智能化配电网的规划与建设(1)
面向智慧配电网的网格化规划方法及典型网格配置方案研究
面向智慧配电网的网格化规划方法及典型网格配置方案研究智慧配电网是指通过物联网、云计算、传感器等信息技术手段,对传统配电网进行智能化升级改造的一种先进配电系统。
网格化规划是智慧配电网建设的关键环节之一,其目的是通过科学合理的规划设计,实现电力供需的均衡和无功优化,提高供电可靠性和电网稳定性。
1.负荷预测与均衡:通过对历史负荷数据的分析和预测,得到负荷需求的变化趋势,进而合理规划网格的容量和负荷。
同时,采用负荷均衡技术,保证各个网格之间的供电负荷均衡,避免因一些网格负荷过大而导致供电不足。
2.节能优化配置:在网格化规划中,需要结合可再生能源的利用情况和电能质量要求,进行能源优化配置。
通过在合适的位置配置光伏发电、风力发电等可再生能源,以减少传输损耗和环境污染,提高能源利用效率。
3.故障检测与定位:利用智能传感器和监测系统,实现对网格中设备状态的实时监测和故障诊断。
通过智能算法分析,能够快速检测到异常事件和故障,并精确定位故障点,提高故障处理的效率和准确性。
4.无功优化配置:在网格化规划中,需要对无功补偿设备进行合理配置。
通过无功优化技术,调节电压和功率因数,减小系统的无功损耗,提高电能利用率。
典型的网格配置方案有以下几种:1.辐射型网格配置:将网格按照节点分布的特点,形成以变电站为核心,向四周辐射排列的网格形状。
这种配置方式适合于节点分布比较均匀的区域,能够减少输电线路的长度,降低损耗,提高电能传输效率。
2.环状网格配置:将网格按照环状排列的方式进行配置,将变电站连接起来形成一个大的环状网格。
这种配置方式适合于节点分布比较集中的区域,可以减少变电设备的数量和线路的长度,提高供电可靠性和稳定性。
3.中央型网格配置:将网格配置为以一个或多个中央变电站为核心,向四周辐射排布的形状。
这种配置方式适用于供电范围较大的区域,能够提高供电的稳定性和可靠性。
4.联网型网格配置:将多个独立的子网格通过环网方式连接起来,形成一个大规模的网格系统。
电力配网建设四月工作计划
一、前言为满足我国电力需求的快速增长,提高电力供应质量和效率,确保电力系统的安全稳定运行,结合当前电力配网建设的实际情况,特制定本四月工作计划。
二、工作目标1. 完成配电网改造升级工程,提高供电可靠性;2. 加强配电网运维管理,降低线损率;3. 推进配电网智能化建设,提升运维效率;4. 完善配电网规划,优化电网布局。
三、具体工作内容1. 配电网改造升级工程(1)对老旧配电网进行改造,提高供电可靠性;(2)对重点区域进行配电网升级,满足负荷增长需求;(3)加强配电网设备更新,提高设备运行效率。
2. 配电网运维管理(1)加强配电网线路巡检,及时发现并消除安全隐患;(2)加强配电网设备维护,降低设备故障率;(3)开展线损分析,制定降损措施,降低线损率。
3. 配电网智能化建设(1)推进配电自动化系统建设,实现配电网远程监控、故障快速定位和抢修;(2)推广智能运维技术,提高运维效率;(3)开展配电设备智能化改造,提高设备运行稳定性。
4. 配电网规划与优化(1)开展配电网规划,优化电网布局;(2)根据负荷增长需求,调整配电网供电能力;(3)加强配电网与新能源的接入,提高清洁能源消纳比例。
四、工作措施1. 加强组织领导,明确责任分工,确保各项工作有序推进;2. 加强与相关部门的沟通协调,确保项目顺利实施;3. 严格工程质量,确保项目安全、优质、高效完成;4. 加强培训,提高员工业务水平,为电力配网建设提供人才保障。
五、工作进度安排1. 第一周:完成配电网改造升级工程的设计、招标和施工准备;2. 第二周:启动配电网运维管理工作,开展线路巡检和设备维护;3. 第三周:推进配电网智能化建设,开展配电自动化系统建设;4. 第四周:开展配电网规划与优化工作,调整配电网供电能力。
六、总结本四月工作计划旨在全面提升电力配网建设水平,确保电力供应质量和效率。
通过加强组织领导、严格工程质量、推进技术创新,努力实现电力配网建设的各项工作目标。
第八章智能配电网规划.ppt课件
• 4.其它模式
• 真实的县级配电自动化系统可能是以上几 种模式的组合。建设的侧重点、强调的内 容各不相同。
四、馈线自动化模式
• 1.重合器—重合器—分段器馈线自动化模式
• (1) 重合器的性能和特点 • 重合器有电流型和电压型两种。反应故障
电流跳闸后能重合的,称电流型重合器; 检测到线路失压跳闸,来电后延时重合闸 的,称为电压型重合器。
正常动作的故障原因上报到控制系统。用
户选中需要遥控或遥测的断路器,右键单
击弹出菜单,通过选择指定的菜单项即可 进行闭合、切断、获取状态等操作。
2) 线路运行远程遥测
• 用户可以根据管理的实际需要,设置控制器运 行现场电压、电流的采样频率,如图8-15 中(a) 图所示。馈线自动化控制系统根据采样频率的 设置定时向远程控制器发送数据遥测命令,远 程控制器接到遥测命令后将实时的电压、电流 上传到控制器。
支持系统的全面建设,全面提升对于现代配电 网的驾驭能力,确保配网可靠、高效、灵活运 行; • (2)完成配电生产指挥与运维管理的信息化系统 建设,实现各类应用功能之间有机整合以及与 调度、用电等环节的信息互动; • (3)提高配电网对分布式发电、储能与微网的接 纳能力,实现分布式发电/储能与微网的灵活 接入与统一控制。
• 如图8-10中(a)图所示,IRM1、IRM2为电 流——时间型户内重合器,OSM1、OSM2、 OSM3、OSM4、OSM5为电压——时间型户 外重合器,其中OSM3为联络重合器,正常 情况下为分闸状态。重合器的重合间隔均 为两秒。F1、F2为计数次数分别是3次、2次 的跌落式分段器。
