空调风、水系统设计知识讲解

合集下载

空调系统设计总结

空调系统设计总结

空调系统设计总结空调系统作为现代建筑中不可或缺的一部分,为人们提供了舒适的室内环境。

其设计过程涉及众多因素,需要综合考虑建筑特点、使用需求、能源效率等多个方面。

以下是对空调系统设计的一个全面总结。

一、设计前的准备工作在开始空调系统设计之前,需要对建筑进行详细的了解和分析。

这包括建筑的用途(是住宅、商业办公还是工业厂房等)、建筑面积、层数、朝向、围护结构的热工性能等。

同时,还需要收集当地的气候数据,如温度、湿度、太阳辐射等,以确定空调系统的负荷计算参数。

此外,与业主和建筑设计师的沟通也至关重要。

了解业主对室内环境的要求,如温度、湿度的控制范围,以及对系统运行成本和维护管理的期望。

与建筑设计师协调空调设备的布置位置,确保不影响建筑的美观和使用功能。

二、负荷计算空调系统的负荷计算是设计的基础。

它主要包括通过围护结构传入的热量(如外墙、屋顶、窗户等)、室内人员、设备和照明的散热量,以及新风负荷等。

准确的负荷计算能够确保空调系统的容量合理,既满足使用需求,又避免过度配置造成能源浪费。

在负荷计算中,需要采用合适的计算方法和软件工具。

常用的计算方法有稳态传热计算和动态模拟计算。

稳态传热计算适用于简单的建筑结构和稳定的室内外条件,而动态模拟计算则能更准确地反映建筑在不同季节和时间段的负荷变化情况。

三、系统形式的选择根据建筑的规模、用途和使用特点,选择合适的空调系统形式。

常见的空调系统形式有:1、分体式空调系统:适用于小型住宅和独立房间,安装灵活,成本较低。

2、多联机空调系统:可以同时满足多个房间的空调需求,具有节能、灵活控制等优点,适用于中小型商业建筑。

3、中央空调系统:包括冷水机组+风机盘管系统和全空气系统。

冷水机组+风机盘管系统适用于办公、酒店等建筑,能够实现单独房间的温度调节;全空气系统适用于大空间场所,如商场、体育馆等,能够提供较大的送风量和较好的空气品质。

在选择系统形式时,需要综合考虑初投资、运行费用、维护管理难度、室内舒适度等因素。

空调水系统基本知识

空调水系统基本知识
✓ 3.2.2 扬程
• 扬程——水泵所输送的水单位体积所获得的能量, J/m3,即Pa,用压力P来表示。习惯上水泵扬程 用水柱高度H来表示,单位写成mH20,与SI制单 位换算关系是
1mH20=9.8×103Pa=9.8kPa ≈10kPa • 例1,
20mH20=20×9.8×103=19.6×103Pa=19.6kPa。 • 例2,100kPa=100/9.8=10.2mH20≈10mH20。
占总能耗 百分 比
平均
制冷机 空调机组 风机盘管 冷冻水泵 冷却水泵 冷却塔
热水泵
25%~ 37%
23%~ 39%
5%~10% 8%~12%
5%~9%
1%~3% 5%~10%
32%
32.75%
6.50%
10.75%
7.50%
1.75%
8.75%
冷热水泵占了空调总能耗的19.5%。
冷热水泵、冷却水泵能耗占空调总能耗的28%。
➢ 2.1 两管制和四管制系统
图3 两管制和四管制水系统原理图 (a)两管制水系统;(b)四管制水系统图 LC—冷水机组;HE—热交换器;P—水泵;FC—风机盘管 V—三通电磁阀;ET—膨胀水箱;AC—空调机组(或新风机组)
➢ 2.2 定流量与变流量系统
• 空调处理机组需要调节冷量或热量以适应房间负 荷的变化。
• 闭式水系统中水泵所提供的压力应等于水在环路 中循环一周的总压力损失。
图7 有几个支路的水系统 图上符号同图3
• 水泵的压力=通过支路①的环路总阻力
• 管路的摩擦阻力(单位Pa)
ΔPm
λ d
l
ρυ 2 2
• 局部阻力(单位Pa)
Pi
2

