高中典型物理模型及解题方法
盘点30条高中物理模型及隐含条件,解题关键所在!
盘点30条高中物理模型及隐含条件,解题关键所在!在物理学习中,事实上好多的物理模型,而每一种模型,都相伴着隐含条件,这些隐含条件会是解题的关键所在!下面是三十条大伙儿在做题中容易遇到的模型和隐含条件,不管你是高几,都期望大伙儿多体会体会,在审题做题过程中能够总结领会。
1、绳:只能拉,不能压,即受到拉力时F≠0,受压时F=0.2、杆:既能拉也能压,即受到拉力、压力时,有F≠0.3、绳刚要断:现在绳的拉力差不多达到最大值,即F=Fmax.4、光滑:意味着无摩擦力.5、长导线:意味着长度L可看成无穷大.6、足够大的平板:意味着平板的面积S可看成无穷大.7、轻杆、轻绳、轻滑轮:意味着质量m=0.8、物体刚要离开地面、物体刚要飞离轨道等物体和接触面之间作用力:FN=0.9、绳恰好被拉直,现在绳中拉力:F=0.10、物体开始运动、自由开释:表示初速度为0.11、锤打桩无反弹:碰撞后,锤与桩有共同速度.12、理想变压器:无功率损耗的变压器.13、细杆:体积为零,仅有长度.14、质点:具有质量,但可忽略其大小、形状和内部结构而视为几何点的物体.15、点电荷:在研究带电体间的相互作用时,假如带电体的大小比它们之间的距离小得多,即可认为分布在带电体上的电荷是集中在一点上的.16、差不多粒子如电子、质子、离子等是不考虑重力的粒子,而带电的质点、液滴、小球等(除说明不考虑重力外)则要考虑重力.17、“轻绳、弹簧、轻杆”模型:注意三种模型的异同点,常考查直线与圆周运动中三种模型的动力学问题和功能问题.18、“挂件”模型:考查物体的平稳问题、死结与活结问题,常采纳正交分解法,图解法,三角形法则和极值法解题.19、“追碰”模型:考查运动规律、碰撞规律、临界问题.常通过数学法(函数极值法、图像法等)和物理方法(参照物变换法、守恒法)等解题.20、“皮带”模型:注意摩擦力的大小和方向.常考查牛顿运动定律、功能关系及摩擦生热等问题.21、“平抛”模型:物体做平抛运动(或类平抛运动),考查运动的合成与分解、牛顿运动定律、动能定理等知识.22、“行星”模型:万有引力提供向心力.注意相关物理量、功能问题、数理问题(圆心、半径、临界问题).23、“人船”模型:不仅是动量守恒问题中典型的物理模型,也是最重要的力学综合模型之一.通过类比和等效方法,能够使许多动量守恒问题的分析思路和解答步骤变得简捷.24、“子弹打木块”模型:子弹和木块组成的系统动量守恒,机械能不守恒.系统缺失的机械能等于阻力乘以相对位移.25、“限流与分压器”模型:电路设计中经常遇到.考查串、并联电路规律及闭合电路的欧姆定律、电能、电功率以及实际应用等.26、“电路的动态变化”模型:考查闭合电路的欧姆定律.27、“回旋加速器”模型:考查带电粒子在磁场中运动的典型模型.注意加速电场的平行极板接的是交变电压,且它的周期和粒子的运动周期相同.28、电磁场中的“单杆”模型:导体棒要紧是以棒生电或电生棒的内容显现,从组合情形来看有棒与电阻、棒与电容、棒与电感、棒与弹簧等.导体棒所在的导轨有平面导轨、竖直导轨等.29、电磁场中的“双电源”模型:考查力学中的三大定律、闭合电路的欧姆定律、电磁感应定律等知识.30、“远距离输电变压器”模型. 注意变压器的三个制约问题.。
高中物理48个解题模型高考物理题型全归纳
⾼中物理48个解题模型⾼考物理题型全归纳最后两个⽉,快速掌握⾼考物理150道易错题+30个常考物理模型,⼀定拿⾼分!不看太可惜!历年⾼考物理解题经典模型,⽼师都没讲得这么全!常考物理模型及易错题常考物理模型及隐含条件30条1.绳:只能拉,不能压,即受到拉⼒时F≠0,受压时F=0.2.杆:既能拉也能压,即受到拉⼒.压⼒时,有F≠0.3.绳刚要断:此时绳的拉⼒已经达到最⼤值,即F=Fmax.4.光滑:意味着⽆摩擦⼒.5.长导线:意味着长度L可看成⽆穷⼤.6.⾜够⼤的平板:意味着平板的⾯积S可看成⽆穷⼤.7.轻杆.轻绳.轻滑轮:意味着质量m=0.8.物体刚要离开地⾯.物体刚要飞离轨道等物体和接触⾯之间作⽤⼒:FN=0.9.绳恰好被拉直,此时绳中拉⼒:F=0.10.物体开始运动.⾃由释放:表⽰初速度为0.11.锤打桩⽆反弹:碰撞后,锤与桩有共同速度.12.理想变压器:⽆功率损耗的变压器.13.细杆:体积为零,仅有长度.14.质点:具有质量,但可忽略其⼤⼩.形状和内部结构⽽视为⼏何点的物体.15.点电荷:在研究带电体间的相互作⽤时,如果带电体的⼤⼩⽐它们之间的距离⼩得多,即可认为分布在带电体上的电荷是集中在⼀点上的.16.基本粒⼦如电⼦.质⼦.离⼦等是不考虑重⼒的粒⼦,⽽带电的质点.液滴.⼩球等(除说明不考虑重⼒外)则要考虑重⼒.17.“轻绳.弹簧.轻杆”模型:注意三种模型的异同点,常考查直线与圆周运动中三种模型的动⼒学问题和功能问题.18.“挂件”模型:考查物体的平衡问题.死结与活结问题,常采⽤正交分解法,图解法,三⾓形法则和极值法解题.19.“追碰”模型:考查运动规律.碰撞规律.临界问题.常通过数学法(函数极值法.图像法等)和物理⽅法(参照物变换法.守恒法)等解题.20.“⽪带”模型:注意摩擦⼒的⼤⼩和⽅向.常考查⽜顿运动定律.功能关系及摩擦⽣热等问题.21.“平抛”模型:物体做平抛运动(或类平抛运动),考查运动的合成与分解.⽜顿运动定律.动能定理等知识.22.“⾏星”模型:万有引⼒提供向⼼⼒.注意相关物理量.功能问题.数理问题(圆⼼.半径.临界问题).23.“⼈船”模型:不仅是动量守恒问题中典型的物理模型,也是最重要的⼒学综合模型之⼀.通过类⽐和等效⽅法,可以使许多动量守恒问题的分析思路和解答步骤变得简捷.24.“⼦弹打⽊块”模型:⼦弹和⽊块组成的系统动量守恒,机械能不守恒.系统损失的机械能等于阻⼒乘以相对位移.25.“限流与分压器”模型:电路设计中经常遇到.考查串.并联电路规律及闭合电路的欧姆定律.电能.电功率以及实际应⽤等.26.“电路的动态变化”模型:考查闭合电路的欧姆定律.27.“回旋加速器”模型:考查带电粒⼦在磁场中运动的典型模型.