• 若故障发生在e区段,如图8-10 (a)图所示,户 内重合器IRM1检测到故障电流延时分闸,户外 重合器OSM1、OSM2检测到线路失压分闸。若 为瞬时性故障,三个重合器依次重合成功后恢 复线路供电。若为永久性故障 IRM1再次分闸, 线路失压,分段器F2由于达到整定的计数次数 跌落分闸,隔离故障e 区段,IRM1重合后按顺 序恢复无故障区段供电。
分析10kV配电网自动化系统的智能化建设
分析10kV配电网自动化系统的智能化建设随着科技的不断发展,电力行业也在不断地进行智能化建设。
10kV配电网自动化系统的智能化建设是电力行业智能化建设的重要一环。
本文将对10kV配电网自动化系统的智能化建设进行分析,深入探讨其意义、现状及未来发展方向。
一、智能化建设的意义1.1 增强配电网的稳定性智能化建设可以通过自动调节、故障检测等功能,提高配电网的稳定性,减少人为因素的干扰,提高供电可靠性。
1.2 提高供电质量智能化建设可以实现对供电质量的实时监测和调节,减少供电中断、电压波动等情况,从而提高供电质量。
1.3 提高配电效率通过智能化建设,可以实现对电网设备的远程监控和控制,减少人工巡检频率,提高配电效率,降低运行成本。
1.4 为未来智能电网的建设奠定基础10kV配电网是智能电网的重要组成部分,智能化建设将为未来智能电网的建设奠定基础,提供有力的支撑。
二、10kV配电网自动化系统的现状2.1 智能化设备的应用目前,随着智能化设备的不断成熟,10kV配电网自动化系统的智能化建设已经取得了一定的进展,如智能终端装置、智能分布式开关等的应用已经比较普遍。
2.2 智能化技术的应用智能化技术包括人工智能、大数据分析、物联网等技术的应用,可以实现对配电网状态的智能监测与分析,为运维提供更多的数据支持。
2.3 智能化管理的应用智能化管理包括远程监控、远程维护等管理方式的应用,可以使得配电网的运维更加便捷、高效。
三、未来发展方向3.1 加强智能化设备的研发与应用未来,应加强对智能化设备的研发,使其更加适应10kV配电网的实际需求,并推动其广泛应用。
3.3 加强智能化管理的推广与应用未来,需要加强智能化管理方式的推广与应用,推动配电公司实现对配电网的远程集中管理,降低运维成本,提高运维效率。
结语:10kV配电网自动化系统的智能化建设,是电力行业智能化建设的重要一环。
智能化建设的意义在于增强配电网的稳定性、提高供电质量、提高配电效率,为未来智能电网的建设奠定基础。
配电网自动化系统建设规划
配电网自动化系统建设规划标题:配电网自动化系统建设规划引言概述:随着社会经济的不断发展和电力需求的增加,配电网的安全性、可靠性和经济性要求也越来越高。
配电网自动化系统的建设成为提高配电网运行效率和质量的重要手段。
本文将从系统规划、设备选型、通信网络、数据管理和安全保障等方面,详细介绍配电网自动化系统的建设规划。
一、系统规划1.1 系统目标:明确配电网自动化系统的建设目标,包括提高供电可靠性、降低供电成本、提高配电网运行效率等。
1.2 系统结构:确定配电网自动化系统的整体结构,包括主站、分站、终端设备等,确保系统各个部份之间的协调运行。
1.3 系统功能:明确配电网自动化系统的功能需求,包括故障检测、故障定位、智能调度等,确保系统能够满足实际运行需求。
二、设备选型2.1 主站设备:选择性能稳定、功能强大的主站设备,确保系统的数据采集、处理和控制功能正常运行。
2.2 分站设备:选择可靠性高、通信速度快的分站设备,确保系统的实时性和准确性。
2.3 终端设备:选择智能化、可靠性强的终端设备,确保系统对配电设备的监测和控制能够及时有效。
三、通信网络3.1 通信协议:选择适合配电网自动化系统的通信协议,确保系统各个部份之间的数据传输稳定可靠。
3.2 通信网络拓扑:设计合理的通信网络拓扑结构,确保系统的通信效率和可靠性。
3.3 通信安全:加强通信网络的安全保障措施,防止系统受到恶意攻击或者数据泄露。
四、数据管理4.1 数据采集:建立完善的数据采集机制,确保系统能够准确获取配电设备的运行数据。
4.2 数据处理:建立高效的数据处理系统,确保系统能够对大量数据进行实时处理和分析。
4.3 数据存储:建立安全可靠的数据存储系统,确保系统的数据能够长期保存和备份。
五、安全保障5.1 系统稳定性:加强系统的稳定性保障措施,确保系统能够长期稳定运行。
5.2 系统可靠性:加强系统的可靠性保障措施,确保系统在发生故障时能够及时恢复。
10kV配电网自动化系统的智能化建设
10kV配电网自动化系统的智能化建设随着社会的不断发展和信息化的进步,电力系统作为现代社会的重要基础设施之一,也在不断进行着自动化和智能化的升级和改造。
10kV配电网自动化系统作为电力系统中的重要组成部分,其智能化建设对于提高电网的安全性、稳定性和可靠性具有重要意义。
本文将从智能化建设的意义、现状和发展趋势以及关键技术等方面进行探讨。
一、智能化建设的意义10kV配电网自动化系统的智能化建设,主要体现在两个方面:一是在智能设备的应用上,通过先进的传感器、监控设备和通信技术,实现对电网设备和运行状态的实时监测、分析和控制;二是在智能决策与管理上,通过数据分析、智能算法和人工智能等技术手段,实现对电网运行的智能化管理和决策。
智能化建设的意义主要表现在以下几个方面:1. 提高电网安全性和可靠性。
智能化建设可以实现对电网运行状态的实时监测和分析,一旦出现故障或异常情况,可以及时做出相应的应对措施,降低故障对电网的影响,保障电网的安全运行。
2. 提高电网的运行效率和经济性。
通过智能化建设,可以实现对电网运行数据的全面分析和优化,使得电网的运行更加高效和经济。
4. 为电网的未来发展奠定基础。
