)(1,0)(1,0)AP x y x 由2RA AP 得11(1,)2(1,)x y x y ,即11232x x y y代入直线l 的方程得2yx .所以,点P 的轨迹方程为2yx .2、解:(1)易知,OFD ∽OBC ,12DFBC , 所以23BO BF .2211()()3323AO BO BA BF a b a a a b (2)因为1()2AE a b 所以23AO AE ,因此,,A O E 三点共线,而且2AOOE 同理可知:2,2BO CO OF OD ,所以2AO BO COOE OF OD3、解:(1)(2,7)B Avv v ;(2)v 在A v 方向上的投影为135A Av v v . 4、解:设1F ,2F 的合力为F ,F 与1F 的夹角为,则31F,30;331F ,3F 与1F 的夹角为150°.习题2.5 B 组(P113)1、解:设0v 在水平方向的速度大小为x v ,竖直方向的速度的大小为y v ,则0cos xv v ,0sin yv v .设在时刻t 时的上升高度为h ,抛掷距离为s ,则1s i n,()2c o sh v t g t gsv t 为重力加速度所以,最大高度为220sin 2v g,最大投掷距离为20sin2v g.2、解:设1v 与2v 的夹角为,合速度为v ,2v 与v 的夹角为,行驶距离为d . 则1sin 10sin sin v vv,0.5sin20sinv d.∴120sind v.所以当90,即船垂直于对岸行驶时所用时间最短.3、(1)(0,1)ODFEABC(第2题)(第4题)解:设(,)P x y ,则(1,2)AP x y . (2,22)AB .将AB 绕点A 沿顺时针方向旋转4到AP ,相当于沿逆时针方向旋转74到AP ,于是7777(2cos22sin ,2sin22cos )(1,3)4444AP 所以1123x y,解得0,1xy(2)32yx解:设曲线C 上任一点P 的坐标为(,)x y ,OP 绕O 逆时针旋转4后,点P 的坐标为(,)x y 则cos sin 44sincos44x x y yx y ,即2()22()2x x y yx y 又因为223xy,所以2211()()322x y x y ,化简得32yx第二章复习参考题A 组(P118)1、(1)√;(2)√;(3)×;(4)×. 2、(1)D ;(2)B ;(3)D ;(4)C ;(5)D ;(6)B.3、1()2AB a b ,1()2AD a b 4、略解:2133DE BA MA MBa b 2233AD a b ,1133BC a b 1133EF a b ,1233FA DC a b 1233CDa b ,2133AB a b CEa b5、(1)(8,8)AB ,82AB ;(2)(2,16)OC ,(8,8)OD;(3)33OA OB .(第4题)6、AB 与CD 共线.证明:因为(1,1)AB ,(1,1)CD ,所以AB CD . 所以AB 与CD 共线.7、(2,0)D .8、2n. 9、1,0.10、34cos ,cos 0,cos 55A B C11、证明:2(2)22cos6010n m m n m m ,所以(2)n m m .12、1.13、13a b,1a b.14、519cos,cos 820第二章复习参考题B 组(P119)1、(1)A ;(2)D ;(3)B ;(4)C ;(5)C ;(6)C ;(7)D.2、证明:先证aba b a b .222()2a ba b aba b,222()2a ba b a b a b .因为ab ,所以0a b ,于是22a b a ba b .再证a b a ba b. 由于222a b aa bb ,222a b aa b b由a b a b 可得0a b ,于是ab所以a ba b a b. 【几何意义是矩形的两条对角线相等】3、证明:先证abcd22()()c d a b a b ab又a b ,所以0c d ,所以cd再证cd ab .由cd 得0c d,即22()()a b a b a b 所以a b【几何意义为菱形的对角线互相垂直,如图所(第3题)NMOABS(第6题)示】4、12AD AB BC CD a b ,1142AE a b 而34EFa ,14EM a ,所以1111()4242AM AE EMa b a a b 5、证明:如图所示,12ODOP OP ,由于1230OP OP OP ,所以3OP OD ,1OD 所以11OD OP PD 所以1230OPP ,同理可得1330OPP 所以31260PPP ,同理可得12360PP P ,23160P PP ,所以123PP P 为正三角形. 6、连接AB.