(完整版)排列组合方法归纳
(完整版)基础排列组合部分知识总结
计数原理1.摆列组合知识导学 :1. 分类计数原理:达成一件事,有n类方法,在第1 类方法中,有 m 1 种不一样的方法,在第 2类方法中,有 m 2 种不一样的方法, 在第n类方法中,有 m n 种不一样的方法,那么达成这件事共有 =m 1 + m 2 + + m n 种不一样的方法 .N2. 分步计数原理:达成一件事,需要分红n个步骤,做第 1 步,有 m 1 种不一样的方法,做第2 步,有m 2 种不一样的方法, 做第n步,有 m n 种不一样的方法,那么达成这件事共有 =m 1 ×Nm 2 × × m n 种不一样的方法 .摆列数公式 :A n mn ( n 1)( n 2)( n 3)( n m 1)A n mn! (这里m、n∈ N * ,且m≤n)(n m)!组合数公式:mA n m n(n 1)(n 2)( n 3) ( nm 1)C nA m mnC n mn! (这里m、n∈ N *,且m≤n)m! (n m)!组合数的两个性质C n m C n n m 规定: C n 0 1C n m 1 C n mC n m 1例 l、分类加法计数原理的应用在全部的两位数中,个位数字大于十位数字的两位数共有多少个?剖析:该问题与计数相关,可考虑采纳两个基来源理来计算,达成这件事,只需两位数的个位、十位确立了,这件事就算达成了,所以可考虑安排十位上的数字状况进行分类.解法一:按十位数上的数字分别是1, 2, 3, 4,5, 6, 7,8 的状况分红8 类,在每一类中知足题目条件的两位数分别是8 个, 7 个, 6 个, 5 个, 4 个, 3 个, 2 个, l 个.由分类加法计数原理知,切合题意的两位数的个数共有8 + 7 + 6 + 5 + 4 + 3 + 2 + l=36 个.解法二:按个位数字是2, 3, 4, 5, 6,7, 8, 9 分红 8 类,在每一类中知足条件的两位数分别是 l 个、 2 个、 3 个、 4 个、 5 个、 6 个、 7 个、 8 个,所以按分类加法计数原理共有l + 2 + 3 + 4 + 5 + 6 + 7 + 8 = 36个.评论:分类加法计数原理是对波及达成某一件事的不一样方法种数的计数方法,每一类的各样方法都是互相独立的,每一类中的每一种方法都能够独立达成这件事。
超全超全的排列组合的二十种解法
排列有两种定义,但计算方法只有一种,凡是符合这两种定义的都用这种方法计算。
定义的前提条件是m≦n,m与n均为自然数。
①从n个不同元素中,任取m个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列。
②从n个不同元素中,取出m个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数。
③用具体的例子来理解上面的定义:4种颜色按不同颜色,进行排列,有多少种排列方法,如果是6种颜色呢。
从6种颜色中取出4种进行排列呢。
解:A(4,4)=4x(4-1)x(4-2)x(4-3)x(4-4+1)=4x1x2x3x1=24。
A(6,6)=6x5x4x3x2x1=720。
A(6,4)=6!/(6-4)!=(6x5x4x3x2x1)/2=360。
[计算公式]排列用符号A(n,m)表示,m≦n。
计算公式是:A(n,m)=n(n-1)(n-2)……(n-m+1)=n!/(n-m)!此外规定0!=1,n!表示n(n-1)(n-2) (1)例如:6!=6x5x4x3x2x1=720,4!=4x3x2x1=24。
组合的定义及其计算公式1组合的定义有两种。
定义的前提条件是m≦n。
①从n个不同元素中,任取m个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合。
②从n个不同元素中,取出m个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数。
③用例子来理解定义:从4种颜色中,取出2种颜色,能形成多少种组合。
解:C(4,2)=A(4,2)/2!={[4x(4-1)x(4-2)x(4-3)x(4-4+1)]/[2x(2-1)x(2-2+1)]}/[2x(2-1)x(2-2+1)]=[(4x3x2x1)/2]/2 =6。
[计算公式]组合用符号C(n,m)表示,m≦n。
公式是:C(n,m)=A(n,m)/m! 或C(n,m)=C(n,n-m)。
例如:C(5,2)=A(5,2)/[2!x(5-2)!]=(1x2x3x4x5)/[2x(1x2x3)]=10。
完整版)排列组合方法归纳
完整版)排列组合方法归纳如果你想要成功,就需要有恒心作为良友,经验作为参谋,小心作为兄弟,希望作为哨兵。
这是成功的关键。
1、特殊元素和位置的优先法在排列和组合问题中,如果有特殊的元素或位置要求,就需要优先满足这些要求。
例如,要求从0、1、2、3、4、5中选出不重复的五位奇数的数量是多少。
首先,末位必须是奇数,因此应该优先安排末位,共有C3种选择。
然后,首位不能是0,因此应该优先安排首位,共有C4种选择。
最后,安排其他位置,共有A4^3种选择。
根据分步计数原理,可以得出总共有C3*C4*A4^3=288种不重复的五位奇数。
2、相邻问题的捆绑法如果题目规定了相邻的元素必须在一起,可以将它们捆绑成一个大元素,参与排列。