智能化建设是电网未来发展的必然趋势,只有不断提升电网的智能化水平,才能更好地适应未来电能互联网等新技术的发展和应用。
二、现状和发展趋势未来,10kV配电网自动化系统的智能化建设将朝着以下几个方向发展:1. 智能感知技术的应用。
通过传感器技术的进一步发展,实现对电网设备和用电负荷等信息的智能感知,以提高对电网运行状态的实时监测能力。
3. 智能设备的互联互通。
通过智能设备和通信技术的进一步发展,建立起智能设备之间的互联互通,实现对电网的深度监测和控制。
4. 电力物联网的发展。
未来,电力物联网将成为10kV配电网自动化系统的重要组成部分,通过物联网技术,实现对电网设备和工艺的智能化管理和控制。
三、关键技术10kV配电网自动化系统的智能化建设涉及众多技术领域,其中包括智能感知技术、大数据与人工智能技术、智能设备与通信技术以及电力物联网技术等。
10kV配电网自动化系统的智能化建设
10kV配电网自动化系统的智能化建设随着社会的发展和科技的进步,电力系统的智能化建设已经成为必然趋势。
10kV配电网作为电力系统中的重要组成部分,其智能化建设对于提高电网运行效率、降低运行成本、提高供电质量具有重要意义。
下面将从智能化建设的概念、目标、关键技术、应用效果等方面对10kV配电网自动化系统的智能化建设进行探讨。
一、智能化建设的概念智能化建设是指利用先进的信息技术,对电力系统进行深度管理和控制,提高系统的运行效率和供电质量。
通过智能化建设,可以实现对电力系统的实时监测、远程控制、智能分析和预测,从而提高系统的可靠性、智能化水平和经济效益。
二、智能化建设的目标1. 提高运行效率:通过智能化管理和控制,实现电网设备的自动化运行,提高系统的运行效率和响应速度,降低运行成本。
2. 提高供电质量:实时监测电网设备的运行状态,及时发现和排除故障,保障供电质量和可靠性。
3. 降低运行成本:通过智能化管理和控制,提高设备的利用率和能源利用效率,降低运行成本和维护成本。
4. 实现智能分析和预测:通过大数据分析和智能算法,实现对电网设备运行情况的智能分析和预测,提前发现潜在问题并采取措施,避免发生故障。
三、智能化建设的关键技术1. 传感技术:通过传感器和监测装置实时采集电网设备的运行数据,实现对电网设备的实时监测和状态诊断。
2. 通信技术:利用先进的通信技术,实现对电网的远程监控和控制,实现对电网设备的远程管理和运行。
3. 大数据技术:通过大数据技术对电网设备的大量数据进行分析和挖掘,实现对电网设备运行情况的智能分析和预测。
4. 人工智能技术:利用人工智能技术实现对电网设备的智能化管理和控制,提高系统的智能化水平和运行效率。
5. 云计算技术:通过云计算技术实现对电网设备的集中管理和数据存储,提高系统的信息化和智能化水平。
浅谈配电网“网格化”规划与“三型两网”建设
浅谈配电网“网格化”规划与“三型两网”建设随着社会的不断发展和电力需求的增长,配电网的规划和建设变得日益重要。
近年来,随着新一轮电力体制改革的深入推进,我国配电网建设和改造取得了新的进展,引入了“网格化”规划和“三型两网”建设理念,为配电网的发展提供了新的思路和方向。
本文将对配电网“网格化”规划与“三型两网”建设进行浅谈,并探讨其在配电网发展中的作用和意义。
一、配电网“网格化”规划1. “网格化”规划的概念“网格化”规划是指将原有的辐射式供电方式转变为清晰的网格供电方式,在供电网的规划和建设中,以地区、城市或农村等特定区域作为单位,将原有的供电方式进行重新组织和规划,形成更加合理、高效的电力供应体系。
(1)合理布局:根据用电负荷、用户分布等情况,合理确定供电网的线路布局和连接关系,构建供电网的基本结构。
(2)灵活调节:采用先进的技术手段,实现供电网的灵活调节,使得供电能够更加灵活、安全地进行调节和分配。
(3)支持新能源接入:考虑到新能源的不断增长和应用,向“网格化”规划中考虑新能源的接入需求,为新能源提供更好的接入条件。
“网格化”规划的实施,可以更好地满足用户对电力的需求,提高供电可靠性和供电质量,降低配电网的损耗和运行成本,同时也有利于提高配电网的智能化水平,促进电力系统的安全、稳定运行。
这对于推动我国电力体制改革和进一步完善能源结构都具有非常重要的意义。
二、配电网“三型两网”建设1. “三型两网”建设的内涵“三型”包括城市配网、农村配网和特种配网,其中城市配网、农村配网是指城市和农村的配电网建设,特种配网是指一些特殊领域的配电网,如矿山、工厂等。
而“两网”则指交流配电网和直流配电网,这两者将在未来的电力系统中发挥越来越重要的作用。
(1)城市配网的建设可以更好地适应城市化进程的发展需求,提高城市电网的负荷供应能力,同时也有利于促进城市的能源结构调整和节能减排。
(2)农村配网的建设可促进农村电网的智能化和信息化建设,提高乡村电网的供电可靠性和稳定性,推动农村电力供应的改善,提高农村居民生活质量。
智能配电网技术在配电网规划中的应用
智能配电网技术在配电网规划中的应用随着电力行业的不断发展,智能配电网技术在配电网规划中的应用越来越受到关注。
智能配电网技术的出现,为配电网规划提供了新的思路和方法,极大地提高了配电网的安全性、可靠性和效率。
本文将从智能配电网技术的基本概念、在配电网规划中的应用以及未来发展趋势等方面进行阐述。
一、智能配电网技术的基本概念智能配电网技术是基于先进的通信、信息、自动化和控制技术,将传统的配电网升级为智能化的配电系统。
它包括智能电能计量、智能开关设备、智能保护装置、智能监控系统、智能故障诊断与定位系统等多种技术手段的综合应用。
通过建立智能配电网,可以实现对配电系统的全面监测、远程控制、故障自愈和智能化管理,提高配电系统的安全性、可靠性和经济性。
1. 灵活性与可扩展性智能配电网技术可以根据实际需求进行灵活布局和扩展,实现配电系统的动态调整和优化配置。