由对称性可知,AB 是SM N 的中位线,222MN ABb a .7、(1)实际前进速度大小为224(43)8(千米/时),沿与水流方向成60°的方向前进;(2)实际前进速度大小为42千米/时,沿与水流方向成690arccos 3的方向前进.8、解:因为OA OB OB OC ,所以()0OB OA OC ,所以0OB CA 同理,0OA BC ,0OC AB,所以点O 是ABC 的垂心. 9、(1)2110200a x a y a y a x ;(2)垂直;(3)当12210AB A B 时,1l ∥2l ;当12120A A B B 时,12l l ,夹角的余弦121222221122cosA AB B A BA B ;(4)022Ax By CdABDOP 3P 1P 2(第5题)第三章三角恒等变换3.1两角和与差的正弦、余弦和正切公式练习(P127)1、cos()cos cos sin sin0cos1sin sin222.c o s(2)c o s2c o s s i n2s i n1c o s0.2、解:由3cos,(,)52,得2234sin1cos1()55;所以23242 cos()cos cos sin sin()444252510.3、解:由15sin17,是第二象限角,得22158cos1sin1()1717;所以811538153 cos()cos cos sin sin33317217234.4、解:由23sin,(,)32,得2225cos1sin1()33;又由33cos,(,2)42,得2237sin1cos1()44.所以3c o4.练习(P131)1、(1)624;(2)624;(3)624;(4)23.2、解:由3cos,(,)52,得2234sin1cos1()55;所以4133433 sin()sin cos cos sin()333525210.3、解:由12sin13,是第三象限角,得22125cos1sin1()1313;所以3c o66.4、解:tan tan314tan()2 41311tan tan4.5、(1)1;(2)12;(3)1;(4)32;(5)原式=1(cos34cos26sin34sin26)cos(3426)cos602;(6)原式=sin20cos70cos20sin70(sin20cos70cos20sin70)sin901.6、(1)原式=cos cos sin sin cos()333x xx ;(2)原式=312(sin cos )2(sin cos cos sin )2sin()22666x x x x x ;(3)原式=222(sin cos )2(sin cos cos sin )2sin()22444x x x x x ;(4)原式=1322(cos sin )22(cos cos sin sin )22cos()22333xx x x x .7、解:由已知得3sin()cos cos()sin5,即3sin[()]5,3sin()5所以3sin5. 又是第三象限角,于是2234cos 1sin1()55. 因此55si 44.练习(P135)1、解:因为812,所以382又由4cos85,得243sin 1()855,3sin 385tan 484cos85所以3424sinsin(2)2sin cos2()()488855252222437c o sc o s(2)c o s s i n ()()488855252232tan23162484tantan(2)3482771tan1()842、解:由3sin()5,得3sin 5,所以222316cos 1sin1()525所以2221637cos2cossin()255253、解:由sin2sin 且sin 0可得1cos2,又由(,)2,得2213sin 1cos1()22,所以s i n 3t an (2)3co s2. 4、解:由1t an 23,得22t an11t an3. 所以2t an6t an 10,所以t a n3105、(1)11sin15cos15sin3024;(2)222cossincos8842;(3)原式=212tan22.511tan4521tan 22.522;(4)原式=2cos452. 习题3.1 A 组(P137)1、(1)333cos()cos cossin sin0cos (1)sin sin 222;(2)333sin()sin coscos sin1cos0sincos 222;(3)cos()cos cos sin sin1cos0sin cos ;(4)sin()sin coscos sin 0cos(1)sin sin . 2、解:由3cos,05,得2234sin1cos1()55,所以4331433cos()cos cossin sin666525210. 3、解:由2sin,(,)32,得2225cos 1sin1()33,又由33cos ,(,)42,得2237sin1cos1()44,所以5co3. 4、解:由1cos7,是锐角,得22143sin1cos1()77因为,是锐角,所以(0,),又因为11cos()14,所以221153sin()1cos ()1()1414所以cos cos[()]cos()cos sin()sin11153431()14714725、解:由60150,得9030180又由3sin(30)5,得2234cos(30)1sin (30)1()55所以coscos[(30)30]cos(30)cos30sin(30)sin3043314335252106、(1)624;(2)264;(3)23. 