例如,如果A、B、C、D、E五个人并排站成一排,要求A和B必须相邻且B在A的右边,那么可以将A和B看作一个人,且B固定在A的右边,问题就变成了4个人的全排列,共有A4=24种不同的排列方式。
3、相离问题的插空法如果元素不能相邻,可以先将无位置要求的元素全排列,然后将规定的不能相邻的元素插入到这些元素的空位和两端。
例如,七个人并排站成一排,要求甲和乙不能相邻,那么除了甲和乙以外的其他5个人有A5种排列方式。
然后,甲和乙可以插入6个空位中的任意两个,共有A6种插法。
因此,总共有A5*A6=3600种不同的排列方式。
4、选排问题的先选后排法如果需要从一组元素中选出符合要求的元素,然后安排它们的位置,可以使用先选后排法。
例如,有四个不同的球放入编号为1、2、3、4的四个盒子中,问恰有一个空盒的放法有多少种。
首先从四个球中选出两个球作为一组,其余两个球各自为一组,共有C4种选法。
然后,将三个球放入四个盒子中,共有A4种排列方式。
因此,总共有C4*A4=144种放法。
5、相同元素分配问题的隔板法如果需要将n个相同的元素分成m份,并且每份至少有一个元素,可以使用隔板法。
将m-1块隔板插入n个元素排成的n-1个空隙中,所有分法数为C(n-1)。
排列组合公式总结大全(3篇)
第1篇在数学中,排列组合是研究有限集合中元素的不同排列和组合方式的一种数学分支。
它广泛应用于统计学、概率论、计算机科学、组合数学等领域。
以下是对排列组合中常用公式的总结,以供参考。
一、排列1. 排列的定义:从n个不同的元素中,任取m(m≤n)个不同的元素,按照一定的顺序排成一列,称为从n个不同元素中取出m个元素的一个排列。
2. 排列数公式:A(n, m) = n! / (n-m)!其中,n!表示n的阶乘,即n! = n × (n-1) × (n-2) × ... × 2 × 1。
3. 排列的运算性质:(1)交换律:A(n, m) = A(n-m, n-m)(2)结合律:A(n, m) × A(m, k) = A(n, k)(3)逆运算:A(n, m) × A(m, n-m) = n!二、组合1. 组合的定义:从n个不同的元素中,任取m(m≤n)个不同的元素,不考虑它们的顺序,这样的取法称为从n个不同元素中取出m个元素的一个组合。
2. 组合数公式:C(n, m) = n! / [m! × (n-m)!]3. 组合的运算性质:(1)交换律:C(n, m) = C(n-m, n-m)(2)结合律:C(n, m) × C(m, k) = C(n, k)(3)逆运算:C(n, m) × C(m, n-m) = C(n, n)三、排列与组合的关系1. 排列与组合的关系:A(n, m) = C(n, m) × m!2. 排列与组合的区别:(1)排列考虑元素的顺序,组合不考虑元素的顺序。
(2)排列的运算性质与组合的运算性质不同。
四、排列组合的应用1. 排列组合在概率论中的应用:计算随机事件发生的概率。
2. 排列组合在计算机科学中的应用:设计算法、密码学、数据结构等。
3. 排列组合在统计学中的应用:抽样调查、数据分析等。
排列组合二十种解法(最全排列组合方法总结)
排列组合二十种解法(最全排列组合方法总结)教学目标1.进一步理解和应用分步计数原理和分类计数原理。
2.掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题。
提高学生解决问题分析问题的能力3.学会应用数学思想和方法解决排列组合问题. 复习巩固1.分类计数原理(加法原理)完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有:种不同的方法.2.分步计数原理(乘法原理)完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有:种不同的方法.3.分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。
分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件.解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。
3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素.4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排, 先排末位共有13C 然后排首位共有14C 最后排其它位置共有34A由分步计数原理得113434288C C A =练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二.相邻元素捆绑策略例2. 7人站成一排,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。
排列组合的二十种解法(最全的排列组合方法总结)
教学目标1.进一步理解和应用分步计数原理和分类计数原理。
2.掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题。
