厚度大于50mm的厚钢板一般采用火焰切割
火焰切割
火焰切割机应该怎样调火一般来说,在使用火焰切割方式时,通过调整氧气和乙炔的比例可以得到三种切割火焰:中性焰(即正常焰),氧化焰,还原焰。
正常火焰的特征是在其还原区没有自由氧和活性碳,有三个明显的区域,焰芯有鲜明的轮廓(接近于圆柱形)。
焰芯的成分是乙炔和氧气,其末端呈均匀的圆形和光亮的外壳。
外壳由赤热的碳质点组成。
焰芯的温度达1000℃。
还原区处于焰芯之外,与焰芯的明显区别是它的亮度较暗。
还原区由乙炔未完全燃烧的产物——氧化碳和氢组成,还原区的温度可达3000℃左右。
外焰即完全燃烧区,位于还原区之外,它由二氧化碳和水蒸气、氮气组成,其温度在1200~2500℃之间变化。
氧化焰是在氧气过剩的情况下产生的,其焰芯呈圆锥形,长度明显地缩短,轮廓也不清楚,亮度是暗淡的;同样,还原区和外焰也缩短了,火焰呈紫蓝色,燃烧时伴有响声,响声大小与氧气的压力有关,氧化焰的温度高于正常焰。
如果使用氧化焰进行切割,将会使切割质量明显地恶化。
还原焰是在乙炔过剩的情况下产生的,其焰芯没有明显的轮廓,其焰芯的末端有绿色的边缘,按照这绿色的边缘来判断有过剩的乙炔;还原区异常的明亮,几乎和焰芯混为一体;外焰呈黄色。
当乙炔过剩太多时,开始冒黑烟,这是因为在火焰中乙炔燃烧缺乏必须的氧气造成的。
预热火焰的能量大小与切割速度、切口质量关系相当密切。
随着被切工件板厚的增大和切割速度的加快,火焰的能量也应随之增强,但又不能太强,尤其在割厚板时,金属燃烧产生的反应热增大,加强了对切割点前沿的预热能力,这时,过强的预热火焰将使切口上边缘严重熔化塌边。
太弱的预热火焰,又会使钢板得不到足够的能量,逼使减低切割速度,甚至造成切割过程中断。
所以说预热火焰的强弱与切割速度的关系是相互制约的。
一般来说,切割200mm以下的钢板使用中性焰可以获得较好的切割质量。
在切割大厚度钢板时应使用还原焰预热切割,因为还原焰的火焰比较长,火焰的长度应至少是板厚的1.2倍以上等离子切割技术发展历程等离子切割技术是实现精确切割与成型的一种重要手段,对等离子切割技术的发展源自二战之前,那时候等离子切割机就已经在市场上有了较为广泛的应用,整个等离子切割技术的发展得益于当时现代工业的快速发展,特别是对重型金属以及合金进行加工行业的要求。
中厚板轧钢车间设计
中厚板轧钢车间设计创建时间:2008-08-02中厚板轧钢车间设计 (design of plate mill)以板坯或扁锭为原料,经加热轧制生产中厚钢板的车间设计。
中国规定,钢板厚度大于4~20mm 的为中板,厚度大于20~60mm的为厚板,厚度大于60mm的为特厚板,统称为中厚板,中厚钢板主要用于造船、建筑、机器制造、交通运输以及军事工业等部门,还可用作制造螺旋焊管,UOE焊管与焊接钢梁的原料。
在工业发达国家,中厚钢板的产量占钢材总产量的10%~20%。
厚度为4~25.4mm的中厚钢板也可以在带钢热轧机上生产。
车间设计的原则及方法见轧钢厂设计。
简史 18世纪初,西欧开始用二辊轧机轧制出小块中厚钢板。
1854年欧洲建成用蒸汽机传动的二辊可逆式中厚板轧机。
1864年美国建成三辊劳特式中厚板轧机。
1891年美国建成世界上第一台四辊可逆式中厚板轧机,1918年美国又建成主要生产装甲钢板,其辊身长5000mm以上的宽厚板轧机。
