长春理工大学概率论与数理统计(工科)复习要点
概率论与数理统计总复习知识点归纳

概率论与数理统计总复习知识点归纳1.概率论的基础概念-随机事件、样本空间和事件的关系。
-频率和概率的关系,概率的基本性质。
-古典概型和几何概型的概念。
-条件概率和乘法定理。
-全概率公式和贝叶斯公式。
-随机变量和概率分布函数的概念。
-离散型随机变量和连续型随机变量的定义、概率质量函数和概率密度函数的性质。
2.随机变量的数字特征-随机变量的数学期望、方差、标准差和切比雪夫不等式。
-协方差、相关系数和线性变换的数学期望和方差公式。
-两个随机变量的和、差、积的数学期望和方差公式。
3.大数定律和中心极限定理-大数定律的概念和三级强大数定律。
-中心极限定理的概念和中心极限定理的两种形式。
4.数理统计的基本概念和方法-总体、样本和抽样方法的概念。
-样本统计量和抽样分布的概念。
-点估计和区间估计的概念。
-假设检验的基本思想和步骤。
-正态总体的参数的假设检验和区间估计。
5.参数估计和假设检验的方法和推广-极大似然估计的原理和方法。
-矩估计的原理和方法。
-最小二乘估计的原理和方法。
-一般参数的假设检验和区间估计。
6.相关分析和回归分析-相关系数和线性相关的概念和性质。
-回归分析的一般原理。
-简单线性回归的估计和检验。
7.非参数统计方法-秩和检验和符号检验的基本思想和应用。
-秩相关系数的计算和检验。
8.分布拟合检验和贝叶斯统计-卡方拟合检验的原理和方法。
-正态总体参数的拟合优度检验。
-贝叶斯估计的基本思想和方法。
9.时间序列分析和质量控制-时间序列的基本性质和分析方法。
-时间序列预测的方法和模型。
-质量控制的基本概念和控制图的应用。
以上是概率论与数理统计总复习知识点的归纳,希望对你的复习有所帮助。
概率论与数理统计重点和必考点

05 数理统计基本概念与方法
总体与样本概念辨析
总体
研究对象的全体,是一个随机变 量,有确定的分布但未知。
样本
从总体中随机抽取的一部分个体, 用于推断总体的性质。
样本容量
样本中包含的个体数目,用n表示。
统计量与抽样分布
统计量
由样本构造出的一个或多个不含总体分布未知参数的函数。
抽样分布
统计量的分布,描述了样本统计量在不同样本下的可能取值及概 率。
03 多维随机变量及其分布
二维随机变量联合分布
01
联合分布函数
对于二维随机变量$(X,Y)$,其联合分布函数$F(x,y)$描述了随机点
$(X,Y)$落在以$(x,y)$为顶点的左下方区域的概率。
02 03
联合概率密度函数
若二维随机变量$(X,Y)$的分布函数可微,则存在非负函数$f(x,y)$,使 得$F(x,y)$等于$f(x,y)$在对应区域的二重积分,称$f(x,y)$为$(X,Y)$的 联合概率密度函数。
假设检验与方差分析
假设检验是统计推断中的另一种重要 方法,用于判断总体参数是否满足某 个假设。方差分析则是一种特殊的假 设检验方法,用于比较多个总体的均 值是否存在显著差异。
回归分析与相关分析
回归分析和相关分析是统计推断中的 两种常用方法,用于研究变量之间的 关系。回归分析通过建立回归方程来 描述变量之间的依赖关系;而相关分 析则是通过计算相关系数来衡量变量 之间的相关程度。这些方法在社会科 学、生物医学、经济金融等领域有着 广泛的应用。
随机变量的分类
根据随机变量可能取的值的个数分为离散型随机变量和连续型随机变量。
离散型随机变量分布律
分布律的定义
对于一个离散型随机变量X,其所有可能取的值为$x_k$,称$P{X=x_k}=p_k$为随 机变量X的分布律。
概率论与数理统计重点笔记

概率论与数理统计重点笔记
概率论与数理统计是数学中的重要分支,它涉及到随机现象的
规律性和统计规律的研究。
在学习概率论与数理统计时,重点笔记
可以包括以下内容:
1. 概率论的基本概念,包括样本空间、随机事件、事件的概率、事件的运算规律等内容。
重点理解事件的概率定义、概率的性质和
概率的运算法则。
2. 随机变量及其分布,重点掌握随机变量的定义、离散随机变
量和连续随机变量的概念,以及它们的分布律、密度函数、分布函
数等。
还要重点理解常见的离散分布(如二项分布、泊松分布)和
连续分布(如正态分布、指数分布)。
3. 大数定律和中心极限定理,重点掌握大数定律和中心极限定
理的表述和应用,理解随机变量序列的收敛性质,以及大样本时样
本均值的渐近正态性质。
4. 参数估计,包括点估计和区间估计的基本概念和方法,重点
理解最大似然估计、矩估计等常用的参数估计方法。
5. 假设检验,理解假设检验的基本思想、原理和步骤,掌握显著性水平、拒绝域、接受域等相关概念,重点理解假设检验的错误类别和势函数的概念。
6. 相关性和回归分析,重点理解相关系数、回归方程、残差分析等内容,掌握相关性和回归分析的基本原理和方法。
总之,在学习概率论与数理统计的过程中,重点笔记应该围绕着基本概念、常用分布、极限定理、参数估计、假设检验和回归分析展开,全面理解这些内容并掌握其应用是十分重要的。
希望以上内容能够帮助你更好地理解概率论与数理统计。
统计学复习资料概率论与数理统计重点知识点整理

统计学复习资料概率论与数理统计重点知识点整理概率论与数理统计是统计学的基础课程之一,也是应用最为广泛的数学工具之一。
下面将对概率论与数理统计的重点知识点进行整理,以供复习使用。
一、概率论的基本概念1. 样本空间和事件:样本空间是指随机试验的所有可能结果构成的集合,事件是样本空间的子集。
2. 古典概型和几何概型:古典概型是指样本空间中的每个结果具有相同的概率,几何概型是指采用几何方法进行分析的概率模型。
3. 概率公理和条件概率:概率公理是概率论的基本公理,条件概率是指在已知某一事件发生的条件下,另一事件发生的概率。
4. 独立事件和全概率公式:独立事件是指两个事件的发生与否互不影响,全概率公式是用于计算复杂事件的概率的公式。
5. 随机变量和概率分布函数:随机变量是对样本空间中的每个结果赋予一个数值,概率分布函数是随机变量的分布情况。
二、概率分布的基本类型1. 离散型概率分布:包括二项分布、泊松分布和几何分布等。
2. 连续型概率分布:包括正态分布、指数分布和均匀分布等。
三、多维随机变量及其分布1. 边缘分布和条件分布:边缘分布是指多维随机变量中的某一个或几个变量的分布,条件分布是指在已知某些变量取值的条件下,其他变量的分布。
2. 二维随机变量的相关系数:相关系数用于刻画两个随机变量之间的线性关系的强度和方向。
3. 多维随机变量的独立性:多维随机变量中的各个分量独立时,称为多维随机变量相互独立。
四、参数估计与假设检验1. 参数估计方法:包括点估计和区间估计,点估计是通过样本数据得到参数的估计值,区间估计是对参数进行一个范围的估计。
2. 假设检验的基本概念:假设检验是用于对统计推断的一种方法,通过与某个假设进行比较来得出结论。
3. 假设检验的步骤:包括建立原假设和备择假设、选择显著性水平、计算检验统计量和做出统计决策等步骤。
五、回归分析与方差分析1. 简单线性回归分析:简单线性回归分析是研究两个变量之间的线性关系的方法,通过建立回归方程来拟合数据。
概率论与数理统计复习要点

第一章 随机事件及其概率一、随机事件及其运算 1. 样本空间、随机事件①样本点:随机试验的每一个可能结果,用ω表示; ②样本空间:样本点的全集,用Ω表示; 注:样本空间不唯一.③随机事件:样本点的某个集合或样本空间的某个子集,用A,B,C,…表示; ④必然事件就等于样本空间;不可能事件()∅是不包含任何样本点的空集; ⑤基本事件就是仅包含单个样本点的子集。
2. 事件的四种关系①包含关系:A B ⊂,事件A 发生必有事件B 发生; ②等价关系:A B =, 事件A 发生必有事件B 发生,且事件B 发生必有事件A 发生;③互不相容(互斥): AB =∅ ,事件A 与事件B 一定不会同时发生。
④互逆关系(对立):A ,事件A 发生事件A 必不发生,反之也成立;互逆满足A A AA ⎧⋃=Ω⎨=∅⎩注:互不相容和对立的关系(对立事件一定是互不相容事件,但互不相容事件不一定是对立事件。
) 3. 事件的三大运算①事件的并:A B ⋃,事件A 与事件B 至少有一个发生。
若AB =∅,则A B A B ⋃=+;②事件的交:A B AB ⋂或,事件A 与事件B 都发生; ③事件的差:-A B ,事件A 发生且事件B 不发生。
4. 事件的运算规律①交换律:,A B B A AB BA ⋃=⋃=②结合律:()(),()()A B C A B C A B C A B C ⋃⋃=⋃⋃⋂⋂=⋂⋂③分配律:()()(),()()()A B C A B A C A B C A B A C ⋃⋂=⋃⋂⋃⋂⋃=⋂⋃⋂ ④德摩根(De Morgan )定律:,A B AB AB A B⋃==⋃对于n 个事件,有1111,n ni i i i nni ii i A A A A ======二、随机事件的概率定义和性质1.公理化定义:设试验的样本空间为Ω,对于任一随机事件),(Ω⊂A A 都有确定的实值P(A),满足下列性质: (1) 非负性:;0)(≥A P (2) 规范性:;1)(=ΩP(3)有限可加性(概率加法公式):对于k 个互不相容事件k A A A ,,21 ,有∑∑===ki i ki i A P A P 11)()(.则称P(A)为随机事件A 的概率. 2.概率的性质 ①()1,()0P P Ω=∅= ②()1()P A P A =-③若A B ⊂,则()(),()()()P A P B P B A P B P A ≤-=-且 ④()()()()P A B P A P B P AB ⋃=+-()()()()()()()()P A B C P A P B P C P AB P BC P AC P ABC ⋃⋃=++---+注:性质的逆命题不一定成立的. 如 若),()(B P A P ≤则B A ⊂。
《概率论与数理统计》期末复习重点总结