在配电网规划中,可以根据不同区域的用电负荷情况和发展趋势,合理规划配电设备和线路布置,提高配电网的适应性和可扩展性。
2. 智能化监测与管理智能配电网技术可以实现配电设备的远程监测和智能化管理,及时发现和预防潜在的故障隐患,提高配电系统的安全性和可靠性。
在配电网规划中,可以通过建立智能监控系统和智能化管理平台,实现对配电设备运行状态的实时监测和分析,为规划和运行提供科学依据。
3. 故障快速定位与自愈智能配电网技术可以实现故障快速定位和自动隔离,减少故障对系统运行的影响,提高系统的可靠性和抗干扰能力。
在配电网规划中,可以通过合理配置智能保护装置和故障诊断系统,提高配电系统对故障的快速响应能力和自愈能力,减少故障对用户造成的影响。
4. 高效节能与经济性智能配电网技术可以实现对用电负荷的精细化管理和调度控制,最大限度地提高配电系统的能效和经济性。
在配电网规划中,可以通过智能电能计量和用电负荷预测等手段,合理规划配电系统的负荷分布和调度策略,提高系统的节能效果和经济运行水平。
人工智能在电力系统中的智能配电网规划与建设
人工智能在电力系统中的智能配电网规划与建设随着科技的不断进步和人工智能技术的迅速发展,越来越多的行业开始应用人工智能技术,以提高效率和降低成本。
电力系统作为关系国家发展和人民生活的重要基础设施,也逐渐引入人工智能技术,其中智能配电网规划与建设是一个重要的方向。
本文将从需求分析、规划、建设和运行管理等方面,阐述人工智能在电力系统中智能配电网规划与建设的重要性和应用。
一、需求分析智能配电网规划与建设的第一步是进行需求分析。
通过数据收集和分析,了解配电网的电力负荷、用电特征、用电需求等,根据实际数据来规划配电网的建设和优化,进而实现更加高效、智能的用电管理。
在需求分析中,人工智能技术可以帮助处理和分析海量的数据,通过数据挖掘和模型建立,找出关键的用电特征和需求趋势,为后续的规划和建设提供科学依据。
此外,人工智能还可以辅助进行故障诊断和预测,提前预防和解决潜在问题,以确保电力系统的安全和稳定运行。
二、规划在需求分析的基础上,进行智能配电网的规划工作。
规划包括配电设备的布局、线路的优化以及配电站的选址等。
人工智能技术可以通过算法模型和仿真软件,对不同的规划方案进行评估和优化,以达到最佳的效果。
人工智能在规划过程中的主要应用有两个方面。
一方面,可以根据历史数据和实时数据,对配电设备的负荷和效率进行智能化管理,以达到最佳的供电效果;另一方面,可以通过人工智能技术模拟配电网的运行情况,预测可能出现的故障和问题,从而避免事故的发生,提高电力供应的可靠性和稳定性。
三、建设根据规划方案进行智能配电网的建设工作。
建设包括设备的采购、安装调试以及网络的搭建等。
在建设过程中,人工智能技术可以帮助自动化设备的调试和检测,提高建设的效率和准确度。
同时,通过智能化的环境感知和自适应控制,配电设备可以根据实际情况进行智能化的操作和管理,以提高供电可靠性和能效。
四、运行管理智能配电网的运行管理是一个持续不断的过程。
通过人工智能的技术和算法,可以实现对配电设备和供电负荷等的实时监测和分析,确保电力系统的正常运行。
配电网工程施工策划
配电网工程施工策划一、项目概述配电网是将电能从变电站输送到用户终端的主要干线,是电力系统中非常重要的一部分。
近年来,随着城市化进程的加快和电力需求的增长,配电网建设也面临着更大的压力和挑战。
为了更好地满足社会对电力需求的要求,我公司拟在某市开展一项配电网工程项目,旨在提高电力供应质量和可靠性,提升城市电网的服务水平,促进经济和社会的发展。
项目地点:某市建设内容:升级现有配电网、新建变电站和配电设施项目规模:总投资XXX万元,工程总面积XXX平方米工程周期:XX年二、项目背景1. 市场需求:随着城市化进程的加快和人口增长,电力需求不断增加,传统的配电网已经不能满足城市发展的需求。
2. 环保政策:为了减少污染排放,提高能源利用效率,加强环境保护,政府对电力行业提出了更加严格的环保要求。
3. 技术更新:随着新能源和智能电网技术的迅速发展,传统的配电网已经不能适应未来的发展趋势,需要进行技术升级和改造。
4. 经济发展:电力是现代城市生产和生活的重要支撑,电力供应的质量和可靠性直接影响城市的经济增长和社会稳定。
综上所述,本项目的建设具有重要的现实意义和广阔的市场前景,将为城市电网的稳定运行和未来的发展提供有力支撑。
三、项目目标1. 提高电力供应质量和可靠性:通过升级改造现有配电网,提高电力传输和分配效率,减少停电和故障发生频率,提高用户用电质量和居民生活舒适度。
2. 降低电网运行成本:引进先进的配电技术和智能设备,提高电网运行效率,降低运维成本,实现节能减排和资源利用效率的最大化。
3. 优化城市电网结构:根据城市用电需求的变化和电力市场的发展趋势,调整配电网结构,优化供电网络,提高电力供应的灵活性和适应性。
4. 提升城市电网服务水平:提高供电可靠性和安全性,提升电网运行质量,提高用户满意度和城市形象,为城市经济和社会发展提供可靠的电力支持。
通过以上目标的实现,将推动城市电网的现代化建设和智能化管理,促进电力行业的健康发展,为城市未来的可持续发展打下坚实的基础。
浅谈配电网“网格化”规划与“三型两网”建设
浅谈配电网“网格化”规划与“三型两网”建设【摘要】本文介绍了配电网“网格化”规划与“三型两网”建设的相关内容。
在我们概述了这两个概念的重要性。
接着在我们分别探讨了配电网网格化规划和三型两网建设的具体内容,包括相关案例分析和意义。
在我们对本文进行了总结。
配电网的“网格化”规划是为了提高电网稳定性和安全性,而“三型两网”建设则是为了推动电力系统向高质量、智能化、绿色化发展。
