备战中考数学专题训练---一元二次方程的综合题分类及答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、一元二次方程 真题与模拟题分类汇编(难题易错题)
1.已知关于x 的二次函数22(21)1y x k x k =--++的图象与x 轴有2个交点.
(1)求k 的取值范围;
(2)若图象与x 轴交点的横坐标为12,x x ,且它们的倒数之和是32-,求k 的值. 【答案】(1)k <-
34 ;(2)k=﹣1 【解析】
试题分析:(1)根据交点得个数,让y=0判断出两个不相等的实数根,然后根据判别式△= b 2-4ac 的范围可求解出k 的值;
(2)利用y=0时的方程,根据一元二次方程的根与系数的关系,可直接列式求解可得到k 的值.
试题解析:(1)∵二次函数y=x 2-(2k-1)x+k 2+1的图象与x 轴有两交点,
∴当y=0时,x 2-(2k-1)x+k 2+1=0有两个不相等的实数根.
∴△=b 2-4ac=[-(2k-1)]2-4×1×(k 2+1)>0.
解得k <-34
; (2)当y=0时,x 2-(2k-1)x+k 2+1=0.
则x 1+x 2=2k-1,x 1•x 2=k 2+1,
∵=== 32
-, 解得:k=-1或k= 13
-(舍去),
∴k=﹣1
2.已知为正整数,二次方程的两根为,求下式的值:
【答案】
【解析】
由韦达定理,有,.于是,对正整数,有
原式=
3.关于x的方程(k-1)x2+2kx+2=0
(1)求证:无论k为何值,方程总有实数根.
(2)设x1,x2是方程(k-1)x2+2kx+2=0的两个根,记S=++ x1+x2,S的值能为2吗?若能,求出此时k的值.若不能,请说明理由.
【答案】(1)详见解析;(2)S的值能为2,此时k的值为2.
【解析】
试题分析:(1)本题二次项系数为(k-1),可能为0,可能不为0,故要分情况讨论;要保证一元二次方程总有实数根,就必须使△>0恒成立;(2)欲求k的值,先把此代数式变形为两根之积或两根之和的形式,代入数值计算即可.
试题解析:(1)①当k-1=0即k=1时,方程为一元一次方程2x=1,
x=有一个解;
②当k-1≠0即k≠1时,方程为一元二次方程,
△=(2k)²-4×2(k-1)=4k²-8k+8="4(k-1)" ²+4>0
方程有两不等根
综合①②得不论k为何值,方程总有实根
(2)∵x ₁+x ₂=,x ₁ x ₂=
∴S=++ x1+x2
=
=
=
=
=2k-2=2,
解得k=2,
∴当k=2时,S的值为2
∴S 的值能为2,此时k 的值为2.
考点:一元二次方程根的判别式;根与系数的关系.
4.沙坪坝区各街道居民积极响应“创文明城区”活动,据了解,某街道居民人口共有7.5万人,街道划分为A ,B 两个社区,B 社区居民人口数量不超过A 社区居民人口数量的2倍. (1)求A 社区居民人口至少有多少万人?
(2)街道工作人员调查A ,B 两个社区居民对“社会主义核心价值观”知晓情况发现:A 社区有1.2万人知晓,B 社区有1.5万人知晓,为了提高知晓率,街道工作人员用了两个月的时间加强宣传,A 社区的知晓人数平均月增长率为m %,B 社区的知晓人数第一个月增长了45
m %,第二月在第一个月的基础上又增长了2m %,两个月后,街道居民的知晓率达到92%,求m 的值.
【答案】(1)A 社区居民人口至少有2.5万人;(2)m 的值为50.
【解析】
【分析】
(1)设A 社区居民人口有x 万人,根据“B 社区居民人口数量不超过A 社区居民人口数量的2倍”列出不等式求解即可;
(2)A 社区的知晓人数+B 社区的知晓人数=7.5×92%,据此列出关于m 的方程并解答.
【详解】
解:(1)设A 社区居民人口有x 万人,则B 社区有(7.5-x )万人,
依题意得:7.5-x ≤2x ,
解得x ≥2.5.
即A 社区居民人口至少有2.5万人;
(2)依题意得:1.2(1+m %)2+1.5×(1+
45m %)+1.5×(1+45
m %)(1+2m %)=7.5×92%, 解得m =50
答:m 的值为50.