提高学生解决问题分析问题的能力3.学会应用数学思想和方法解决排列组合问题. 复习巩固1.分类计数原理(加法原理)完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m种不同的方法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有:种不同的方法.2.分步计数原理(乘法原理)完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有:种不同的方法.3.分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。
分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。
3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素.4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排, 先排末位共有13C 然后排首位共有14C 最后排其它位置共有34A由分步计数原理得113434288C C A =练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二.相邻元素捆绑策略例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。
排列组合方法技巧总汇
总结排列组合题型一.直接法1.特殊元素法例1用1,2,3,4,5,6这6个数字组成无重复的四位数,试求满足下列条件的四位数各有多少个(1)数字1不排在个位和千位(2)数字1不在个位,数字6不在千位。
分析:(1)个位和千位有5个数字可供选择25A ,其余2位有四个可供选择24A ,由乘法原理:25A 24A =240 2.特殊位置法(2)当1在千位时余下三位有35A =60,1不在千位时,千位有14A 种选法,个位有14A 种,余下的有24A ,共有14A 14A 24A =192所以总共有192+60=252 二. 间接法当直接法求解类别比较大时,应采用间接法。
如上例中(2)可用间接法2435462A A A +-=252例2 有五张卡片,它的正反面分别写0与1,2与3,4与5,6与7,8与9,将它们任意三张并排放在一起组成三位数,共可组成多少个不同的三维书?分析:此例正面求解需考虑0与1卡片用与不用,且用此卡片又分使用0与使用1,类别较复杂,因而可使用间接计算:任取三张卡片可以组成不同的三位数333352A C ⨯⨯个,其中0在百位的有2242⨯C ⨯22A 个,这是不合题意的。
故共可组成不同的三位数333352A C ⨯⨯-2242⨯C ⨯22A =432(个) 三. 插空法 当需排元素中有不能相邻的元素时,宜用插空法。
例3 在一个含有8个节目的节目单中,临时插入两个歌唱节目,且保持原节目顺序,有多少中插入方法?分析:原有的8个节目中含有9个空档,插入一个节目后,空档变为10个,故有11019A A ⨯=100中插入方法。
四. 捆绑法 当需排元素中有必须相邻的元素时,宜用捆绑法。
例4 4名男生和3名女生共坐一排,男生必须排在一起的坐法有多少种?分析:先将男生捆绑在一起看成一个大元素与女生全排列有44A 种排法,而男生之间又有44A 种排法,又乘法原理满足条件的排法有:44A ×44A =576练习1.四个不同的小球全部放入三个不同的盒子中,若使每个盒子不空,则不同的放法有 种(3324A C )2. 某市植物园要在30天内接待20所学校的学生参观,但每天只能安排一所学校,其中有一所学校人数较多,要安排连续参观2天,其余只参观一天,则植物园30天内不同的安排方法有(1928129A C ⋅)(注意连续参观2天,即需把30天种的连续两天捆绑看成一天作为一个整体来选有129C 其余的就是19所学校选28天进行排列)五. 阁板法 名额分配或相同物品的分配问题,适宜采阁板用法例5 某校准备组建一个由12人组成篮球队,这12个人由8个班的学生组成,每班至少一人,名额分配方案共 种 。
(完整版)排列组合方法大全,推荐文档
排列组合方法归纳大全复习巩固1.分类计数原理(加法原理)完成一件事,有类办法,在第1类办法中有种不同的方法,在第2类办法中有种不同的方法,n 1m 2m …,在第类办法中有种不同的方法,那么完成这件事共有:n n m 12nN m m m =+++ 种不同的方法.2.分步计数原理(乘法原理)完成一件事,需要分成个步骤,做第1步有种不同的方法,做第2步有种不同的方法,…,n 1m 2m 做第步有种不同的方法,那么完成这件事共有:n n m 12nN m m m =⨯⨯⨯ 种不同的方法.3.分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。
分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件.解决排列组合综合性问题的一般过程如下:1.认真审题弄清要做什么事2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。