这两个概念的实施不仅带来了挑战,也为电力行业带来了巨大的机遇。
随着技术的不断进步和政策的支持,我相信配电网“网格化”规划与“三型两网”建设会为我国的电力行业发展带来新的活力和动力。
【关键词】配电网、网格化规划、三型两网、案例分析、意义、挑战、机遇、结论1. 引言1.1 引言概述配电网作为城市电力系统的重要组成部分,承担着将电能从电站输送至终端用户的重要功能。
随着城市化进程的加快和能源消费结构的调整,配电网的规划和建设也面临着新的挑战和机遇。
配电网“网格化”规划和“三型两网”建设成为了当前配电行业的热点话题。
配电网“网格化”规划是指在配电网建设和运行中,通过合理划分区域、优化网络结构、提高供电可靠性和灵活性,实现对电力资源的有效配置和利用。
而“三型两网”建设则是指按照电力系统的不同运行要求分为强电网、微电网和互联网,以及配电网和智能电网。
这种多层次、多类型的电力系统结构,有助于提高电网的安全性和经济性,推动能源转型和可持续发展。
本文将通过对配电网“网格化”规划和“三型两网”建设的深入探讨,结合实际案例分析,探讨其在电力系统中的重要意义和作用,同时也对当前面临的挑战和未来的发展机遇进行了分析和展望。
通过本文的研究,希望能够为配电网规划与建设提供一定的借鉴和参考,推动我国配电行业的发展和进步。
2. 正文2.1 配电网网格化规划配电网网格化规划是指根据电力系统的需求和特点,采用现代信息技术和智能设备,将配电网划分为多个网格,实现对电力负荷、故障等情况的监测和管理。
网智能配电网建设与发展浅析
网智能配电网建设与发展浅析网智能配电网建设与发展浅析我国配电网的发展明显滞后于发电、输电,在供电质量方面与国际先进水平也有一定差距。
目前,用户遭受的停电时间,绝大部分是由于配电系统原因造成的。
配电网落后也是造成电能质量恶化的主要因素,电力系统的损耗有近一半产生在配电网,我国配电网的自动化、智能化程度以及自愈和优化运行能力远低于输电网,因此智能配电网的建设已经成为我国电力产业发展的必然趋势。
1、智能配电网主要技术内容及特征1.1 配电网自动化相关概念配电网自动化是利用现代电子、计算机、通信及网络技术,将配电网在线数据和离线数据、配电网数据和用户数据、电网结构和地理图形进行信息集成,构成完整的自动化系统,从而实现配电网及其设备正常运行及事故状态下的监测、保护、控制、用电和配电管理的现代化。
1.1.1配电自动化的实施原则配电自动化是整个电力系统与分散的用户直接相连的部分,电力作为商品的属性也集中体现在配电网这一层上。
配点网自动化应面向用户并适应经济发展水平。
配网自动化系统的规划和设计,应综合考虑经济条件、负荷需求、技术水平,以及投资效益等因素,遵循下面几项原则进行:(1)配网自动化系统设计应在配电网规划的基础上,根据当地的实际供电条件、供电水平、电网结构和客户性质,因地制宜地选择方案及其设备类型。
(2)配网自动化的建设必须首先满足自动化基本功能,在条件具备时可以考虑扩展管理功能。
(3)配网自动化通讯建设应该与调度自动化通讯、集中抄表系统通讯等结合起来,并考虑今后发展智能化的趋势。
(4)主站系统设计原则应遵循各项国家和行业标准,具有安全性、可靠性、实用性、扩展性、开放性、容错性,满足电力系统实时性的要求,具有较高的性能价格比。
1.1.2配网自动化系统的基本构成配网自动化系统是一项系统工程,它大致可分为配网自动化主站系统;配网自动化子站系统;配网自动化终端等。
(1)配网自动化主站系统主站系统由三个子系统组成:配电SCADA 主站系统;配电故障诊断恢复和配网应用软件子系统DAS;配电AM/FM/GIS 应用子系统DMS 构成。
智能化配电网的规划与建设
浅析智能化配电网的规划与建设【摘要】配电自动化的建设与改造应与智能电网的规划实施相适应。
在条件具备时,可选择主站的智能化应用功能和相应的配电终端配置方案。
尤其应注重在自愈控制、分布式电源/储能装置/微电网系统的接入、与智能用电系统互动等方面的应用。
【关键词】智能化;配电自动化;scada;调控一体化1.配电自动化系统概述系统描述:配电自动化系统由主站、终端/子站、通信系统组成;上级调度自动化系统、地理信息系统、故障报修系统、营销管理系统、负荷管理系统、配变采集与监测系统、企业资源管理系统等为外部系统。
配电自动化系统主要实现配电scada、馈线自动化(fa)和电网分析应用等功能。
配电自动化系统借助多种通信手段,实现数据采集、远方控制,通过就地型或集中型馈线自动化,实现故障区段的快速切除与自动恢复供电。
通过信息交换总线,与外部系统进行互连,整合配电信息,外延业务流程,建立完整的配网模型,扩展和丰富配电自动化系统的应用功能,支持配电调度、生产、运行以及用电营销等业务的闭环管理。
可以扩展对于分布式电源/储能/微电网等接入,通过电网分析应用软件实现配电网的自愈控制和经济运行分析,实现与上级电网的协同调度以及与智能用电系统的互动。
2.配电主站配电主站必须满足国家、行业的相关标准和要求。
具备可靠性、可用性、可扩展性和安全性,并可根据各地区配电网架结构、配电自动化应用基础以及供电企业的实际需求,选择和配置软硬件系统。
2.1基本功能配电主站的基本功能包括配电scada和电网分析应用,其中配电scada为必备功能;电网分析应用为选配功能,可根据数据完备情况和实际需求进行选配。
配电主站在保证图形、拓扑来源的唯一性的前提下,具备下列功能:数据采集、状态监视、远方控制、交互操作、智能防误操作、图形显示、事件告警、事件顺序记录、事故追忆、数据统计、报表打印和配电通信网络工况监视等。
电网分析应用软件包括:模型拼接、拓扑分析、故障判断及处理、解合环潮流、负荷转供、状态估计、网络重构、短路电流计算、快速仿真、负荷预测、预警分析、经济优化运行和可视化调度操作等。