概率论与数理统计第一章:掌握概率的性质、条件概率公式、全概率公式和贝叶斯公式,会用全概率公式和贝叶斯公式计算问题。
第二章:一维随机变量包括离散型和连续型;离散型随机变量分布律的性质;连续性随机变量密度函数的性质;常见的三种离散型分布及连续型分布;会计算一维随机变量函数的分布(可以出大题);第三章:多维随机变量掌握离散型和连续型变量的边缘分布;条件分布及两个变量独立的定义;重点掌握两个随机变量函数的分布(掌握两个随机变量和、差的密度函数的求法;了解两个随机变量乘、除的分布;掌握多个随机变量最大、最小的分布的密度函数的求法);第四章:重点掌握期望、方差、协方差的计算公式、性质;了解协方差矩阵的构成;第六章:掌握统计量的定义、三大分布的定义和性质;教材142页的四个定理及式3.19、3.20务必记住;第七章:未知参数的矩估计法和最大似然估计法是考点,还要掌握估计量的无偏性、有效性的定义;教材的例题及习题:19页例5;26页19、23、24、36;43页例1;51页例2;53页例5;58页25、36;63页例2;66页例2;77页例1、例2;87页22;99页例12;114页6;147页4、6;151页例2、例3;153页例4、例5;173页5、11样题一、填空1. 设A ,B 相互独立,且2.0)(,8.0)(==A P B A P ,则=)(B P __________.2. 已知),2(~2σN X ,且3.0}42{=<<X P ,则=<}0{X P __________.3.已知B A ,两个事件满足条件()()B A P AB P =,且()p A P =,则()=B P _________.4.设随机变量X 的密度函数为()2,01,0,x x f x <<⎧=⎨⎩其他,用Y 表示对X 的3次独立重复观察中事件⎭⎬⎫⎩⎨⎧≤21X 出现的次数,则()2P Y == . 5、设连续型随机变量X 的分布函数为 , ,则A=B= ;X 的密度函数为 。
概率论与数理统计知识点总结免费超详细版

概率论与数理统计知识点总结免费超详细版概率论与数理统计是一门研究随机现象及其统计规律的数学学科,在自然科学、工程技术、社会科学、经济管理等众多领域都有着广泛的应用。
以下是对概率论与数理统计中一些重要知识点的详细总结。
一、随机事件与概率1、随机试验随机试验是指在相同条件下可以重复进行,试验结果不止一个且事先不能确定的试验。
2、样本空间样本空间是随机试验所有可能结果组成的集合。
3、随机事件随机事件是样本空间的子集。
4、事件的关系与运算包括包含、相等、和事件、积事件、差事件、互斥事件、对立事件等。
5、概率的定义概率是对随机事件发生可能性大小的度量。
6、古典概型具有有限个等可能结果的随机试验。
7、几何概型样本空间是某个区域,且每个样本点出现的可能性与区域的面积、体积等成正比。
8、条件概率在已知某事件发生的条件下,另一事件发生的概率。
9、乘法公式用于计算两个事件同时发生的概率。
10、全概率公式将复杂事件的概率通过划分样本空间分解为简单事件的概率之和。
11、贝叶斯公式在已知结果的情况下,反推导致该结果的原因的概率。
二、随机变量及其分布1、随机变量用数值来描述随机试验的结果。
2、离散型随机变量取值可以一一列举的随机变量。
3、离散型随机变量的概率分布列出随机变量的取值以及对应的概率。
4、常见的离散型随机变量分布包括 0-1 分布、二项分布、泊松分布等。
5、连续型随机变量取值充满某个区间的随机变量。
6、连续型随机变量的概率密度函数用于描述连续型随机变量的概率分布。
7、常见的连续型随机变量分布包括均匀分布、正态分布、指数分布等。
8、随机变量的函数的分布已知随机变量的分布,求其函数的分布。
三、多维随机变量及其分布1、二维随机变量由两个随机变量组成的向量。
2、二维随机变量的联合分布函数描述二维随机变量的概率分布。
3、二维离散型随机变量的联合概率分布列出二维离散型随机变量的取值组合以及对应的概率。
4、二维连续型随机变量的联合概率密度函数用于描述二维连续型随机变量的概率分布。
概率论与数理统计考点归纳

以下是概率论与数理统计的一些常见考点归纳:
概率论:
1. 概率的基本概念:样本空间、事件、随机变量等。
2. 概率运算:并、交、差、补等运算规则。
3. 条件概率与独立性:条件概率的定义与计算、独立事件的判定与计算。
4. 随机变量:离散和连续随机变量的概念、概率质量函数(PMF)和概率密度函数(PDF)、期望、方差等。
5. 常见离散分布:伯努利分布、二项分布、泊松分布等。
6. 常见连续分布:均匀分布、正态分布、指数分布等。
7. 两个随机变量的关系:协方差、相关系数等。
数理统计:
1. 抽样与抽样分布:简单随机抽样、抽样分布、中心极限定理等。
2. 参数估计:点估计和区间估计、最大似然估计、置信区间等。
3. 假设检验:假设检验的基本步骤、显著性水平、p值等。
4. 单样本参数检验:均值检验、比例检验等。
5. 两样本参数检验:两样本均值检验、两样本比例检验等。
6. 方差分析:单因素方差分析、多因素方差分析等。
7. 相关与回归分析:相关系数、简单线性回归模型等。
这只是概率论与数理统计的一些常见考点归纳,实际考试中可能还会涉及更多细分知识点。
在复习过程中,建议根据自己的学习进度和重点,深入学习和掌握这些知识点,并进行大量的练习题来加深理解和提高解题能力。
概率论与数理统计总复习知识点归纳

D( X ) E( X 2 ) E 2 ( X ), Cov( X ,Y ) E( XY ) EXEY
XY Cov( X ,Y ) / D( X )D(Y )
⑴ E(aX+b)=aE(X)+b,D(aX+b)=a2D(X)
⑵ E(∑iλi Xi)=∑i λi E(Xi)
(3) D(λ1X±λ2Y)=λ12D(X)+λ22D(Y) ±2λ1λ2Cov(X,Y)
0.587
法二 用Bayes公式:
P (C) = 0.1, P(C ) 0.9;
P (D/C) = 0.3*0.8+0.7*0.2,
P(D / C ) 0.3*0.2.
C
C
于是有
D
P(C / D)
P(C ) P(D / C )
P(C) P(D / C) P(C ) P(D / C )
i 1
i 1
i 1
例3 已知X~ f(x),求Y= -X2的概率密度。 解 用分布函数法。
y<0 时,FY(y) = P(Y≤y) = P(-X2 ≤y) P(X y) P(X y)
FX ( y ) [1 FX ( y )] y≥0 时, FY(y) = P(Y≤y) =1
于是Y的概率密度为
fY ( y) fX (
y)
1 2
( y)1/ 2
fX
(
y ) 1 ( y)1/2 2
1 2
(
y)1/ 2[
fX
(
y) fX (
y )] , y 0
fY (y) 0 , y 0
例4 设二维随机变量(X,Y )的联合密度函数为:
f
( x,
y)
(完整版),概率论与数理统计知识点总复习,推荐文档

随机事件和概率第一节 基本概念1、排列组合初步(1)排列组合公式从m 个人中挑出n 个人进行排列的可能数。
)!(!n m m P n m-=从m 个人中挑出n 个人进行组合的可能数。
)!(!!n m n m C nm -=(2)加法原理(两种方法均能完成此事):m+n某件事由两种方法来完成,第一种方法可由m 种方法完成,第二种方法可由n 种方法来完成,则这件事可由m+n 种方法来完成。
(3)乘法原理(两个步骤分别不能完成这件事):m×n某件事由两个步骤来完成,第一个步骤可由m 种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m×n 种方法来完成。
(4)一些常见排列①特殊排列 相邻 彼此隔开顺序一定和不可分辨②重复排列和非重复排列(有序)③对立事件④顺序问题2、随机试验、随机事件及其运算(1)随机试验和随机事件如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。
试验的可能结果称为随机事件。
(2)事件的关系与运算①关系:如果事件A 的组成部分也是事件B 的组成部分,(A 发生必有事件B 发生):BA ⊂如果同时有,,则称事件A 与事件B 等价,或称A 等于B A ⊂A B ⊃B :A=B 。
A 、B 中至少有一个发生的事件:A B ,或者A +B 。
属于A 而不属于B 的部分所构成的事件,称为A 与B 的差,记为A-B ,也可表示为A-AB 或者,它表示A 发生而B 不发生的事件。
B A A 、B 同时发生:A B ,或者AB 。
A B=Ø,则表示A 与B 不可能同时发生,称事件A 与事件B 互不相容或者互斥。
基本事件是互不相容的。
Ω-A 称为事件A 的逆事件,或称A 的对立事件,记为A 。
它表示A 不发生的事件。
互斥未必对立。
②运算:结合率:A(BC)=(AB)C A∪(B∪C)=(A∪B)∪C分配率:(AB)∪C=(A∪C)∩(B∪C) (A∪B)∩C=(AC)∪(BC)德摩根率:∞=∞==11i ii i AA,B A B A =BA B A =3、概率的定义和性质(1)概率的公理化定义设Ω为样本空间,A 为事件,对每一个事件A 都有一个实数P(A),若满足下列三个条件:1° 0≤P(A)≤1, 2° P(Ω) =13° 对于两两互不相容的事件1A ,2A ,…有∑∞=∞==⎪⎪⎭⎫ ⎝⎛11)(i i i i A P A P 常称为可列(完全)可加性。
概率论与数理统计期末复习重要知识点及公式整理

概率论与数理统计期末复习重要知识点第二章知识点:1.离散型随机变量:设X 是一个随机变量,如果它全部可能的取值只有有限个或可数无穷个,则称X 为一个离散随机变量。
2.常用离散型分布:(1)两点分布(0-1分布):若一个随机变量X 只有两个可能取值,且其分布为12{},{}1(01)P X x p P X x pp ====-<<,则称X 服从12,x x 处参数为p 的两点分布。
两点分布的概率分布:12{},{}1(01)P X x p P X x pp ====-<<两点分布的期望:()E X p =;两点分布的方差:()(1)D X p p =-(2)二项分布:若一个随机变量X 的概率分布由式{}(1),0,1,...,.k kn k n P x k C p p k n -==-=给出,则称X 服从参数为n,p 的二项分布。
记为X~b(n,p)(或B(n,p)).两点分布的概率分布:{}(1),0,1,...,.k k n kn P x k C p p k n -==-= 二项分布的期望:()E X np =;二项分布的方差:()(1)D X np p =-(3)泊松分布:若一个随机变量X 的概率分布为{},0,0,1,2,...!kP X k ek k λλλ-==>=,则称X 服从参数为λ的泊松分布,记为X~P (λ)泊松分布的概率分布:{},0,0,1,2,...!kP X k ek k λλλ-==>=泊松分布的期望:()E X λ=;泊松分布的方差:()D X λ=4.连续型随机变量:如果对随机变量X 的分布函数F(x),存在非负可积函数()f x ,使得对于任意实数x ,有(){}()xF x P X x f t dt-∞=≤=⎰,则称X 为连续型随机变量,称()f x 为X 的概率密度函数,简称为概率密度函数。
5.常用的连续型分布:(1)均匀分布:若连续型随机变量X 的概率密度为⎪⎩⎪⎨⎧<<-=其它,0,1)(bx a a b x f ,则称X 在区间(a,b )上服从均匀分布,记为X~U(a,b)均匀分布的概率密度:⎪⎩⎪⎨⎧<<-=其它,0,1)(b x a a b x f 均匀分布的期望:()2a bE X +=;均匀分布的方差:2()()12b a D X -= (2)指数分布:若连续型随机变量X 的概率密度为00()0xe xf x λλλ-⎧>>=⎨⎩,则称X 服从参数为λ的指数分布,记为X~e (λ)指数分布的概率密度:00()0xe xf x λλλ-⎧>>=⎨⎩指数分布的期望:1()E X λ=;指数分布的方差:21()D X λ=(3)正态分布:若连续型随机变量X的概率密度为2()2()x f x x μσ--=-∞<<+∞则称X 服从参数为μ和2σ的正态分布,记为X~N(μ,2σ)正态分布的概率密度:22()2()x f x x μσ--=-∞<<+∞正态分布的期望:()E X μ=;正态分布的方差:2()D X σ=(4)标准正态分布:20,1μσ==,2222()()x t xx x e dtϕφ---∞=标准正态分布表的使用: (1)()1()x x x φφ<=--(2)~(0,1){}{}{}{}()()X N P a x b P a x b P a x b P a x b b a φφ<≤=≤≤=≤<=<<=-(3)2~(,),~(0,1),X X N Y N μμσσ-=故(){}{}()X x x F x P X x P μμμφσσσ---=≤=≤={}{}()()a b b a P a X b P Y μμμμφφσσσσ----<≤=≤≤=-定理1: 设X~N(μ,2σ),则~(0,1)X Y N μσ-=6.随机变量的分布函数: 设X 是一个随机变量,称(){}F x P X x =≤为X 的分布函数。
长春理工大学概率论与数理统计(工科)复习要点