注意加速电场的平⾏极板接的是交变电压,且它的周期和粒⼦的运动周期相同.28.电磁场中的“单杆”模型:导体棒主要是以棒⽣电或电⽣棒的内容出现,从组合情况来看有棒与电阻.棒与电容.棒与电感.棒与弹簧等.导体棒所在的导轨有平⾯导轨.竖直导轨等.29.电磁场中的“双电源”模型:考查⼒学中的三⼤定律.闭合电路的欧姆定律.电磁感应定律等知识.30.“远距离输电变压器”模型:注意变压器的三个制约问题.⾼中物理模型有哪些⒈"质⼼"模型:质⼼(多种体育运动).集中典型运动规律.⼒能⾓度.⒉"绳件.弹簧.杆件"三件模型:三件的异同点,直线与圆周运动中的动⼒学问题和功能问题.⒊"挂件"模型:平衡问题.死结与活结问题,采⽤正交分解法,图解法,三⾓形法则和极值法.⒋"追碰"模型:运动规律.碰撞规律.临界问题.数学法(函数极值法.图像法等)和物理⽅法(参照物变换法.守恒法)等.⒌"运动关联"模型:⼀物体运动的同时性.独⽴性.等效性.多物体参与的独⽴性和时空联系.⒍"⽪带"模型:摩擦⼒.⽜顿运动定律.功能及摩擦⽣热等问题.⒎"斜⾯"模型:运动规律.三⼤定律.数理问题.⒏"平抛"模型:运动的合成与分解.⽜顿运动定律.动能定理(类平抛运动).⒐"⾏星"模型:向⼼⼒(各种⼒).相关物理量.功能问题.数理问题(圆⼼.半径.临界问题).⒑"全过程"模型:匀变速运动的整体性.保守⼒与耗散⼒.动量守恒定律.动能定理.全过程整体法.⒒"⼈船"模型:动量守恒定律.能量守恒定律.数理问题.⒓"⼦弹打⽊块"模型:三⼤定律.摩擦⽣热.临界问题.数理问题.⒔"爆炸"模型:动量守恒定律.能量守恒定律.⒕"单摆"模型:简谐运动.圆周运动中的⼒和能问题.对称法.图象法.⒖"限流与分压器"模型:电路设计.串并联电路规律及闭合电路的欧姆定律.电能.电功率.实际应⽤.⒗"电路的动态变化"模型:闭合电路的欧姆定律.判断⽅法和变压器的三个制约问题.⒘"磁流发电机"模型:平衡与偏转.⼒和能问题.⒙"回旋加速器"模型:加速模型(⼒能规律).回旋模型(圆周运动).数理问题.⒚"对称"模型:简谐运动(波动).电场.磁场.光学问题中的对称性.多解性.对称性.⒛电磁场中的单杆模型:棒与电阻.棒与电容.棒与电感.棒与弹簧组合.平⾯导轨.竖直导轨等,处理⾓度为⼒电⾓度.电学⾓度.⼒能⾓度.21.电磁场中的"双电源"模型:顺接与反接.⼒学中的三⼤定律.闭合电路的欧姆定律.电磁感应定律.22.交流电有效值相关模型:图像法.焦⽿定律.闭合电路的欧姆定律.能量问题.23."能级"模型:能级图.跃迁规律.光电效应等光的本质综合问题.24.远距离输电升压降压的变压器模型.。
滑块木板模型(学生版)-2024届新课标高中物理模型与方法
2024版新课标高中物理模型与方法--滑块木板模型目录【模型归纳】1模型一光滑面上外力拉板模型二光滑面上外力拉块模型三粗糙面上外力拉板模型四粗糙面上外力拉块模型五粗糙面上刹车减速【常见问题分析】问题1.板块模型中的运动学单过程问题问题2.板块模型中的运动学多过程问题1--至少作用时间问题问题3.板块模型中的运动学多过程问题2--抽桌布问题问题4.板块模型中的运动学粗糙水平面减速问题【模型例析】5【模型演练】13【模型归纳】模型一光滑面上外力拉板加速度分离不分离m1最大加速度a1max=μgm2加速度a2=(F-μm1g) /m2条件:a2>a1max即F>μg(m1+m2)条件:a2≤a1max即F≤μg(m1+m2)整体加速度a=F/(m1+m2)内力f=m1F/(m1+m2)模型二光滑面上外力拉块加速度分离不分离m2最大加速度a2max=μm1g/m2 m1加速度a1=(F-μm1g)/m1条件:a1>a2max即F>μm1g(1+m1/m2)条件:a2≤a1max即F≤μm1g(1+m1/m2)整体加速度a=F/(m1+m2)内力f=m2F/(m1+m2)模型三粗糙面上外力拉板不分离(都静止)不分离(一起加速)分离条件:F≤μ2(m1+m2)g 条件:a2≤a1max即μ2(m1+m2)g<F≤(μ1+μ2)g(m1+m2)整体加速度a=[F-μ2(m1+m2)g)]/(m1条件:a2>a1max=μ1g即F>(μ1+μ2)g(m1+m2)+m2)内力f=m1a外力区间范围模型四粗糙面上外力拉块μ1m1g>μ2(m1+m2)g一起静止一起加速分离条件:F≤μ2(m1+m2)g 条件:μ2(m1+m2)g<F≤(μ1-μ2)m1g(1+m1/m2)整体加速度a=[F-μ2(m1+m2)g)]/(m1+m2)内力f1=μ2(m1+m2)g+m2a条件:a1>a2max=[μ1m1g-μ2(m1+m2)g]/m2即F>(μ1-μ2)m1g(1+m1/m2)外力区间范围模型五粗糙面上刹车减速一起减速减速分离m1最大刹车加速度:a1max=μ1g 整体刹车加速度a=μ2g条件:a≤a1max即μ2≤μ1条件:a>a1max即μ2>μ1m1刹车加速度:a1=μ1gm2刹车加速度:a2=μ2(m1+m2)g-μ1m1g)]/m2加速度关系:a1<a2【常见问题分析】问题1.板块模型中的运动学单过程问题恒力拉板恒力拉块分离,位移关系:x 相对=½a 2t 20-½a 1t 20=L 分离,位移关系:x 相对=½a 1t 20-½a 2t 20=L问题2.板块模型中的运动学多过程问题1--至少作用时间问题问题:板块分离,F 至少作用时间?过程①:板块均加速过程:②板加速、块减速位移关系:x 1相对+x 2相对=L 即Δv ·(t 1+t 2)/2=L ;利用相对运动Δv =(a 2-a 1)t 1、Δv =(a 2+a 1')t 2问题3.板块模型中的运动学多过程问题2--抽桌布问题抽桌布问题简化模型过程①:分离过程:②匀减速分离,位移关系:x2-x1=L10v0多过程问题,位移关系:x1+x1'=L2问题4.板块模型中的运动学粗糙水平面减速问题块带板板带块μ1≥μ2μ1<μ2【模型例析】1一长木板置于粗糙水平地面上,木板左端放置一小物块;在木板右方有一墙壁,木板右端与墙壁的距离为4.5m,如图(a)所示。
高中物理超全大题解题模型公式汇总!
高中物理超全大题解题模型公式汇总!