浅谈配电网“网格化”规划与“三型两网”建设
浅谈配电网“网格化”规划与“三型两网”建设1. 引言1.1 配电网“网格化”规划的背景意义1. 提高供电可靠性和电能质量。
随着社会经济的发展和电力需求的增加,传统的配电网络已经难以满足对供电可靠性和电能质量的需求。
而采用“网格化”规划可以有效提高配电网的可靠性,降低停电率,保障电能供应的稳定性。
2. 促进清洁能源的大规模接入。
随着清洁能源发展的日益推进,配电网“网格化”规划可以有效整合分布式能源和新能源,提高清洁能源的利用率,实现清洁能源的大规模接入和高效利用。
3. 改善用户体验和服务水平。
配电网“网格化”规划可以提高配电系统的灵活性和智能化程度,实现对用户需求的精准响应,改善用户用电体验,提升电力服务水平。
4. 推动能源互联网的发展。
配电网“网格化”规划是实现能源互联网的基础和重要环节,可以促进能源的高效利用和灵活调控,推动能源互联网的建设和发展。
配电网“网格化”规划具有重要的现实意义和发展前景。
1.2 “三型两网”建设的重要性“三型两网”建设是我国新能源电力和智能电网发展的重要战略,对于提高电力系统的可靠性、经济性和可持续性具有重要意义。
在当前的配电网“网格化”规划中,“三型两网”建设是一个必不可少的环节。
“三型两网”建设可以有效提高电力系统的运行效率和安全性。
通过建设智能电网和微电网,可以实现对电力系统的精细化控制和管理,提高分布式电源的利用效率,降低系统运行成本。
智能电网的建设可以提高系统的故障诊断和处理能力,减少停电次数,提高用户用电的可靠性。
“三型两网”建设可以促进清洁能源的大规模接入和利用。
新能源电力的大规模接入对于提高能源利用效率、减少对传统能源的依赖具有重要意义。
通过建设智能配电网和智能电网,可以实现对清洁能源的有效调度和管理,促进清洁能源在电力系统中的比例逐步增加。
2. 正文2.1 配电网“网格化”规划的基本原则1. 网格化布局原则。
配电网“网格化”规划应遵循合理布局原则,充分考虑城市规划、用电负荷分布、电源供应等因素,合理划分网格,确保电力供应可靠。
城市高可靠性示范区智能配电网规划与建设研究
匿l l | 黧
¨
高可靠性、 智能化 两方 面简述 了城市智能配 电网规划建设的 目标定位 , 介 绍了近年来智能配电网规划的发展现状与关键 问题 , 展望 了智能配电网在我
国电 网 建设 中 的应 用前 景 , 为 我 国配 电 网的 发展 与 建设 提 供 相 关建 议 。
【 关键词】 智能配电网; 分布式发电; 智 慧城 市; 规划与建设
仓
城市高可靠性 示范 区智能配 电网规 划与建设研究
张ቤተ መጻሕፍቲ ባይዱ峰 张建华
1 0 2 2 0 6 ) ( 华北 电力大学 电气与电子工程学 院, 北京
【 摘 要】 城市高可靠性智能配电网为城 市智能 电网中的关键 环节, 也是智 慧城市建设 的重要组成部分。本文针 对配 电网发展 现状进行分析 , 从
2 智 能配 电 网建设 的 目标 定位
城市高可靠性示范区智能配电网作为
3 智能 配 电网规划 的关键 问题
配 电网直接 面向用户 , 构成复杂 、 电压 对象 和扩展功能 , 延 伸到线路上 的分段 和
智能 电网的重要 组成部分 , 其主要特 征是 等级 多样 、 设备 建设 投资 巨大 , 其供 电可 分支开关 , 通信 网扩展到 台变 , 实现双环 自
体化整合 , 提高 电网资产利用率n 。智能配 虑区域 发展定位 和资源 、 环境约束 、 考虑抗 分布式能源控制 、 配 网高级分析等功能 , 达
电 网规 划与 建设 应从 配 电 网现状 分析 出 灾 变能力 、 考 虑灵活互动 的配 电网 自动化 到智能调控一体化要求。 发, 优化 网络结 构 , 提高设备选用和 自动化 技 术 、 考虑分布式能源友好接入等 , 研究智 应用水 平 , 降低 网络损 耗 , 提高供 电能力 , 能配 电网规划 的模式 与方法 , 开发 综合支 3 . 3 清洁分布式能源接人技术 接纳清 洁分布式 电源 、 储能 系统灵 活 接人是智能电网的重要 特征 之一 。研 究分 布式能源接入及微电网技术 在配电网中的
电力系统中的智能配电网设计与优化
电力系统中的智能配电网设计与优化随着电力需求的不断增加和能源供应方式的多样化,电力系统的稳定性和可靠性成为当代社会能源安全的重要保障。
在这个背景下,智能配电网的设计与优化成为电力系统领域的关键议题之一。
本文将就智能配电网的设计与优化进行探讨,以期为更好地解决电力系统的供需矛盾提供理论和技术支持。
一、智能配电网的概述智能配电网是指在电力系统中,利用先进的传感器、计算机、通信和控制技术,实现对电力网络进行可靠、高效、智能地监测、控制和管理的系统。
智能配电网的设计与优化旨在提高电力系统的供能可靠性、降低供电成本、提高供电质量和实现能源可持续发展。
二、智能配电网的设计要点1. 多源供电设计:智能配电网应考虑多种能源供应方式,包括传统的火电、水电、核电以及新能源如风电、太阳能等。
同时,应充分利用区域内的可再生资源,实现多种能源之间的平稳切换和互补,提高能源利用效率。
2. 高效配电网研究:通过合理布局和高效调度,实现电力的可靠供应和负荷的合理分配,避免网络过载和电压不稳定等问题。
同时,利用智能感知设备对电力网络进行实时监测,提前预警并解决潜在问题,有效降低故障发生的概率。
3. 充电设施规划:智能配电网的设计应充分考虑充电设施的规划,为电动汽车等新能源交通工具提供便捷的充电设施。
定期检查和维护充电设施,确保充电过程安全可靠,并进一步提高智能配电网的可持续性。
4. 能源管理系统建设:智能配电网的设计与优化需要建设完善的能源管理系统。