概率论与数理统计期末考试复习要点(工科)
第一章 随机事件与概率
1.掌握概率的性质
2.掌握条件概率与乘法公式
3.利用事件的独立性计算概率
第二章 随机变量及其分布
1.熟记几种常用的随机变量的分布律或概率密度
2.掌握分布函数F(x)与概率密度函数f(x)的关系。
判断是否为分布函数和概率密度函数
3.利用概率密度函数的性质求参数和概率
4.在正态分布N(μ,σ2)下求概率
5.求一维连续型随机变量的函数的概率密度,建立一维随机变量的函数
第三章 多维随机变量及其分布
1.掌握相互独立及其判断
2.利用二维连续型随机变量的概率密度函数的性质求参数和概率
3.利用边缘概率密度求联合概率密度*
4.掌握相互独立的服从正态分布的线性函数仍服从正态分布
5.求Z=X+Y的概率密度,求Z=min{X,Y}和Z=max{X,Y}的分布函数
第四章 随机变量的数字特征
1.熟记常用随机变量的数学期望与方差
2.掌握期望、方差和协方差的性质及公式
3.求期望、方差、协方差和相关系数
4.判断是否不相关
第六章 抽样分布
1.掌握单个正态总体的有关抽样分布
2.掌握χ2分布、t分布
3.计算E(X),D(X)
第七章 参数估计
1.求矩估计值(量)和极大似然估计值(量)
2.求单个正态总体下μ的单侧置信上下限
第八章 假设检验
1.掌握两类错误
2.掌握单个正态总体下均值μ的单边及双边假设检验及其检验方法。
概率论与数理统计复习知识概括