7、解:由2sin,(,)32,得2225cos 1sin1()33. 又由3cos4,是第三象限角,得2237sin 1cos1()44. 所以cos()cos cossin sin5327()()3434352712sin()sin cos cos sin2357()()()3434635128、解:∵53sin ,cos 135A B 且,A B 为ABC 的内角∴0,02A B ,124cos ,sin 135A B当12cos 13A 时,sin()sin cos cos sin AB A B A B5312433()013513565A B,不合题意,舍去∴124cos ,sin 135A B ∴cos cos()(cos cos sin sin )CA B A B A B 1235416()135135659、解:由3sin,(,)52,得2234cos 1sin1()55. ∴sin 353tan()cos544. ∴31tan tan 242tan()311tan tan111()42. 31tan tan 42tan()2311tan tan1()42.10、解:∵tan ,tan是22370x x 的两个实数根.∴3tantan2,7tan tan2. ∴3tan tan 12tan()71tan tan31()2. 11、解:∵tan()3,tan()5∴tan()tan()tan2tan[()()]1tan()tan()3541357tan()tan()tan2tan[()()]1tan()tan()351135812、解:∵::2:3:6BD DC AD ∴11tan,tan 32BD DC AD AD ∴tan tan tan tan()1tan tanBAC1132111132又∵0180BAC ,∴45BAC βαDACB(第12题)13、(1)65sin()6x ;(2)3sin()3x ;(3)2sin()26x;(4)27sin()212x ;(5)22;(6)12;(7)sin();(8)cos();(9)3;(10)tan().14、解:由sin0.8,(0,)2,得22cos1sin 10.80.6∴sin22sin cos 20.80.60.962222cos2cossin0.60.80.2815、解:由3cos,1802703,得2236sin1cos 1()33∴6322sin22sin cos 2()()3332222361cos2cossin ()()333sin222tan2(3)22cos2316、解:设5sin sin 13B C,且90B ,所以12cos 13B . ∴512120sin sin(1802)sin22sin cos 21313169A B B B B 2222125119cos cos(1802)cos2(cos sin )(()())1313169A B B B B sin 120169120tan ()cos 169119119A A A 17、解:22122tan33tan211tan41()3,13tan tan274tan(2)1131tan tan2174.18、解:1cos()cos sin()sin31cos[()]3,即1cos 3又3(,2)2,所以22122sin 1cos1()33∴22142sin22sin cos 2()33922221227cos2cossin()()339∴72422728cos(2)cos2cossin2sin()44492921819、(1)1sin2;(2)cos2;(3)1sin44x ;(4)tan2.习题3.1 B 组(P138)1、略.2、解:∵tan ,tan A B 是x 的方程2(1)10x p x ,即210xpxp 的两个实根∴tan tan A B p ,tan tan 1A B p ∴tan tan[()]tan()CA B A B tan tan 11tan tan 1(1)A B p A Bp 由于0C,所以34C. 3、反应一般的规律的等式是(表述形式不唯一)223sincos (30)sin cos(30)4(证明略)本题是开放型问题,反映一般规律的等式的表述形式还可以是:223sin (30)cossin(30)cos4223sin (15)cos (15)sin(15)cos(15)4223sincossin cos4,其中30,等等思考过程要求从角,三角函数种类,式子结构形式三个方面寻找共同特点,从而作出归纳. 对认识三角函数式特点有帮助,证明过程也会促进推理能力、运算能力的提高. 4、因为12PAPP ,则2222(c o s ()1)s i n ()(c o sc o s )(s i n s i n )即22cos()22cos cos 2sin sin所以cos()cos cossin sin3.2简单的三角恒等变换练习(P142)1、略. 2、略.3、略.4、(1)1sin42y x . 