3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素.4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排,先排末位共有13C 然后排首位共有14C 最后排其它位置共有34A 由分步计数原理得113434288C C A =练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二.相邻元素捆绑策略例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。
由分步计数原理可得共有种不同的排法522522480A A A =练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20三.不相邻问题插空策略例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种?解:分两步进行第一步排2个相声和3个独唱共有种,第二步将4舞蹈插入第一步排好的6个元素中55A 间包含首尾两个空位共有种不同的方法,由分步计数原理,节目的不同顺序共有 种46A 5456A A目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 30四.定序问题倍缩空位插入策略例4.7人排队,其中甲乙丙3人顺序一定共有多少不同的排法解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素之间的全排列数,则共有不同排法种数是:7373/A A (空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有种方法,其余的三个位置甲乙丙共有 147A 种坐法,则共有种方法。
(完整版)排列组合方法归纳
(完整版)排列组合⽅法归纳排列组合⽅法总结1、【特殊元素、特殊位置】优先法在排列、组合问题中,如果某些元素或位置有特殊要求,则⼀般需要优先满⾜要求。
例:有0,1,2,3,4,5可以组成没有重复的五位奇数的个数为()解析:五位奇数的末尾必须是奇数,还有⾸位不能为0,都应该优先安排,以免不合要求的元素占了这两个位置,先安排末位共有13C ;然后排⾸位共计有14C ;最后排其他位置共计有34A ;由分步计数原理得.288341413=A C C 2、【相邻问题】捆绑法题⽬中规定相邻的⼏个元素捆绑成⼀个组,当作⼀个⼤元素参与排列.例:,,,,A B C D E 五⼈并排站成⼀排,如果,A B 必须相邻且B 在A 的右边,那么不同的排法种数有()解析:把,A B 视为⼀⼈,且B 固定在A 的右边,则本题相当于4⼈的全排列,4424A =种,3、【相离问题】插空法元素相离(即不相邻)问题,可先把⽆位置要求的⼏个元素全排列,再把规定的相离的⼏个元素插⼊上述⼏个元素的空位和两端.例:七⼈并排站成⼀⾏,如果甲⼄两⼈必须不相邻,那么不同的排法种数有()解析:除甲⼄外,其余5个排列数为55A 种,再⽤甲⼄去插6个空位有26A 种,不同的排法种数是52563600A A =种 4、【选排问题】先选后排法从⼏类元素中取出符合题意的⼏个元素,再安排到⼀定的位置上,可⽤先选后排法.例:四个不同球放⼊编号为1,2,3,4的四个盒中,则恰有⼀个空盒的放法有多少种?解析:先取:四个球中选两个为⼀组(捆绑法),其余两个球各⾃为⼀组的⽅法有24C 种,再排:在四个盒中每次排3个有34A 种,故共有2344144C A =种. 5、【相同元素分配问题】隔板法将n 个相同的元素分成m 份(m,n 均为正整数),每份⾄少⼀个元素,可以⽤ m-1块隔板插⼊n 个元素排成⼀排的n-1个空隙中,所有分法数为:11--m n C 。
例:(1)10个三好⽣名额分到7个班级,每个班级⾄少⼀个名额,有多少种不同分配⽅案?解析:10个名额分到7个班级,就是把10个名额看成10个相同的⼩球分成7堆,每堆⾄少⼀个,可以在10个⼩球的9个空位中插⼊6块⽊板,每⼀种插法对应着⼀种分配⽅案故共有不同的分配⽅案为为6984C =种(2)5本不同的书,全部分给4个学⽣,每个学⽣⾄少⼀本,不同的分法种数为()如果你希望成功,以恒⼼为良友,以经验为参谋,以⼩⼼为兄弟,以希望为哨兵6、【平均分组问题】消序法平均分成的组,不管他们的顺序如何,都是⼀种情况,所以分组后⼀定要消除顺序(除以n n A ,n 为均分的组数),避免重复计数。
(完整版)☆排列组合解题技巧归纳总结(可编辑修改word版)
344 4 3 4A C 5 2 2 5 排列组合解题技巧归纳总结教学内容1. 分类计数原理(加法原理)完成一件事,有n 类办法,在第 1 类办法中有m 1 种不同的方法,在第 2 类办法中有m 2 种不同的方法,…,在第n 类办法中有m n 种不同的方法,那么完成这件事共有:种不同的方法.2. 分步计数原理(乘法原理)完成一件事,需要分成 n 个步骤,做第 1 步有 m 1 种不同的方法,做第 2 步有 m 2 种不同的方法,…,做第n 步有m n 种不同的方法,那么完成这件事共有:种不同的方法.3. 分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。
分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1. 认真审题弄清要做什么事2. 怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。
