正态分布 教案 ()

合集下载

高中数学教案-正态分布2

高中数学教案-正态分布2

高中数学教案精选-正态分布教学目标:1. 理解正态分布的概念及其特点;2. 学会计算正态分布的概率密度函数;3. 掌握正态分布的性质,并能应用到实际问题中。

教学内容:第一章:正态分布的概念1.1 引入正态分布的概念1.2 了解正态分布的图形特征第二章:正态分布的性质2.1 掌握正态分布的概率密度函数2.2 理解正态分布的期望和方差第三章:正态分布的计算3.1 学会计算正态分布的概率密度值3.2 掌握正态分布的累积分布函数第四章:正态分布的应用4.1 了解正态分布在实际问题中的应用场景4.2 学会利用正态分布解决实际问题第五章:正态分布的进一步研究5.1 了解正态分布的变形5.2 学会处理正态分布的极端值问题教学过程:第一章:正态分布的概念1.1 引入正态分布的概念通过举例引入正态分布,如学生的身高、考试的成绩等。

1.2 了解正态分布的图形特征引导学生观察正态分布的图形,理解其对称性、渐进线等特征。

第二章:正态分布的性质2.1 掌握正态分布的概率密度函数通过讲解和示例,让学生理解正态分布的概率密度函数的定义和性质。

2.2 理解正态分布的期望和方差解释正态分布的期望和方差的含义,并学会计算。

第三章:正态分布的计算3.1 学会计算正态分布的概率密度值通过练习,让学生掌握如何计算正态分布的概率密度值。

3.2 掌握正态分布的累积分布函数解释正态分布的累积分布函数的定义,并学会计算。

第四章:正态分布的应用4.1 了解正态分布的实际应用场景通过实例,让学生了解正态分布在实际问题中的应用场景。

4.2 学会利用正态分布解决实际问题通过练习,让学生学会如何利用正态分布解决实际问题。

第五章:正态分布的进一步研究5.1 了解正态分布的变形解释正态分布的变形,如对数正态分布、正偏态分布等。

5.2 学会处理正态分布的极端值问题讲解如何处理正态分布的极端值问题,如大数和小数的处理方法。

教学评价:通过课堂讲解、练习和实际应用,评价学生对正态分布的理解和应用能力。

《2.6 正态分布》教案

《2.6 正态分布》教案

《2.6 正态分布》教案教学目标:1. 知识目标:理解并掌握(标准)正态分布和正态曲线的概念、意义及性质,并能简单应用。2. 能力目标:能用正态分布、正态曲线研究有关随机变量分布的规律,引导学生通过观察并探究规律,提高分析问题,解决问题的能力;培养学生数形结合,函数与方程等数学思想方法。3. 情感目标:通过教学中一系列的探究过程使学生体验发现的快乐,形成积极的情感,培养学生的进取意识和科学精神。教学重点:正态分布的概念、正态曲线的性质和标准正态分布的一些简单计算。教学难点:正态分布的意义和性质。教学过程:【一】导入新课1、问题引入:在2007年的高考中,某省全体考生的高考平均成绩是490分,标准差是80,计划本科录取率为0.4 ,则本科录取分数线可能划在多少分?2、回顾样本的频率分布与总体分布之间的关系.前面我们研究了离散新随机变量,他们只取有限个或可列个值,我们用分布列来描述总体的统计规律;而许多随机现象中出现的一些变量,如上节课研究的某产品的尺寸,它的取值是可以充满整个区间或者区域的,总体分布通常不易知道,我们是用什么去估计总体分布的呢?----用样本的频率分布(即频率分布直方图)去估计总体分布.回头看上一节得出的100个产品尺寸的频率分布直方图,发现:横坐标是产品的尺寸;纵坐标是频率与组距的比值,什么才是在各组取值的频率呢?---直方图的面积。设想:当样本容量无限增大,分组的组距无限的缩小时,这个频率直方图无限接近于一条光滑的曲线-----总体密度曲线。它能够很好的反映了总体在各个范围内取值的概率。由概率的性质可以知道(1)整条曲线与x轴所夹的总面积应该是?---1(2)总体在任何一个区间内取值的概率等于这个范围内面积下面,同学们一起观察一下总体密度曲线的形状,看它具有什么特征?“中间高,两头低,左右对称”的特征。像具有这种特征的总体密度曲线一般就是或者近似的是以下函数的图像。(板书函数、标题):【二】正态分布(1)正态总体的函数解析式、正态分布与正态曲线产品尺寸的总体密度曲线具有“中间高,两头低”的特征,像这种类型的总体密度曲线,一般就是或近似地是以下一个函数的图象:(板书)),(x ,e 21)x (f 222)x (+∞-∞∈σπ=σμ--①这个总体是具有无限容量的抽象总体,其分布叫做正态分布,其图像叫做正态曲线。 在函数解析式中有两个参数μ、σ:μ表示总体的平均数;σ(σ>0)表示总体的标准差,下面我们来研究一下这两个参数在图像上有怎样的影响呢?1、μ表示总体的平均数(它不就是前面学习的随机变量的?---期望,而期望是反映总体分布的?---平均水平),(回头看频率分布直方图)大家思考一下,这个总体分布的平均数在什么位置呢?最高点那个位置,为什么呢?因为规定的尺寸为25.40mm,总体在它的左右取值的概率最大,尺寸过大或过小毕竟占少数,所以图像才会呈现“中间高,两头低”的特征。下面大家看一下flash (改变μ的值,肯定学生的回答,得出1、2、3条性质)用《几何画板》画出三条正态曲线:即①μ=-1,σ=0.5;②μ=0,σ=1;③μ=1,σ=2,其图象如下图所示:得出正态曲线的前四条性质: ①曲线在x 轴的上方,与x 轴不相交。②曲线关于直线x=μ对称,且在x=μ时位于最高点。③当x<μ时,曲线上升;当x>μ时,曲线下降。并且当曲线向左、右两边无限延伸时,以x 轴为渐近线,向它无限靠近。以上便是参数μ对正态曲线的影响2、下面我们再分析若 μ是定值,即对称轴一定,σ决定着曲线的什么?σ(σ>0)是总体的标准差(总体标准差是衡量总体波动大小的特征数,反映了总体分布的集中与离散程度)(再用《几何画板》改变的σ值,让学生总结规律,得出正态曲线的第五条性质)σ越小,曲线越“瘦高”,表示总体的分布越集中,那集中在什么位置?----平均数μ附近,同理: 若σ越大,曲线越“矮胖”,表示总体的分布越分散,越远离平均数;④当μ一定时,曲线的形状由改变μ的值确定。σ越大,曲线越“矮胖”,表示总体的分布越分散;σ越小,曲线越“瘦高”,表示总体的分布越集中。结论:正态分布由μ、σ唯一确定,因此记为:N(μ,σ2)(利用图像、性质解题)【例1】 (2007全国2理14)在某项测量中,测量结果ξ服从正态分布N(1,σ2)(σ>0),若ξ在(0,1)内取值的概率为0.4,则ξ在(0,2)内取值的概率为 。解.