一、匀变速直线运动
二、共点力平衡
三、牛顿运动定律
1.斜面模型
2.板块模型
3.传送带模型
四、曲线运动
ω增大,F增大。
五、天体运动
1.相关物理量的关系图
2.变轨模型
六、碰撞和动量守恒
1.弹性正碰
满足动量守恒定律和机械能守恒定律
解得:
2.冲击摆
七、带电粒子在电场中的运动 1.加速+偏转模型
电加速:
电偏转:
水平方向:
竖直方向:
偏转角:
荧光屏上的偏移量:
2.电场+重力场的叠加场
▲图中qE=mg,则θ=45°
八、带电粒子在磁场中的运动
1.找圆心、求半径、算时间
物理方程:
几何关系:
速度偏向角:
▲算时间:
2.磁聚焦“透镜”
磁场圆半径与轨迹圆半径相等,即
2.有效切割长度
▲三种情况中有效切割长度均为d 3.电磁感应中的杆+导轨模型
运动过程中:
先做a减小的加速运动,后做匀速:
十、理想变压器
十一、原子物理
1.光电效应
2.氢原子能级。
高中物理模型解题大全
高中物理模型解题大全作为一门探究自然现象的科学,物理学长期以来就依赖于各种模型来支持和解释它的观测和实验结果。
模型是物理学中不可缺少的概念,因为它是用来代表或替换某个自然系统或现象的简要描述。
在物理学中有许多不同的模型,每个模型用于不同的领域、不同的问题和不同的实验。
本文将介绍高中物理模型解题的大全。
1.机械模型机械模型在物理学研究中占据了重要地位,这是因为机械运动是最基本的物理现象之一。
机械模型被广泛应用于解释各种机械运动现象,例如简谐振动、匀加速直线运动、自由落体运动等等。
机械模型通常是用微小的质量点或质点来表示物体,这些质点之间通过连杆或势能关系相互作用。
使用机械模型可以更好地理解物体的运动特性和行为规律,并预测物体如何在特定条件下运动。
2.电磁场模型电磁场模型是描述电磁现象的数学工具。
它的基本概念是电荷和电磁力。
电磁场模型可以解释许多电场和磁场现象,包括电能、电势、电感和电容等现象。
使用电磁场模型可以帮助我们更好地理解电与磁的相互作用关系和作用过程,并预测物体在电场和磁场中运动时的行为规律。
3.热力学模型热力学模型涉及到热能、热量和温度等概念,可以帮助我们理解许多热现象,包括传热、温度变化、物体的热力学状态等。
热力学模型也解释了热力学中的三个基本定律,即热力学第一定律,热力学第二定律和热力学第三定律。
使用热力学模型可以预测物体表现出的热力学特性和行为规律。
4.量子力学模型量子力学模型是描述微观现象的模型,它是独立于经典物理学模型而设计的。
量子力学模型用于描述原子和分子的行为规律。
它提供了一种新的解释方式,用于解释诸如随机性、不可分性和量子力学纠缠等现象。
使用量子力学模型可以更好地解释微观世界中的物理特性。
总的来说,模型是物理学中不可缺少的概念,它被用来代表或替换某个自然系统或现象的简要描述。
高中学生学习物理化学时需要学习常见的物理模型,掌握各种模型的特点以及如何使用这些模型预测物体的运动和行为规律。
高中物理丨外接圆与内切圆解题方法,8大模型
高中物理丨外接圆与内切圆解题方法,8大模型高中物理丨外接圆与内切圆解题方法,8大模型1. 解题方法在解决外接圆与内切圆相关的物理问题时,可以采用以下步骤和方法:步骤1. 阅读问题并理解题意。
2. 绘制问题所描述的图形,包括外接圆、内切圆和其他相关元素。
3. 根据已知条件,确定问题中所涉及的物理量的数值。
4. 分析问题,找出与外接圆与内切圆相关的物理原理和定律。
5. 运用物理原理和定律,建立相应的数学方程。
6. 求解方程并计算出所需的未知物理量。
7. 总结并回答问题,给出相应的解答和结论。
方法在解题过程中,可以采用以下方法:1. 几何法:利用几何关系来解决问题,例如利用相似三角形或圆上的弧长等关系。
几何法:利用几何关系来解决问题,例如利用相似三角形或圆上的弧长等关系。
2. 三角函数法:利用三角函数的性质来解决问题,例如正弦、余弦、正切等。
三角函数法:利用三角函数的性质来解决问题,例如正弦、余弦、正切等。
3. 向量法:将问题转化为向量的运算,利用向量的性质和运算来解决问题。
向量法:将问题转化为向量的运算,利用向量的性质和运算来解决问题。
4. 能量守恒法:利用能量守恒的原理,将问题转化为能量的转化和平衡问题。
能量守恒法:利用能量守恒的原理,将问题转化为能量的转化和平衡问题。
5. 牛顿定律法:利用牛顿定律和相关的力学原理来解决问题,例如受力分析、力的平衡等。
牛顿定律法:利用牛顿定律和相关的力学原理来解决问题,例如受力分析、力的平衡等。
6. 动量守恒法:利用动量守恒原理解决问题,例如碰撞问题中的动量守恒。
动量守恒法:利用动量守恒原理解决问题,例如碰撞问题中的动量守恒。
7. 电路分析法:将问题转化为电路的分析和计算,利用电路定律和电路分析方法来解决问题。
电路分析法:将问题转化为电路的分析和计算,利用电路定律和电路分析方法来解决问题。
8. 数学分析法:利用数学分析方法和相关的数学工具解决问题,例如微积分、方程求解等。
高中物理12种解题方法与技巧与操作
高中物理12种解题方法与技巧1直线运动问题题型概述:直线运动问题是高考的热点,可以单独考查,也可以与其他知识综合考查.单独考查若出现在选择题中,则重在考查基本概念,且常与图像结合;在计算题中常出现在第一个小题,难度为中等,常见形式为单体多过程问题和追及相遇问题.思维模板:解图像类问题关键在于将图像与物理过程对应起来,通过图像的坐标轴、关键点、斜率、面积等信息,对运动过程进行分析,从而解决问题;对单体多过程问题和追及相遇问题应按顺序逐步分析,再根据前后过程之间、两个物体之间的联系列出相应的方程,从而分析求解,前后过程的联系主要是速度关系,两个物体间的联系主要是位移关系.2物体的动态平衡问题题型概述:物体的动态平衡问题是指物体始终处于平衡状态,但受力不断发生变化的问题.物体的动态平衡问题一般是三个力作用下的平衡问题,但有时也可将分析三力平衡的方法推广到四个力作用下的动态平衡问题.思维模板:常用的思维方法有两种(1)解析法:解决此类问题可以根据平衡条件列出方程,由所列方程分析受力变化;(2)图解法:根据平衡条件画出力的合成或分解图,根据图像分析力的变化.3运动的合成与分解问题题型概述:运动的合成与分解问题常见的模型有两类.一是绳(杆)末端速度分解的问题,二是小船过河的问题,两类问题的关键都在于速度的合成与分解.思维模板:(1)在绳(杆)末端速度分解问题中,要注意物体的实际速度一定是合速度,分解时两个分速度的方向应取绳(杆)的方向和垂直绳(杆)的方向;如果有两个物体通过绳(杆)相连,则两个物体沿绳(杆)方向速度相等。
(2)小船过河时,同时参与两个运动,一是小船相对于水的运动,二是小船随着水一起运动,分析时可以用平行四边形定则,也可以用正交分解法,有些问题可以用解析法分析,有些问题则需要用图解法分析。