3. 确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素.4. 解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略例 1.由 0,1,2,3,4,5 可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置.先排末位共有C 1 然后排首位共有C 1 最后排其它位置共有 A 3由分步计数原理得C 1C 1A 3 = 288443练习题:7 种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里, 问有多少不同的种法? 二.相邻元素捆绑策略例 2. 7 人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。
最全排列组合方法精选20种
最全排列组合⽅法精选20种教学⽬标1.进⼀步理解和应⽤分步计数原理和分类计数原理。
2.掌握解决排列组合问题的常⽤策略;能运⽤解题策略解决简单的综合应⽤题。
提⾼学⽣解决问题分析问题的能⼒3.学会应⽤数学思想和⽅法解决排列组合问题.复习巩固1.分类计数原理(加法原理)完成⼀件事,有n 类办法,在第1类办法中有1m 种不同的⽅法,在第2类办法中有2m 种不同的⽅法,…,在第n 类办法中有n m 种不同的⽅法,那么完成这件事共有:种不同的⽅法.2.分步计数原理(乘法原理)完成⼀件事,需要分成n 个步骤,做第1步有1m 种不同的⽅法,做第2步有2m 种不同的⽅法,…,做第n 步有n m 种不同的⽅法,那么完成这件事共有:种不同的⽅法.3.分类计数原理分步计数原理区别分类计数原理⽅法相互独⽴,任何⼀种⽅法都可以独⽴地完成这件事。
分步计数原理各步相互依存,每步中的⽅法完成事件的⼀个阶段,不能完成整个事件.解决排列组合综合性问题的⼀般过程如下: 1.认真审题弄清要做什么事2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进⾏,确定分多少步及多少类。
3.确定每⼀步或每⼀类是排列问题(有序)还是组合(⽆序)问题,元素总数是多少及取出多少个元素.4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握⼀些常⽤的解题策略⼀.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和⾸位有特殊要求,应该优先安排, 先排末位共有13C然后排⾸位共有14C 最后排其它位置共有34A 由分步计数原理得13434288C C A =练习题:7种不同的花种在排成⼀列的花盆⾥,若两种葵花不种在中间,也不种在两端的花盆⾥,问有多少不同的种法?⼆.相邻元素捆绑策略例2. 7⼈站成⼀排 ,其中甲⼄相邻且丙丁相邻, 共有多少种不同的排法.解:可先将甲⼄两元素捆绑成整体并看成⼀个复合元素,同时丙丁也看成⼀个复合元素,再与其它元素进⾏排列,同时对相邻元素内部进⾏⾃排。
(完整版)☆排列组合解题技巧归纳总结
排列组合解题技巧归纳总结教学内容1.分类计数原理(加法原理)完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有:种不同的方法.2.分步计数原理(乘法原理) 完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有:种不同的方法.3.分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。
分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。
3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素.4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置.先排末位共有13C然后排首位共有14C最后排其它位置共有34A 由分步计数原理得113434288C C A =练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法? 二.相邻元素捆绑策略例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。
由分步计数原理可得共有522522480A A A =种不同的排法练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20 三.不相邻问题插空策略例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种?443解:分两步进行第一步排2个相声和3个独唱共有55A 种,第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种46A 不同的方法,由分步计数原理,节目的不同顺序共有5456A A 种练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 30 四.定序问题倍缩空位插入策略例4.7人排队,其中甲乙丙3人顺序一定共有多少不同的排法解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素之间的全排列数,则共有不同排法种数是:7373/A A(空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有47A 种方法,其余的三个位置甲乙丙共有 1种坐法,则共有47A 种方法。