在某项测量中,测量结果ξ服从正态分布N(1,σ2)(σ>0),正态分布图象的对称轴为x=1,ξ在(0,1)内取值的概率为0.4,可知,随机变量ξ在(1,2)内取值的概率于ξ在(0,1)内取值的概率相同,也为0.4,这样随机变量ξ在(0,2)内取值的概率为0.8。(5)当μ=0,σ=1时,相应的函数解析式大大的简化了:R x ,e 21)x (f 2x 2∈π=-。其图像也简单了,关于y 轴对称,我们把这样的正态总体称为标准正态总体,相应的曲线称为标准正态曲线由于标准正态总体N(0,1)在正态总体研究中有非常重要的作用,人们专门制定了《标准正态分布表》以供查用(P —65)(在课件上,调出标准正态分布表,教学生查阅)1、在这个表中,相应于 x 0 的值Φ(x 0)是指总体取值小于x 0 的概率 即Φ(x 0)=p(x<x 0))(0x x P ≤=。(如图)2、利用标准正态曲线的对称性说明等式Φ(x 0)=1-Φ(-x 0)3、 标准正态总体在任一区间(x 1,x 2)内取值概率p )(21x x x <<=Φ(x 0)-Φ(x 1)的几何意义。【例2】 求标准正态总体在(-1,2)内取值的概率。 解:利用等式p=Φ(x 0)-Φ(x 1)有p=Φ(2)-Φ(-1)= Φ(2)-[1-Φ(1)] 【三】 课堂练习1(2007湖南卷)设随机变量ξ服从标准正态分布(01)N ,,已知( 1.96)0.025Φ-=, 则(|| 1.96)P ξ<=( C ) A.0.025B.0.050C.0.950D.0.975【分析】ξ服从标准正态分布(01)N ,,(|| 1.96)( 1.96 1.96)P P ξξ⇒<=-<<= (1.96)( 1.96)12( 1.96)120.0250.950.ΦΦΦ--=--=-⨯=【五】新的问题,激发兴趣我们通过标准正态曲线的对称性以及标准正态分布表,可以求出标准正态总体N(0,1)在任一区间(x 1,x 2)内取值的概率P )(21x x x <<=Φ(x 0)-Φ(x 1)我们知道任何一对不同的μ,σ就有一个不同的正态总体,对于一般的正态总体N(μ,σ2),在任一区间(a,b)内的取值概率如何进行计算呢?可否也通过查标准正态分布表来求出它呢?-回答是肯定的,否则制定了标准正态分布表就失去了它的意义。 2.正态总体N(μ,σ2)在任一区间取值的概率计算(点拨思路,计算应用)。一般的正态总体N(μ,σ2)均可以化成标准正态总体N(0,1)进行研究.可以证明,对任一正态总体N(μ,σ2),取值小于x 的概率F(0x )=P(x<0x )转化公式为: ⎪⎪⎭⎫⎝⎛-Φ=σμ00)(x x F向学生指出,等式⎪⎭⎫⎝⎛σμ-Φ=x )x (F 的严格证明要用到积分变换的知识,它有待在今后的学习中解决。最后,可向学生展示公式⎪⎭⎫⎝⎛σμ-Φ=x )x (F 的应用。 【例3】 已知正态总体N(1,4),.求F(|x|<3)。 (4)学习正态分布有什么意义? 服从正态分布的总体特征一般地,当一随机变量是大量微小的独立随机因素共同作用的结果,而每一种因素都不能起到压倒其他因素的作用时,这个随机变量就被认为服从正态分布.像产品尺寸这一类典型总体,它的特征是:生产条件正常稳定,即工艺、设备、技术、操作、原料、环境等可以控制的条件都相对稳定,而且不存在产生系统误差的明显因素.所以它服从正态分布下面,大家一起来找找实际生活中那些现象都服从或近似服从正态分布?生产中,在正常生产条件下各种产品的质量指标、测量的误差(如电子管的使用寿命、零件的尺寸等)在生物学中,同一群体的某种特征(如08年广西区高考考生体检的身高、体重、肺活量),在一定条件下生长某农作物的产量等,在气象中,梧州今年五月份的平均气温、平均降雨量等,两江的水位等 在生活中,某一时间段的车流量、人流量,同学的考试成绩,喝的饮料等 总之:正态分布广泛存在于各个领域当中,在概率和统计中都占有重要地位 【五】课堂小结1.本节课我们主要学习了正态分布的若干性质,服从正态分布的总体的特征,如何使用《标准正态分布表》,要求同学们能知道正态曲线的大致形状以及从图象上直观得到正态分布的性质,并能利用《标准正态分布表》及相关等式进行计算。2.本节课介绍了如何利用标准正态分布表计算一般正态分布在任一区间取值的概率的方法。这种方法体现了化归的思想方法。对公式⎪⎭⎫⎝⎛σμ-Φ=x )x (F ,应在理解的基础上加以运用 【三】 课堂练习1、设随即变量ξ服从正态分布)4,2(N , 求)42(<<ξP 。(参考数据:;8413.0)1(=φ 9772.0)2(=φ,6915.0)5.0(=φ )2、 在2007年的高考中,某省全体考生的考试成绩服从正态分布N(490,80)2,若该省计划本科录取率为0.4 ,则本科录取分数线可能划在多少分? (参考数据:6.0)25.0(=φ)A.500分B.505分C.510分D.515分【六】布置作业:1、(2007浙江卷5)已知随机变量ξ服从正态分布2(2)N σ,,(4)0.84P ξ=≤,则(0)P ξ=≤( A )A.0.16B.0.32C.0.68D,0.842.(2006年湖北卷)在某校举行的数学竞赛中,全体参赛学生的竞赛成绩近似服从正态分布()100,70N .已知成绩在90分以上(含90分)的学生有12名.(Ⅰ)试问此次参赛的学生总数约为多少人?(Ⅱ)若该校计划奖励竞赛成绩排在前50名的学生,试问设奖的分数线约为多少分? 可供查阅的(部分)标准正态分布表()()00x x P x <=φ率统计知识解决实际问题的能力。解:(Ⅰ)设参赛学生的分数为ξ,因为ξ~N(70,100),由条件知, P(ξ≥90)=1-P(ξ<90)=1-F(90)=1-Φ)107090(-=1-Φ(2)=1-0.9772=0.228. 这说明成绩在90分以上(含90分)的学生人数约占全体参赛人数的2.28%,因此, 参赛总人数约为0228.012≈526(人)。(Ⅱ)假定设奖的分数线为x 分,则 P(ξ≥x)=1-P(ξ<x)=1-F(x)=1-Φ)1070(-x =52650=0.0951, 即Φ)1070(-x =0.9049,查表得1070-x ≈1.31,解得x=83.1. 故设奖得分数线约为83.1分。。

正态分布示范教案

正态分布示范教案

正态分布示范教案第一章:正态分布的定义与特征1.1 引入:通过现实生活中的例子(如考试分数、人的身高等)引导学生了解正态分布的概念。

1.2 讲解正态分布的定义:一个连续型随机变量X服从正态分布,如果其概率密度函数为f(x) = (1/σ√(2π)) e^(-(x-μ)^2/(2σ^2)),其中μ是分布的均值,σ是分布的标准差。