4抛体运动问题题型概述:抛体运动包括平抛运动和斜抛运动,不管是平抛运动还是斜抛运动,研究方法都是采用正交分解法,一般是将速度分解到水平和竖直两个方向上.思维模板:(1)平抛运动物体在水平方向做匀速直线运动,在竖直方向做匀加速直线运动,其位移满足x=v0t,y=gt2/2,速度满足vx=v0,vy=gt;(2)斜抛运动物体在竖直方向上做上抛(或下抛)运动,在水平方向做匀速直线运动,在两个方向上分别列相应的运动方程求解5圆周运动问题题型概述:圆周运动问题按照受力情况可分为水平面内的圆周运动和竖直面内的圆周运动,按其运动性质可分为匀速圆周运动和变速圆周运动.水平面内的圆周运动多为匀速圆周运动,竖直面内的圆周运动一般为变速圆周运动.对水平面内的圆周运动重在考查向心力的供求关系及临界问题,而竖直面内的圆周运动则重在考查最高点的受力情况.思维模板:(1)对圆周运动,应先分析物体是否做匀速圆周运动,若是,则物体所受的合外力等于向心力,由F合=mv2/r=mrω2列方程求解即可;若物体的运动不是匀速圆周运动,则应将物体所受的力进行正交分解,物体在指向圆心方向上的合力等于向心力.(2)竖直面内的圆周运动可以分为三个模型:①绳模型:只能对物体提供指向圆心的弹力,能通过最高点的临界态为重力等于向心力;②杆模型:可以提供指向圆心或背离圆心的力,能通过最高点的临界态是速度为零;③外轨模型:只能提供背离圆心方向的力,物体在最高点时,若v<(gR)1/2,沿轨道做圆周运动,若v≥(gR)1/2,离开轨道做抛体运动.6牛顿运动定律的综合应用问题题型概述:牛顿运动定律是高考重点考查的内容,每年在高考中都会出现,牛顿运动定律可将力学与运动学结合起来,与直线运动的综合应用问题常见的模型有连接体、传送带等,一般为多过程问题,也可以考查临界问题、周期性问题等内容,综合性较强.天体运动类题目是牛顿运动定律与万有引力定律及圆周运动的综合性题目,近几年来考查频率极高.思维模板:以牛顿第二定律为桥梁,将力和运动联系起来,可以根据力来分析运动情况,也可以根据运动情况来分析力.对于多过程问题一般应根据物体的受力一步一步分析物体的运动情况,直到求出结果或找出规律.对天体运动类问题,应紧抓两个公式:GMm/r2=mv2/r=mrω2=mr4π2/T2 ①。
高中物理经典解题模型归纳
高中物理经典解题模型归纳
虽然说高中物理学习的内容比较多,但是高考考察的重点内容归纳一下就是一些模型。
以下就是小编整理的高中物理经典阶梯模型,供参考。
1高中物理24个经典模型1、”皮带”模型:摩擦力.牛顿运动定律.功能及摩擦
生热等问题.
2、”斜面”模型:运动规律.三大定律.数理问题.
3、”运动关联”模型:一物体运动的同时性.独立性.等效性.多物体参与的独立
性和时空联系.
4、”人船”模型:动量守恒定律.能量守恒定律.数理问题.
5、”子弹打木块”模型:三大定律.摩擦生热.临界问题.数理问题.
6、”爆炸”模型:动量守恒定律.能量守恒定律.
7、”单摆”模型:简谐运动.圆周运动中的力和能问题.对称法.图象法.
8.电磁场中的”双电源”模型:顺接与反接.力学中的三大定律.闭合电路的欧姆定律.电磁感应定律.
9.交流电有效值相关模型:图像法.焦耳定律.闭合电路的欧姆定律.能量问题.
10、”平抛”模型:运动的合成与分解.牛顿运动定律.动能定理(类平抛运动).
11、”行星”模型:向心力(各种力).相关物理量.功能问题.数理问题(圆心.半径.
临界问题).
12、”全过程”模型:匀变速运动的整体性.保守力与耗散力.动量守恒定律.动能定理.全过程整体法.
13、”质心”模型:质心(多种体育运动).集中典型运动规律.力能角度.
14、”绳件.弹簧.杆件”三件模型:三件的异同点,直线与圆周运动中的动力学问。
高中物理解题模型详解(20套精讲)
= 1 mv2 − 0 2
物体 A 克服摩擦力做功,机械能转化为内能:
Wf
=
mg
⋅
g
(2
−µ 4
)t
2
+
L
−
m3g 2 8q 2 B 2
4、如图 1.05 所示,在水平地面上有一辆运动的平板小车, 车上固定一个盛水的杯子,杯子的直径为 R。当小车作匀加速运动 时,水面呈如图所示状态,左右液面的高度差为 h,则小车的加速 度方向指向如何?加速度的大小为多少?
(2)、加磁场之前,物体 A 做匀加速运动,据牛顿运动定律有:
mg sinθ + qE cosθ − Ff = ma 又FN + qE sinθ − mg cosθ = 0, Ff = µFN
解出 a = g(2 − µ) 2
A 沿斜面运动的距离为:
s = 1 at2 = g(2 − µ)t2
2
4
加上磁场后,受到洛伦兹力 F洛 = Bqv
C. 物体前 10s 内和后 10s 内加速度大小之比为 2:1
D. 物体所受水平恒力和摩擦力大小之比为 3:1
答案:ACD
三、斜面模型
1、相距为 20cm 的平行金属导轨倾斜放置,如图 1.03, 导轨所在平面与水平面的夹角为θ = 37° ,现在导轨上放一 质量为 330g 的金属棒 ab,它与导轨间动摩擦系数为 µ = 0.50 ,整个装置处于磁感应强度 B=2T 的竖直向上的匀 强磁场中,导轨所接电源电动势为 15V,内阻不计,滑动变 阻器的阻值可按要求进行调节,其他部分电阻不计,取 g = 10m / s 2 ,为保持金属棒 ab 处于静止状态,求:
解析:设以火车乙为参照物,则甲相对乙做初速为 (v1 − v2 ) 、加速度为 a 的匀减速运动。
高中物理解题常用经典模型
1、"皮带"模型:摩擦力.牛顿运动定律.功能及摩擦生热等问题.2、"斜面"模型:运动规律.三大定律.数理问题.3、"运动关联"模型:一物体运动的同时性.独立性.等效性.多物体参与的独立性和时空联系.4、"人船"模型:动量守恒定律.能量守恒定律.数理问题.5、"子弹打木块"模型:三大定律.摩擦生热.临界问题.数理问题.6、"爆炸"模型:动量守恒定律.能量守恒定律.7、"单摆"模型:简谐运动.圆周运动中的力和能问题.对称法.图象法.8.电磁场中的"双电源"模型:顺接与反接.力学中的三大定律.闭合电路的欧姆定律.电磁感应定律.9.交流电有效值相关模型:图像法.焦耳定律.闭合电路的欧姆定律.能量问题.10、"平抛"模型:运动的合成与分解.牛顿运动定律.动能定理类平抛运动.11、"行星"模型:向心力各种力.相关物理量.功能问题.数理问题圆心.半径.临界问题.12、"全过程"模型:匀变速运动的整体性.保守力与耗散力.动量守恒定律.动能定理.全过程整体法.13、"质心"模型:质心多种体育运动.集中典型运动规律.力能角度.14、"绳件.弹簧.杆件"三件模型:三件的异同点;直线与圆周运动中的动力学问题和功能问题.15、"挂件"模型:平衡问题.死结与活结问题;采用正交分解法;图解法;三角形法则和极值法.16、"追碰"模型:运动规律.碰撞规律.临界问题.数学法函数极值法.图像法等和物理方法参照物变换法.守恒法等.17."能级"模型:能级图.跃迁规律.光电效应等光的本质综合问题.18.远距离输电升压降压的变压器模型.19、"限流与分压器"模型:电路设计.串并联电路规律及闭合电路的欧姆定律.电能.电功率.实际应用.20、"电路的动态变化"模型:闭合电路的欧姆定律.判断方法和变压器的三个制约问题.21、"磁流发电机"模型:平衡与偏转.力和能问题.22、"回旋加速器"模型:加速模型力能规律.回旋模型圆周运动.数理问题.23、"对称"模型:简谐运动波动.电场.磁场.光学问题中的对称性.多解性.对称性.24、电磁场中的单杆模型:棒与电阻.棒与电容.棒与电感.棒与弹簧组合.平面导轨.竖直导轨等;处理角度为力电角度.电学角度.力能角度.。
高中典型物理模型及解题方法
高中典型物理模型及方法(精华)◆1.连接体模型:是指运动中几个物体或叠放在一起、或并排挤放在一起、或用细绳、细杆联系在一起的物体组。
解决这类问题的基本方法是整体法和隔离法。
整体法是指连接体内的物体间无相对运动时,可以把物体组作为整体,对整体用牛二定律列方程 隔离法是指在需要求连接体内各部分间的相互作用(如求相互间的压力或相互间的摩擦力等)时,把某物体从连接体中隔离出来进行分析的方法。
连接体的圆周运动:两球有相同的角速度;两球构成的系统机械能守恒(单个球机械能不守恒) 与运动方向和有无摩擦(μ相同)无关,及与两物体放置的方式都无关。
平面、斜面、竖直都一样。