通过科学的数据采集和分析,实现对能源消耗的精确监测和计量,以及对供需匹配的精细化调度和控制。
在此基础上,可以优化能源的分配方案,提高能源利用效率和经济效益。
三、智能配电网的优化问题1. 供电系统的灵活性:智能配电网的优化需要考虑供电系统的灵活性问题。
通过引入可调度的负荷、能量存储装置和可再生能源等,实现电力系统的灵活调度和优化配置,以适应电力供需的变化和波动。
2. 数据管理与分析:智能配电网的优化很大程度上依赖于对大规模数据的更好地管理和分析。
配电自动化系统中通信网络的规划与组建
配电自动化系统中通信网络的规划与组建一、本文概述随着电力行业的持续发展和智能化转型的深入,配电自动化系统作为智能电网的重要组成部分,对于提升电网运行效率、保障能源供应安全、实现节能减排等方面具有举足轻重的地位。
在配电自动化系统中,通信网络是实现系统各功能单元之间信息传递和控制的关键,其规划与组建的合理性直接影响到系统的运行效果。
对配电自动化系统中通信网络的规划与组建进行深入研究,对于推动配电自动化技术的发展和应用具有重要意义。
本文旨在探讨配电自动化系统中通信网络的规划与组建问题。
概述配电自动化系统的基本架构和功能需求,分析通信网络在其中的作用详细讨论通信网络的规划原则、关键技术及组网方案,包括网络拓扑结构、传输技术选择、设备配置等方面结合具体案例,分析通信网络规划与组建的实践经验,为配电自动化系统中通信网络的优化升级提供参考和借鉴。
通过本文的研究,期望能够为配电自动化系统中通信网络的规划与组建提供理论支持和实践指导,推动配电自动化技术的进一步发展,为电力系统的智能化升级贡献力量。
二、配电自动化系统中通信网络的基础知识配电自动化系统中的通信网络是实现系统智能化、自动化的关键所在。
它负责在系统各组成部分之间传递信息,确保数据实时、准确、可靠地流动。
理解通信网络的基础知识对于规划和组建配电自动化系统至关重要。
通信协议与标准:配电自动化系统中的通信网络必须遵循一定的通信协议和标准,以确保各设备之间能够正确、高效地进行信息交换。
这些协议和标准包括但不限于IEC 61DLT 860等,它们规定了数据格式、传输方式、设备接口等方面的要求。
通信方式:配电自动化系统中的通信网络可以采用多种通信方式,如有线通信、无线通信、光纤通信等。
每种通信方式都有其优缺点,需要根据实际需求和条件进行选择。
例如,有线通信稳定可靠,但布线复杂无线通信灵活方便,但可能受到环境干扰。
网络拓扑结构:网络拓扑结构决定了通信网络中各设备之间的连接方式和逻辑关系。
配电网优化规划
配电网优化规划标题:配电网优化规划引言概述:配电网是电力系统中的一个重要组成部份,其优化规划对于提高电网的运行效率、降低能源损耗具有重要意义。
本文将从配电网优化规划的角度出发,探讨如何通过合理的规划和优化措施来提升配电网的运行效率和稳定性。
一、负荷预测与管理1.1 利用历史数据和趋势分析进行负荷预测,以便合理安排配电网的供电方案。
1.2 通过智能计量系统实时监测负荷变化,及时调整配电设备运行状态,保障供电质量。
1.3 引入智能电能管理系统,实现对用户用电行为的智能监测和管理,优化负荷分布。
二、设备升级与优化2.1 对配电设备进行定期检修和维护,确保设备运行稳定可靠。
2.2 采用先进的设备监控技术,实现对设备运行状态的实时监测和远程控制。
2.3 优化配电设备布局,提高设备利用率,减少能源损耗。
三、智能化配电网建设3.1 引入智能感知技术,实现对配电网的实时监测和数据采集。
3.2 搭建智能分布式能源管理系统,实现对分布式能源的有效管理和利用。
3.3 推广智能配电设备,实现对设备的远程监控和智能控制。
四、电能质量提升4.1 加强对电能质量的监测和分析,及时发现并解决电能质量问题。
4.2 优化电能质量调节装置,提高电能质量调节的精度和效率。
4.3 完善电能质量管理制度,建立健全的电能质量监测和管理体系。
五、应急预案与故障处理5.1 制定配电网应急预案,明确各种故障情况下的处理流程和责任分工。
5.2 定期进行配电网故障演练,提高应急处理的效率和水平。
5.3 引入智能故障诊断技术,提高故障诊断的准确性和速度,缩短故障处理时间。
结论:配电网优化规划是提高电力系统运行效率和稳定性的关键,通过负荷预测与管理、设备升级与优化、智能化配电网建设、电能质量提升以及应急预案与故障处理等方面的措施,可以有效提升配电网的运行质量,实现能源的高效利用和可持续发展。
希翼本文的内容能够为配电网优化规划提供一定的参考和借鉴。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
试论智能化配电网的规划与建设
【摘要】配电自动化的建设与改造应与智能电网的规划实施相适应。
在条件具备时,可选择主站的智能化应用功能和相应的配电终端配置方案。
尤其应注重在自愈控制、分布式电源/储能装置/微电网系统的接入、与智能用电系统互动等方面的应用。
【关键词】智能化;配电自动化;scada;调控一体化
1.配电自动化系统概述
系统描述:配电自动化系统由主站、终端/子站、通信系统组成;上级调度自动化系统、地理信息系统、故障报修系统、营销管理系统、负荷管理系统、配变采集与监测系统、企业资源管理系统等为外部系统。
配电自动化系统主要实现配电scada、馈线自动化(fa)和电网分析应用等功能。
配电自动化系统借助多种通信手段,实现数据采集、远方控制,通过就地型或集中型馈线自动化,实现故障区段的快速切除与自动恢复供电。
通过信息交换总线,与外部系统进行互连,整合配电信息,外延业务流程,建立完整的配网模型,扩展和丰富配电自动化系统的应用功能,支持配电调度、生产、运行以及用电营销等业务的闭环管理。