最小正周期为2,递增区间为[,],8282kk k Z ,最大值为12;(2)cos 2y x . 最小正周期为2,递增区间为[2,22],k k kZ ,最大值为3;(3)2sin(4)3yx. 最小正周期为2,递增区间为5[,],242242k k kZ ,最大值为2.习题3.2 A 组(P143)1、(1)略;(2)提示:左式通分后分子分母同乘以2;(3)略;(4)提示:用22sin cos代替1,用2sin cos 代替sin 2;(5)略;(6)提示:用22cos 代替1cos2;(7)提示:用22sin 代替1cos2,用22cos 代替1cos2;(8)略.2、由已知可有1sin coscos sin2……①,1sin cos cos sin3……②(1)②×3-①×2可得sin cos 5cos sin(2)把(1)所得的两边同除以cos cos 得tan 5tan注意:这里cos cos0隐含与①、②之中3、由已知可解得1tan2. 于是2212()2tan 42tan211tan31()21tantan1142tan()1431tantan1()142∴tan24tan()44、由已知可解得sin x ,cos y ,于是2222sincos1x y.5、()2sin(4)3f x x,最小正周期是2,递减区间为7[,],242242k kkZ .习题3.2 B 组(P143)1、略.2、由于762790,所以sin76sin(9014)cos14m即22cos 71m ,得1cos72m 3、设存在锐角,使223,所以23,tan()32,又tan tan232,又因为tan tan 2tan()21tantan2,所以tantantan()(1tan tan )33222由此可解得tan 1,4,所以6.经检验6,4是符合题意的两锐角.4、线段AB 的中点M 的坐标为11((cos cos ),(sin sin ))22. 过M 作1MM 垂直于x 轴,交x 轴于1M ,111()()22MOM .在Rt OMA 中,coscos22OM OA .在1Rt OM M 中,11cos coscos 22OM OM MOM ,11sin sincos22M M OM MOM .于是有1(cos cos )cos cos 222,1(sin sin )sin cos 2225、当2x时,22()sin cos 1f ;当4x时,4422222()sincos(sincos)2sincosf 211sin 22,此时有1()12f ≤≤;当6x 时,66()sinf 231sin 24,此时有1()14f ≤≤;由此猜想,当2,x k k N 时,11()12k f ≤≤6、(1)345(sin cos )5sin()55y x x x ,其中34cos ,sin55所以,y 的最大值为5,最小值为﹣5;(2)22sin()yab x,其中2222cos,sina b abab所以,y 的最大值为22ab ,最小值为22ab ;第三章复习参考题A 组(P146)xy M 1MC AOB(第4题)1、1665. 提示:()2、5665. 提示:5sin()sin[()]sin[()()]443、1.4、(1)提示:把公式tan tantan()1tan tan变形;(2)3;(3)2;(4)3. 提示:利用(1)的恒等式.5、(1)原式=cos103sin104sin(3010)4 sin10cos10sin20;(2)原式=sin10sin103cos10 sin40(3)sin40cos10cos10=2sin40cos40sin801 cos10cos10;(3)原式=3sin203sin20cos20 tan70cos10(1)tan70cos10cos20cos20=sin702sin10sin20cos101 cos70cos20cos70;(4)原式=3sin10cos103sin10 sin50(1)sin50cos10cos102cos50sin100sin501cos10cos106、(1)95;(2)2425;(3)223. 提示:4422222sin cos(sin cos)2sin cos;(4)17 25.7、由已知可求得2cos cos5,1sin sin5,于是sin sin1tan tancos cos2.8、(1)左边=222cos214cos232(cos22cos21)22242(cos21)2(2cos)8cos=右边(2)左边=222 2sin cos2sin cos(sin cos) 2cos2sin cos2cos(cos sin)sin cos11tan2cos22=右边(3)左边=sin(2)2cos()sin sin[()]2cos()sin sin2cos(cos sin)sin()cos cos()sin sinsin sin=右边(第12(2)题)(4)左边=222234cos22cos 