1.3 分析正态分布的特征:均值、标准差、对称性、拖尾现象等。

1.4 练习:让学生通过图表或计算器观察正态分布的特性。

第二章:正态分布的参数估计2.1 引入:讲解参数估计的概念,以及正态分布参数估计的重要性。

2.2 讲解均值和标准差的点估计:利用样本均值和样本标准差来估计总体均值和总体标准差。

2.3 讲解置信区间:以样本均值为例,讲解如何计算置信区间,并解释其含义。

2.4 练习:让学生运用给出的数据,计算正态分布的均值和标准差的点估计,以及置信区间。

第三章:正态分布的假设检验3.1 引入:讲解假设检验的概念,以及正态分布假设检验的应用。

3.2 讲解单样本Z检验:通过给出样本数据,引导学生了解如何进行正态分布的单样本Z检验。

3.3 讲解两样本Z检验:通过给出两个样本数据,引导学生了解如何进行正态分布的两样本Z检验。

3.4 练习:让学生运用给出的数据,进行正态分布的假设检验。

第四章:正态分布的应用4.1 引入:讲解正态分布在日常生活中的应用,如质量控制、医学等领域。

4.2 讲解正态分布的应用案例:如某产品的质量控制,如何利用正态分布进行控制限的确定。

4.3 讲解正态分布在其他领域的应用:如医学中正常值的判断、心理测量等。

4.4 练习:让学生通过实例,运用正态分布解决实际问题。

第五章:总结与拓展5.1 总结:回顾本章所讲内容,让学生掌握正态分布的定义、特征、参数估计和假设检验。

5.2 拓展:讲解其他连续型分布,如t分布、卡方分布等,以及它们与正态分布的关系。

5.3 练习:让学生运用所学的知识,解决更复杂的实际问题。

正态分布高中数学教案

正态分布高中数学教案

正态分布高中数学教案
教学目标:
1. 了解正态分布的基本概念和性质;
2. 能够利用正态分布解决实际问题;
3. 训练学生的数理逻辑思维和解决问题的能力。

教学内容:
1. 正态分布的定义和特征;
2. 正态分布的标准化;
3. 正态分布在概率计算中的应用。

教学步骤:
1. 导入:通过一个例子引导学生了解正态分布的概念和特点;
2. 探究:讲解正态分布的定义和性质,帮助学生理解正态分布的特点;
3. 练习:让学生进行练习,例如计算正态分布的概率值;
4. 拓展:引导学生思考正态分布在实际问题中的应用;
5. 总结:对本节课的内容进行总结,并布置作业。

教学资源:
1. 教科书相关章节;
2. 教学投影仪;
3. 练习题和作业题。

教学评估:
1. 学生课堂表现;
2. 课后作业完成情况;
3. 学生对正态分布应用的理解和运用能力。

教学反思:
1. 是否能够引导学生正确理解和运用正态分布概念;
2. 是否能够激发学生探索正态分布在实际问题中的应用;
3. 是否能够提高学生数理逻辑思维和解决问题的能力。

高中数学教案正态分布

高中数学教案正态分布

高中数学教案精选-正态分布教学目标:1. 理解正态分布的概念及其特征;2. 学会计算正态分布的概率密度函数;3. 能够应用正态分布解决实际问题。

教学重点:正态分布的概念及其特征,正态分布的概率密度函数。

教学难点:正态分布的概率密度函数的计算及应用。

教学准备:教材、多媒体教学设备。

教学过程:一、导入(5分钟)1. 引入正态分布的概念,引导学生思考自然界中存在的对称分布现象;2. 通过实例让学生感受正态分布的形状,引导学生观察正态分布曲线的特点。

二、新课讲解(15分钟)1. 讲解正态分布的定义及数学表达式;2. 引导学生理解正态分布的参数含义,讲解均值和标准差的计算方法;3. 推导正态分布的概率密度函数,解释概率密度函数的性质。

三、案例分析(15分钟)1. 提供几个实际问题,让学生应用正态分布进行分析;2. 引导学生运用正态分布的概率密度函数计算问题的概率;3. 让学生通过讨论,总结正态分布的应用方法。

四、课堂练习(10分钟)1. 提供一些练习题,让学生独立完成,巩固所学知识;2. 引导学生通过练习题,加深对正态分布的理解。

五、总结与拓展(5分钟)1. 对本节课的内容进行总结,让学生掌握正态分布的核心概念;2. 提出一些拓展问题,激发学生的学习兴趣,引导学生进行深入学习。

教学反思:本节课通过引入实例,让学生感受正态分布的形状,引导学生观察正态分布曲线的特点,从而引出正态分布的概念。

在新课讲解环节,通过讲解正态分布的定义、参数含义和概率密度函数的推导,让学生理解正态分布的数学表达式及性质。

在案例分析环节,提供实际问题,让学生应用正态分布进行分析,巩固所学知识。

在课堂练习环节,提供一些练习题,让学生独立完成,加深对正态分布的理解。

在总结与拓展环节,对本节课的内容进行总结,提出一些拓展问题,激发学生的学习兴趣。

六、应用举例(15分钟)1. 通过具体的例子,如考试分数、身高、体重等数据,让学生应用正态分布进行分析;2. 引导学生利用正态分布的概率密度函数计算特定数据的概率;3. 让学生通过实际案例,理解正态分布在实际问题中的应用价值。

高中高三数学《正态分布》教案、教学设计

高中高三数学《正态分布》教案、教学设计
5.写作任务:要求学生撰写一篇关于正态分布在实际生活中的应用的小论文,字数在500字左右。这样可以锻炼学生的书面表达能力,同时加深他们对正态分布的理解。
6.预习任务:布置下一节课的相关内容,要求学生进行预习,为课堂学习做好准备。
在布置作业时,要注意以下几点:
1.针对不同层次的学生,适当调整作业难度,确保每个学生都能在完成作业的过程中获得成就感。
1.提问:询问学生关于数据分布的知识,如“你们在生活中见过哪些数据呈现一定的分布规律?”
2.实例展示:利用多媒体展示一些生活中的数据分布图像,如学生身高、考试成绩等,让学生观察并总结这些分布的特点。
3.引入正态分布:通过分析实例,引导学生发现这些数据分布的共同点,即呈现出对称、钟形的形状,从而引出正态分布的概念。
-练习巩固:设计难易程度不同的练习题,让学生在练习中巩固所学知识,提高解题能力。
3.评价与反馈:
-采用多元化的评价方式,如课堂问答、小组讨论、课后作业等,全面了解学生的学习情况。
-针对学生的个体差异,给予有针对性的指导和建议,帮助他们克服学习难点,提高学习效果。
-定期进行教学反思,根据学生的学习情况和反馈,调整教学策略,不断提高教学质量。
因此,在教学过程中,应关注学生的个体差异,因材施教,充分调动他们的学习积极性,提高正态分布这一章节的教学效果。同时,注重培养学生的学习兴趣和实际应用能力,使他们在掌握知识的同时,增强数学素养。
三、教学重难点和教学设想
(一)教学重难点
1.重点:正态分布的概念、性质、图像特点及其在实际中的应用。
2.难点:正态分布的概率计算、期望和方差的推导及在实际问题中的运用。
(三)情感态度与价值观
1.培养学生对数学学科的热爱,激发他们学习数学的兴趣,使他们认识到数学知识在现实生活中的重要作用。