【点睛】
本题考查了一元二次方程和一元一次不等式的应用,解题的关键是读懂题意,找到题中相关数据的数量关系,列出不等式或方程.
5.已知关于x 的一元二次方程()2
20x m x m -++=(m 为常数) (1)求证:不论m 为何值,方程总有两个不相等的实数根;
(2)若方程有一个根是2,求m 的值及方程的另一个根.
【答案】(1)见解析;
(2) 即m 的值为0,方程的另一个根为0.
【解析】
【分析】
(1)可用根的判别式,计算判别式得到△=(m+2)2−4×1⋅m=m 2+4>0,则方程有两个不相等
实数解,于是可判断不论m 为何值,方程总有两个不相等的实数根;
(2)设方程的另一个根为t ,利用根与系数的关系得到2+t=
21
m + ,2t=m,最终解出关于t 和m 的方程组即可.
【详解】
(1)证明:
△=(m+2)2−4×1⋅m=m 2+4,
∵无论m 为何值时m 2≥0,
∴m 2+4≥4>0,
即△>0,
所以无论m 为何值,方程总有两个不相等的实数根.
(2)设方程的另一个根为t , ()220x m x m -++=
根据题意得2+t=
21
m + ,2t=m , 解得t=0,
所以m=0,
即m 的值为0,方程的另一个根为0.
【点睛】
本题考查根的判别式和根于系数关系,对于问题(1)可用根的判别式进行判断,在判断过程中注意对△的分析,在分析时可借助平方的非负性;问题(2)可先设另一个根为t ,用根于系数关系列出方程组,在求解.
6.关于x 的方程()2204
k kx k x +++=有两个不相等的实数根. ()1求实数k 的取值范围;
()2是否存在实数k ,使方程的两个实数根之和等于两实数根之积的算术平方根?若存在,求出k 的值;若不存在,说明理由.
【答案】(1)1k >-且0k ≠;(2)不存在符合条件的实数k ,使方程的两个实数根之和等于两实数根之积的算术平方根.
【解析】
【分析】
()1由于方程有两个不相等的实数根,所以它的判别式0>,由此可以得到关于k 的不等
式,解不等式即可求出k 的取值范围. ()2首先利用根与系数的关系,求出两根之和与两根之积,再由方程的两个实数根之和等于两实数根之积的算术平方根,可以得出关于k 的等式,解出k 值,然后判断k 值是否在()1中的取值范围内.
【详解】
解:()1依题意得2(2)404k k k =+-⋅>, 1k ∴>-,
又0k ≠,
k ∴的取值范围是1k >-且0k ≠;
()2解:不存在符合条件的实数k ,使方程的两个实数根之和等于两实数根之积的算术平方根,
理由是:设方程()2204
k kx k x +++=的两根分别为1x ,2x , 由根与系数的关系有:1212214k x x k x x +⎧+=-⎪⎪⎨⎪=⎪⎩
, 又因为方程的两个实数根之和等于两实数根之积的算术平方根,
212
k k +∴-=, 43
k ∴=-, 由()1知,1k >-,且0k ≠,
43
k ∴=-不符合题意, 因此不存在符合条件的实数k ,使方程的两个实数根之和等于两实数根之积的算术平方根.
【点睛】
本题重点考查了一元二次方程的根的判别式和根与系数的关系。
7.已知关于x 的一元二次方程有两个实数x 2+2x+a ﹣2=0,有两个实数根x 1,x 2. (1)求实数a 的取值范围;
(2)若x 12x 22+4x 1+4x 2=1,求a 的值.
【答案】(1)a≤3;(2)a=﹣1.
【解析】
试题分析:(1)由根的个数,根据根的判别式可求出a 的取值范围;
(2)根据一元二次方程根与系数的关系,代换求值即可得到a 的值.
试题解析:(1)∵方程有两个实数根,
∴△≥0,即22﹣4×1×(a ﹣2)≥0,解得a≤3;
(2)由题意可得x 1+x 2=﹣2,x 1x 2=a ﹣2,
∵x 12x 22+4x 1+4x 2=1,
∴(a﹣2)2﹣8=1,解得a=5或a=﹣1,
∵a≤3,
∴a=﹣1.
8.某新建火车站站前广场需要绿化的面积为46000米2,施工队在绿化了22000米2后,将每天的工作量增加为原来的1.5倍,结果提前4天完成了该项绿化工程.