212(cos 22cos21)34cos22cos 212(cos 22cos21)A A A A A A A A 2224222(1cos2)(2sin )tan (1cos2)(2cos )A A A A A =右边9、(1)1sin21cos2sin2cos222sin(2)24y x x x x x递减区间为5[,],88k k k Z(2)最大值为22,最小值为22.10、2222()(cos sin )(cos sin )2sin cos cos2sin22cos(2)4f x x x x x x xx x x(1)最小正周期是;(2)由[0,]2x 得52[,]444x ,所以当24x,即38x时,()f x 的最小值为 2. ()f x 取最小值时x 的集合为3{}8.11、2()2sin 2sin cos 1cos2sin22sin(2)14f x x x x x xx(1)最小正周期是,最大值为21;(2)()f x 在[,]22上的图象如右图:12、()3sin cos 2sin()6f x x x a xa .(1)由21a 得1a;(2)2{22,}3x k x k k Z ≤≤.13、如图,设ABD ,则CAE ,2s i n h AB ,1cos h AC所以1212sin2ABC hh S AB AC ,(0)2当22,即4时,ABCS的最小值为12hh . 第三章复习参考题B 组(P147)1、解法一:由221sin cos 5sincos1,及0≤≤,可解得4sin5,h 1h 2l 2l 1BDE AC(第13题)13 cos sin55,所以24sin225,7cos225,312sin(2)sin2cos cos2sin44450.解法二:由1s i n c o s5得21(sin cos)25,24sin225,所以249 cos2625.又由1sin cos5,得2sin()410.因为[0,],所以3[,]444.而当[,0]44时,sin()04≤;当3[,]444时,22 sin()4210≥.所以(0,)44,即(,)42所以2(,)2,7cos225.312sin(2)4502、把1cos cos2两边分别平方得221cos cos2cos cos4把1sin sin3两边分别平方得221sin sin2sin sin9把所得两式相加,得13 22(cos cos sin sin)36,即1322cos()36,所以59cos()723、由43sin()sin35可得3343sin cos225,4sin()65.又02,所以366,于是3cos()65.所以334 cos cos[()]66104、22sin22sin2sin cos2sin2sin cos(cos sin)sin1tan cos sin1cosx x x x x x x x xxx x xx1tansin2sin2tan()1tan4xx x xx由177124x得5234x,又3cos()45x,所以4sin()45x,4tan()43x所以2cos cos[()]cos()cossin()sin44444410x x x x ,72sin 10x,7sin22sin cos 25x x x, 所以2sin22sin 281tan 75x x x,5、把已知代入222sincos(sin cos )2sin cos 1,得22(2sin )2sin1.变形得2(1cos2)(1cos2)1,2cos2cos2,224cos 24cos 2本题从对比已知条件和所证等式开始,可发现应消去已知条件中含的三角函数.考虑sincos ,sin cos 这两者又有什么关系?及得上解法.5、6两题上述解法称为消去法6、()3sin21cos22sin(2)16f x x x m x m . 由[0,]2x 得72[,]666x,于是有216m . 解得3m . ()2si n (2)4()6f x x x R 的最小值为242,此时x 的取值集合由322()62x k kZ ,求得为2()3xk k Z 7、设AP x ,AQy ,BCP,DCQ,则tan1x ,tan1y于是2()tan()()x y x y xy又APQ 的周长为2,即222x yxy,变形可得2()2xyx y 于是2()tan()1()[2()2]x y xy x y .又02,所以4,()24PCQ.8、(1)由221sin cos 5sincos1,可得225sin 5sin120解得4sin 5或3sin 5(由(0,),舍去)所以13cossin 55,于是4tan 3(2)根据所给条件,可求得仅由sin ,cos ,tan表示的三角函数式的值,例如,sin()3,cos22,sin cos 2tan ,sin cos3sin2cos,等等.。

2019人教版高中数学必修4全套教案(80页)

2019人教版高中数学必修4全套教案(80页)

角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形.