空调风系统的设计

空调风系统的设计

实施效果
通过定期的维护保养,确保了医院空 调风系统的稳定运行,为患者和医护 人员提供了一个舒适、健康的环境。
感谢观看
THANKS
风系统的组成
01
02
03
04
空气处理设备
包括空气过滤器、表冷器、加 热器、加湿器等,用于处理空 气的温度、湿度和洁净度。
风管
用于输送处理后的空气,通常 采用镀锌钢板或玻璃纤维材料
制成。
风口
将处理后的空气送入室内,通 常设置在房间的顶部或侧面。
控制系统
包括风机、阀门等,用于控制 风系统的运行和调节空气处理
清洁出风口和回风口
定期清洁出风口和回风口,去除灰尘和污垢,保持空气质量。
检查系统运行状况
观察空调系统运行时是否有异常声音或震动,确保系统正常运行。
定期保养
1 2
深度清洁
定期对空调系统进行深度清洁,包括清洗冷凝器、 蒸发器等关键部件,确保系统高效运行。
检查电气线路
检查电气线路是否老化或破损,及时更换以确保 安全。
选择能效比高、性能系数(COP)大的空调系统,如变频多联机、 水冷冷水机组等,可以有效降低能耗。
合理配置末端设备
根据实际需要,选择合适的风机盘管、新风口、排风口等末端设备, 避免不必要的能源浪费。
控制室内温度和湿度
通过合理设置室内温度和湿度,以及采用自动控制技术,可以实现 节能运行。
气流组织优化
合理布置送风口和回风口
热源及能源形式。
确定空调系统的空气处理方式
03
根据使用场所的空气质量要求,选择合适的空气过滤、除湿、
加湿等处理方式。
方案制定
确定空调系统的送风方式、气流组织、送风温度等参数

暖通空调专业精讲-全空气系统与空气-水系统

暖通空调专业精讲-全空气系统与空气-水系统

节流型
旁通型
诱导型
变 风 量 空 调 装 置
3、按送风参数的数量分类
单风道(参数)空调系统:机房内空气处理机组只处理一种送风参数 (温、湿度)的空气,供一个房间或区域使用 双风道(参数)空调系统:机房内空气处理机组处理两种不同送风参 数(温、湿度)的空气,供多个房间或区域使用
双风道(参数)空调系统
液体燃料: 气体燃料:
Vl——每kg液体燃料需要空气量,m3/kg Vg——每m3气体燃料需要空气量,m3/m3 ql——液体燃料热值,kJ/kg qg——气体燃料热值,kJ/kg
5.3.3 保持正压新风量
保持房间正压的新风量,等于在室内外一定压差下通过门窗 缝隙渗出的风量:
工程上常采用换气次数法。 换气次数:送入房间风量与房间容积之比。 有外窗房间,正压新风量取1~2次/h(根据窗多少取值) 无外窗和无外门房间取0.5~0.75次/h换气次数。
暖通空调
NUAN TONG KONG TIAO
单元5 全空气系统与空气-水系统 第一部分
目 录
湿空气的物理性质和焓湿图
送风状态和送风量的确定
空调新风量的确定
5.1
5.2
5.3
空调系统的分类
5.4
5.6
5.7
5.5
定风量单风道空调系统
相对湿度 空气中的水蒸汽分压力与同温度下饱和湿空气中的水蒸汽分 压力的比值
湿空气的焓 1kg干空气的焓和d kg水蒸汽的焓的总和,称为(1+d)kg 湿空气的焓。如取0℃的干空气和0℃的水焓值为零,则湿 空气的焓(kJ/kg)表达为 Tip: 从式可以看出,(1.01+1.84 d)t是与温度有关的热量,称为“显热”; 而2500 d是0℃时d㎏水的汽化热,它仅随含湿量的变化而变化,与温度 无关,故称为“潜热”。当温度和含湿量升高时,焓值增加;反之,焓值 降低。而在温度升高,含湿量减少时,由于2500比1.84和1.01大得多, 焓值不一定会增加。

数据中心空调动图风系统、水系统一看就懂-2024鲜版

数据中心空调动图风系统、水系统一看就懂-2024鲜版
6
02
水系统概述
CHAPTER
2024/3/28
7
水系统组成及工作原理
组成
数据中心水系统主要由冷水机组、冷却塔、水泵、水箱、水管路及控制系统等组成。
工作原理
水系统通过冷水机组制冷,将冷却水循环送至数据中心各设备,吸收设备产生的热量后再返回冷水机组, 形成一个闭式循环。同时,冷却塔负责将热水冷却至适宜温度,保证冷水机组的正常运行。
9
水系统性能指标
制冷量
表示冷水机组的制冷能力,通常以千 瓦(kW)为单位。
02
冷却水流量
冷却水在系统中的循环流量,以立方 米/小时(m³/h)为单位。
01
03
冷却水进出口温差
冷却水在进出冷水机组时的温度差, 反映制冷效果。
系统能效比
水系统制冷量与消耗的电功率之比, 衡量系统的能效水平。
05
04
水泵扬程
节能降耗
高效的风系统设计可以降低数据中心的能耗,提高整体运行效率。
2024/3/28
12
数据中心对风系统的要求
01
稳定性
数据中心要求风系统具备高稳定 性,确保长时间连续运行,减少 故障率。
高效性
02
03
可维护性
风系统需具备高效送风和排风能 力,以满足数据中心高密度设备 散热需求。
风系统应易于维护和检修,方便 管理人员进行日常维护和故障排 除。
送风湿度
送风湿度是指送入室内的空气湿度。合理的送风湿度能够保 持室内舒适的湿度环境,避免潮湿或干燥带来的不适。
2024/3/28
送风温度
送风温度是指送入室内的空气温度。适宜的送风温度能够提 供良好的室内环境,同时节约能源。
噪音