只要两物体保持相对静止 记住:N= 211212m F m F m m ++ (N 为两物体间相互作用力),一起加速运动的物体的分子m 1F 2和m 2F 1两项的规律并能应用⇒F 212m m m N +=讨论:①F 1≠0;F 2=0 122F=(m +m )a N=m aN=212m F m m +② F 1≠0;F 2≠0 N=211212m F m m m F ++(20F =就是上面的情况)F=211221m m g)(m m g)(m m ++F=122112m (m )m (m gsin )m m g θ++ F=A B B 12m (m )m F m m g ++F 1>F 2 m 1>m 2 N 1〈N 2(为什么)N 5对6=F Mm (m 为第6个以后的质量) 第12对13的作用力 N 12对13=F nm12)m -(n◆2。
水流星模型(竖直平面内的圆周运动——是典型的变速圆周运动)研究物体通过最高点和最低点的情况,并且经常出现临界状态。
(圆周运动实例) ①火车转弯②汽车过拱桥、凹桥3③飞机做俯冲运动时,飞行员对座位的压力。
④物体在水平面内的圆周运动(汽车在水平公路转弯,水平转盘上的物体,绳拴着的物体在光滑水平面上绕绳的一端旋转)和物体在竖直平面内的圆周运动(翻滚过山车、水流星、杂技节目中的飞车走壁等)。
高中物理解题模型详解归纳 超好用
两物体在 动过程中相距的最小距离 多少
解析 若是 v1 ≤ v2 说明 物体 停 a1 a2
动或
同时停 动 在 动过程中
一直大于 的速 只有两物体都停 动时 才相距最 可得最 距离
的速
∆s = s + v12 − v22 2a1 2a2
若是 v1 > v2 说明 物体 停 动那么两物体在 动过程中总 在速 相等的时
1.01
1 若声源相继发 两个声信 时间间隔 ∆t 请 据发 的 两个声信 声源传播 到 察者的过程 确 察者接收到 两个声信 的时间间隔 ∆t'
2 请利用 1 的结果 导 情形 察者接收到的声 频率 声源发 的声 频率间 的关系式
解析 作声源 S 察者 A 声信 P P1 首发声信
如 2 所示 线的斜率即 它们的速 vS vA vP 有
两车等速时恰好追及 两车只相遇一次
间距会逐渐增大
两车等速时 车 动 车前面
能再次相遇 即能相遇两次
二、先 速后减速模型
模型概述
物体先加速后减速的问题是 动学中典型的综合问题,也是 几年的高考热点,同学在求
解这类问题时一定要注意前一过程的末速度是下一过程的初速度,如能画出速度图象就更明确
过程了。
模型讲解
第三章 和能 .............................................................................................................................. 1
一 水 方向的 性碰撞.....................................................................................................1 水 方向的非 性碰撞 ................................................................................................6 人船模型 ........................................................................................................................... 9
高中物理模型法解题——板块模型-高中物理八种板块模型
高中物理模型法解题———板块模型【模型概述】板块模型是多个物体的多个过程问题,是一个最经典、最基本的模型之一。
木板和物块组成的相互作用的系统称为板块模型,该模型涉及到静摩擦力、滑动摩擦力的转化、方向判断等静力学知识,还涉及到牛顿运动定律、运动学规律、动能定理和能量的转化和守恒等方面的知识。
板块类问题的一般解题方法(1)受力分析.(2)物体相对运动过程的分析.(3)参考系的选择(通常选取地面).(4)做v-t图像(5)摩擦力做功与动能之间的关系.(6)能量守恒定律的运用.一、含作用力的板块模型问题:【例题1】如图所示,木板静止于水平地面上,在其最右端放一可视为质点的木块.已知木块的质量m=1kg,木板的质量M=4kg,长L=2.5m,上表面光滑,下表面与地面之间的动摩擦因数μ=0.2.现用水平恒力F=20N拉木板,g取10m/s2,求:(1)木板的加速度;(2)要使木块能滑离木板,水平恒力F作用的最短时间;(3)如果其他条件不变,假设木板的上表面也粗糙,其上表面与木块之间的动摩擦因数为0.3,欲使木板能从木块的下方抽出,需对木板施加的最小水平拉力是多大?(设最大静摩擦力等于滑动摩擦力)(4)若木板的长度、木块质量、木板的上表面与木块之间的动摩擦因数、木块与地面间的动摩擦因数都不变,只将水平恒力增加为30N,则木块滑离木板需要多长时间?【解题思路】(1)根据牛顿第二定律求出木板的加速度.(2)让木板先做匀加速直线运动,然后做匀减速直线运动,根据牛顿第二定律,结合位移之和等于板长求出恒力F作用的最短时间.(3)根据牛顿第二定律求出木块的最大加速度,隔离对木板分析求出木板的加速度,抓住木板的加速度大于木块的加速度,求出施加的最小水平拉力.(4)应用运动学公式,根据相对加速度求所需时间.【答案】(1)木板的加速度2.5m/s2;(2)要使木块能滑离木板,水平恒力F作用的最短时间1s;(3)对木板施加的最小水平拉力是25N;(4)木块滑离木板需要2s【解析】解:(1)木板受到的摩擦力F f=μ(M+m)g=10N木板的加速度=2.5m/s2(2)设拉力F作用t时间后撤去,木板的加速度为木板先做匀加速运动,后做匀减速运动,且a=﹣a′有at2=L解得:t=1s,即F作用的最短时间是1s.(3)设木块的最大加速度为a木块,木板的最大加速度为a木板,则对木板:F1﹣μ1mg﹣μ(M+m)g=Ma木板木板能从木块的下方抽出的条件:a木板>a木块解得:F>25N(4)木块的加速度木板的加速度=4.25m/s2木块滑离木板时,两者的位移关系为x木板﹣x木块=L即带入数据解得:t=2s【变式练习】如图所示,质量M=1kg的木块A静止在水平地面上,在木块的左端放置一个质量m=1kg的铁块B(大小可忽略),铁块与木块间的动摩擦因数μ1=0.3,木块长L=1m,用F=5N的水平恒力作用在铁块上,g取10m/s2.(1)若水平地面光滑,计算说明两木块间是否会发生相对滑动.(2)若木块与水平地面间的动摩擦因数μ2=0.1,求铁块运动到木块右端的时间.【解题思路】(1)假设不发生相对滑动,通过整体隔离法求出A、B之间的摩擦力,与最大静摩擦力比较,判断是否发生相对滑动.(2)根据牛顿第二定律分别求出A、B的加速度,结合位移之差等于木块的长度求出运动的时间.【答案】(1)A、B之间不发生相对滑动;(2)铁块运动到木块右端的时间为.【解析】(1)A、B之间的最大静摩擦力为:f m>μmg=0.3×10N=3N.假设A、B之间不发生相对滑动,则对AB整体分析得:F=(M+m)a对A,f AB=Ma代入数据解得:f AB=2.5N.因为f AB<f m,故A、B之间不发生相对滑动.(2)对B,根据牛顿第二定律得:F﹣μ1mg=ma B,对A,根据牛顿第二定律得:μ1mg﹣μ2(m+M)g=Ma A根据题意有:x B﹣x A=L,,联立解得:.二、不含作用力的板块模型问题:【例题2】一长木板在水平地面上运动,在t =0时刻将一相对于地面静止的物块轻放到木板上,以后木板运动的速度—时间图像如图所示。
高中物理48个解题模型 高考物理经典题型归纳
高中物理48个解题模型高考物理经典题型归纳
学好高中物理可以多积累些做题解题的经典模型。
下文小编给大家整理了高中物理最常用的几种解题模型,供参考!