②角的名称: ③角的分类:
B 终边
始边
O 顶点
A
正角:按逆时针方向旋转形成的角
零角:射线没有任何旋转形成的角
负角:按顺时针方向旋转形成的角
④注意: ⑴在不引起混淆的情况下,“角α ”或“∠α ”可以简化成“α ”; ⑵零角的终边与始边重合,如果α是零角α =0°; ⑶角的概念经过推广后,已包括正角、负角和零角. ⑤练习:请说出角α、β、γ各是多少度? 2.象限角的概念: ①定义:若将角顶点与原点重合,角的始边与 x 轴的非负半轴重合,那么角的终边(端点除外) 在第几象限,我们就说这个角是第几象限角. 例 1.如图⑴⑵中的角分别属于第几象限角?
人教版高中数学必修精品教学资料
1.1.1 任意角
教学目标
知识与技能目标
理解任意角的概念(包括正角、负角、零角) 与区间角的概念. 过程与能力目标
会建立直角坐标系讨论任意角,能判断象限角,会书写终边相同角的集合;掌握区间角的集合 的书写.
情感与态度目标
提高学生的推理能力; 2.培养学生应用意识.
教学重点
例 5.写出终边在 y x 上的角的集合 S,并把 S 中适合不等式-360°≤β<720°的元素β
写出来. 4.课堂小结 ①角的定义; ②角的分类:
正角:按逆时针方向旋转形成的角 零角:射线没有任何旋转形成的角 负角:按顺时针方向旋转形成的角
③象限角; ④终边相同的角的表示法. 5.课后作业: ①阅读教材 P2-P5; ②教材 P5 练习第 1-5 题;
(Ⅳ)
由四个图看出:
当角 的终边不在坐标轴上时,有向线段 OM x, MP y ,于是有
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(2k+<<2k+
3
2
,
kZ)
第四象限角:
(2k+
3
2
<<2k+2,
kZ

2k-
2
<<2k,
kZ
)
②轴线角
x 轴的非负半轴: =k360º(2k)(kZ);
x 轴的非正半轴: =k360º+180º(2k+)(kZ);
y
轴的非负半轴:
=k360º+90º(2k+
2
)(kZ);
y 轴的非正半轴: =k360º+270º(2k+ 32) 或
(1) 2
(2)
3
评析: 在解选择题或填空题时,
如求角所在象限,也可以不讨论k的
几种情况,如图所示利用图形来判断.
四、什么是1弧度的角? 长度等于半径长的弧所对的圆心角。
B r
Or A
B
2r
Or A
(3)角度与弧度的换算.只要记住,就可
以方便地进行换算. 应熟记一些特殊角的
度数和弧度数. 在书写时注意不要同时
2
2
则α角属于(C ) A.第-象限; B.第二象限;
2
C.第三象限; D.第四象限.
点评: 本题先由α所在象限确定α/2所在象限,再α/2的 余弦符号确定结论.
例1 求经过1小时20分钟时钟的分针所转过的角度:
解:分针所转过的角度 1 20 360 480
60
例2 已知a是第二象限角,判断下列各角是第几象限角
知识网络结构
任意角的概念
角的度量方法 (角度制与弧度制)
弧长公式与 扇形面积公式
正弦型函数的图象
y Asin x
同角公式
任意角的 三角函数
诱导公式
两角和与差的 三角函数
三角函数的 图形和性质
二倍角的 三角函数
三角函数式的恒等变形 (化简、求值、证明)
已知三角函数值,求角
一、基本概念:
1.角的概念的推广 (1)正角,负角和零角.用旋转的观点定义角, 并规定了旋转的正方向,就出现了正角,负角和 零角,这样角的大小就不再限于00到3600的范围.
混用角度制和弧度制
180 180 1 rad
1
rad
180
.30
1 rad
180
(4)弧长公式和扇形面积公式.
lr
S r2 1 r2 1l r
2
2
2
l
n 360
2
r
n
180
r
S
n 360
r2
n
360
r2
2、角度与弧度的互化
2 360
1弧度 (180) 57.30 5718,
4
4 3 12
例4、 已知扇形的周长为定值100,问扇形的半 径和圆心角分别为多少时扇形面积最大?最大值 是多少?