概率论与数理统计复习第一章 概率论的基本概念一.基本概念随机试验E:(1)可以在相同的条件下重复地进行;(2)每次试验的可能结果不止一个,并且能事先明确试验的所有可能结果;(3)进行一次试验之前不能确定哪一个结果会出现.样本空间S: E 的所有可能结果组成的集合. 样本点(基本事件):E 的每个结果. 随机事件(事件):样本空间S 的子集.必然事件(S):每次试验中一定发生的事件. 不可能事件(Φ):每次试验中一定不会发生的事件. 二. 事件间的关系和运算1.A ⊂B(事件B 包含事件A )事件A 发生必然导致事件B 发生.2.A ∪B(和事件)事件A 与B 至少有一个发生.3. A ∩B=AB(积事件)事件A 与B 同时发生.4. A -B(差事件)事件A 发生而B 不发生.5. AB=Φ (A 与B 互不相容或互斥)事件A 与B 不能同时发生.6. AB=Φ且A ∪B=S (A 与B 互为逆事件或对立事件)表示一次试验中A 与B 必有一个且仅有一个发生. B=A, A=B . 运算规则 交换律 结合律 分配律 德•摩根律B A B A = B A B A =三. 概率的定义与性质1.定义 对于E 的每一事件A 赋予一个实数,记为P(A),称为事件A 的概率. (1)非负性 P(A)≥0 ; (2)归一性或规范性 P(S)=1 ;(3)可列可加性 对于两两互不相容的事件A 1,A 2,…(A i A j =φ, i ≠j, i,j=1,2,…), P(A 1∪A 2∪…)=P( A 1)+P(A 2)+… 2.性质(1) P(Φ) = 0 , 注意: A 为不可能事件 P(A)=0 .(2)有限可加性 对于n 个两两互不相容的事件A 1,A 2,…,A n ,P(A 1∪A 2∪…∪A n )=P(A 1)+P(A 2)+…+P(A n ) (有限可加性与可列可加性合称加法定理) (3)若A ⊂B, 则P(A)≤P(B), P(B -A)=P(B)-P(A) . (4)对于任一事件A, P(A)≤1, P(A)=1-P(A) .(5)广义加法定理 对于任意二事件A,B ,P(A ∪B)=P(A)+P(B)-P(AB) . 对于任意n 个事件A 1,A 2,…,A n()()()()+∑+∑-∑=≤<<≤≤<≤=nk j i k j i nj i j i ni i n A A A P A A P A P A A A P 11121…+(-1)n-1P(A 1A 2…A n )四.等可能(古典)概型1.定义 如果试验E 满足:(1)样本空间的元素只有有限个,即S={e 1,e 2,…,e n };(2)每一个基本事件的概率相等,即P(e 1)=P(e 2)=…= P(e n ).则称试验E 所对应的概率模型为等可能(古典)概型.2.计算公式 P(A)=k / n 其中k 是A 中包含的基本事件数, n 是S 中包含的基本事件总数. 五.条件概率1.定义 事件A 发生的条件下事件B 发生的条件概率P(B|A)=P(AB) / P(A) ( P(A)>0).2.乘法定理 P(AB)=P(A) P (B|A) (P(A)>0); P(AB)=P(B) P (A|B) (P(B)>0).P(A 1A 2…A n )=P(A 1)P(A 2|A 1)P(A 3|A 1A 2)…P(A n |A 1A 2…A n-1) (n ≥2, P(A 1A 2…A n-1) > 0) 3. B 1,B 2,…,B n 是样本空间S 的一个划分(B i B j =φ,i ≠j,i,j=1,2,…,n, B 1∪B 2∪…∪B n =S) ,则当P(B i )>0时,有全概率公式 P(A)=()()i ni i B A P B P ∑=1当P(A)>0, P(B i )>0时,有贝叶斯公式P (B i |A)=()()()()()()∑==ni i i i i i B A P B P B A P B P A P AB P 1. 六.事件的独立性1.两个事件A,B,满足P(AB) = P(A) P(B)时,称A,B 为相互独立的事件. (1)两个事件A,B 相互独立⇔ P(B)= P (B|A) .(2)若A 与B ,A 与B ,A 与B, ,A 与B 中有一对相互独立,则另外三对也相互独立.2.三个事件A,B,C 满足P(AB) =P(A) P(B), P(AC)= P(A) P(C), P(BC)= P(B) P(C),称A,B,C 三事件两两相互独立. 若再满足P(ABC) =P(A) P(B) P(C),则称A,B,C 三事件相互独立.3.n 个事件A 1,A 2,…,A n ,如果对任意k (1<k ≤n),任意1≤i 1<i 2<…<i k ≤n.有()()()()kkii i i i i A P A P A P A A A P 2121=,则称这n 个事件A 1,A 2,…,A n相互独立.第二章 随机变量及其概率分布一.随机变量及其分布函数1.在随机试验E 的样本空间S={e}上定义的单值实值函数X=X (e)称为随机变量.2.随机变量X 的分布函数F(x)=P{X ≤x} , x 是任意实数. 其性质为:(1)0≤F(x)≤1 ,F(-∞)=0,F(∞)=1. (2)F(x)单调不减,即若x 1<x 2 ,则 F(x 1)≤F(x 2). (3)F(x)右连续,即F(x+0)=F(x). (4)P{x 1<X≤x 2}=F(x 2)-F(x 1). 二.离散型随机变量 (只能取有限个或可列无限多个值的随机变量)1.离散型随机变量的分布律 P{X= x k }= p k (k=1,2,…) 也可以列表表示. 其性质为:(1)非负性 0≤P k ≤1 ; (2)归一性 11=∑∞=k k p .2.离散型随机变量的分布函数 F(x)=∑≤xX kk P 为阶梯函数,它在x=x k (k=1,2,…)处具有跳跃点,其跳跃值为p k =P{X=x k } .3.三种重要的离散型随机变量的分布(1)X~(0-1)分布 P{X=1}= p ,P{X=0}=1–p (0<p<1) .(2)X~b(n,p)参数为n,p 的二项分布P{X=k}=()kn k p p k n --⎪⎪⎭⎫ ⎝⎛1(k=0,1,2,…,n) (0<p<1) (3))X~π(λ)参数为λ的泊松分布 P{X=k}=λλ-e k k !(k=0,1,2,…) (λ>0) 三.连续型随机变量1.定义 如果随机变量X 的分布函数F(x)可以表示成某一非负函数f(x)的积分F(x)=()dt t f x⎰∞-,-∞< x <∞,则称X 为连续型随机变量,其中f (x)称为X 的概率密度(函数).2.概率密度的性质(1)非负性 f(x)≥0 ; (2)归一性 ⎰∞∞-dx x f )(=1 ;(3) P{x 1<X ≤x 2}=⎰21)(xx dx x f ; (4)若f (x)在点x 处连续,则f (x)=F / (x) .注意:连续型随机变量X 取任一指定实数值a 的概率为零,即P{X= a}=0 . 3.三种重要的连续型随机变量的分布(1)X ~U (a,b) 区间(a,b)上的均匀分布⎩⎨⎧=-0)(1a b x f其它b x a << . (2)X 服从参数为θ的指数分布.()⎩⎨⎧=-0/1θθx ex f 00≤>x x 若若 (θ>0).(3)X~N (μ,σ2 )参数为μ,σ的正态分布222)(21)(σμσπ--=x e x f -∞<x<∞, σ>0.特别, μ=0, σ2 =1时,称X 服从标准正态分布,记为X~N (0,1),其概率密度2221)(x e x -=πϕ , 标准正态分布函数 ⎰=Φ∞--x t dt e x 2221)(π, Φ(-x)=1-Φ(x) .若X ~N ((μ,σ2), 则Z=σμ-X ~N (0,1), P{x 1<X ≤x 2}=Φ(σμ-2x )-Φ(σμ-1x ).若P{Z>z α}= P{Z<-z α}= P{|Z|>z α/2}= α,则点z α,-z α, ±z α/ 2分别称为标准正态分布的上,下,双侧α分位点. 注意:Φ(z α)=1-α , z 1- α= -z α.四.随机变量X 的函数Y= g (X)的分布 1.离散型随机变量的函数X x 1 x 2 … x k … p k p 1 p 2 … p k … Y=g(X)g(x 1) g(x 2) … g(x k ) …若g(x k ) (k=1,2,…)的值全不相等,则由上表立得Y=g(X)的分布律.若g(x k ) (k=1,2,…)的值有相等的,则应将相等的值的概率相加,才能得到Y=g(X)的分布律. 2.连续型随机变量的函数若X 的概率密度为f X (x),则求其函数Y=g(X)的概率密度f Y (y)常用两种方法:(1)分布函数法 先求Y 的分布函数F Y (y)=P{Y ≤y}=P{g(X)≤y}=()()dx x f ky X k∑⎰∆其中Δk (y)是与g(X)≤y 对应的X 的可能值x 所在的区间(可能不只一个),然后对y 求导即得f Y (y)=F Y /(y) .(2)公式法 若g(x)处处可导,且恒有g /(x)>0 (或g / (x)<0 ),则Y=g (X)是连续型随机变量,其概率密度为()()()()⎩⎨⎧'=0y h y h f y f X Y 其它βα<<y其中h(y)是g(x)的反函数 , α= min (g (-∞),g (∞)) β= max (g (-∞),g (∞)) .如果f (x)在有限区间[a,b]以外等于零,则 α= min (g (a),g (b)) β= max (g (a),g (b)) .第三章 二维随机变量及其概率分布一.二维随机变量与联合分布函数1.定义 若X 和Y 是定义在样本空间S 上的两个随机变量,则由它们所组成的向量(X,Y)称为二维随机向量或二维随机变量. 对任意实数x,y,二元函数F(x,y)=P{X ≤x,Y ≤y}称为(X,Y)的(X 和Y 的联合)分布函数.2.分布函数的性质(1)F(x,y)分别关于x 和y 单调不减.(2)0≤F(x,y)≤1 , F(x,- ∞)=0, F(-∞,y)=0, F(-∞,-∞)=0, F(∞,∞)=1 .(3) F(x,y)关于每个变量都是右连续的,即 F(x+0,y)= F(x,y), F(x,y+0)= F(x,y) . (4)对于任意实数x 1<x 2 , y 1<y 2P{x 1<X ≤x 2 , y 1<Y ≤y 2}= F(x 2,y 2)- F(x 2,y 1)- F(x 1,y 2)+ F(x 1,y 1)二.二维离散型随机变量及其联合分布律1.定义 若随机变量(X,Y)只能取有限对或可列无限多对值(x i ,y j ) (i ,j =1,2,… )称(X,Y)为二维离散型随机变量.并称P{X= xi ,Y= y j }= p i j 为(X,Y)的联合分布律.也可列表表示.2.性质 (1)非负性 0≤p i j ≤1 .(2)归一性∑∑=i jij p 1 .3. (X,Y)的(X 和Y 的联合)分布函数F(x,y)=∑∑≤≤x x yy ij i j p三.二维连续型随机变量及其联合概率密度1.定义 如果存在非负的函数f (x,y),使对任意的x 和y,有F(x,y)=⎰⎰∞-∞-yxdudv v u f ),(则称(X,Y)为二维连续型随机变量,称f(x,y)为(X,Y)的(X 和Y 的联合)概率密度. 2.性质 (1)非负性 f (x,y)≥0 . (2)归一性 1),(=⎰⎰∞∞-∞∞-d x d y y x f .(3)若f (x,y)在点(x,y)连续,则yx y x F y x f ∂∂∂=),(),(2(4)若G 为xoy 平面上一个区域,则⎰⎰=∈Gdxdy y x f G y x P ),(}),{(.四.边缘分布1. (X,Y)关于X 的边缘分布函数 F X (x) = P{X ≤x , Y<∞}= F (x , ∞) . (X,Y)关于Y 的边缘分布函数 F Y (y) = P{X<∞, Y ≤y}= F (∞,y)2.二维离散型随机变量(X,Y)关于X 的边缘分布律 P{X= x i }=∑∞=1j ij p = p i·( i =1,2,…) 归一性11=∑∞=∙i i p .关于Y 的边缘分布律 P{Y= y j }= ∑∞=1i ij p = p·j( j =1,2,…) 归一性11=∑∞=∙j j p .3.二维连续型随机变量(X,Y)关于X 的边缘概率密度f X (x)=⎰∞∞-dy y x f ),( 归一性1)(=⎰∞∞-dx x f X关于Y 的边缘概率密度f Y (y)=x d y x f ⎰∞∞-),( 归一性1)(=⎰∞∞-dyy f Y五.相互独立的随机变量1.定义 若对一切实数x,y,均有F(x,y)= F X (x) F Y (y) ,则称X 和Y 相互独立.2.离散型随机变量X 和Y 相互独立⇔p i j = p i ··p ·j ( i ,j =1,2,…)对一切x i ,y j 成立.3.连续型随机变量X 和Y 相互独立⇔f (x,y)=f X (x)f Y (y)对(X,Y)所有可能取值(x,y)都成立. 六.条件分布1.二维离散型随机变量的条件分布定义 设(X,Y)是二维离散型随机变量,对于固定的j,若P{Y=y j }>0,则称 P{X=x i |Y=y j }为在Y= y j 条件下随机变量X 的条件分布律. 同样,对于固定的i,若P{X=x i }>0,则称P{Y=y j |X=x i } 为在X=x i 条件下随机变量Y 的条件分布律.第四章 随机变量的数字特征一.数学期望和方差的定义,}{},{j ji j j i p p y Y P y Y x X P ∙=====,}{},{∙=====i ji i j i p p x X P y Y x X P随机变量X 离散型随机变量 连续型随机变量 分布律P{X=x i }= p i ( i =1,2,…) 概率密度f (x)数学期望(均值)E(X)∑∞=1i i i p x (级数绝对收敛)⎰∞∞-dx x xf )((积分绝对收敛)方差D(X)=E{[X-E(X)]2}[]∑-∞=12)(i i i p X E x ⎰-∞∞-dx x f X E x )()]([2=E(X 2)-[E(X)]2 (级数绝对收敛) (积分绝对收敛) 函数数学期望E(Y)=E[g(X)]i i i p x g ∑∞=1)((级数绝对收敛) ⎰∞∞-dx x f x g )()((积分绝对收敛)标准差σ(X)=√D(X) . 二.数学期望与方差的性质1. c 为为任意常数时, E(c) = c , E(cX) = cE(X) , D(c) = 0 , D (cX) = c 2 D(X) .2.X,Y 为任意随机变量时, E (X ±Y)=E(X)±E(Y) .3. X 与Y 相互独立时, E(XY)=E(X)E(Y) , D(X ±Y)=D(X)+D(Y) .4. D(X) = 0 ⇔P{X = C}=1 ,C 为常数.三.六种重要分布的数学期望和方差 E(X) D(X)1.X~ (0-1)分布P{X=1}= p (0<p<1) p p (1- p)2.X~ b (n,p) (0<p<1) n p n p (1- p)3.X~ π(λ) λ λ4.X~ U(a,b) (a+b)/2 (b-a) 2/125.X 服从参数为θ的指数分布 θ θ26.X~ N (μ,σ2) μ σ2 四.矩的概念随机变量X 的k 阶(原点)矩E(X k ) k=1,2,… 随机变量X 的k 阶中心矩E{[X-E(X)] k }随机变量X 和Y 的k+l 阶混合矩E(X k Y l ) l=1,2,…随机变量X 和Y 的k+l 阶混合中心矩E{[X-E(X)] k [Y-E(Y)] l }第六章 样本和抽样分布一.基本概念总体X 即随机变量X ; 样本X 1 ,X 2 ,…,X n 是与总体同分布且相互独立的随机变量;样本值x 1 ,x 2 ,…,x n 为实数;n 是样本容量.统计量是指样本的不含任何未知参数的连续函数.如:样本均值∑==n i i X n X 11 样本方差()∑--==n i i XX n S 12211 样本标准差S样本k 阶矩∑==n i kik X n A 11( k=1,2,…) 样本k 阶中心矩∑-==n i ki k X X n B 1)(1( k=1,2,…)二.抽样分布 即统计量的分布 1.X 的分布 不论总体X 服从什么分布, E (X ) = E(X) , D (X ) = D(X) / n .特别,若X~ N (μ,σ2 ) ,则X ~ N (μ, σ2/n) .2.χ2分布 (1)定义 若X ~N (0,1) ,则Y =∑=ni i X 12~ χ2(n)自由度为n 的χ2分布.(2)性质 ①若Y~ χ2(n),则E(Y) = n , D(Y) = 2n .②若Y 1~ χ2(n 1) Y 2~ χ2(n 2) ,则Y 1+Y 2~ χ2(n 1 + n 2).③若X~ N (μ,σ2 ), 则22)1(σS n -~ χ2(n-1),且X 与S 2相互独立.(3)分位点 若Y~ χ2(n),0< α <1 ,则满足αχχχχαααα=<>=<=>--))}(())({()}({)}({22/122/212n Y n Y P n Y P n Y P的点)()(),(),(22/122/212n n n n ααααχχχχ--和分别称为χ2分布的上、下、双侧α分位点.3. t 分布(1)定义 若X~N (0,1),Y~ χ2(n),且X,Y 相互独立,则t=nY X~t(n)自由度为n 的t 分布. (2)性质①n →∞时,t 分布的极限为标准正态分布.②X ~N (μ,σ2 )时, nS X μ-~ t (n-1) .③两个正态总体相互独立的样本 样本均值 样本方差X~ N (μ1,σ12 ) 且σ12=σ22=σ2 X 1 ,X 2 ,…,X n1 X S 12Y~ N (μ2,σ22 ) Y 1 ,Y 2 ,…,Y n2Y S22则212111)()(n n S Y X w +---μμ~ t (n 1+n 2-2) , 其中 2)1()1(212222112-+-+-=n n S n S n S w(3)分位点 若t ~ t (n) ,0 < α<1 , 则满足αααα=>=-<=>)}({)}({)}({2/n t t P n t t P n t t P的点)(),(),(2/n t n t n t ααα±-分别称t 分布的上、下、双侧α分位点. 注意: t 1- α (n) = - t α (n).4.F 分布 (1)定义 若U~χ2(n 1), V~ χ2(n 2), 且U,V 相互独立,则F =21n V n U ~F(n 1,n 2)自由度为(n 1,n 2)的F 分布.(2)性质(条件同3.(2)③)22212221σσS S ~F(n 1-1,n 2-1)(3)分位点 若F~ F(n 1,n 2) ,0< α <1,则满足)},({)},({21121n n F F P n n F F P αα-<=>ααα=<>=-))},(()),({(212/1212/n n F F n n F F P的点),(),(),,(),,(212/1212/21121n n F n n F n n F n n F αααα--和分别称为F 分布的上、下、双侧α分位点.注意:.).(1),(12211n n F n n F αα=-第七章 参数估计一.点估计 总体X 的分布中有k 个待估参数θ1, θ2,…, θk .X 1 ,X 2 ,…,X n 是X 的一个样本, x 1 ,x 2 ,…,x n 是样本值.1.矩估计法先求总体矩⎪⎩⎪⎨⎧===),,,(),,,(),,,(2121222111k k k k k θθθμμθθθμμθθθμμ 解此方程组,得到⎪⎩⎪⎨⎧===),,,(),,,(),,,(2121222111k k k k k μμμθθμμμθθμμμθθ ,以样本矩A l 取代总体矩μ l ( l=1,2,…,k)得到矩估计量⎪⎪⎩⎪⎪⎨⎧===∧∧∧),,,(),,,(),,,(2121222111k k k k k A A A A A A A A A θθθθθθ,若代入样本值则得到矩估计值. 2.最大似然估计法若总体分布形式(可以是分布律或概率密度)为p(x, θ1, θ2,…, θk ),称样本X 1 ,X 2 ,…,Xn的联合分布∏==ni k i k x p L 12121),,,,(),,,(θθθθθθ 为似然函数.取使似然函数达到最大值的∧∧∧kθθθ,,,21 ,称为参数θ1,θ2,…,θk 的最大似然估计值,代入样本得到最大似然估计量.若L(θ1, θ2,…, θk )关于θ1, θ2,…, θk 可微,则一般可由 似然方程组0=∂∂i L θ 或 对数似然方程组 0ln =∂∂iLθ (i =1,2,…,k) 求出最大似然估计. 3.估计量的标准(1) 无偏性 若E(∧θ)=θ,则估计量∧θ称为参数θ的无偏估计量.不论总体X 服从什么分布, E (X )= E(X) , E(S 2)=D(X), E(A k )=μk =E(X k ),即样本均值X , 样本方差S 2,样本k 阶矩A k 分别是总体均值E(X),方差D(X),总体k 阶矩μk 的无偏估计,(2)有效性 若E(∧θ1 )=E(∧θ2)= θ, 而D(∧θ1)< D(∧θ2), 则称估计量∧θ1比∧θ2有效. (3)一致性(相合性) 若n →∞时,θθP →∧,则称估计量∧θ是参数θ的相合估计量.二.区间估计1.求参数θ的置信水平为1-α的双侧置信区间的步骤(1)寻找样本函数W=W(X 1 ,X 2 ,…,X n ,θ),其中只有一个待估参数θ未知,且其分布完全确定. (2)利用双侧α分位点找出W 的区间(a,b),使P{a<W <b}=1-α.(3)由不等式a<W<b 解出θθθ<<则区间(θθ,)为所求.2.单个正态总体待估参数 其它参数 W 及其分布 置信区间μ σ2已知 nX σμ-~N (0,1) (2/ασz n X ±) μ σ2未知nS X μ-~ t (n-1) )1((2/-±n t n S X α σ2 μ未知22)1(σS n -~ χ2(n-1) ))1()1(,)1()1((22/1222/2-----n Sn n S n ααχχ3.两个正态总体 (1)均值差μ 1-μ 2其它参数 W 及其分布 置信区间已知2221,σσ22212121)(n n Y X σσμμ+--- ~ N(0,1))(2221212n n z Y X σσα+±-未知22221σσσ== 212111)(n n S Y X w +---μμ~t(n 1+n 2-2) )11)2((21212n n S n n t Y X w +-+±-α 其中S w 等符号的意义见第六章二. 3 (2)③.(2) μ 1,μ 2未知, W=22212221σσS S ~ F(n 1-1,n 2-1),方差比σ12/σ22的置信区间为))1,1(1,)1,1(1(212/12221212/2221----⋅-n n F S S n n F S S αα注意:对于单侧置信区间,只需将以上所列的双侧置信区间中的上(下)限中的下标α/2改为α,另外的下(上)限取为-∞ (∞)即可.。
概率论与数理统计知识点总结