排列组合全部20种方法
排列组合解法解决排列组合综合性问题的一般过程如下:1.认真审题弄清要做什么事2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。
3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素.4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略一.特殊元素和特殊位置优先策略1、由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.练习、 7种不同的花种在排成一列的花盆里,假设两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二.相邻元素捆绑策略2、7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.练习、某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为三.不相邻问题插空策略3、一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种?练习、某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为四.定序问题倍缩空位插入策略4、7人排队,其中甲乙丙3人顺序一定共有多少不同的排法?练习、10人身高各不相等,排成前后排,每排5人,要求从左至右身高逐渐增加,共有多少排法?五.重排问题求幂策略5、把6名实习生分配到7个车间实习,共有多少种不同的分法练习1.某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插法的种数为2. 某8层大楼一楼电梯上来8名乘客人,他们到各自的一层下电梯,下电梯的方法六.环排问题线排策略6、 8人围桌而坐,共有多少种坐法?练习、 6颗颜色不同的钻石,可穿成几种钻石圈?七.多排问题直排策略7、8人排成前后两排,每排4人,其中甲乙在前排,丙在后排,共有多少排法?前 排后 排练习、有两排座位,前排11个座位,后排12个座位,现安排2人就座规定前排中间的3个座位不能坐,并且这2人不左右相邻,那么不同排法的种数是八.排列组合混合问题先选后排策略8、有5个不同的小球,装入4个不同的盒内,每盒至少装一个球,共有多少不同的装法.练习、一个班有6名战士,其中正副班长各1人现从中选4人完成四种不同的任务,每人完成一种任务,且正副班长有且只有1人参加,则不同的选法有 种九.小集团问题先整体后局部策略9、用1,2,3,4,5组成没有重复数字的五位数其中恰有两个偶数夹1,5在两个奇数之间,这样的五位数有多少个?练习、1.计划展出10幅不同的画,其中1幅水彩画,4幅油画,5幅国画, 排成一行陈列,要求同一品种的必须连在一起,并且水彩画不在两端,那么共有陈列方式的种数为 2. 5男生和5女生站成一排照像,男生相邻,女生也相邻的排法有 种十.元素相同问题隔板策略10、有10个运发动名额,分给7个班,每班至少一个,有多少种分配方案?一般地,n 个不同元素作圆形排列,共有(n-1)!种排法.如果从n 个不同元素中取出m 个元素作圆形排列共有1mn A n一般地,元素分成多排的排列问题,可归结为一排考虑,再分段研解决排列组合混合问题,先选后排是最基本的指导思想.此法与相邻元素捆绑策略相似吗? 小集团排列问题中,先整体后局部,再结合其它策略进行处理。
排列组合的二十种解法(最全的排列组合方法总结)
教学目标1.进一步理解和应用分步计数原理和分类计数原理。
2.掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题。
提高学生解决问题分析问题的能力3.学会应用数学思想和方法解决排列组合问题. 复习巩固1.分类计数原理(加法原理)完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有:种不同的方法.2.分步计数原理(乘法原理)完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有:种不同的方法.3.分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。
分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。