略解:S 1 lr 1 (100 2r)r r 2 50r (r 25)2 625.
22
r 25,l 50, l 2(rad )扇形面积最大值为625.
r
例7.已知一扇形中心角是α,所在圆的半径是R.
解:(1)设弧长为l,弓形面积为S弓。
60 , R 10,l 10 (cm)
180
1
180
特殊角的角度数与弧度数的对应表
度 0 30 45 60 90120 135 150 180270360
弧度 0
2 3 5
6 4 3 2346
3 2
2
例3.已知角和满足
求角–的范围.
3
4
解:
, 0 . , .
3
3
, 7
(1)、 950 12
(2)、139
129 48
1
3
三、终边相同的角
1、终边相同的角与相等角的区别
终边相同的角不一定相等,相等的角终边一定相同。
2、象限角、象间角与区间角的区别 y
2k ,2k k Z
O
x
3、角的终边落在“射线上”、“直线上”及“互相
垂直的两条直线上”的一般表示式
y
y
y
O
=k360º-90º(2k-2 )(kZ);
x 轴: =k180º(k)(kZ);
y
轴:
=k180º+90º(k+
2
)(kZ);
坐标轴:
=k90º(
k
2
)(kZ).
例2、(1)、终边落在x轴上的角度集合:
{ | k , k Z}
(2)、终边落在y轴上的角度集合:
{ | k , k Z}
x
O
x
O
x
2k k Z k k Z
k k Z
2
一、角的基本概念
1.几类特殊角的表示方法
(1)与 角终边相同的角的集合: { | =2k+, k∈Z}.
(2)象限角、象限界角(轴线角)
①象限角
第一象限角:
(2k<<2k+
2
,
kZ)
第二象限角:
(2k+
2
<<2k+,
kZ)
第三象限角:
角在内)的集合为. k 360, k Z
(4)角在“到”范围内,指.0 360
一、任意角的三角函数
1、角的概念的推广
的终边
y 的终边
正角
o
x 零角
负角
(,)
一、在直角坐标系内讨论角,角的顶点与 原点重合,角的始边 与 x轴的非负半轴重合。逆时针旋转为正,顺时针旋转为负。
(2)象限角和轴线角.象限角的前提是角的顶点与 直角坐标系中的坐标原点重合,始边与轴的非负半 轴重合,这样当角的终边在第几象限,就说这个角 是第几象限的角,若角的终边与坐标轴重合,这个 角不属于任一象限,这时也称该角为轴线角.
(3)终边相同的角,具有共同的绐边和终边的角 叫终边相同的角,所有与角终边相同的角(包含
2
(3)、终边落在象限平分线上的角度集合:
{ | k , k Z}
42
典型例题
例1.若α是第三象限的角,问α/2是哪个象限的 角?2α是哪个象限的角?
各个象限的半角范围可以用下图记 忆,图中的Ⅰ、Ⅱ、Ⅲ、Ⅳ分别指第 一、二、三、四象限角的半角范围;
例1
设α角是第二象限且满足|cosα| cosα,
①若α=60°,R=10cm,求扇形的弧长及该弧
所在的弓形面积.
②若扇形的周长是一定值C(C>0),当α为多少
弧度时,该扇形的面积有最大值?并求出这一最大 值?
指导:扇形的弧长和面积计算公式都有角度制和弧度制 两种给出的方式,但其中用弧度制给出的形式不仅易 记,而且好用.在使用时,先要将问题中涉及到的角度 换算为弧度.
二、象限角:角的终边(除端点外)在第几象限,我们就说这 个角是第几象限角。
注:如果角的终边在坐标轴上,则该角不是象限角。
三、所有与角 终边相同的角,连同角 在内,构成集合:
S { | k 360 , k Z} (角度制)
{ | 2k , k Z} (弧度制)
例1、求在 0 到 360( 0到2)范围内,与下列各角终边相同的角
相关文档
最新文档