空调系统设计流程解析

空调系统设计流程解析

空调系统设计流程解析空调设计主要包含了空气调节系统中的冷剂系统,风系统,水系统。

每个系统在空调系统中都有各自的作用,其设计也各有特点。

1.冷冻水系统主要起着载冷的作用,将冷水机制取的冷水运送至水系统末端,末端将冷冻水与室内空气进行换热,从而实现制冷。

2.冷剂系统是将冷凝器出口侧的高压液体运送至末端,制冷剂在末端经节流器后气化,依靠气化吸热制冷再与室内空气进行换热。

3.风系统是将经过处理的冷空气均匀的送到各区域,为房间降温的作用,它直接影响空调系统的舒适性。

空调系统设计流程:确定建筑类型及用途→房间冷负荷计算→空调水/冷剂系统设计→空调风系统设计。

根据用途、规模、能源状况、机房面积、初期投入及运行费用、舒适性确定中央空调系统类型。

房间冷负荷计算:通过围护结构得热量及其形成的冷负荷;通过透明围护结构进入的太阳辐射热量;人体散热量;照明散热量;设备、器具、管道、及其他内部热源的散热量;食品和物料的散热量;渗透空气带入的热量;伴随各种散湿过程产生的潜热量。

冷负荷计算:通过围护结构得热量及其形成的冷负荷→通过围护结构得热量及其形成的冷负荷,主要包括楼板及外墙。

可根据传热公式Q=KFΔt г-ε计算出围护结构的逐时负荷。

通过透明围护结构进入的太阳辐射热量→通过外窗进入室内的得热量有瞬变传热得热和日射得热量两部分。

根据传热公式Q=KFΔt г,传热公式Qc=Xg·Xd·Cs·Cn·Jj.г算出围护结构的逐时负荷。

人体散热量→人体散热量与性别、年龄、衣着、劳动强度等有关系。

照明散热量→照明散热量与照明系统的功率有关,灯具的光能主要转化为热能。

设备、器具、管道、及其他内部热源的散热量→试建筑用途,布置等而定。

部分民用建筑空调冷负荷的估算指标水系统设计:水系统可分为冷冻水系统及冷却水系统。

冷冻水系统是直接供应末端实现制冷目的的系统,一般以供水7℃,回水12℃进行设计。

冷冻水系统的设计主要包括以下几点:末端布置,冷水机组选型,水泵的选型,管道的选型,阀门及附件的配置。

空调系统基本知识

空调系统基本知识

SEE “暖施-9” (128RT) SEE “暖施-9” (128RT)
SEE “暖施-8” SEE “暖施-8”
SEE “暖施-8” SEE “暖施-8”
TO 1F厂区+1F~3F办公楼一般空调设备 DN200 353RT FROM 1F厂区+1F~3F办公楼一般空调设备 DN200 353RT
2011年设计部教育训练教材
空调系统基本知识
2011年设计部教育训练教材
※空調水系統 ※空調風系統
2011年设计部教育训练教材
空调水系统
空调水系统包含冰水(冷冻水)、冷却水和热水三个部分。
冰水系统:来自空调设备的冰水回水经循环水泵进入冰水机 组蒸发器内,蒸发器制冷剂蒸发吸热,促使冰水温度降低(具 体冰机工作原理后续课程讲解),出水再送入各个空调用水设 备,与被处理介质进行热交换后再回到冰水机组进行循环再冷 却。
冷凝水排放系统:排放空调盘管表面因结露而形成的冷凝 水系统。
2011年设计部教育训练教材
一、水系統的分類
1.闭式循环和开式循环 闭式循环系统:管路不与大气接触,在系统最高点设膨胀 水 箱并有排气和泄水装置的系统。 闭式循环的优点: 1.由于管路不与大气相接触,管道与设备不易腐蚀。 2.计算水泵扬程时不需考虑高程,故循环压力低,功率 相对较小。 3.由于没有回水箱,不需重力回水,故回水不需另设水 泵,因而投资省,系统简单。 闭式循环的缺点: 1.蓄冷能力小,低负荷时冷冻机也需经常开动。 2.膨胀水箱的补水有时需要另设加压水泵。
TO FAB 1F+3F LOAD (867RT,5462LPM) 415+452=867RT
φ65 BHR
M1
φ65 BHR