3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素.4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排, 先排末位共有13C 然后排首位共有14C 最后排其它位置共有34A由分步计数原理得113434288C C A =练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二.相邻元素捆绑策略例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。
(完整版)排列组合常见21种解题方法
排列组合难题二十一种方法排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。
教学目标1.进一步理解和应用分步计数原理和分类计数原理。
2.掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题。
提高学生解决问题分析问题的能力3.学会应用数学思想和方法解决排列组合问题.复习巩固1.分类计数原理(加法原理)完成一件事,有n类办法,在第1类办法中有m种不同的方法,在第2类1办法中有m种不同的方法,…,在第n类办法中有n m种不同的方法,那么2完成这件事共有:种不同的方法.2.分步计数原理(乘法原理)完成一件事,需要分成n个步骤,做第1步有m种不同的方法,做第2步1有m种不同的方法,…,做第n步有n m种不同的方法,那么完成这件事共2有:种不同的方法.3.分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。
分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件.解决排列组合综合性问题的一般过程如下:1.认真审题弄清要做什么事2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。
3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素.4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置.先排末位共有13C然后排首位共有14C 最后排其它位置共有34A由分步计数原理得113434288C C A =练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二.相邻元素捆绑策略例2. 7人站成一排,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。
(完整版)排列组合问题常用方法(二十种)
解排列组合问题常用方法(二十种)一、定位问题优先法(特殊元素和特殊位置优先法)例1、由01,2,3,4,5,可以组成多少个没有重复数字五位奇数? 分析:特殊元素和特殊位置有特殊要求,应优先考虑。
末位和首位有特殊要求。
先排末位,从1,3,5三个数中任选一个共有13C 种组合;然后排首位,从2,4和剩余的两个奇数中任选一个共有14C 种组合;最后排中间三个数,从剩余四个数中任选三个共有34A 种排列。
由分步计数原理得113344288C C A =。
变式1、7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?分析:先种两种不同的葵花在不受限制的四个花盒中共有24A 种排列,再种其它葵花有55A 种排列。
由分步计数原理得25451440A A =。
二、相邻问题捆绑法例2、7人站成一排 ,其中甲乙相邻且丙丁相邻,共有多少种不同的排法?分析:分三步。
先将甲乙两元素捆绑成整体并看成一个复合元素,将丙丁两元素也捆绑成整体看成一个复合元素,再与其它元素进行排列,同时在两对相邻元素内部进行自排。
由分步计数原理得522522480A A A =。
变式2、某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 。
分析:命中的三枪捆绑成一枪,与命中的另一枪插入未命中四枪形成的五个空位,共有25A 种排列。
三、相离问题插空法例3、一个晚会节目有4个舞蹈,2个相声,3个独唱,舞蹈不能连续出场,则节目出场顺序有多少种?分析:相离问题即不相邻问题。
分两步。
第一步排2个相声和3个独唱共有55A 种排列,第二步将4个舞蹈插入第一步排好后形成的6个空位中(包含首尾两个空位)共有46A 种排列,由分步计数原理得545643200A A =。
变式3、某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目,如果将这两个新节目插入原节目单中且不相邻,那么不同插法的种数为 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
排列组合方法总结
1、【特殊元素、特殊位置】优先法
在排列、组合问题中,如果某些元素或位置有特殊要求,则一般需要优先满足要求。
例:有0,1,2,3,4,5可以组成没有重复的五位奇数的个数为( )
解析:五位奇数的末尾必须是奇数,还有首位不能为0,都应该优先安排,以免不合要求的
元素占了这两个位置,先安排末位共有13C ;然后排首位共计有1
4C ;最后排其他位置共计有
34A ;由分步计数原理得.288341413=A C C 2、【相邻问题】捆绑法
题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.