概率论与数理统计知识点总结1. 概率论基础- 随机事件:一个事件是随机的,如果它可能发生也可能不发生。
- 样本空间:所有可能事件发生的集合。
- 事件的概率:事件发生的可能性的度量,满足0≤P(A)≤1。
- 条件概率:在另一个事件发生的条件下,一个事件发生的概率。
- 贝叶斯定理:描述了随机事件A和B的条件概率和边缘概率之间的关系。
- 独立事件:两个事件A和B是独立的,如果P(A∩B) = P(A)P(B)。
- 互斥事件:两个事件A和B是互斥的,如果它们不能同时发生,即P(A∩B) = 0。
2. 随机变量及其分布- 随机变量:将随机事件映射到实数的函数。
- 离散随机变量:取值为有限或可数无限的随机变量。
- 连续随机变量:可以在某个区间内取任意值的随机变量。
- 概率分布函数:描述随机变量取值的概率。
- 概率密度函数:连续随机变量的概率分布函数的导数。
- 累积分布函数:随机变量取小于或等于某个值的概率。
- 期望值:随机变量的长期平均值。
- 方差:衡量随机变量取值的离散程度。
3. 多维随机变量及其分布- 联合分布:描述两个或多个随机变量同时取特定值的概率。
- 边缘分布:通过联合分布求得的单个随机变量的分布。
- 条件分布:给定一个随机变量的值时,另一个随机变量的分布。
- 协方差:衡量两个随机变量之间的线性关系。
- 相关系数:协方差标准化后的值,表示变量间的线性相关程度。
4. 大数定律和中心极限定理- 大数定律:随着试验次数的增加,样本均值以概率1收敛于总体均值。
- 中心极限定理:独立同分布的随机变量之和,在适当的标准化后,其分布趋近于正态分布。
5. 数理统计基础- 样本:从总体中抽取的一部分个体。
- 总体:研究对象的全体。
- 参数估计:用样本统计量来估计总体参数。
- 点估计:给出总体参数的一个具体估计值。
- 区间估计:给出一个包含总体参数可能值的区间。
- 假设检验:对总体分布的某些假设进行检验。
- 显著性水平:拒绝正确假设的最大概率。
概率论与数理统计复习资料

概率论与数理统计复习资料概率论与数理统计复习资料概率论与数理统计是数学中的重要分支,广泛应用于各个领域。
无论是在自然科学、社会科学还是工程技术领域,概率论与数理统计都扮演着重要的角色。
为了更好地理解和应用这门学科,我们需要进行系统的复习和总结。
本文将为大家提供一些有关概率论与数理统计的复习资料,帮助大家更好地掌握这门学科。
一、概率论概率论是研究随机事件发生的可能性的数学学科。
它以概率为基础,通过建立数学模型来描述随机事件的规律性。
在概率论的学习中,我们需要掌握以下几个重要概念:1. 随机事件:随机事件是指在一定条件下可能发生也可能不发生的事件。
例如,掷硬币的结果、骰子点数的出现等都属于随机事件。
2. 概率:概率是描述随机事件发生可能性的数值。
它的取值范围在0到1之间,0表示不可能发生,1表示必然发生。
3. 随机变量:随机变量是指随机事件的结果所对应的数值。
它可以是离散型的,也可以是连续型的。
离散型随机变量的取值是有限或可数的,例如掷骰子的点数;连续型随机变量的取值是无限的,例如身高、体重等。
4. 概率分布:概率分布是随机变量所有可能取值及其对应的概率的分布规律。
离散型随机变量的概率分布可以用概率质量函数来描述,连续型随机变量的概率分布可以用概率密度函数来描述。
5. 期望:期望是随机变量取值的平均值,反映了随机变量的平均水平。
对于离散型随机变量,期望可以通过加权平均的方式计算;对于连续型随机变量,期望可以通过积分的方式计算。
二、数理统计数理统计是研究如何从样本中获取总体信息的学科。
它通过对样本数据进行分析和推断,来对总体进行估计和推断。
在数理统计的学习中,我们需要掌握以下几个重要概念:1. 总体与样本:总体是指研究对象的全体,样本是从总体中抽取的一部分个体。
样本是对总体的一种观察和研究。
2. 统计量:统计量是样本数据的函数,用于对总体参数进行估计。
例如,样本均值、样本方差等都是统计量。
3. 抽样分布:抽样分布是指统计量的分布规律。
概率论与数理统计期末复习重要知识点及公式整理