可以扩展对于分布式电源/储能/微电网等接入,通过电网分析应用软件实现配电网的自愈控制和经济运行分析,实现与上级电网的协同调度以及与智能用电系统的互动。
2.配电主站
配电主站必须满足国家、行业的相关标准和要求。
具备可靠性、
可用性、可扩展性和安全性,并可根据各地区配电网架结构、配电自动化应用基础以及供电企业的实际需求,选择和配置软硬件系统。
2.1基本功能
配电主站的基本功能包括配电scada和电网分析应用,其中配电scada为必备功能;电网分析应用为选配功能,可根据数据完备情况和实际需求进行选配。
配电主站在保证图形、拓扑来源的唯一性的前提下,具备下列功能:数据采集、状态监视、远方控制、交互操作、智能防误操作、图形显示、事件告警、事件顺序记录、事故追忆、数据统计、报表打印和配电通信网络工况监视等。
电网分析应用软件包括:模型拼接、拓扑分析、故障判断及处理、解合环潮流、负荷转供、状态估计、网络重构、短路电流计算、快速仿真、负荷预测、预警分析、经济优化运行和可视化调度操作等。
2.2扩展功能
配电主站通过与其它应用系统的相关信息交换和业务流程交互
而实现的扩展功能,包括:模型/图形信息交互、停电管理、保电管理、双电源管理、计划检修作业、供电可靠性统计、事故紧急处理和一次设备状态监测等。
2.3与其它系统的互连
配电主站与其它系统之间的互连,应采用基于iec61968标准的信息交换总线来实现,若有综合数据平台,可作为基于数据库方式
的应用系统接入信息交换总线。
数据的唯一性要求:配电主站应充分利用其它系统中已有的数据,通过信息交换总线整合“信息孤岛”,实现数据的共享,保证数据的唯一性。
数据的完备性要求:配电主站根据应用的需要,制定相应的规则和约束,通过信息交换总线对输入/输出信息进行转换、映射、校验、过滤等,保证数据的完备性。
接口的单一性要求:配电主站采用单一的接口通过信息交换总线从其它系统获得相关服务或对其它系统提供服务。
2.4智能化功能
智能化功能包括:分布式电源/储能装置/微电网接入和监控、配电网自愈控制、输/配电网的协同调度、多能源互补的智能能量管理以及与智能用电系统的互动等。
3.终端/子站
3.1配电终端
配电终端主要指用于开关站、配电室、环网柜、箱式变电站、柱上开关、配电变压器、线路等配电设备的监测和控制装置。
配电终端应采用模块化设计,具备较高的稳定性、可靠性、可扩展性及维护的方便性。
配电终端的配置应满足《城市配电网技术导则》的要求,配电终端的功能应能适应不同可靠性、不同接线方式的一次网架。
故障隔离和恢复供电方案应充分考虑不同于一次设备的特点。
3.2配电子站
配电子站放置在变电站或开关站中,负责该站供电区域内的配电终端的数据集中与转发。
按功能需求分为通信汇集型子站和监控功能型子站。
配电子站功能应满足《配电自动化系统功能规范》的相关要求。
3.2.1通信汇集型子站基本功能
⑴终端数据的汇集与转发。
⑵远程通信功能。
⑶终端通信故障检测与上报。
⑷远程维护和自诊断能力。
3.2.2监控功能型子站基本功能
⑴应具备通信汇集型子站的基本功能。
⑵在所控制的配电线路范围内发生故障时,子站应具备自动故障区域判断、隔离及恢复非故障区供电的能力,并将处理情况上传给配电主站。
⑶信息存贮功能。
⑷人机交互功能。
4.通信系统
配电通信网的建设应综合考虑配电自动化、计量、用户用电信息采集等系统的多种需求,统一规划设计,提高基础设施利用率。
根据配电自动化系统的不同实现模式,合理设计、建设配电自动化通信网络。
配电主站与配电子站之间的通信网络为骨干层,配电主站、子站至配电终端的通信网络为接入层。
配电通信网应采用多种通信方式相结合的原则组建,对于需要实现馈线自动化的区域宜采用光纤专网通信方式;对于实时性、可靠性要求较高的具备遥控功能的配电终端,优先采用专网通信方式,采用公网通信方式时必须符合相关安全防护规定要求。
光纤专网通信方式可应用到所有类型的配电自动化系统,宜选择以太网无源光网络、工业以太网等光纤以太网技术。
配电线载波通信技术是光纤专网通信方式的补充,配电线载波通信系统使用频率、发送功率和组网方式等应符合dl/t790相关规定。
选用适合配电自动化业务的无线专网技术,应充分验证技术的成熟性、标准性、开放性和安全性。
无线公网通信方式以gprs/cdma/3g通信方式为主,可用于不需要遥控功能的配电自动化终端通信需求,应用时应符合电监会《电力二次系统安全防护规定》相关要求。
5.信息交换总线
5.1总体描述
信息交换总线应遵循iec61968/61970标准,以松耦合方式实现主站和其它系统之间的信息交换。
支持标准的发电、输电、配电、用电统一融合的全cim模型和iec61968消息交换模型,并可采用适配器将非标准私有协议转换成标准协议,实现符合面向服务架构(soa)的数据集成。
5.2功能要求
具备61970模型/61968模型/扩展模型的动态集合管理功能。
具备61968消息模型管理功能,包括消息定义、消息规则定义、消息
版本定义等。
具备61968适配器接入、适配器管理及监视功能等功能。
遵循电监会二次安全防护规定,支持安全ⅰ/ⅲ区的信息交换。
支持任务流程化和业务流程化的服务(数据)共享。
支持消息的路由、转换、映射、校验、过滤等功能。
实现应用系统和交换总线之间的单一性接口。
6.结束语
智能化配电网研究适应国网公司精益化管理需要,满足实施配网调控一体化管理对技术支持体系的需求。
按照“统一平台、统一标准、统一设计、统一开发”的原则,统一配网调控一体化技术支持系统功能标准进行设计,确保配网生产运行的安全可靠和经济高效。
【参考文献】
[1]王成山,肖朝霞,王守相.微网综合控制与分析[j].电力系统自动化,2008,(07).
[2]王成山,王守相.分布式发电供能系统若干问题研究[j].电力系统自动化,2008,(20).。