空调水系统资料

空调水系统资料
水系统设计是商用空调工程设计的主要内容之一。
空调水系统的工艺流程
• 空调水系统包括: 1、冷媒水系统(空调水系统)
2、冷却水系统 3、冷凝水系统
1-水冷冷水机组 2-锅炉 3-冷冻水泵 4-热水泵 5-冷却水泵 6-冷却塔 7-分水器 8-集水器 9-压差控制阀 10-空调设备 11-自动排气阀 12-膨胀水箱 13-阀门
水系统的分类
水系统的分类 水系统的分区 设计内容 设计原则 冷冻水系统 冷却水系统 冷凝水系统
五、单式泵和复式泵
空调水系统的形式
五、一次泵和二次泵系统 按有否两组(台)泵串联工作来划分。 1、一次泵系统 又称为一级泵系统、单级泵系统、单式泵系
统。 这种系统的冷、热源侧和负荷侧共用一组(台)
优点
既可以同时满足各个房间不同
的供冷和供暖要求,还可以满 足同一房间供冷和供暖能随时 转换的要求。
解决了三管制系统存在的回水
管混合热损失等问题。
四管制系统
空调水系统的形式
四管制系统的主要缺点
管道多; 占用空间大; 水管线路复杂; 初投资较高。
使用场合
通常只是在一些同一时间有的房间要供冷,有的房间 却要供暖这种要求很高,且投资允许的高级宾馆或酒 店有少量使用。
水泵。 特点:单式泵系统简单,初投资省。但是不
能调节系统流量,在低负荷时不能减少系统 流量以节约能耗。常用于小型建筑物的空调 系统中,不能适应供水半径相差悬殊的大型 建筑物的空调系统中。
空调水系统的形式
2、二次泵系统
又称为二级泵系统、双级 泵系统、复式泵系统。
该系统在冷热源侧和负荷 侧各设置了一组(台)水泵, 整个系统可看成由两个环 路组成 一个是由集水器、 一次泵、冷热源、分水器、 旁通管形成的一次环路, 该环路负责冷热水的制备。

中央空调系统设计教程风冷水冷

中央空调系统设计教程风冷水冷
制冷主机台数可根据建筑业主和建筑所备机房情况进行确定
建筑物
办公室
中部区 周边 个人办公室
会议室
教室
学校
图书馆
自助餐厅
高层,南向 公寓
高层,北向
戏院、大会堂
实验室
图书馆、博物馆
手术室
建筑物冷负荷估算指标
冷负荷W/m2 显冷负荷 总冷负荷
逗留者 m2/人
照明 W/m2
65
95
10
60
110
160
10
60
工程图片
六、膨胀水箱的选择

膨胀水箱一般按照冷冻水系统管路总
水容量的2~3%选择

一般,一万平方米左右建筑空调水系
统膨胀水箱的容积为2~4立方。
六、末端设备的选择
1、风机盘管的选择

风机盘管有两个主要参数:制冷(热)量和送风量,故有风机盘管的选择
有如下两种方法:
• (1)根据房间循环风量选:房间面积、层高(吊顶后)和房间换气次数三者的乘积即 为房间的循环风量。利用循环风量对应风机盘管高速风量,即可确定风机盘管型号。
90
5%
3
251
61
16%
4
284
33
29%
5
300
16
40%
由上表可见:水泵并联运行时,流量有所衰减;当并联台数 超过3台时,衰减尤为厉害。故强烈建议:1.选用多台水泵时, 要考虑流量的衰减,留有余量。2.空调系统中水泵并联不宜超过 3台,即进行制冷主机选择时也不宜超过三台。
一般,冷冻水泵和冷却水水泵的台数应和制冷主机一一对应, 并考虑一台备用。补水泵一般按照一用一备的原则选取。
立式离心泵

中央空调工程设计(氟系统及水系统)

中央空调工程设计(氟系统及水系统)
施工设计:
※在进行空调系统的设计过程中,必须就各种基本事项和需要调查的 事项与客户充分沟通后确定。特别对于一些客户难于理解的事项和 设计时的假定事项必须让客户充分了解,否则容易造成在施工和验 收时产生争议甚至是索赔。
空调项目设计流程
要点:
对于大型的建筑,如发现因建筑结构或房间用途不同导致各部分热 负荷有明显差异,应先进行空调分区讨论以求达到最佳效果。
用户的要求是否清楚
设计和选型
现场的条件调查是否明确
选用的设备是否合适
负荷计算是否准确
设计五要素
环境因素
费用
品牌因素
舒适度
建筑情况
设计五要素
建筑情况
建筑物的类型和规模
是新建筑还是现有建筑 可提供何种能源形式 是否有合适的空间(如管道井、吊顶空间、机房等) 建筑物的围护结构的情况(如材料,结构类型等)
◆各种散湿过程产生的潜热量。
◆各种建筑内部的热湿干扰(包括吊顶、邻室、风管系统的回风区等)
※若在计算每个房间的空调冷负荷时,未列入新风冷负荷,则在计算 空调系统冷负荷时应计入新风冷负荷。
负荷计算(估算法)
估算简易公式: 总负荷=单位面积冷负荷×房间地面面积×修正系数
确定房间类型
计算房间面积
16
摄影暗室
12
吸烟室
20
公共厕所
6
走廊
20
电影放映室
6
观众厅
娱乐场所
12
厕所
娱乐场所
20
锅炉房
医院
房间类型
换气次数
场合
换气次数
房间类型
场合
机型选择
选择室外机
机型选择流程:
根据负荷计算结果和室内的条件(如负荷的分布特点、房间的内部结构、理想的气流形式和使用特点等),选择合适的室内机组,并酌情合理分组,配置相应的室外机组。 选择室内机组 对室内机进行合理分组