人教版高中选修2-3《正态分布》教案

人教版高中选修2-3《正态分布》教案

人教版高中选修2-3《正态分布》教案一、教学目标1.知识与技能:–能够通过计算、观察与分析进行正态分布的基本参数估计与计算;–能够根据数据特征确定正态分布的使用条件,并运用正态分布解决实际问题。

2.过程与方法:–提高学生数理思维能力及运用计算机软件进行数据统计和分析的能力;–提高学生观察、归纳、分析问题及解决问题的能力。

3.情感态度与价值观:–培养学生科学态度,认识正态分布的重要性和应用价值,拓宽学生科学视野。

二、教学重、难点1.教学重点:–正态分布的基本概念与相关参数的计算;–正态分布的性质及模型的应用;–正态分布与假设检验。

2.教学难点:–正态分布在实际中的广泛应用。

三、教学内容1. 正态分布的基本概念与参数1.正态分布的定义–介绍正态分布的基本特征和概念。

2.正态分布的概率密度函数和分布函数–掌握正态分布的概率密度函数和分布函数的定义;–画出正态分布的概率密度函数和分布函数的图像。

3.正态分布的标准化–掌握正态分布的标准化转化法,以及标准正态分布表的使用方法。

2. 正态分布的参数估计与计算1.正态分布的基本形式–介绍正态分布的基本形式,以及参数的含义;–学习如何通过样本来估计总体的参数。

2.样本均值和样本标准差–掌握样本均值和样本标准差的定义和计算方法;–从样本中估计总体的均值和标准差。

3.抽样分布–掌握样本均值和样本标准差的概率分布,以及如何计算抽样分布。

3. 正态分布的应用1.正态分布的性质及模型的应用–描述正态分布的各种统计特征;–掌握利用正态分布进行概率估计的方法;–了解正态分布在实际问题中的应用,如质量控制、投资、风险评估等。

2.正态分布与假设检验–了解假设检验的基本内容及步骤;–学习如何从正态分布的角度来诠释假设检验。

四、教学方法1.授课讲解:对正态分布相关概念和公式进行讲解,以期解决学生对于正态分布不熟悉的情况。

2.讲解示范法:用实例向学生呈现正态分布的应用场景及应用方法,以期加深学生对于正态分布在实践中的应用认识。

高中数学教案正态分布2

高中数学教案正态分布2

高中数学教案精选-正态分布教学目标:1. 理解正态分布的概念及其性质;2. 学会计算正态分布的概率;3. 能够应用正态分布解决实际问题。

教学重点:1. 正态分布的概念及其性质;2. 正态分布的概率计算。

教学难点:1. 正态分布的概率计算;2. 应用正态分布解决实际问题。

教学准备:1. 投影仪;2. 教学PPT;3. 练习题。

教学过程:一、导入(5分钟)1. 引入正态分布的概念,通过举例让学生感受正态分布的广泛应用;2. 提问:什么是正态分布?它有什么特点?二、新课讲解(15分钟)1. 讲解正态分布的定义及其数学表达式;2. 讲解正态分布的性质,包括对称性、有界性和单峰性;3. 讲解正态分布的概率计算方法,包括累积分布函数和概率密度函数。

三、案例分析(10分钟)1. 通过具体案例,让学生理解正态分布的概率计算方法;2. 让学生尝试解决实际问题,如求解某个正态分布变量的概率。

四、课堂练习(10分钟)1. 给出练习题,让学生独立完成;2. 对学生的答案进行讲解和指导。

五、总结与布置作业(5分钟)1. 对本节课的内容进行总结;2. 布置作业,巩固所学知识。

教学反思:本节课通过导入、新课讲解、案例分析和课堂练习等环节,让学生掌握了正态分布的概念、性质和概率计算方法。

在教学过程中,要注意引导学生主动参与,提高学生的动手能力和解决问题的能力。

结合实际案例,让学生感受数学与生活的紧密联系,激发学生的学习兴趣。

六、正态分布的应用(15分钟)1. 介绍正态分布在日常生活中的应用,如身高、体重、考试成绩等;2. 讲解如何利用正态分布解决实际问题,如估计某个群体的平均身高;3. 让学生尝试解决实际问题,如估计某个班级学生的平均成绩。

七、正态分布的性质与图像(15分钟)1. 讲解正态分布的性质,包括对称性、有界性和单峰性;2. 利用PPT展示正态分布的图像,让学生理解正态分布的形状;3. 讲解如何通过观察正态分布的图像来判断数据的分布情况。