高中物理解题常用经典模型1、'皮带'模型:摩擦力,牛顿运动定律,功能及摩擦生热等问题.
2、'斜面'模型:运动规律,三大定律,数理问题.
3、'运动关联'模型:一物体运动的同时性,独立性,等效性,多物体参与的独立性和时空联系.
4、'人船'模型:动量守恒定律,能量守恒定律,数理问题.
5、'子弹打木块'模型:三大定律,摩擦生热,临界问题,数理问题.
6、'爆炸'模型:动量守恒定律,能量守恒定律.
7、'单摆'模型:简谐运动,圆周运动中的力和能问题,对称法,图象法.
8.电磁场中的'双电源'模型:顺接与反接,力学中的三大定律,闭合电路的欧姆定律.电磁感应定律.
9.交流电有效值相关模型:图像法,焦耳定律,闭合电路的欧姆定律,能量问题.
10、'平抛'模型:运动的合成与分解,牛顿运动定律,动能定理(类平抛运动).
11、'行星'模型:向心力(各种力),相关物理量,功能问题,数理问题(圆心.半径.临界问题).。
高中物理典型物理模型与方法
高中典型物理模型及方法(精华)◆ 1.连接体模型:是指运动中几个物体或叠放在一起、或并排挤放在一起、或用细绳、细杆联系在一起的物体组。
解决这类问题的基本方法是整体法和隔离法。
整体法是指连接体内的物体间无相对运动时,可以把物体组作为整体,对整体用牛二定律列方程 隔离法是指在需要求连接体内各部分间的相互作用(如求相互间的压力或相互间的摩擦力等 )时,把某物体从连 接体中隔离出来进行分析的方法。
连接体的圆周运动:两球有相同的角速度;两球构成的系统机械能守恒(单个球机械能不守恒) 与运动方向和有无摩擦(μ相同)无关,及与两物体放置的方式都无关。
平面、斜面、竖直都一样。
只要两物体保持相对静止m1 记住:N= m 2F 1 m 1F 2 (N 为两物体间相互作用力), m 1 m 2 m2一起加速运动的物体的分子 2 1 m 2 FN m 1F 2和mF 两项的规律并能应用m 2 m 1 讨论:①F 1≠0;F 2=0FF=(m 1+m 2)am1 m2 N=m 2am 2 FN= m 1 m 2②F 1≠0;F 2≠0 F= m 1(m 2g)m 2(m 1g)m 1 m 2 m 2F 1 m 1F2m 1(m 2g)m 2(m 1gsin ) N=F= m 1 m 2 m 1 m 2(F 20就是上面的情m A(m B g) m B FF= m 1 m 2况)F1>F2 m1>m2 N1<N2(为什么)N5对6=m F (m 为第6个以后的质量) 第12对13的作用力N 12对13=(n-12)mF M nm◆2.水流星模型(竖直平面内的圆周运动—— 是典型的变速圆周运动)研究物体通过最高点和最低点的情况,并且经常出现临界状态。
(圆周运动实例)①火车转弯②汽车过拱桥、凹桥3③飞机做俯冲运动时,飞行员对座位的压力。
④物体在水平面内的圆周运动(汽车在水平公路转弯,水平转盘上的物体,绳拴着的物体在光滑水平面上绕绳的一端旋转)和物体在竖直平面内的圆周运动(翻滚过山车、水流星、杂技节目中的飞车走壁等)。
高考物理模型及解题大招
高考物理模型及解题大招高考物理模型及解题大招一、背景介绍在高考中,物理作为一门重要的科目,是很多考生必须面对的难关。
为了在高考中获得更好的成绩,考生需要掌握物理相关的模型和解题大招。
二、高考物理模型介绍高考物理涉及的模型较多,下面将列举一些常见的模型及其应用。
1. 运动学方程这是物理中最基本的模型之一,适用于描述任何类型的运动。
在高考中,考生需要掌握各种运动学方程及其应用,如速度、位移、时间等。
熟练掌握这些方程是解题的基础。
2. 牛顿运动定律牛顿运动定律是经典力学中最重要的定律之一,它描述了物体的运动状态和受力情况之间的关系。
在高考中,考生需要掌握牛顿运动定律的表述方式和应用,包括如何确定受力方向和大小等。
3. 能量守恒定律能量守恒定律是热力学中最基本的定律之一,也是物理中最重要的定律之一。
它描述了能量在物理学中的变换和守恒。
在高考中,考生需要熟悉如何使用能量守恒定律来解决各种物理问题。
4. 热力学定律热力学定律是热力学中的基本原理,主要描述了热力学体系在热学平衡状态下的特性。
在高考中,考生需要掌握热力学定律的表述和应用,如热力学第一定律和第二定律等。
三、高考物理解题大招除了掌握各种物理模型,考生还需要掌握一些解题技巧,以下是一些常见的解题大招。
1. 分析题目在解题之前,考生需要认真仔细地阅读题目,了解题目所涉及的知识点和要求,分析题目的难度,然后再结合自己的知识、经验和思维来解决问题。
2. 列出解题步骤解题时,考生需要按照题目要求列出解题步骤,逐步分析和推导,以确保解题的正确性和完整性。
3. 注意数值和单位在解题过程中,考生需要注意数值和单位的转换,同时也要注意各种量之间的关系,以确保答案的准确性。
4. 多练习最后,考生需要多练习各种物理题目,熟悉各种解题技巧和知识点,以提高自己的解题能力,从而在高考中取得好成绩。
总之,高考物理是一个重要的科目,需要考生掌握各种物理模型和解题技巧。
只有通过不断的学习和练习,才能够在高考中取得好成绩。
高中物理68个解题模型
高中物理68个解题模型物理作为一门自然科学,研究的是物质和能量之间的相互关系。
在高中物理学习中,解题是一个重要的环节。
为了帮助同学们更好地掌握物理知识,提高解题能力,本文将介绍高中物理中常见的68个解题模型。
一、力学部分1. 牛顿第一定律模型:物体静止或匀速直线运动时,合外力为零。
2. 牛顿第二定律模型:物体的加速度与作用在物体上的合外力成正比,与物体的质量成反比。
3. 牛顿第三定律模型:任何两个物体之间的相互作用力大小相等、方向相反。
4. 重力模型:物体受到的重力与物体的质量成正比。
5. 弹簧模型:弹簧的伸长或缩短与外力的大小成正比。
6. 摩擦力模型:物体受到的摩擦力与物体受到的压力成正比。
7. 斜面模型:物体在斜面上滑动时,重力分解为平行于斜面的分力和垂直于斜面的分力。
8. 动量守恒模型:在没有外力作用下,物体的总动量保持不变。
9. 能量守恒模型:在一个封闭系统中,能量的总量保持不变。
二、热学部分10. 热传导模型:热量从高温物体传递到低温物体。