例:,,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,那么不同的排
法种数有( )
解析:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4424A =种,
3、【相离问题】插空法
元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的
几个元素插入上述几个元素的空位和两端.
例:七人并排站成一行,如果甲乙两人必须不相邻,那么不同的排法种数有( )
解析:除甲乙外,其余5个排列数为55A 种,再用甲乙去插6个空位有2
6A 种,不同的排法种
数是52563600A A =种 4、【选排问题】先选后排法
从几类元素中取出符合题意的几个元素,再安排到一定的位置上,可用先选后排法.
例:四个不同球放入编号为1,2,3,4的四个盒中,则恰有一个空盒的放法有多少种?
解析:先取:四个球中选两个为一组(捆绑法),其余两个球各自为一组的方法有2
4C 种,再排:
在四个盒中每次排3个有34A 种,故共有2344144C A =种. 5、【相同元素分配问题】隔板法
将n 个相同的元素分成m 份(m,n 均为正整数),每份至少一个元素,可以用 m-1块隔板插
入n 个元素排成一排的n-1个空隙中,所有分法数为:1
1--m n C 。
例:(1)10个三好生名额分到7个班级,每个班级至少一个名额,有多少种不同分配方案?
解析:10个名额分到7个班级,就是把10个名额看成10个相同的小球分成7堆,每堆至
少一个,可以在10个小球的9个空位中插入6块木板,每一种插法对应着一种分配方案
故共有不同的分配方案为为6984C =种 (2)5本不同的书,全部分给4个学生,每个学生至少一本,不同的分法种数为( )
如果你希望成功,以恒心为良友,以经验为参谋,以小心为兄弟,以希望为哨兵
6、【平均分组问题】消序法
平均分成的组,不管他们的顺序如何,都是一种情况,所以分组后一定要消除顺序(除以n n A ,n 为均分的组数),避免重复计数。
例:6本不同的书平均分成3组,每堆2本的分法数有( )种
解析:分三步取书得224426C C C 中分法,但是这里出现重复计数的现象。
除去重复计数3
3A ,即共有33224426A C C C 7、【有序分配问题】逐分法
有序分配问题指把元素分成若干组,可用逐步下量分组
例:将12名警察分别到三个不同的路口进行流量的调查,若每个路口4人,则不同的分配方案有( )种
A 、4
441284C C C B 、44412843C C C C 、4431283
C C A
D 、444128433C C C A 答案:A 8、【可重复的排列问题】求幂法(分步)
允许重复排列问题的特点是以元素为研究对象,元素不受位置的约束,可逐一安排元素的位置,一般地n 个不同元素排在m 个不同位置的排列数有n m 种方法.
例:把6名实习生分配到7个车间实习共有多少种不同方法?
解析:完成此事共分6步,第一步;将第一名实习生分配到车间有7种不同方案,第二步:将第二名实习生分配到车间也有7种不同方案,依次类推,由分步计数原理知共有67种
9、【“至少”“至多”问题等用】排除法(也可用分类列举法)
例:从4台甲型和5台乙型电视机中任取3台,其中至少要甲型和乙 型电视机各一台,则不同的取法共有( )种
解析1:逆向思考,至少各一台的反面就是分别只取一种型号,不取另一种型号的电视机,
故不同的取法共有33394570C C C --=种,选.C
解析2:正向思考,至少要甲型和乙 型电视机各一台可分两种情况:甲型1台乙型2台;
甲型2台乙型1台;故不同的取法有2112545470C C C C +=台,选C .
10、【多元问题】分类列举法
例:(1)由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数字小于十位数字的共有( )
解析:按题意,个位数字只可能是0,1,2,3,4共5种情况,分别有
55A ,113113113134
3333323333,,,A A A A A A A A A A A 个,合并总计300个,选B (2)30030能被多少个不同偶数整除?
解析:先把30030分解成质因数的形式:30030=2×3×5×7×11×13;依题意偶因数2必取,
3,5,7,11,13这5个因数中任取若干个组成成积,所有的偶因数为:
01234555555532C C C C C C +++++=个.。