正态分布示范教案

正态分布示范教案

正态分布示范教案第一章:正态分布的基本概念1.1 引入:通过引入日常生活中的例子,如考试成绩、身高、体重等,引导学生理解数据的分布规律。

1.2 定义:介绍正态分布的定义,解释均值、标准差等基本术语。

1.3 图形表示:教授如何绘制正态分布曲线,并解释曲线特点。

1.4 实例分析:分析一些实际数据集,让学生通过计算和绘图验证它们是否符合正态分布。

第二章:正态分布的性质2.1 引入:通过讲解正态分布的性质,使学生理解正态分布的重要性和广泛应用。

2.2 均值、中位数和众数:解释正态分布中均值、中位数和众数的关系,并通过实例进行说明。

2.3 概率密度函数:教授正态分布的概率密度函数公式,并解释其意义。

2.4 标准正态分布:介绍标准正态分布的概念,并解释其与普通正态分布的关系。

第三章:正态分布的应用3.1 引入:通过实际案例,让学生了解正态分布在实际问题中的应用。

3.2 假设检验:讲解如何使用正态分布进行假设检验,包括Z检验和t检验。

3.3 置信区间:教授如何计算正态分布数据的置信区间,并解释其含义。

3.4 数据分析:通过实际数据集,让学生运用正态分布进行数据分析,解决实际问题。

第四章:正态分布在实际领域的应用4.1 引入:通过讲解正态分布在不同领域的应用,让学生了解其广泛性。

4.2 医学领域:介绍正态分布在医学领域的应用,如疾病风险评估、药物剂量确定等。

4.3 工程领域:解释正态分布在工程领域的应用,如产品质量控制、可靠性分析等。

4.4 金融领域:讲解正态分布在金融领域的应用,如投资组合优化、风险管理等。

第五章:正态分布的扩展5.1 引入:引导学生思考正态分布的局限性,引出正态分布的扩展。

5.2 非正态分布:介绍一些常见的非正态分布,如泊松分布、二项分布等,并解释其特点。

5.3 转换方法:教授如何将非正态分布数据转换为正态分布,以及如何将正态分布数据转换为其他分布。

5.4 应用案例:通过实际案例,让学生了解在实际问题中如何灵活运用正态分布及其扩展。

高中数学正态分布教案及反思

高中数学正态分布教案及反思

高中数学正态分布教案及反思
一、教学目标
1. 理解正态分布的定义和性质。

2. 掌握使用正态分布表求解实际问题。

3. 能够在实际问题中应用正态分布理论解决问题。

二、教学重点和难点
重点:正态分布的定义和性质。

难点:应用正态分布理论解决实际问题。

三、教学流程
1. 导入:通过引入一个实际问题,引发学生对正态分布的思考。

2. 讲解:介绍正态分布的定义、性质以及正态分布表的使用方法。

3. 练习:让学生通过练习掌握正态分布的应用,并解决一些实际问题。

4. 拓展:让学生通过拓展性问题,进一步巩固对正态分布的理解。

5. 总结:对本节课的内容进行简单总结,澄清学生的疑惑。

四、课后作业
1. 完成练习题,巩固对正态分布的掌握。

2. 思考如何在日常生活中应用正态分布理论。

反思范本:
在本节课中,我认为我的教学方法比较灵活,能够引发学生的兴趣,让他们更加主动地参
与学习。

但是在讲解部分,我发现有些学生对正态分布的概念理解不够清晰,可能是因为
我在讲解时没有用简单明了的语言表达,导致学生理解困难。

在以后的教学中,我会更加
注重引导学生思考,让他们通过实际问题解决的方式来学习,以加深对知识的理解。

同时,我也会在备课时更加充分地考虑学生的接受能力,选择合适的教学方法和语言表达,让教
学效果更加明显。

正态分布教学设计教案

正态分布教学设计教案

教学准备1. 教学目标1、知识:了解正态分布在实际生活中的意义和作用;结合正态曲线, 度函数的理解;通过正态分布的图形特征,归纳正态曲线的性质;结合态分布的变量进行简单决策2、能力:提高学生的整体认知能力、快速提取信息能力、识图能力、分析问题、解决问题的能力。

2. 教学重点/难点1、重点:正态分布的概念和性质2、难点:正态分布(曲线)的性质及 3 b原则简单应用3. 教学用具课件4. 标签正态分布,正态曲线性质教学过程山东省信息技术与课堂整合优质课评选加深对正态密3 b原则对服从正理论联系实际正态分布》教学设计五莲县第三中学李治国《正态分布》教学设计一、教学分析(一)教学目标1、知识:了解正态分布在实际生活中的意义和作用;结合正态曲线,加深对正态密度函数的理解;通过正态分布的图形特征,归纳正态曲线的性质;结合3C原则对服从正态分布的变量进行简单决策2、能力:提高学生的整体认知能力、快速提取信息能力、识图能力、理论联系实际分析问题、解决问题的能力。

(二)重难点:1、重点:正态分布的概念和性质2、难点:正态分布(曲线)的性质及3 c原则简单应用二、教学过程及多媒体的应用本课主要利用powerpoint ,数学专用scilab 随机数表生成程序,几何画板,Mathtype 编辑程序制作了教学课件,因为本节内容所用数据以及公式较多,又需要使用数据构造作图并估计,是本节教学中的一个难点,传统教学很难解决课堂上大量的数据分组和作图问题,而利用以上媒体设计使数据分组快速直接,并能让图像动起来,能够节省课堂上的教学时间,提高教学效率,加大课堂容量,利用动画设计突破了研究正态曲线性质的教学难点,更有利于学生直观感知,总之, 使用多媒体技术能够化抽象为具体,化分散为紧凑。

给学生以动感的认识,高度浓缩时空,有效突破重难点,激活课堂, 起到事半功倍的效果。

(-)(复习导入)1、(1)运用多媒体画出频率分布直方图和总体密度曲线.(2)当样本容量n 无限增大时,频率分布直方图变化的情况?(3)重新感知“样本容量越大,总体估计就越精确”.2.通过实例,说明正态分布(密度)是最基本、最重要的一种分布.如学生的学习成绩、气象中的平均气温、平均湿度等等,都服从或近似地服从正态分布.多媒体的作用:展示以前学习知识,回顾总结,引出课题(二)具体学习阶段自主学习探究一:概率密度函数的概念和函数形式暫不支持word圏片复制,请单击此处上传源图片其中:n是圆周率;e是自然对数的底;x是随机变量的取值;卩为正态分布的均值;c是正态分布的标准差,正态分布一般记为N(y,c 2).注意:①函数表达式的形式②当卩=0、c= 1时,正态总体称为标准正态总体,其相应的函数表示式是其相应的曲线暂不支持word圏片复制「谴单击此处上传源图片称为标准正态曲线.多媒体作用:用图形展示数据的总体趋势,引出概念,展示函数形式,给学生以函数的认识。

7-5 正态分布教案

7-5  正态分布教案

7.5正态分布教学设计新知导入:情景:自动流水线包装的食盐,每袋标准质量为400 g.由于各种不可控制的因素,任意抽取一袋食盐,它的质量与标准质量之间或多或少会存在一定的误差(实际质量减去标准质量).用X表示这种误差,则X是一个连续型随机变量.检测人员在一次产品检验中,随机抽取了100袋食盐,获得误差X的观测值(单位:g)如下:(1) 如何描述这100个样本误差数据的分布?(2) 如何构建适当的概率模型刻画误差X的分布?可用频率分布直方图描述这组误差数据的分布,如图.频率分布直方图中每个小矩形的面积表示误差落在相应区间内的频率,所有小矩形的面积之和为1.观察图形可知:误差观测值有正有负,并大致对称地分布在X=0的两侧,而目小误差比大误差出现得更频繁.随着样本数据量越来越大,让分组越来越多,组距越来越小,由频率的稳定性可知,频率分布直方图的轮廓就越来越稳定,接近一条光滑的钟形曲线.新知讲解:正态分布函数f(x)=1σ√2πe−(x−u)22σ2,x∈R ,μ∈R ,σ>0 为正态密度函数,称它的图像为正态分布密度曲线,简称正态曲线.若随机变量X的概率密度函数为f(x),则称随机变量X 服从正态分布,记为X~N(μ,σ2)。

μ,σ分别表示总体的平均数与标准差。

特别地,当μ=0,σ=1时,称随机变量X服从标准正态分布.思考:观察正态曲线及相应的密度函数,可以发现正态曲线有哪些特点?1、曲线是单峰的,关于直线x=μ对称2、曲线在x=μ处达到峰值3、当|x|无限增大时,曲线无限接近x轴4、曲线与x轴之间的面积为1.思考:一个正态分布由参数μ和σ完全确定,这两个参数对正态曲线的形状有什么影响?它们反映正态分布的哪些特征?当参数σ取值固定时,正态曲线的位置由μ确定,且随着μ的变化而沿x轴平移。

当参数μ取值固定时,当σ较小时,峰值高,曲线“瘦高”,表示随机变量X的分布比较集中;当σ较大时,峰值低,曲线“矮胖”,表示随机变量X 的分布比较分散。

正态分布教学设计方案

正态分布教学设计方案

1. 知识与技能目标:(1)了解正态分布的概念、特征和性质;(2)掌握正态分布的概率密度函数、分布函数及其图形;(3)学会正态分布的应用,如求概率、计算置信区间等。

2. 过程与方法目标:(1)通过实例分析,培养学生观察、分析、归纳和总结的能力;(2)通过小组合作,培养学生的沟通、协作和解决问题的能力;(3)通过实际问题,培养学生运用正态分布解决实际问题的能力。

3. 情感态度与价值观目标:(1)激发学生对概率统计的兴趣,培养其严谨的科学态度;(2)树立正确的世界观,认识到正态分布在社会生活中的广泛应用;(3)培养学生具有创新精神,勇于探索未知领域。