(1)该项绿化工程原计划每天完成多少米2?
(2)该项绿化工程中有一块长为20米,宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为56米2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是多少米?
【答案】(1)2000;(2)2米
【解析】
【分析】
(1)设未知数,根据题目中的的量关系列出方程;
(2)可以通过平移,也可以通过面积法,列出方程
【详解】
解:(1)设该项绿化工程原计划每天完成x米2,
根据题意得:4600022000
x
-
﹣
4600022000
1.5x
-
= 4
解得:x=2000,
经检验,x=2000是原方程的解;
答:该绿化项目原计划每天完成2000平方米;(2)设人行道的宽度为x米,根据题意得,(20﹣3x)(8﹣2x)=56
解得:x=2或x=26
3
(不合题意,舍去).
答:人行道的宽为2米.
9.已知关于x的一元二次方程x2﹣mx﹣2=0…①
(1)若x=﹣1是方程①的一个根,求m的值和方程①的另一根;
(2)对于任意实数m,判断方程①的根的情况,并说明理由.
【答案】(1)方程的另一根为x=2;(2)方程总有两个不等的实数根,理由见解析.
【解析】
试题分析:(1)直接把x=-1代入方程即可求得m的值,然后解方程即可求得方程的另一
个根;
(2)利用一元二次方程根的情况可以转化为判别式△与0的关系进行判断.
(1)把x=-1代入得1+m-2=0,解得m=1
∴2--2=0.
∴
∴另一根是2;
(2)∵,
∴方程①有两个不相等的实数根.
考点:本题考查的是根的判别式,一元二次方程的解的定义,解一元二次方程
点评:解答本题的关键是熟练掌握一元二次方程根的情况与判别式△的关系:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根
10.阅读下面内容:我们已经学习了《二次根式》和《乘法公式》,聪明的你可以发现:当a>0,b>0时:
∵(a b
-)2=a﹣2ab+b≥0
∴a+b≥2ab,当且仅当a=b时取等号.
请利用上述结论解决以下问题:
(1)请直接写出答案:当x>0时,x+1
x
的最小值为.当x<0时,x+
1
x
的最大值
为;
(2)若y=
2710
1
x x
x
++
+
,(x>﹣1),求y的最小值;
(3)如图,四边形ABCD的对角线AC、BD相交于点O,△AOB、△COD的面积分别为4和9,求四边形ABCD面积的最小值.
【答案】(1)2;﹣2.(2)y的最小值为9;(3)四边形ABCD面积的最小值为25.【解析】
【分析】
(1)当x>0时,按照公式a+b ab a=b时取等号)来计算即可;当x<0
时,﹣x>0,
1
x
->0,则也可以按公式a+b ab a=b时取等号)来计算;
(2)将y
2710
1
x x
x
++
=
+
的分子变形,分别除以分母,展开,将含x的项用题中所给公式
求得最小值,再加上常数即可;
(3)设S △BOC =x ,已知S △AOB =4,S △COD =9,由三角形面积公式可知:S △BOC :S △COD =S △AOB :S △AOD ,用含x 的式子表示出S △AOD ,再表示出四边形的面积,根据题中所给公式求得最小值,加上常数即可.
【详解】
(1)当x >0时,x 1x +≥=2; 当x <0时,﹣x >0,1x ->0.
∵﹣x 1x -≥=2,∴则x 1x +=-(﹣x 1x -)≤﹣2,∴当x >0时,x 1x +的最小值为 2.当x <0时,x 1x +
的最大值为﹣2. 故答案为:2,﹣2.
(2)∵x >﹣1,∴x +1>0,∴y 27101x x x ++=+()2(1)5141
x x x ++++=+=(x +1)
41x +++5=4+5=9,∴y 的最小值为9. (3)设S △BOC =x ,已知S △AOB =4,S △COD =9 则由等高三角形可知:S △BOC :S △COD =S △AOB :S △AOD ,∴x :9=4:S △AOD ,∴S △AOD 36x =
,∴
四边形ABCD 面积=4+9+x 36x +≥=25. 当且仅当x =6时,取等号,∴四边形ABCD 面积的最小值为25.
【点睛】
本题考查了配方法在最值问题中的应用.对不能直接应用公式的,需要正确变形才可以应用.。