空调系统设计

空调系统设计

空调系统设计1.1空调系统设备组成为了使洁净室内保持所需要的温度湿度、风速、压力和洁净度等参数,最常用的方法是向室内不断的送入一定量经过处理的空气,以消除洁净室内各种热湿干扰和尘埃污染。

为获得送入洁净室具有一定状态的空气,就需要一整套对空气进行处理,并不断送入室内,又不断从室内排出一部分来,这一整套设备就构成了空调系统。

空调系统基本由下列设备构成:1.空气处理设备:是对空气进行加热或冷却、加湿或去湿以及净化处理功能的设备,主要包括组合式空调机组、新风机组、风机盘管、空气热回收装置、变风量末端装置、单元式空调机等。

1.空调冷源及热源:常用的热源一般包括热水、蒸汽锅炉、电锅炉、热泵机组、电加热器串联等。

目前常用的冷源设备包括电动压缩式和溴化锂吸收式制冷机组两大类。

1.空调风系统:由风机和风管系统组成。

1.1空调系统工作原理1.1.1空调机组的类型及结构原理1)新风系统(又称直流系统):例如:K16---K18空调全部采用室外新鲜空气(新风)的系统:该系统所处理的空气全部来自室外,新风经处理后送入室内,消除室内的冷、热负荷后,再排到室。

该系统方式冷、热量消耗量最大,工程投资和运行费用较高,当洁净室内散发大量的有害气体,而局部排风不能解决时,采用该方式。

在玻璃基板生产环境控制中,xx熔化工序现场即采用直流式。

1)再循环式系统(又称封闭式系统)例如:K10—K11空调再循环式系统:该系统所处理的空气全部来自空调房间本身,循环往复。

室内空气经处理后,再送回室内消除室内的冷、热负荷。

当洁净室内无人长期逗留,仅仅为存放或为保证精密仪器正常运行,或一些无需从外界获得新鲜空气的特殊场合,可以采用封闭系统。

封闭式系统没有室外新风,系统消耗冷、热量最小,但卫生条件最差。

用于仓库及及环境有特殊要求且人员不经常出入的密封场所。

1)回风式系统(又称混合式系统)例如:K11---K15空调回风式系统:该系统不仅吸取一部分室外新风,而且还利用一部分回风,根据回风形式,有一次回风系统和二次回风系统。

中央空调_第5章水系统设计说明

中央空调_第5章水系统设计说明

水系统的组成
水流开关:当水流开关感应到通过热交换器的水流量 过低时,该装置会使机器停止运行。安装时尽量安装 在水泵的出口管段。
水系统的组成
冷冻水系统原理图:
膨胀水箱
接自来水管 接排水管
膨胀管
F
冷冻水泵
一用一备
△P
L1 L2
冷水机组
冷凝器 蒸发器
图例
F
名称 碟阀 水流开关 过滤器 浮球阀 压力表 温度表
(2) 空调水系统竖向分区的可能方案
1)将冷水机组 设在塔楼以外的群房顶 层 设两个系统分别向塔 楼和群房供水,另一台 向低区供水。冷却塔设 在群房的屋顶上。
图例
L1 L2
名称 避震接头 水泵 止回阀 排气阀 冷冻水供水管 冷冻水回水管
空调末端 空调末端
水系统阀门:
水系统的组成
闸阀
截止阀
蝶阀
蝶阀
水系统中设置的阀一般有两个作用:一是起调节用,调节 管网中的水量,另外是起关断作用,如变换季节时的冷、 热源转换,或设备检修时,用阀门关断。
水系统的组成
接自来水管 接排水管
空调末端 空调末端
压差控制阀
当系统阻力增大,水泵扬 程增高,a,b两点的压差增 大,水流量减少。为保持 系统内压力稳定,在供、 回水总管之间设置带压差 控制阀的旁通管,当a,b两 点间压差超过压差控制阀 的整定值时,阀门开启, 部分水量返回至冷水机组 循环流动,冷水机组定流 量运行。另外,对于间断 使用的空调系统,循环水 量也可通过压差旁通阀回 流。
第五章 中央空调水系统设计
张海涛
中央空调水系统的作用就是将冷热媒水,按空 调房间冷热负荷的要求,准确送至空气处理设 备,处理房间内的空气.水系统投资比较多,水 泵能耗较大,而且水系统对整個空调系统的使 用效果影响大,是空调设计中的一个重要组成 部分。

空调水系统设计

空调水系统设计

一、空调管路系统的设计原则空调管路系统设计主要原则如下:1.空调管路系统应具备足够的输送能力,例如,在中央空调系统中通过水系统来确保渡过每台空调机组或风机盘管空调器的循环水量达到设计流量,以确保机组的正常运行;又如,在蒸汽型吸收式冷水机组中通过蒸汽系统来确保吸收式冷水机组所需要的热能动力。