二、教学重难点1. 教学重点:(1)正态分布的概念、特征和性质;(2)正态分布的概率密度函数、分布函数及其图形;(3)正态分布的应用。

2. 教学难点:(1)正态分布的应用,如求概率、计算置信区间等;(2)正态分布的图形和性质的理解与运用。

三、教学过程1. 导入新课通过实际生活中的例子,如人体身高、考试成绩等,引入正态分布的概念,激发学生的学习兴趣。

2. 新课讲解(1)正态分布的概念、特征和性质;(2)正态分布的概率密度函数、分布函数及其图形;(3)正态分布的应用,如求概率、计算置信区间等。

3. 实例分析通过实例分析,让学生掌握正态分布的应用方法,如求概率、计算置信区间等。

4. 小组合作将学生分成小组,每组选取一个实际问题,运用正态分布的知识进行解决,培养学生的沟通、协作和解决问题的能力。

5. 课堂小结总结本节课所学内容,强调正态分布的概念、特征、性质和应用。

6. 作业布置布置相关练习题,巩固学生对正态分布的理解和应用。

四、教学评价1. 课堂表现:观察学生在课堂上的参与度、回答问题的情况,了解学生的学习状态。

2. 实例分析:评价学生在实例分析中的表现,如观察、分析、归纳和总结的能力。

3. 小组合作:评价学生在小组合作中的表现,如沟通、协作和解决问题的能力。

正态分布实验设计教案

正态分布实验设计教案

正态分布实验设计教案目标本次实验旨在帮助学生们通过实际操作和观察,深入理解正态分布的概念、特点、性质和应用,以及如何使用统计码表和计算器进行正态分布的计算和分析。

同时,通过小组合作,培养学生的团队合作精神和实验操作能力。

实验步骤1. 实验前的准备- 确认实验目的和内容,并了解正态分布的基本概念(如均值、标准差等)和相关统计码表的使用方法;- 确认每组实验人数,分配实验任务和角色(如实验记录员、数据输入员、数据验证员、数据分析员等),并核对实验器材和实验场地是否符合要求;- 安排实验时间和计划,提前进行实验前的练和演练,以确保实验的顺利进行。

2. 实验操作和数据记录- 将实验人数分为若干小组,并分配实验任务和角色;- 每个小组根据实验指导书的要求,完成实验操作和数据记录;- 每个小组的实验记录员要及时记录实验过程中的各种数据和情况,并进行核实和验证;- 数据输入员要将记录完成的数据统一输入到电脑或计算器中,并进行数据校验和数据清理;- 数据分析员要对清理后的数据进行分析和计算,得出正态分布相关的统计参数和图表。

3. 实验结果和分析- 每个小组要将分析的结果汇总到一张实验报告中,并形成文字和图表的整体呈现;- 将各组的实验报告进行同行评议和讨论,并进行交流和分享;- 对实验过程中发现的问题和不足进行总结和反思,并提出相应的改进措施和意见。

实验注意事项1. 实验过程中要注意安全和环保,严禁破坏实验器材和实验场地;2. 实验人员要严格遵守实验操作规程和要求,保持专注和耐心,认真记录实验数据;3. 在实验过程中发现的实验器材损坏和故障要及时报告并处理,避免对实验结果的影响;4. 在实验分析过程中,要注意数据的准确性和合理性,避免数据处理失误导致错误的结论;5. 实验结束后要及时整理和清洁实验器材和实验场地,保证实验环境的整洁和卫生。

实验总结本次实验通过实际操作和观察,帮助学生深入理解正态分布的概念、特点、性质和应用,并培养了学生的团队合作精神和实验操作能力。

《正态分布》教案

《正态分布》教案

《正态分布》教案一、教学目标1. 让学生理解正态分布的概念和特点。

2. 让学生掌握正态分布的图形绘制和参数计算。

3. 让学生能够应用正态分布解决实际问题。

二、教学内容1. 正态分布的定义和性质2. 正态分布的概率密度函数和累积分布函数3. 正态分布的参数估计和假设检验4. 正态分布的应用实例三、教学方法1. 采用讲授法讲解正态分布的基本概念和性质。

2. 采用案例分析法分析正态分布的实际应用。

3. 采用互动讨论法引导学生探讨正态分布的问题解决方法。

四、教学准备1. 正态分布的教学PPT2. 正态分布的案例资料3. 正态分布的计算软件或工具五、教学过程1. 导入:通过一个与生活相关的正态分布实例,如身高、体重等,引出正态分布的概念。

2. 讲解:讲解正态分布的定义、性质、概率密度函数和累积分布函数。

3. 案例分析:分析正态分布的实际应用,如医学、工程等领域。

4. 实践操作:引导学生使用计算软件或工具,绘制正态分布图形,计算相关参数。

5. 互动讨论:引导学生探讨正态分布的问题解决方法,如参数估计、假设检验等。

6. 总结:对本节课的主要内容进行总结,强调正态分布的重要性和应用价值。

7. 作业布置:布置相关的练习题,巩固所学内容。

六、教学评估1. 课堂问答:通过提问的方式,了解学生对正态分布概念的理解程度。

2. 练习题:布置针对性的练习题,检查学生对正态分布知识的掌握情况。

3. 小组讨论:评估学生在小组讨论中的表现,了解他们能否将正态分布应用于实际问题。

七、教学拓展1. 对比其他概率分布:介绍与正态分布相关的其他概率分布,如二项分布、Poisson分布等,让学生了解它们的异同。

2. 正态分布的近似:讲解正态分布的近似方法,如68-95-99.7规则,让学生了解如何快速判断正态分布的数据范围。

八、教学难点与解决策略1. 正态分布的图形绘制和参数计算:通过示例和软件工具,让学生直观地理解正态分布的图形和参数。

2. 正态分布的假设检验:通过实际案例,讲解正态分布的假设检验方法,让学生掌握如何应用。

《正态分布》教案

《正态分布》教案

《正态分布》教案一、教学目标1. 让学生理解正态分布的概念,掌握正态分布曲线的特点及应用。

2. 培养学生运用正态分布解决实际问题的能力。

3. 引导学生运用数形结合的思想方法,分析正态分布的概率性质。

二、教学内容1. 正态分布的概念2. 正态分布曲线的特点3. 正态分布的应用4. 标准正态分布5. 正态分布的概率计算三、教学重点与难点1. 教学重点:正态分布的概念、正态分布曲线的特点及应用。