概率论与数理统计期末复习重要知识点及公式整理概率论与数理统计期末复习重要知识点第二章知识点1离散型随机变量设X是一个随机变量如果它全部可能的取值只有有限个或可数无穷个则称X为一个离散随机变量2常用离散型分布1两点分布0-1分布若一个随机变量X只有两个可能取值且其分布为则称X服从处参数为p的两点分布两点分布的概率分布两点分布的期望两点分布的方差2二项分布若一个随机变量X的概率分布由式给出则称X服从参数为np的二项分布记为Xb np 或B np 两点分布的概率分布二项分布的期望二项分布的方差3泊松分布若一个随机变量X的概率分布为则称X服从参数为的泊松分布记为XP泊松分布的概率分布泊松分布的期望泊松分布的方差4连续型随机变量如果对随机变量X的分布函数F x 存在非负可积函数使得对于任意实数有则称X为连续型随机变量称为X的概率密度函数简称为概率密度函数5常用的连续型分布1均匀分布若连续型随机变量X的概率密度为则称X在区间ab上服从均匀分布记为XU ab均匀分布的概率密度均匀分布的期望均匀分布的方差2指数分布若连续型随机变量X的概率密度为则称X服从参数为的指数分布记为Xe指数分布的概率密度指数分布的期望指数分布的方差3正态分布若连续型随机变量X的概率密度为则称X服从参数为和的正态分布记为XN正态分布的概率密度正态分布的期望正态分布的方差4标准正态分布标准正态分布表的使用123故定理1 设XN 则6随机变量的分布函数设X是一个随机变量称为X的分布函数分布函数的重要性质7求离散型的随机变量函数连续型随机变量函数的分布1由X的概率分布导出Y的概率分布步骤①根据X写出Y的所有可能取值②对Y的每一个可能取值确定相应的概率取值③常用表格的形式把Y的概率分布写出2由X的概率密度函数分布函数求Y的概率密度函数分布函数的步骤①由X的概率密度函数随机变量函数Y g X 的分布函数②由求导可得Y的概率密度函数3对单调函数计算Y g X 的概率密度简单方法定理1 设随机变量X具有概率密度又设y g x 处处可导且恒有或恒有则Y g X 是一个连续型随机变量其概率密度为其中是y g x 的反函数且练习题24 第71314总习题第36910111314171819第三章重要知识点1离散型二维随机变量X与Y的联合概率分布表 YX1 1要会由X与Y的联合概率分布求出X与Y各自概率分布或反过来类似 P63 例22要会在X与Y独立的情况下根据联合概率分布表的部分数据求解其余数据类似 P71 例33要会根据联合概率分布表求形如的概率4要会根据联合概率分布律之类求出相应的期望方差协方差相关系数等2 二维连续型随机变量X与Y的联合概率密度设XY为二维随机变量F xy 为其分布函数若存在一个非负可积的二元函数f xy 使对任意实数xy有则称XY为二维连续型随机变量要会画出积分区域使得能正确确定二重积分的上下限要会根据联合概率密度求出相应的分布函数F xy 以及形如等联合概率值P64 例3要会根据联合概率密度求出的边缘密度类似 P64 例4要会根据联合概率密度求出相应的期望方差协方差相关系数等3联合概率分布以及联合密度函数的一些性质12要会根据这些性质解类似P68 第56题4常用的连续型二维随机变量分布二维均匀分布设G是平面上的有界区域其面积为A若二维随机变量XY具有概率密度函数则称XY在G上服从均匀分布5独立性的判断定义设随机变量XY的联合分布函数为F xy 边缘分布函数为若对任意实数xy有1离散型随机变量的独立性①由独立性的定义进行判断②所有可能取值有则X与Y相互独立2连续型随机变量的独立性①由独立性的定义进行判断②联合概率密度边缘密度有几乎处处成立则X 与Y相互独立3 注意与第四章知识的结合X与Y相互独立因此 X与Y不独立6.相互独立的两个重要定理定理1 随机变量X与Y相互独立的充要条件是X所生成的任何事件与Y生成的任何事件独立即对任意实数集AB有定理2 如果随机变量X与Y独立则对任意函数相互独立1要求会使用这两个定理解决计算问题练习题习题2-3 第34题习题2-4 第2题习题32 第578题总习题三第491-4 1213第四五章知识点设总体密度函数如下是样本试求未知参数的矩估计值最大似然估计值1由此可推出从而参数的矩估计值为2似然函数为其对数似然函数为由上式可以看出是的单调增函数要使其最大的取值应该尽可能的大由于限制这给出的最大似然估计值为将关于求导并令其为0得到关于的似然方程解得第四章重要知识点1随机变量X数学期望的求法1离散型 2连续型2随机变量函数g X 数学期望的求法1离散型 2连续型3二维随机向量期望的求法1离散型2连续型4随机变量X方差的求法1简明公式2离散型3连续型5 随机变量X协方差与相关系数的求法1简明公式2离散型3连续型46数学期望方差协方差重要的性质12 设X与Y相互独立则3若X与Y相互独立则456若X与Y相互独立则7 若XY服从二维正态分布则X与Y相互独立当且仅当7 n维正态分布的几个重要性质1n维正态变量的每个分量都是正态变量反之若都是正态变量且相互独立则是n维正态变量2n维随机向量服从n维正态分布的充分必要条件是的任意线性组合均服从一维正态分布均服从一维正态分布其中不全为零3若服从n维正态分布设是的线性函数则服从k维正态分布4设服从n维正态分布则相互独立等价于两两不相关练习题设XY的联合密度函数为求及解同理又因从而习题43第10题8中心极限定理1定理4棣莫佛拉普拉斯定理设随机变量相互独立并且都服从参数为的两点分布则对任意实数有2定理3独立同分布的中心极限定理设随机变量相互独立服从同一分布且则练习题习题4-4 11题 12题总习题四 242526题第五章重要知识点确定或求证统计量所服从的分布1三大分布1分布设是取自总体N 01 的样本称统计量服从自由度为n的分布2t分布设XN 01 且X与Y相互独立则称服从自由度为n的t分布3F分布设且X与Y相互独立则称服从自由度为mn的F分布2三大抽样分布1设总体是取自X的一个样本为该样本的样本均值则有2定理2设总体是取自X的一个样本与为该样本的样本均值与样本方差则有与相互独立3定理3 设总体是取自X的一个样本与为该样本的样本均值与样本方差则有练习题1设是来自正态总体的样本求统计量的分布解因为故由样本的独立性及分布的定义有再由样本的独立性以及t分布的定义有总习题五 14题3求样本函数相关的概率问题练习题习题5-3 2 总习题五 1617第六章重要知识点1矩估计的求法设总体X的分布函数中含有k个未知参数的函数则1求总体X的k阶矩它们一般都是是这k个未知参数的函数记为2从1中解得3再用的估计量分别代替上式中的即可得的估计量注求类似于上述步骤最后用代替求出矩估计2最大似然估计的求法求最大似然估计的一般方法写出似然函数令或求出驻点3判断并求出最大值点在最大值点的表达式中用样本值代入就得参数的最大似然估计值比如P154 例463 估计量的优良性准则1无偏性定义1 设是未知参数的估计量若则称为的无偏估计量2有效性定义2 设和都是参数的无偏估计量若则称较有效4 置信区间1双侧置信区间设为总体分布的未知参数是取自总体X的一个样本对给定的数若存在统计量使得则称随机区间为的双侧置信区间称为置信度又分别称与为的双侧置信下限与双侧置信上限2单侧置信区间设为总体分布的未知参数是取自总体X的一个样本对给定的数若存在统计量满足则称为的置信度为的单侧置信区间称为的单侧置信下限若存在统计量满足则称为的置信度为的单侧置信区间称为的单侧置信上限5寻求置信区间的方法一般步骤选取未知参数的某个较优估计量2围绕构造一个依赖于样本与参数的函数3对给定的置信水平确定与使通常可选取满足与的与在常用分布情况下这可由分位数表查得4对不等式作恒等变形后化为则就是的置信度为的双侧置信区间6置信区间的公式1 0-1分布参数的置信区间2 设总体其中已知而为未知参数是取自总体X的一个样本均值的置信区间为3 设总体其中未知是取自总体X的一个样本均值的置信区间为4 设总体其中未知是取自总体X的一个样本方差的置信区间为的置信区间为练习题习题6-2 第1256题习题6-3 第3456题习题6-4 第4题总习题六第789101617182021题第1章随机事件及其概率1排列组合公式从m个人中挑出n个人进行排列的可能数从m个人中挑出n个人进行组合的可能数2加法和乘法原理加法原理两种方法均能完成此事mn某件事由两种方法来完成第一种方法可由m种方法完成第二种方法可由n种方法来完成则这件事可由mn 种方法来完成乘法原理两个步骤分别不能完成这件事m×n某件事由两个步骤来完成第一个步骤可由m种方法完成第二个步骤可由n 种方法来完成则这件事可由m×n 种方法来完成3一些常见排列重复排列和非重复排列有序对立事件至少有一个顺序问题4随机试验和随机事件如果一个试验在相同条件下可以重复进行而每次试验的可能结果不止一个但在进行一次试验之前却不能断言它出现哪个结果则称这种试验为随机试验试验的可能结果称为随机事件5基本事件样本空间和事件在一个试验下不管事件有多少个总可以从其中找出这样一组事件它具有如下性质①每进行一次试验必须发生且只能发生这一组中的一个事件②任何事件都是由这一组中的部分事件组成的这样一组事件中的每一个事件称为基本事件用来表示基本事件的全体称为试验的样本空间用表示一个事件就是由中的部分点基本事件组成的集合通常用大写字母ABC表示事件它们是的子集为必然事件为不可能事件不可能事件的概率为零而概率为零的事件不一定是不可能事件同理必然事件Ω的概率为1而概率为1的事件也不一定是必然事件如果同时有则称事件A与事件B等价或称A等于BA BAB中至少有一个发生的事件AB或者AB属于A而不属于B的部分所构成的事件称为A与B的差记为A-B 也可表示为A-AB或者它表示A发生而B不发生的事件AB同时发生AB或者ABAB 则表示A与B不可能同时发生称事件A与事件B互不相容或者互斥基本事件是互不相容的-A称为事件A的逆事件或称A的对立事件记为它表示A不发生的事件互斥未必对立②运算结合率A BC AB C A∪ B∪C A∪B ∪C分配率 AB ∪C A∪C ∩ B∪C A∪B ∩C AC ∪ BC德摩根率7概率的公理化定义设为样本空间为事件对每一个事件都有一个实数P A 若满足下列三个条件1° 0≤P A ≤12° P 13°对于两两互不相容的事件有常称为可列完全可加性P A 为事件的概率8古典概型1°2°设任一事件它是由组成的则有P A9几何概型若随机试验的结果为无限不可数并且每个结果出现的可能性均匀同时样本空间中的每一个基本事件可以使用一个有界区域来描述则称此随机试验为几何概型对任一事件A其中L为几何度量长度面积体积10加法公式P AB P A P B -P AB当P AB =0时P AB P A P B 11减法公式P A-B P A -P AB当BA时P A-B P A -P B当A Ω时P 1- P B 12条件概率定义设AB是两个事件且P A 0则称为事件AB发生的条件概率记为条件概率是概率的一种所有概率的性质都适合于条件概率例如P ΩB 1P A 1-P BA 13乘法公式乘法公式更一般地对事件A1A2An若P A1A2An-1 0则有14独立性①两个事件的独立性设事件满足则称事件是相互独立的若事件相互独立且则有若事件相互独立则可得到与与与也都相互独立必然事件和不可能事件与任何事件都相互独立与任何事件都互斥②多个事件的独立性设ABC是三个事件如果满足两两独立的条件P AB P A P B P BC P B P C P CA P C P A并且同时满足P ABC P A P B P C那么ABC相互独立对于n个事件类似15全概公式设事件满足1°两两互不相容2°16贝叶斯公式设事件及满足1°两两互不相容 0122°i 12n此公式即为贝叶斯公式通常叫先验概率通常称为后验概率贝叶斯公式反映了因果的概率规律并作出了由果朔因的推断17伯努利概型我们作了次试验且满足每次试验只有两种可能结果发生或不发生次试验是重复进行的即发生的概率每次均一样每次试验是独立的即每次试验发生与否是互不影响的这种试验称为伯努利概型或称为重伯努利试验用表示每次试验发生的概率则发生的概率为用表示重伯努利试验中出现次的概率第二章随机变量及其分布1离散型随机变量的分布律设离散型随机变量的可能取值为Xk k 12 且取各个值的概率即事件 X Xk 的概率为P X xk pkk 12则称上式为离散型随机变量的概率分布或分布律有时也用分布列的形式给出显然分布律应满足下列条件1 2 2连续型随机变量的分布密度设是随机变量的分布函数若存在非负函数对任意实数有则称为连续型随机变量称为的概率密度函数或密度函数简称概率密度密度函数具有下面4个性质1°2°3离散与连续型随机变量的关系积分元在连续型随机变量理论中所起的作用与在离散型随机变量理论中所起的作用相类似4分布函数设为随机变量是任意实数则函数称为随机变量X的分布函数本质上是一个累积函数可以得到X落入区间的概率分布函数表示随机变量落入区间–∞x]内的概率分布函数具有如下性质1°2°是单调不减的函数即时有3°4°即是右连续的5°对于离散型随机变量对于连续型随机变量5八大分布0-1分布P X 1 p P X 0 q二项分布在重贝努里试验中设事件发生的概率为事件发生的次数是随机变量设为则可能取值为其中则称随机变量服从参数为的二项分布记为当时这就是0-1分布所以0-1分布是二项分布的特例泊松分布设随机变量的分布律为则称随机变量服从参数为的泊松分布记为或者P泊松分布为二项分布的极限分布np λn→∞超几何分布随机变量X服从参数为nNM的超几何分布记为H nNM 几何分布其中p≥0q 1-p随机变量X服从参数为p的几何分布记为G p 均匀分布设随机变量的值只落在[ab]内其密度函数在[ab]上为常数即其他则称随机变量在[ab]上服从均匀分布记为XU ab分布函数为当a≤x1 x2≤b时X落在区间内的概率为指数分布其中则称随机变量X服从参数为的指数分布X的分布函数为记住积分公式正态分布设随机变量的密度函数为其中为常数则称随机变量服从参数为的正态分布或高斯Gauss 分布记为具有如下性质1°的图形是关于对称的2°当时为最大值若则的分布函数为参数时的正态分布称为标准正态分布记为其密度函数记为分布函数为是不可求积函数其函数值已编制成表可供查用Φ -x =1-Φ x 且Φ 0 =如果则6分位数下分位表上分位表7函数分布离散型已知的分布列为的分布列互不相等如下若有某些相等则应将对应的相加作为的概率连续型先利用X的概率密度fX x 写出Y的分布函数FY y =P g X ≤y 再利用变上下限积分的求导公式求出fY y 第三章二维随机变量及其分布1联合分布离散型如果二维随机向量XY的所有可能取值为至多可列个有序对xy则称为离散型随机量设 XY的所有可能取值为且事件的概率为pij称为 XY的分布律或称为X和Y的联合分布律联合分布有时也用下面的概率分布表来表示YXy1y2yjx1p11p12p1jx2p21p22p2jxipi1这里pij具有下面两个性质1pij≥0ij 122 连续型对于二维随机向量如果存在非负函数使对任意一个其邻边分别平行于坐标轴的矩形区域D即D XY a x bc y d 有则称为连续型随机向量并称f xy 为 XY的分布密度或称为X和Y的联合分布密度分布密度f xy 具有下面两个性质f xy ≥02 2二维随机变量的本质3联合分布函数设XY 为二维随机变量对于任意实数xy二元函数称为二维随机向量XY的分布函数或称为随机变量X和Y的联合分布函数分布函数是一个以全平面为其定义域以事件的概率为函数值的一个实值函数分布函数F xy 具有以下的基本性质12Fxyx和y是非减的即当x2 x1时有Fx2yF x1y 当y2 y1时有F xy2 ≥F xy13Fxyx和y是右连续的即45对于4离散型与连续型的关系5边缘分布离散型X的边缘分布为Y的边缘分布为连续型X的边缘分布密度为Y的边缘分布密度为6条件分布离散型在已知X xi的条件下Y取值的条件分布为在已知Y yj的条件下X取值的条件分布为连续型在已知Y y的条件下X的条件分布密度为在已知X x的条件下Y的条件分布密度为7独立性一般型 F XY FX x FY y 离散型有零不独立连续型 f xy fX x fY y直接判断充要条件①可分离变量②正概率密度区间为矩形二维正态分布=0 随机变量的函数若X1X2XmXm1Xn相互独立 hg为连续函数则hX1X2Xm和gXm1Xn相互独立特例若X与Y独立则hX和gY独立例如若X与Y独立则3X1和5Y-2独立8二维均匀分布设随机向量XY的分布密度函数为其中SD为区域D的面积则称XY服从D上的均匀分布记为XY~UD例如图31comy1D1O 1 x图31y1O 2 x图32ydcO a b x图339二维正态分布设随机向量XY的分布密度函数为其中是5个参数则称XY服从二维正态分布记为XY~N由边缘密度的计算公式可以推出二维正态分布的两个边缘分布仍为正态分布即X~N但是若X~N XY 未必是二维正态分布10函数分布Z XY 根据定义计算对于连续型fZ z =两个独立的正态分布的和仍为正态分布n个相互独立的正态分布的线性组合仍服从正态分布Z min X1X2Xn 若相互独立其分布函数分别为则Z min X1X2Xn 的分布函数为分布设n个随机变量相互独立且服从标准正态分布可以证明它们的平方和的分布密度为我们称随机变量W服从自由度为n的分布记为W~其中所谓自由度是指独立正态随机变量的个数它是随机变量分布中的一个重要参数分布满足可加性设则t分布设XY是两个相互独立的随机变量且可以证明函数的概率密度为我们称随机变量T服从自由度为n的t分布记为T~t nF分布设且X与Y独立可以证明的概率密度函数为我们称随机变量F服从第一个自由度为n1第二个自由度为n2的F分布记为F~f n1 n2第四章随机变量的数字特征1一维随机变量的数字特征离散型连续型期望期望就是平均值设X是离散型随机变量其分布律为P =pkk12n要求绝对收敛设X是连续型随机变量其概率密度为f x要求绝对收敛函数的期望Y g XY g X方差D X E[X-E X ]2标准差矩①对于正整数k称随机变量X的k次幂的数学期望为X的k阶原点矩记为vk即νk E Xk k 12②对于正整数k称随机变量X与EX差的k次幂的数学期望为X 的k阶中心矩记为即k 12 ①对于正整数k称随机变量X的k次幂的数学期望为X 的k阶原点矩记为vk即νk E Xkk 12②对于正整数k称随机变量X与EX差的k次幂的数学期望为X 的k阶中心矩记为即k 12 切比雪夫不等式设随机变量X具有数学期望EX μ方差DX σ2则对于任意正数ε有下列切比雪夫不等式切比雪夫不等式给出了在未知X的分布的情况下对概率的一种估计它在理论上有重要意义2期望的性质E C CE CX CE XE XY E X E YE XY E X E Y 充分条件X和Y独立充要条件X和Y不相关3方差的性质 D C 0E C CD aX a2D XE aX aE XD aXb a2D XE aXb aE X bD XE X2 -E2 XD X±Y D X D Y 充分条件X和Y独立充要条件X和Y不相关D X±Y D X D Y ±2E[ X-E X Y-E Y ]无条件成立而E XY E X E Y 无条件成立4常见分布的期望和方差期望方差0-1分布p 二项分布 np 泊松分布几何分布超几何分布均匀分布指数分布正态分布n 2n t分布0 n 2 5二维随机变量的数字特征期望函数的期望==方差协方差对于随机变量X与Y称它们的二阶混合中心矩为X与Y的协方差或相关矩记为即与记号相对应X与Y的方差DX与DY也可分别记为与相关系数对于随机变量X与Y如果DX 0 D Y 0则称为X与Y的相关系数记作有时可简记为≤1当 1时称X与Y完全相关完全相关而当时称X与Y不相关以下五个命题是等价的①②cov XY 0③E XY E X E Y④D XY D X D Y⑤D X-Y D X D Y 协方差矩阵混合矩对于随机变量X与Y如果有存在则称之为X与Y的kl阶混合原点矩记为kl阶混合中心矩记为6协方差的性质cov X Y cov Y Xcov aXbY ab cov XYcov X1X2 Y cov X1Y cov X2Ycov XY E XY -E X E Y 7独立和不相关若随机变量X与Y相互独立则反之不真若XY~N则X与Y相互独立的充要条件是X和Y不相关第五章大数定律和中心极限定理1大数定律切比雪夫大数定律设随机变量X1X2相互独立均具有有限方差且被同一常数C所界DXi C i 12 则特殊情形若X1X2具有相同的数学期望EXI μ则上式成为伯努利大数定律设μ是n次独立试验中事件A发生的次数p是事件A在每次试验中发生的概率则对于任意的正数ε有伯努利大数定律说明当试验次数n很大时事件A发生的频率与概率有较大判别的可能性很小即这就以严格的数学形式描述了频率的稳定性辛钦大数定律设X1X2Xn是相互独立同分布的随机变量序列且EXn μ则对于任意的正数ε有2中心极限定理列维-林德伯格定理设随机变量X1X2相互独立服从同一分布且具有相同的数学期望和方差则随机变量的分布函数Fn x 对任意的实数x有此定理也称为独立同分布的中心极限定理棣莫弗-拉普拉斯定理设随机变量为具有参数n p 0 p 1 的二项分布则对于任意实数x有3二项定理若当则超几何分布的极限分布为二项分布4泊松定理若当则其中k 012n二项分布的极限分布为泊松分布第六章样本及抽样分布1数理统计的基本概念总体在数理统计中常把被考察对象的某一个或多个指标的全体称为总体或母体我们总是把总体看成一个具有分布的随机变量或随机向量个体总体中的每一个单元称为样品或个体样本我们把从总体中抽取的部分样品称为样本样本中所含的样品数称为样本容量一般用n表示在一般情况下总是把样本看成是n个相互独立的且与总体有相同分布的随机变量这样的样本称为简单随机样本在泛指任一次抽取的结果时表示n 个随机变量样本在具体的一次抽取之后表示n个具体的数值样本值我们称之为样本的两重性样本函数和统计量设为总体的一个样本称为样本函数其中为一个连续函数如果中不包含任何未知参数则称为一个统计量常见统计量及其性质样本均值样本方差样本标准差样本k阶原点矩样本k阶中心矩。
概率论与数理统计的复习要点