2.合理布置管道:管道的布置要尽可能地选用同程式系统,虽然初投资略有增加,但易于保持环路的水力稳定性;若采用异程系统时,设计中应注意各支管间的压力平衡问题。

3.确定系统的管径时,应保证能输送设计流量,并使阻力损失和水流噪声小,以获得经济合理的效果。

众所周知,管径大则投资多,但流动阻力小,循环水泵的耗电量就小,使运行费用降低,因此,应当确定一种能使投资和运行费用之和为最低的管径。

同时,设计中要杜绝大流量小温差问题,这是管路系统设计的经济原则。

4.在设计中,应进行严格的水力计算,以确保各个环路之间符合水力平衡要求,使空调水系统在实际运行中有良好的水力工况和热力工况。

5.空调管路系统应满足中央空调部分负荷运行时的调节要求;6.空调管路系统设计中要尽可能多地采用节能技术措施;7.管路系统选用的管材、配件要符合有关的规范要求;8.管路系统设计中要注意便于维修管理,操作、调节方便。

二、管路系统的管材管路系统的管材的选择可参照下表选用:三、供回水总管上的旁通阀与压差旁通阀的选择在变水量水系统中,为了保证流经冷水机组中蒸发器的冷冻水流量恒定,在多台冷水机组的供回水总管上设一条旁通管。

旁通管上安有压差控制的旁通调节阀。

旁通管的最大设计流量按一台冷水机组的冷冻水水量确定,旁通管管径直接按冷冻水管最大允许流速选择,不应未经计算就选择与旁通阀相同规格的管径。

当空调水系统采用国产ZAPB、ZAPC型电动调节阀作为旁通阀,末端设备管段的阻力为0.2MPa时,对应不同冷量冷水机组旁通阀的通径,可按下表选用:冷冻水压差旁通系统的选择计算在冷冻水循环系统设计中,为方便控制,节约能量,常使用变流量控制。

空调水系统设计原理

空调水系统设计原理

空调水系统设计原理
空调水系统设计原理是通过循环流动的水将热量从室内空气中吸收并传递到室外,以达到调节室内温度的目的。

设计原理包括以下几个步骤:
1. 通过空调冷凝器吸收热量:在室内空气中,通过冷凝器将热空气吸入,同时将制冷剂冷却为液态。

2. 通过空调蒸发器释放热量:冷凝器中的液态制冷剂被送入蒸发器,当蒸发器内部的空气流过时,制冷剂吸收空气中的热量,从而冷却室内空气。

3. 水泵通过循环泵水:为了保持水流的循环,系统需要安装水泵,通过水泵将冷却水从蒸发器流入冷凝器,形成一个闭合的水路循环系统。

4. 通过冷却塔排放热量:冷却塔是一个用于散热的设备,将在蒸发器中吸收的热量转移到室外环境中。

5. 控制系统调节温度:系统还需配备温度控制装置,根据室内温度和设定温度之间的差异,自动调节冷却水的流量和温度,以达到所需的温度。

综上所述,空调水系统设计原理是利用循环流动的水将热量从室内空气中吸收并传递到室外,以达到调节室内温度的目的。

空调水系统课件ppt

空调水系统课件ppt

直流式冷却水系统
➢ 升温后的冷却水直接排走,不重复使用。 ➢ 冷却水可为地面水、地下水或城市自来水。 ➢ 适用水源充足的地方
2021/3/10

混合式冷却水系统
2021/3/10
33
循环式冷却水系统
➢ 将来自冷凝器的冷却水先通入蒸发式冷却装置, 使之冷却降温,然后再用水泵送回冷凝器循环使 用。
2021/3/10
45
2021/3/10
46
2021/3/10
47
1.冷却水系统的形式
➢ 根据冷却塔与制冷机组的连接方式,可分为单元式、干管 式和混合式三种。
冷却塔
制制冷冷机装组置
水水泵泵
2021/3/10 单元式冷却水系统
优点:一机对一塔,连锁 控制,流量分配合理。运 行可靠性高 缺点:配管管线布置最复 杂,管路数目多,占用空 间大,不能互相备用。
1-制冷机组;2-水泵;3-定压水箱;4-用户
2021/3/10
43
2
开式冷冻水系统
1-制冷机组;2-水泵;3-冷冻水箱;
4-回水箱;5-用户
13
上述两者中 较大值
开式系统蓄水箱容量的确定原则: ➢ 蓄存所有的系统水容量并附加一定的安全系数 ➢ 按照系统小时循环水量的5%~10%计算。
5 1
2
43
用效率。 ➢ 制冷机组的能效比
某运行时刻制冷机 组的能效比
COPQe /P ➢ 系统能效比
KW/kW
整个空调系统的能 效比
C O P s Q e/(P P f P w P c ,w ) KW/kW
2021/3/10
6
➢ 系统季节能效比 制冷机组在制冷取 季的 节总 制冷量

空调水系统(课件)