2. 教学难点:正态分布的概率计算,标准正态分布表的使用。

四、教学方法1. 采用讲授法、案例分析法、讨论法、数形结合法等。

2. 利用多媒体课件辅助教学,增强直观性。

五、教学过程1. 导入:通过实际例子(如考试成绩分布)引出正态分布的概念。

2. 讲解:详细讲解正态分布的定义、特点及应用,引导学生掌握正态分布的基本知识。

3. 案例分析:分析实际问题,让学生运用正态分布解决具体问题。

4. 数形结合:利用图形(如正态分布曲线)帮助学生理解正态分布的概率性质。

5. 巩固练习:布置练习题,让学生巩固所学知识。

7. 布置作业:布置课后作业,巩固所学知识。

六、教学评价1. 评价方式:过程性评价与终结性评价相结合。

2. 评价内容:(1) 正态分布的概念、特点及应用的理解程度。

(2) 正态分布的概率计算能力。

(3) 数形结合思想的运用。

3. 评价方法:(1) 课堂问答、讨论。

(2) 课后练习及作业。

(3) 实际问题解决能力的展示。

七、教学资源1. 教材:《概率论与数理统计》。

2. 多媒体课件:正态分布的图形、案例分析等。

3. 标准正态分布表:供学生查询使用。

4. 实际案例资料:用于分析讨论。

八、教学进度安排1. 课时:2课时。

2. 教学计划:(1) 第一课时:正态分布的概念、特点及应用。

(2) 第二课时:正态分布的概率计算,案例分析。

九、教学反思1. 反思内容:(1) 学生对正态分布的理解程度。

(2) 教学方法的有效性。

(3) 学生实际问题解决能力的提升。

7.5正态分布-人教A版高中数学选择性必修第三册(2019版)教案

7.5正态分布-人教A版高中数学选择性必修第三册(2019版)教案

7.5 正态分布-人教A版高中数学选择性必修第三册(2019版)教案一、教学目标1.了解正态分布的特点和性质;2.掌握利用标准正态分布表求面积的方法;3.利用正态分布进行概率计算。

二、教学重点1.正态分布的特点和性质;2.利用标准正态分布表求面积的方法。

三、教学难点1.利用正态分布进行概率计算;2.正态分布的实际应用。

四、教学过程1. 引入引用老师提供的例子,介绍正态分布是一种连续型概率分布,因其呈钟形曲线而得名。

在生活中,许多事件都遵循正态分布,例如考试成绩、身高、体重等。

2. 掌握正态分布的特点和性质•正态分布的特点:反映了一组数据的集中趋势和分散程度;•正态分布的性质:–均值、中位数、众数相等;–曲线对称,均值处于对称轴上;–曲线两端尾部渐进于x轴。

3. 利用标准正态分布表求面积的方法1.给出标准正态分布表的定义;2.演示如何读取标准正态分布表;3.通过例题,让学生掌握如何使用标准正态分布表求面积。

4. 利用正态分布进行概率计算1.讲解正态分布的概率密度函数;2.演示如何根据正态分布的概率密度函数求解概率;3.通过例题,让学生掌握利用正态分布进行概率计算的方法。

5. 正态分布的实际应用1.介绍正态分布在实际生活中的应用,例如股票价格预测、产品质量控制等;2.带领学生探讨如何利用正态分布进行实际应用。

五、板书设计•正态分布的特点和性质•利用标准正态分布表求面积的方法•利用正态分布进行概率计算•正态分布的实际应用六、作业1.完成课堂上的练习;2.练习使用标准正态分布表和正态分布的概率密度函数进行概率计算;3.自主查找正态分布在实际应用中的相关案例。

正态分布示范教案

正态分布示范教案

正态分布示范教案【教案】一、教学目标1.知识目标:学生掌握正态分布的基本概念、标准正态分布的性质和正态分布的标准化方法。

2.能力目标:学生能够根据给定的正态分布的参数,计算相应的概率和区间。

3.情感目标:培养学生对数理统计的兴趣,增强数学思维和计算能力。

二、教学内容1.正态分布的基本概念及性质2.标准正态分布3.正态分布的标准化方法三、教学过程1.导入(10分钟)通过一个问题引入正态分布的概念,例子:“班级100名同学的数学考试成绩呈正态分布,平均成绩为70分,标准差为8分,问有多少学生的成绩在60分到80分之间?”引导学生思考并预测。

2.普及正态分布的概念(20分钟)简述正态分布的定义和性质,并引导学生理解正态分布的特点和应用,如图形呈钟形对称,均值、中位数和众数相等,标准差决定了曲线的陡缓程度等。

3.标准正态分布的引入(15分钟)引导学生了解标准正态分布的概念及特性,如均值为0,标准差为1,曲线在x轴两边分别为无穷远。

引导学生思考标准正态分布与一般正态分布的关系。

4.标准化方法的介绍(20分钟)通过具体的例子,教师示范如何将一般正态分布标准化为标准正态分布。

引导学生理解标准化的意义和方法,并进行实际操作练习。

5.应用计算(25分钟)通过多个实际问题,让学生应用所学的知识计算正态分布概率和区间。

如计算一些数值对应的标准分数,计算一段区间内的概率等。

6.总结与拓展(10分钟)总结正态分布的基本概念、标准正态分布的性质和正态分布的标准化方法,引导学生思考正态分布的实际应用领域,拓展学生的思维。

四、教学资源与评价教学资源:教材、白板、标准化表格等。

评价方式:课堂练习、小组讨论、个人作业等。

五、教学反思。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.4正态分布教学目标:知识与技能:掌握正态分布在实际生活中的意义和作用。