11. 热膨胀模型:物体受热后会膨胀,受冷后会收缩。
12. 热平衡模型:两个物体处于热平衡时,它们的温度相等。
13. 热容模型:物体吸收或释放的热量与物体的质量和温度变化成正比。
14. 理想气体状态方程模型:PV = nRT,描述了理想气体的状态。
15. 热力学第一定律模型:热量的增加等于物体内能的增加与对外做功的总和。
三、光学部分16. 光的直线传播模型:光在均匀介质中直线传播。
17. 光的反射模型:光线与平面镜或曲面镜相交时,遵循入射角等于反射角的规律。
18. 光的折射模型:光线从一种介质射入另一种介质时,遵循折射定律。
19. 光的色散模型:光在经过棱镜等介质时,会发生色散现象。
20. 光的干涉模型:两束相干光叠加时,会出现干涉现象。
21. 光的衍射模型:光通过狭缝或物体边缘时,会发生衍射现象。
22. 光的偏振模型:光的振动方向只在一个平面上。
四、电学部分23. 电流模型:电流的大小等于单位时间内通过导体横截面的电荷量。
高中物理解题模型详解(20套精讲)
高考物理解题模型
目录
第一章运动和力 1
一、追及、相遇模型 1
二、先加速后减速模型 4
三、斜面模型 6
四、挂件模型 11
五、弹簧模型(动力学)18
第二章圆周运动20
一、水平方向的圆盘模型20
二、行星模型 23
第三章功和能 1
一、水平方向的弹性碰撞1
二、水平方向的非弹性碰撞 6
三、人船模型 9
四、爆炸反冲模型11
第四章力学综合13
一、解题模型:13
二、滑轮模型 19
三、渡河模型 23
第五章电路 1
一、电路的动态变化 1
二、交变电流 6
第六章电磁场10
一、电磁场中的单杆模型10
二、电磁流量计模型17
三、回旋加速模型20
四、磁偏转模型25。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中典型物理模型及方法(精华)◆1.连接体模型:是指运动中几个物体或叠放在一起、或并排挤放在一起、或用细绳、细杆联系在一起的物体组。
解决这类问题的基本方法是整体法和隔离法。
整体法是指连接体内的物体间无相对运动时,可以把物体组作为整体,对整体用牛二定律列方程隔离法是指在需要求连接体内各部分间的相互作用(如求相互间的压力或相互间的摩擦力等)时,把某物体从连接体中隔离出来进行分析的方法。
连接体的圆周运动:两球有相同的角速度;两球构成的系统机械能守恒(单个球机械能不守恒)与运动方向和有无摩擦(μ相同)无关,及与两物体放置的方式都无关。
平面、斜面、竖直都一样。
只要两物体保持相对静止 记住:N= 211212m F m F m m ++ (N 为两物体间相互作用力),一起加速运动的物体的分子m 1F 2和m 2F 1两项的规律并能应用⇒F 212m m m N +=讨论:①F 1≠0;F 2=0122F=(m +m )a N=m a N=212m F m m +② F 1≠0;F 2≠0 N= 211212m F m m m F ++(20F =就是上面的情况)F=211221mm g)(m m g)(m m ++F=122112m (m )m (m gsin )m m g θ++ F=A B B 12m (m )m F m m g ++F 1>F 2 m 1>m 2 N 1<N 2(为什么)N 5对6=F Mm (m 为第6个以后的质量) 第12对13的作用力 N 12对13=F nm12)m -(n◆2.水流星模型(竖直平面内的圆周运动——是典型的变速圆周运动)研究物体通过最高点和最低点的情况,并且经常出现临界状态。
(圆周运动实例) ①火车转弯②汽车过拱桥、凹桥 3③飞机做俯冲运动时,飞行员对座位的压力。
④物体在水平面内的圆周运动(汽车在水平公路转弯,水平转盘上的物体,绳拴着的物体在光滑水平面上绕绳的一端旋转)和物体在竖直平面内的圆周运动(翻滚过山车、m 2 m 1 Fm 1 m 2水流星、杂技节目中的飞车走壁等)。
⑤万有引力——卫星的运动、库仑力——电子绕核旋转、洛仑兹力——带电粒子在匀强磁场中的偏转、重力与弹力的合力——锥摆、(关健要搞清楚向心力怎样提供的)(1)火车转弯:设火车弯道处内外轨高度差为h ,内外轨间距L ,转弯半径R 。
由于外轨略高于内轨,使得火车所受重力和支持力的合力F 合提供向心力。
为转弯时规定速度)(得由合0020sin tan v LRgh v R v m L hmg mg mg F ===≈=θθR g v ⨯=θtan 0(是内外轨对火车都无摩擦力的临界条件)①当火车行驶速率V 等于V 0时,F 合=F 向,内外轨道对轮缘都没有侧压力②当火车行驶V 大于V 0时,F 合<F 向,外轨道对轮缘有侧压力,F 合+N=R2mv③当火车行驶速率V 小于V 0时,F 合>F 向,内轨道对轮缘有侧压力,F 合-N'=R 2m v即当火车转弯时行驶速率不等于V 0时,其向心力的变化可由内外轨道对轮缘侧压力自行调节,但调节程度不宜过大,以免损坏轨道。
火车提速靠增大轨道半径或倾角来实现 (2)无支承的小球,在竖直平面内作圆周运动过最高点情况:受力:由mg+T=mv 2/L 知,小球速度越小,绳拉力或环压力T 越小,但T 的最小值只能为零,此时小球以重力提供作向心力.结论:通过最高点时绳子(或轨道)对小球没有力的作用(可理解为恰好通过或恰好通不过的条件),此时只有重力提供作向心力. 注意讨论:绳系小球从最高点抛出做圆周还是平抛运动。
能过最高点条件:V ≥V 临(当V ≥V 临时,绳、轨道对球分别产生拉力、压力)不能过最高点条件:V<V 临(实际上球还未到最高点就脱离了轨道)讨论:① 恰能通过最高点时:mg=Rm 2临v ,临界速度V 临=gR ;可认为距此点2R h = (或距圆的最低点)25R h =处落下的物体。