空调水系统(课件)
21
10.4 空调冷却水系统和冷凝水系统
10.4.1 空调冷却水系统形式
1.下水箱式冷却水系统
2.上水箱式冷却水系统
22
10.4.1 空调冷却水系统形式
3.多台冷却塔并联运行时的冷却 水系统
• 为了使冷却塔的出水量均衡、集 水盘水位一致,出水干管应采取比 进水干管大两号的集合管。
• 在各台冷却塔的集水盘之间采用 平衡管连接,平衡管的管径与进水 干管的管径相同。
27
10.4 空调冷却水系统和冷凝水系统
10.4.3 冷凝水系统
1.空调冷凝水的排放
• 通常将制冷设备产生的冷凝水采用专门的冷凝水管排走,对于分散式空 调设备产生的冷凝水,则就近排放。
• 冷凝水排入污水系统时,应有空气隔断措施,冷凝水管不得与室内密闭雨 水系统直接连接。
• 检修,冷凝水水平干管始端应设扫除口。 • 凝结水总立管顶端宜做成通大气,使立管内排水畅通。
等需要放水的设备应设带阀门的放水管,并接入地漏或漏斗。
9
10.1.2 空调水系统附属设备
2.分水器和集水器
10
10.1.2 空调水系统附属设备
3.阀门
• 阀门可分为手动阀、电动阀、气动阀等。 • 从使用上分类:电动调节阀、电动蝶阀、电磁阀、手动蝶阀、手动调节
阀、手动截止阀、手动闸阀、手动流量平衡阀、止回阀等。
3
10.1.1 空调水系统形式
(4)分区两管制空调水系统
4
10.1.1 空调水系统形式
2.开式系统和闭式系统
5
10.1.1 空调水系统形式
3.单式水泵供水系统和复式水泵供水系统
6
10.1.1 空调水系统形式
4.异程式系统和同程式系统

中央空调风系统、水系统

中央空调风系统、水系统

பைடு நூலகம்风管
用于连接送风口、回风 口和空调机组,输送空
气。
空调机组
包括空气处理设备和风 机,用于处理空气的温 度、湿度和洁净度等。
风系统的分类
01
02
03
04
定风量系统
风量恒定,通过改变送风口的 位置或开启数量来调节室内温
度。
变风量系统
风量可调,通过改变风机的转 速或开启数量来调节室内温度

全空气系统
使用全空气作为介质,通过集 中送风和回风来调节室内环境
合运用,以达到更好的节能效果。
03
定期进行节能效果评估
采用专业的能耗监测系统,定期对中央空调系统的能耗进行监测和评估
,以便及时调整和优化节能方案。
05
CATALOGUE
中央空调风系统、水系统的未来发展趋势
风系统的发展趋势
高效节能
随着节能环保意识的提高,中央空调风系统将更加注重高效节能技术的研发和应用,如采 用先进的空气过滤技术、优化送回风方式等,以降低能耗和运行成本。
未来发展的比较与展望
风系统和水系统的融合
未来中央空调风系统和水系统将进一步融合,通过智能化控制实 现协调运行,以提高系统效率和舒适度。
多元化技术应用
未来中央空调将采用更多元化的技术,如热回收技术、自然能源利 用等,以降低能耗和运行成本。
个性化与智能化发展
随着消费者需求的多样化,中央空调将更加注重个性化与智能化发 展,满足不同用户的需求。
03
02
选择设备
根据冷热负荷和系统类型选择合适 的冷热源设备和输配设备。
控制方案
根据系统的需求和设备的性能设计 合理的控制系统方案。
04
水系统的运行与维护
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
回风的负压区,则排风不可能通过排风阀排出,必须单设一轴流式 排风机,如图中虚线所示。
2020/5/22
2020/5/22
二.双风机系统 双风机系统是指既设置有送风机而且设置有回风机的空调系统,系统 内的压力损失由送风机和回风机共同承担。 对于双风机系统来说,排风必须处于回风机的正压段,而新风和回风 必须处于送风机的负压段。如图中所示, ①~②段由于回风机的加压 作用,处于正压区,排风可以通过排风阀直接排出。而②~③段由于 送风机的抽吸作用,处于负压区,新风和回风均可被抽吸进来。②为 零位阀,通过该阀处的风压应该为零。 特别需要注意的是:新风、排风、回风的位置。
系数ζ计算表,可供设计时选用。
2020/5/22
2.1.3 风道设计计算的方法与步骤
一.风道水力计算方法
风道的水力计算是在系统和设备布置、风管材料、各送、回风点 的位置和风量均已确定的基础上进行的。
风道水力计算的主要目的是确定各管段的管径(或断面尺寸)和 阻力,保证系统内达到要求的风量分配,最后确定风机的型号和动 力消耗。
2020/5/22
2020/5/22
复习思考题
1.简叙风道布置的原则。 2.常用的风管材料由哪些?各适用于什么场合? 3.为什么说“矩形风管的高宽比宜小于6,最大不小于10”? 4.风道设计的基本任务是什么? 5.试解释下列名词:
沿程压力损失计算表》进行计算。
2020/5/22