概率论与数理统计的复习要点概率论与数理统计的复习要点众所周知,考研中数学占了很大一部分比例。
在考研数学中,与高等数学和线性代数不同的是,概率论与数理统计中对基本概念的深入理解所占的比例相当大。
那么,概率论有哪些复习重点呢?今天就来说说概率论的复习重点。
一、随机事件概率这部分是非常简单的,就是我们高中学的概率。
通常考的是选择题或填空题,分值不大。
古典概型和几何概型,加法公式、减法公式、乘法公式、全概公式和贝叶斯公式等这些公式要记住。
二、随机变量分布这部分的复习可是重点,每年必考。
经常是与二维变量结合起来考,随机变量及其分布函数的概念和性质、分布律和概率密度的`性质、八大常见的分布(0-1分布、二项分布、几何分布、超几何分布、泊松分布、均匀分布、正态分布、指数分布)都是常考的。
三、随机变量今年的考研试卷中数一和数三只考到了二维正态分布的一个性质,还是一个填空题题。
这部分常常与第一章的随机变量结合起来考,重点有主要考一些常见分布及其应用、随机变量函数的分布。
常见的题型是求一维随机变量的分布律、分布密度或分布函数、求一维随机变量在某一区间的概率。
四、随机变量的数字特征通常会出现在大题中的某一小题,根据历年真题分析,这部分也是每年必考的。
重点要复习随机变量的数字特征定义(数学期望、方差、标准差、矩、协方差、相关系数);常见分布的数字特征;利用数字特征的基本性质计算具体分布的数字特征;根据一维和二维随机变量的概率分布求其函数的数学期望。
五、数定律和中心极限定理这部分就不是考试重点了,但还是要注意。
主要有三个内容,分别是切比雪夫不等式、大数定律和中心极限定理。
根据每年的考试情况来看,这部分不是每年必出的题,所以也不需要重点复习。
总的来说概率论与数理统计统计部分的重点内容是随机变量和随机变量的数字特征,大家要重点复习。
题目千变万化,有各种延伸或变式,大家要想在考试中取得好成绩,一定要认真仔细地复习,必须要重视基本概念、基本理论和基本方法。
《概率论与数理统计》(公共)复习提纲