☆此时最低点需要的速度为V 低临=gR 5 ☆最低点拉力大于最高点拉力ΔF=6mg② 最高点状态: mg+T 1=L2m 高v (临界条件T 1=0, 临界速度V 临=gR , V ≥V 临才能通过)最低点状态: T 2- mg = L 2m低v 高到低过程机械能守恒:mg2L m m 221221+=高低v vT 2- T 1=6mg(g 可看为等效加速度) ② 半圆:过程mgR=221mv 最低点T-mg=R2v m ⇒绳上拉力T=3mg ; 过低点的速度为V 低 =gR 2小球在与悬点等高处静止释放运动到最低点,最低点时的向心加速度a=2g ③与竖直方向成θ角下摆时,过低点的速度为V 低 =)cos 1(2θ-gR , 此时绳子拉力T=mg(3-2cos θ)(3)有支承的小球,在竖直平面作圆周运动过最高点情况:①临界条件:杆和环对小球有支持力的作用知)(由RU m N mg 2=- 当V=0时,N=mg (可理解为小球恰好转过或恰好转不过最高点)圆心。
增大而增大,方向指向随即拉力向下时,当④时,当③增大而减小,且向上且随时,支持力当②v N gR v N gR v N mg v N gR v )(000>==>><<作用时,小球受到杆的拉力>,速度当小球运动到最高点时时,杆对小球无作用力,速度当小球运动到最高点时长短表示)(力的大小用有向线段,但(支持)时,受到杆的作用力,速度当小球运动到最高点时N gR v N gR v mg N N gR v 0==<<恰好过最高点时,此时从高到低过程 mg2R=221mv 低点:T-mg=mv 2/R ⇒ T=5mg ;恰好过最高点时,此时最低点速度:V 低 =gR 2注意物理圆与几何圆的最高点、最低点的区别:(以上规律适用于物理圆,但最高点,最低点, g 都应看成等效的情况)2.解决匀速圆周运动问题的一般方法(1)明确研究对象,必要时将它从转动系统中隔离出来。
(2)找出物体圆周运动的轨道平面,从中找出圆心和半径。
(3)分析物体受力情况,千万别臆想出一个向心力来。
(4)建立直角坐标系(以指向圆心方向为x 轴正方向)将力正交分解。
(5)⎪⎩⎪⎨⎧=∑===∑02222y x F R Tm R m R v m F )(建立方程组πω 3.离心运动在向心力公式F n =mv 2/R 中,F n 是物体所受合外力所能提供的向心力,mv 2/R 是物体作圆周运动所需要的向心力。
当提供的向心力等于所需要的向心力时,物体将作圆周运动;若提供的向心力消失或小于所需要的向心力时,物体将做逐渐远离圆心的运动,即离心运动。
其中提供的向心力消失╰ α╰α时,物体将沿切线飞去,离圆心越来越远;提供的向心力小于所需要的向心力时,物体不会沿切线飞去,但沿切线和圆周之间的某条曲线运动,逐渐远离圆心。
◆3斜面模型(搞清物体对斜面压力为零的临界条件) 斜面固定:物体在斜面上情况由倾角和摩擦因素决定μ=tg θ物体沿斜面匀速下滑或静止 μ> tg θ物体静止于斜面 μ< tg θ物体沿斜面加速下滑a=g(sin θ一μcos θ)◆4.轻绳、杆模型绳只能受拉力,杆能沿杆方向的拉、压、横向及任意方向的力。
如图:杆对球的作用力由运动情况决定只有θ=arctg(g a)时才沿杆方向最高点时杆对球的作用力;最低点时的速度?,杆的拉力? 若小球带电呢?V B =R 2g⇐mgR=221B mv 假设单B 下摆,最低点的速度整体下摆2mgR=mg2R +'2B '2A mv 21mv 21+ 'A 'B V 2V = ⇒ 'A V =gR 53 ; 'A 'BV 2V ==gR 256> V B =R 2g 所以AB 杆对B 做正功,AB 杆对A 做负功(1)5.通过轻绳连接的物体①在沿绳连接方向(可直可曲),具有共同的v 和a 。
特别注意:两物体不在沿绳连接方向运动时,先应把两物体的v 和a 在沿绳方向分解,求出两物体的v 和a 的关系式,②被拉直瞬间,沿绳方向的速度突然消失,此瞬间过程存在能量的损失。
讨论:若作圆周运动最高点速度 V 0<gR ,运动情况为先平抛,绳拉直时沿绳方向的速度消失即是有能量损失,绳拉紧后沿圆周下落机械能守恒。
而不能够整个过程用机械能守恒。
求水平初速及最低点时绳的拉力?换为绳时:先自由落体,在绳瞬间拉紧(沿绳方向的速度消失)有能量损失(即v 1突然消失),再v 2下摆机械能守恒例:摆球的质量为m ,从偏离水平方向30°的位置由静释放,设绳子为理想轻绳,求:小球运动到最低点A 时绳子受到的E m L ·Fm S 1S 2拉力是多少?◆5.超重失重模型 系统的重心在竖直方向上有向上或向下的加速度(或此方向的分量a y )向上超重(加速向上或减速向下)F=m(g+a);向下失重(加速向下或减速上升)F=m(g-a) 难点:一个物体的运动导致系统重心的运动 1到2到3过程中 (1、3除外)超重状态绳剪断后台称示数 铁木球的运动 系统重心向下加速 用同体积的水去补充 斜面对地面的压力? 地面对斜面摩擦力?导致系统重心如何运动?◆6.碰撞模型:两个相当重要典型的物理模型,后面的动量守恒中专题讲解◆7.子弹打击木块模型: ◆8.人船模型:一个原来处于静止状态的系统,在系统内发生相对运动的过程中,在此方向遵从①动量守恒方程:mv=MV ;ms=MS ;②位移关系方程 s+S=d ⇒s=d Mm M+ M/m=L m /L M载人气球原静止于高h 的高空,气球质量为M,人的质量为m.若人沿绳梯滑至地面,则绳梯至少为多长?◆9.弹簧振子模型:F=-Kx (X 、F 、a 、v 、A 、T 、f 、E K 、E P 等量的变化规律)水平型或竖直型◆10.单摆模型:T=2πg l / (类单摆)利用单摆测重力加速度◆11.波动模型:特点:传播的是振动形式和能量,介质中各质点只在平衡位置附近振动并不随波迁移。
①各质点都作受迫振动,②起振方向与振源的起振方向相同,20mMmO Ra 图9 θ0 t t s ③离源近的点先振动,④没波传播方向上两点的起振时间差=波在这段距离内传播的时间 ⑤波源振几个周期波就向外传几个波长。
⑥波从一种介质传播到另一种介质,频率不改变, 波速v=s/t=λ/T=λf波速与振动速度的区别 波动与振动的区别:波的传播方向⇔质点的振动方向(同侧法)知波速和波形画经过Δt 后的波形(特殊点画法和去整留零法)◆12.图象模形:识图方法: 一轴、二线、三斜率、四面积、五截距、六交点 明确:点、线、面积、斜率、截距、交点的含义 中学物理中重要的图象 ⑴运动学中的s-t 图、v-t 图、振动图象x-t 图以及波动图象y-x 图等。