(二)局部压力损失的基本计算公式 ∆Pj=ζ×υ2ρ/2 (Pa)
式中 ζ—局部阻力系数; υ —ζ与之对应的断面流速。 ρ—空气密度,标准状况下(大气压力为101325 Pa,温
度为20℃),ρ=1.2kg/m3; 附录14以及许多文献资料中,都载有各种各样管件的局部阻力
风管的压力损失∆P由沿程压力损失∆Py和局部压力损失∆Pj两部分组 成,即:
∆P=∆Py+∆Pj (Pa)
(一)沿程压力损失的基本计算公式
长度为l(m)的风管沿程压力损失可按下式计算:
∆Py=∆pyl
(Pa)
式中 ∆py—单位管长沿程压力损失,也称为单位管长摩擦阻力损 失
,单位为Pa/ m,可查阅附录13以及有关设计手册中《风管单位长度
风道水力计算方法比较多,如假定流速法、压损平均法、静压复 得法等。对于低速送风系统大多采用假定流速法和压损平均法,而 高速送风系统则采用静压复得法。
2020/5/22
1.假定流速法 假定流速法也称为比摩阻法。先按技术经济要求选定风管的风速,再 根据风管的风量确定风管的断面尺寸和阻力。这是低速送风系统目前 最常用的一种计算方法。 2.压损平均法 压损平均法也称为当量阻力法。这种方法以单位管长压力损失相等为 前提,在已知总作用压力的情况下,取最长的环路或压力损失最大的 环路,将总的作用压力值按干管长度平均分配给环路的各个部分,再 根据各部分的风量和所分配的压力损失值,确定风管的尺寸,并结合 各环路间的压力损失的平衡进行调节,以保证各环路间压力损失的差 值小于15%。该方法适用于风机压头已定,以及进行分支管路压损平 衡等场合。 3.静压复得法 静压复得法的含义是,当流体的全压一定时,风速降低,则静压增加 ,利用这部分“复得”的静压来克服下一段主干管道的阻力,以确定 管道尺寸,从而保持各分支前的静压都相等,这就是静压复得法。此 方法适用于高速空调系统的水力计算。
2020/5/22
5.根据给定风量和选定流速,逐段计算管道断面尺寸,并使其符合 表6.1所列的矩形风管统一规格。然后根据选定了的断面尺寸和风量 ,计算出风道内实际流速。
通过矩形风管的风量G可按下式计算:
G=3600abυ (m3/h) 式中 a,b—分别为风管断面净宽和净高,m。 6.计算风管的沿程阻力 根据沿程阻力计算公式:∆Py=∆pyl 查《风管单位长度沿程压力损失计算表》求出单位长度摩擦阻力损
失∆py,再根据管长l,计算出管段的摩擦阻力损失。 7.计算各管段局部阻力 根据局部阻力计算公式: ∆Pj=ζ×υ2ρ/2 查《局部阻力系数ζ计算表》取得局部阻力系数ζ值,求出局部阻
力损失。
8.计算系统的总阻力,∆P=∑(∆pyl +∆Pj )。 9.检查并联管路的阻力平衡情况。 10.根据系统的总风量、总阻力选择风机。
2020/5/22
二.风道水力计算步骤
以假定流速法为例,说明风道水力计算的方法步骤: 1.确定空调系统风道形式,合理布置风道,并绘制风道系统轴测图 ,作为水力计算草图。 2.在计算草图上进行管段编号,并标注管段的长度和风量。 管段长度一般按两管件中心线长度计算,不扣除管件(如三通、弯头 )本身的长度。 3.选定系统最不利环路,一般指最远或局部阻力最多得环路。 4.根据造价和运行费用的综合最经济的原则,选择合理的空气流速 。根据经验总结,风管内的空气流速可按P111表6.3确定。
小型通风系统 一般通风系统
400~500 600~750 650~1000 1000~1500 1500~2500
100~250 300~400
2020/5/22
2.1.4 风管内的压力分布
一.单风机系统 单风机系统是指只设送风机而不设回风机,整个系统内的压力
损失全部由送风机来承担的空调系统。 对于单风机系统来说,要注意到零点的位置,若系统排风位于
第二章空气调节工程设计方法
§2.1空调系统风道设计 2.1.1风道设计的基本知识
一. 风道的布置原则 风道布置直接关系到空调系统的总体布置,它与工
艺、土建、电气、给排水等专业关系密切,应相互配合、 协调一致。
2020/5/22
2020/5/22
2020/5/22
2020/5/22
2020/5/22
2020/5/22
三.风道设计计算实例(P112例6.1 )
2020/5/22
空调系统推荐的送风机静压值如下,可供估算时参考。
空调系统类别
风机静压值(Pa)
小型空调系统(空调服务面积300m2以内) 中型空调系统(空调服务面积2000m2以内) 大型空调系统(空调服务面积大于2000m2) 高速送风系统(空调服务面积2000m2以内) 高速送风系统(空调服务面积大于2000m2)
相关文档
最新文档