概率论与数理统计(公共课)复习提纲 注:方框标示的内容为重点。
第1章 随机事件及其概率1. 样本点与样本空间、事件的关系与运算;2. 事件的运算规律;(1) 交换律 A ∪B =B ∪A , A ∩B =B ∩A ;(2) 结合律 (A ∪B )∪C =A ∪(B ∪C ), (A ∩B )∩C =A ∩(B ∩C );(3) 分配律 (A ∪B )∩C =(A ∩C )∪(B ∩C ), (A ∩B )∪C =(A ∪C )∩(B ∪C)3. 事件概率的定义及其性质、古典概型的概率计算;条件概率 P (B |A ) = P (AB ) / P (A );乘法公式 P (AB ) = P (A )P (B |A ) 或 P (AB ) = P (B )P (A |B )全概率公式 P (B ) = P (A 1)P (B |A 1) + … + P (A n )P (B |A n ) + …n = 2的情形(样本空间被对立事件划分) )|()()|()()(A B P A P A B P A P B P += n = 3的情形 )|()()|()()|()()(332211A B P A P A B P A P A B P A P B P ++=贝叶斯公式(已知事件B 发生后,求其由A i 所引起的概率),...2,1,)|()()|()()()()|(===∑i A B P A P A B P A P B P B A P B A P jj j i i i i事件的独立性 P (AB ) = P (A )P (B );9.有限事件的两两独立与相互独立;伯努利概型及其概率计算;随机变量及其分布与数字特征1. 常用离散型概率分布两点分布(0-1分布) P { X = x 1 } = p , P { X = x 2 } = 1 – p (0 < p < 1) E (X ) = p , D (X ) = p (1 – p )二项分布 X ~ b (n , p ) n k p p C k X P k n k k n ,...,1,0,)1(}{=-==-E (X ) = np , D (X ) = np (1 – p )泊松分布 X ~ P (λ) ,...2,1,0,!}{===-k e k k X P k λλE (X ) = D (X ) = λ2. 二项分布的泊松近似100,10,!)1(><=≈---n np e k p p C kk n k kn λλλ 3. 随机变量的分布函数(1) 定义:F (x ) = P { X ≤ x };(2) 性质:a. 单调非减;b. F (-∞) = 0、F (+∞) = 1;c. 右连续;4. 常用连续型概率分布均匀分布 X ~ U (a , b )密度函数:b x a a b x f <<-=,1)(,分布函数:⎪⎪⎩⎪⎪⎨⎧≥<≤--<=bx b x a ab a x a x x F ,1,,0)( 2)(a b X E -=, 12)()(2a b X D -= 指数分布 X ~ e(λ)密度函数:0,)(>=-x ex f x λλ,分布函数:⎩⎨⎧>-=-其它,00,1)(x e x F x λ λ1)(=X E , 21)(λ=X D正态分布 X ~ N (μ, σ2) μ=)(X E , 2)(σ=X D标准正态分布 X ~ N (0, 1),E (X ) = 0, D (X ) = 1;5. 随机变量函数 Y = f ( X ) 的分布离散型:列出分布律;连续型:(1)用概率的方法求出函数 Y 的分布函数后,再求其密度函数;(2)如果函数 Y = f (X ) 满足严格单调,则可使用公式直接求 Y 的密度函数: 的反函数为其中)()(,|,)(|))(()(x f y y h y y h y h f y f X Y =<<'=βα6. 随机变量函数 Y = f ( X ) 的数学期望离散型:∑==ii i p x g X g E X E )()]([)(连续型:⎰+∞∞-==x x f x g X g E X E d )()()]([)( 7. 方差的计算D (X ) =E [ X – E (X ) ]2 = E (X 2) – [E (X )]28. 数学期望与方差的性质(E (X ), E (Y ), D (X ), D (Y )均存在)E (aX ± bY ) = aE (X ) ± bE (Y ) D (aX ± bY ) = a 2D (X ) + b 2D (Y )9. 中心极限定理定理3 设随机变量 X 1, X 2, …, X n , … 相互独立,服从同一分布,且 E (X i ) = μ, D (X i ) = σ2, ( i = 1, 2, …),则)(lim 1x x n n X P n i i n Φ=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧≤-∑=∞→σμ或),(~2n n N X X n i i σμ ∑= 即n 个随机变量的和的极限分布是正态分布。
《概率论与数理统计》复习资料要点总结

《概率论与数理统计》复习提要第一章随机事件与概率1.事件的关系φφ=Ω-⋃⊂AB A B A AB B A B A 2.运算规则(1)BAAB A B B A =⋃=⋃ (2))()( )()(BC A C AB C B A C B A =⋃⋃=⋃⋃(3)))(()( )()()(C B C A C AB BC AC C B A ⋃⋃=⋃⋃=⋃(4)BA AB B A B A ⋃==⋃ 3.概率)(A P 满足的三条公理及性质:(1)1)(0≤≤A P (2)1)(=ΩP (3)对互不相容的事件n A A A ,,,21 ,有∑===nk kn k kA P A P 11)()( (n 可以取∞)(4)0)(=φP (5))(1)(A P A P -=(6))()()(AB P A P B A P -=-,若B A ⊂,则)()()(A P B P A B P -=-,)()(B P A P ≤(7))()()()(AB P B P A P B A P -+=⋃(8))()()()()()()()(ABC P BC P AC P AB P C P B P A P C B A P +---++=⋃⋃4.古典概型:基本事件有限且等可能5.几何概率6.条件概率(1)定义:若0)(>B P ,则)()()|(B P AB P B A P =(2)乘法公式:)|()()(B A P B P AB P =若n B B B ,,21为完备事件组,0)(>i B P ,则有(3)全概率公式:∑==ni iiB A P B P A P 1)|()()((4)Bayes 公式:∑==ni iik k k B A P B P B A P B P A B P 1)|()()|()()|(7.事件的独立性:B A ,独立)()()(B P A P AB P =⇔(注意独立性的应用)第二章随机变量与概率分布1.离散随机变量:取有限或可列个值,i i p x X P ==)(满足(1)0≥i p ,(2)∑iip=1(3)对任意R D ⊂,∑∈=∈Dx i ii pD X P :)(2.连续随机变量:具有概率密度函数)(x f ,满足(1)1)(,0)(-=≥⎰+∞∞dx x f x f ;(2)⎰=≤≤badx x f b X a P )()(;(3)对任意R a ∈,0)(==a X P 3.几个常用随机变量名称与记号分布列或密度数学期望方差两点分布),1(p B p X P ==)1(,pq X P -===1)0(p pq 二项式分布),(p n B n k q p C k X P kn k k n ,2,1,0,)(===-,npnpqPoisson 分布)(λP,2,1,0,!)(===-k k e k X P kλλλλ几何分布)(p G,2,1 ,)(1===-k p qk X P k p 12p q 均匀分布),(b a U b x a a b x f ≤≤-= ,1)(,2b a +12)(2a b -指数分布)(λE 0,)(≥=-x e x f x λλλ121λ正态分布),(2σμN 222)(21)(σμσπ--=x ex f μ2σ4.分布函数)()(x X P x F ≤=,具有以下性质(1)1)( ,0)(=+∞=-∞F F ;(2)单调非降;(3)右连续;(4))()()(a F b F b X a P -=≤<,特别)(1)(a F a X P -=>;(5)对离散随机变量,∑≤=xx i ii px F :)(;(6)对连续随机变量,⎰∞-=xdt t f x F )()(为连续函数,且在)(x f 连续点上,)()('x f x F =5.正态分布的概率计算以)(x Φ记标准正态分布)1,0(N 的分布函数,则有(1)5.0)0(=Φ;(2))(1)(x x Φ-=-Φ;(3)若),(~2σμN X ,则()(σμ-Φ=x x F ;(4)以αu 记标准正态分布)1,0(N 的上侧α分位数,则)(1)(αααu u X P Φ-==>6.随机变量的函数)(X g Y =(1)离散时,求Y 的值,将相同的概率相加;(2)X 连续,)(x g 在X 的取值范围内严格单调,且有一阶连续导数,则|))((|))(()('11y g y g f y f X Y --=,若不单调,先求分布函数,再求导。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概率论与数理统计期末考试复习要点(工科)
第一章 随机事件与概率
1.掌握概率的性质
2.掌握条件概率与乘法公式
3.利用事件的独立性计算概率
第二章 随机变量及其分布
1.熟记几种常用的随机变量的分布律或概率密度
2.掌握分布函数F(x)与概率密度函数f(x)的关系。
判断是否为分布函数和概率密度函数
3.利用概率密度函数的性质求参数和概率
4.在正态分布N(μ,σ2)下求概率
5.求一维连续型随机变量的函数的概率密度,建立一维随机变量的函数
第三章 多维随机变量及其分布
1.掌握相互独立及其判断
2.利用二维连续型随机变量的概率密度函数的性质求参数和概率
3.利用边缘概率密度求联合概率密度*
4.掌握相互独立的服从正态分布的线性函数仍服从正态分布
5.求Z=X+Y的概率密度,求Z=min{X,Y}和Z=max{X,Y}的分布函数
第四章 随机变量的数字特征
1.熟记常用随机变量的数学期望与方差
2.掌握期望、方差和协方差的性质及公式
3.求期望、方差、协方差和相关系数
4.判断是否不相关
第六章 抽样分布
1.掌握单个正态总体的有关抽样分布
2.掌握χ2分布、t分布
3.计算E(X),D(X)
第七章 参数估计
1.求矩估计值(量)和极大似然估计值(量)
2.求单个正态总体下μ的单侧置信上下限
第八章 假设检验
1.掌握两类错误
2.掌握单个正态总体下均值μ的单边及双边假设检验及其检验方法。