过程与方法:结合正态曲线,加深对正态密度函数的理理。

情感、态度与价值观:通过正态分布的图形特征,归纳正态曲线的性质。

教学重点:正态分布曲线的性质、标准正态曲线N(0,1) 。

教学难点:通过正态分布的图形特征,归纳正态曲线的性质。

教学课时:2课时教具准备:多媒体教学设想:在总体分布研究中我们选择正态分布作为研究的突破口,正态分布在统计学中是最基本、最重要的一种分布。

内容分析:1.在实际遇到的许多随机现象都服从或近似服从正态分布当样本容量无限增大时,频率分布直方图就无限接近于一条总体密度曲线,总体密度曲线较科学地反映了总体分布但总体密度曲线的相关知识较为抽象,学生不易理解,因此在总体分布研究中我们选择正态分布作为研究的突破口正态分布在统计学中是最基本、最重要的一种分布2.正态分布是可以用函数形式来表述的22()2(),(,)xf x xμσ--=∈-∞+∞,(σ>0)由此可见,正态分布是由它的平均数μ和标准差σ唯一决定的常把它记为),(2σμN3.从形态上看,正态分布是一条单峰、对称呈钟形的曲线,其对称轴为x=μ,并在x=μ时取最大值从x=μ点开始,曲线向正负两个方向递减延伸,不断逼近x轴,但永不与x轴相交,因此说曲线在正负两个方向都是以x轴为渐近线的4.通过三组正态分布的曲线,可知正态曲线具有两头低、中间高、左右对称的基本特征5.由于正态分布是由其平均数μ和标准差σ唯一决定的,因此从某种意义上说,正态分布就有好多好多,这给我们深入研究带来一定的困难但我们也发现,许多正态分布中,重点研究N(0,1),其他的正态分布都可以通过)()(σμ-Φ=xxF转化为N(0,1),我们把N(0,1)称为标准正态分布,其密度函数为22121)(xexF-=π,x∈(-∞,+∞),从而使正态分布的研究得以简化6.结合正态曲线的图形特征,归纳正态曲线的性质正态曲线的作图较难,教科书没做要求,授课时可以借助多媒体体现,学生只要了解大致的情形就行了,关键是能通过正态曲线,引导学生归纳其性质教学过程:学生探究过程:复习引入:总体密度曲线:样本容量越大,所分组数越多,各组的频率就越接近于总体在相应各组取值的概率.设想样本容量无限增大,分组的组距无限缩小,那么频率分布直方图就会无限接近于一条光滑曲线,这条曲线叫做总体密度曲线.它反映了总体在各个范围内取值的概率.根据这条曲线,可求出总体在区间(a ,b )内取值的概率等于总体密度曲线,直线x =a ,x =b 及x 轴所围图形的面积.观察总体密度曲线的形状,它具有“两头低,中间高,左右对称”的特征,具有这种特征的总体密度曲线一般可用下面函数的图象来表示或近似表示:式中的实数μ、)0(>σσ是参数,分别表示总体的平均数与标准差,,()x μσϕ的图象为正态分布密度曲线,简称正态曲线.讲解新课:一般地,如果对于任何实数a b <,随机变量X 满足,()()b aP a X B x dx μσϕ<≤=⎰, 则称 X 的分布为正态分布(normal distribution ) .正态分布完全由参数μ和σ确定,因此正态分布常记作),(2σμN .如果随机变量 X 服从正态分布,则记为X ~),(2σμN .经验表明,一个随机变量如果是众多的、互不相干的、不分主次的偶然因素作用结果之和,它就服从或近似服从正态分布.例如,高尔顿板试验中,小球在下落过程中要与众多小木块发生碰撞,每次碰撞的结果使得小球随机地向左或向右下落,因此小球第1次与高尔顿板底部接触时的坐标 X 是众多随机碰撞的结果,所以它近似服从正态分布.在现实生活中,很多随机变量都服从或近似地服从正态分布.例如长度测量误差;某一地区同年龄人群的身高、体重、肺活量等;一定条件下生长的小麦的株高、穗长、单位面积产量等;正常生产条件下各种产品的质量指标(如零件的尺寸、纤维的纤度、电容器的电容量、电子管的使用寿命等);某地每年七月份的平均气温、平均湿度、降雨量等;一般都服从正态分布.因此,正态分布广泛存在于自然现象、生产和生活实际之中.正态分布在概率和统计中占有重要的地位.说明:1参数μ是反映随机变量取值的平均水平的特征数,可以用样本均值去佑计;σ是衡量随机变量总体波动大小的特征数,可以用样本标准差去估计.2.早在 1733 年,法国数学家棣莫弗就用n !的近似公式得到了正态分布.之后,德国数学家高斯在研究测量误差时从另一个角度导出了它,并研究了它的性质,因此,人们也称正态分布为高斯分布.2.正态分布),(2σμN )是由均值μ和标准差σ唯一决定的分布通过固定其中一个值,讨论均值与标准差对于正态曲线的影响 3.通过对三组正态曲线分析,得出正态曲线具有的基本特征是两头底、中间高、左右对称 正态曲线的作图,书中没有做要求,教师也不必补上 讲课时教师可以应用几何画板,形象、美观地画出三条正态曲线的图形,结合前面均值与标准差对图形的影响,引导学生观察总结正态曲线的性质4.正态曲线的性质:(1)曲线在x 轴的上方,与x 轴不相交 (2)曲线关于直线x=μ对称(3)当x=μ时,曲线位于最高点(4)当x <μ时,曲线上升(增函数);当x >μ时,曲线下降(减函数) 并且当曲线向左、右两边无限延伸时,以x 轴为渐近线,向它无限靠近(5)μ一定时,曲线的形状由σ确定σ越大,曲线越“矮胖”,总体分布越分散;σ越小.曲线越“瘦高”.总体分布越集中:五条性质中前三条学生较易掌握,后两条较难理解,因此在讲授时应运用数形结合的原则,采用对比教学5.标准正态曲线:当μ=0、σ=l 时,正态总体称为标准正态总体,其相应的函数表示式是2221)(x e x f -=π,(-∞<x <+∞)其相应的曲线称为标准正态曲线标准正态总体N (0,1)在正态总体的研究中占有重要的地位 任何正态分布的概率问题均可转化成标准正态分布的概率问题讲解范例:例1.给出下列三个正态总体的函数表达式,请找出其均值μ和标准差σ (1)),(,21)(22+∞-∞∈=-x e x f x π(2)),(,221)(8)1(2+∞-∞∈=--x e x f x π (3)22(1)(),(,)x f x x -+=∈-∞+∞ 答案:(1)0,1;(2)1,2;(3)-1,1.标准正态总体的概率问题:对于标准正态总体N (0,1),)(0x Φ是总体取值小于0x 的概率,即 )()(00x x P x <=Φ,其中00>x ,图中阴影部分的面积表示为概率0()P x x < .从图中不难发现:当00<x 时,)(1)(00x x -Φ-=Φ;而当00=x 时,Φ(0)=2.小概率事件的含义(3σ原则)发生概率一般不超过5%的事件,即事件在一次试验中几乎不可能发生假设检验方法的基本思想:首先,假设总体应是或近似为正态总体,然后,依照小概率事件几乎不可能在一次试验中发生的原理对试验结果进行分析假设检验方法的操作程序,即“三步曲”一是提出统计假设,教科书中的统计假设总体是正态总体;二是确定一次试验中的a 值是否落入(μ-3σ,μ+3σ);三是作出判断对于正态总体),(2σμN 取值的概率:在区间(μ-σ,μ+σ)、(μ-2σ,μ+2σ)、(μ-3σ,μ+3σ)内取值的概率分别为%、%、% 因此我们时常只在区间(μ-3σ,μ+3σ)内研究正态总体分布情况,而忽略其中很小的一部分 巩固练习:书本第74页 1,2,3课后作业: 书本第75页 习题2. 4 A 组 1 , 2 B 组1 , 2教学反思:1.在实际遇到的许多随机现象都服从或近似服从正态分布 在上一节课我们研究了当样本容量无限增大时,频率分布直方图就无限接近于一条总体密度曲线,总体密度曲线较科学地反映了总体分布 但总体密度曲线的相关知识较为抽象,学生不易理解,因此在总体分布研究中我们选择正态分布作为研究的突破口正态分布在统计学中是最基本、最重要的一种分布2.正态分布是可以用函数形式来表述的22()2(),(,)xf x xμσ--=∈-∞+∞,(σ>0)由此可见,正态分布是由它的平均数μ和标准差σ唯一决定的常把它记为),(2σμN3.从形态上看,正态分布是一条单峰、对称呈钟形的曲线,其对称轴为x=μ,并在x=μ时取最大值从x=μ点开始,曲线向正负两个方向递减延伸,不断逼近x轴,但永不与x轴相交,因此说曲线在正负两个方向都是以x轴为渐近线的4.通过三组正态分布的曲线,可知正态曲线具有两头低、中间高、左右对称的基本特征。

由于正态分布是由其平均数μ和标准差σ唯一决定的,因此从某种意义上说,正态分布就有好多好多,这给我们深入研究带来一定的困难但我们也发现,许多正态分布中,重点研究N(0,1),我们把N(0,1)称为标准正态分布,其密度函数为22121)(xexF-=π,x∈(-∞,+∞),从而使正态分布的研究得以简化。

结合正态曲线的图形特征,归纳正态曲线的性质正态曲线的作图较难,教科书没做要求,授课时可以借助几何画板作图,学生只要了解大致的情形就行了,关键是能通过正态曲线,引导学生归纳其性质。

相关文档
最新文档