以后,世界上又陆续出现了双机架、半连续式、连续式中厚板轧机。
20世纪70年代是中厚板车间建设得最多的时期,不少轧机是4000~5500mm的双机架宽厚板轧机。
1871年中国福州船政局已开始轧制造船板,1907年汉冶萍公司建设了2440mm中板轧机。
1936年在鞍山建成了第一套2300mm三辊劳特式中板轧机。
1958年及1966年鞍山钢铁公司和武汉钢铁公司分别建成了2800mm中厚板轧机,其粗轧机为二辊式、精轧机为四辊式。
1978年设计建成了舞阳钢铁公司4200mm宽厚板车间,1990年上海第三钢铁厂的4200/3300mm厚板车间投产。
坯料选择有扁锭、初轧板坯、连铸板坯和锻坯。
在满足轧制压缩比的条件下,尽可能采用连铸板坯为原料。
某些特殊钢种,根据需要采用锻坯。
设计规模和产品方案设计规模主要取决于轧机和辅机性能、设备组成、市场需求和坯料条件等。
轧机尺寸、组成与设计规模的关系见表1。
宝钢宽厚板切割生产线
宝钢宽厚板切割生产线1. 项目简介宝钢宽厚板工程是宝钢“十五”计划重点项目。
工程分两期建设,一期建设一架四辊可逆精轧机,一架立辊轧机,轧制最大宽度4.8米,长25米,厚150毫米,年产140万吨宽厚板。
二期增建一架粗轧机,生产规模扩展到180万吨,最大轧制厚度可达400毫米。
产品以船用板及管线板为主,同时还生产建筑、锅炉容器、模具等国内紧缺钢板品种,专用板约占90%左右。
作为我国第一套特宽幅现代化宽厚板轧机生产线,该工程的建设将改变我国5米级造船用板,大口径、长距离、高钢级、抗硫化氢管线用板长期依赖进口的状况。
该生产线由板坯接收跨、板坯跨、加热炉区、主轧跨、主电室、磨辊间、冷床跨、剪切跨、中转跨、热处理跨、涂漆跨以及末端成品跨等组成。
经过连铸、精轧、热矫直、超声波探伤、火焰切割、热处理、喷印等工序形成最终宽厚板产品,工艺图如下图所示。
宽厚板生产工艺流程图火焰切割系统作为宽厚板生产线的一个重要工序,主要用于大于50mm厚带温(最高温度350℃)钢板的定尺切割(切头、切尾、横向及纵向切割、废边切割)和取样切割,以及特殊尺寸钢板的切割,切割出来的成品可以直接满足用户订货的尺寸要求并直接在钢板上冲打产品信息。
该项目功能需求新颖、难度大,在国内首创,国外也仅有日本有类似系统。
而且相比日本的类似系统,宝钢还提出了废边切割、双工位切割等需求,此外该系统还解决了对于钢板的轮廓扫描和定位、热钢板切割过程中钢板尺寸变化的温度补偿等高难度技术问题。
该宽厚板生产线的上位监控系统除了对切割过程进行自动化监控外,还集成了大量特殊的算法和独特的功能,易控(INSPEC)软件由于具有强大的二次编程能力,可以把常规的监控功能与使用高级语言开发的软件功能模块无缝集成到一起,因此选用了易控(INSPEC)软件作为系统的开发平台。
2.系统构成该宽厚板切割系统采用分层设计,整个控制系统由L3管理系统、CCC中心计算机系统、NC控制计算机系统、底层运动控制单元等构成。
大厚度火焰切割熔渣处理方法的研究
大厚度火焰切割熔渣处理方法的研究作者:王芳芳,徐洪福来源:《经济技术协作信息》 2018年第21期大厚度切割按照热切割技术行业的惯例,是切割厚度超过300mm钢材的工艺方式。
另外随着大厚度切割技术的发展,行业内把切割厚度为300 - lOOOmm钢材称为大厚度切割;切割厚度大于lOCOmm钢材为超大厚度切割。
大厚度和超大厚度的钢材切割方法,除金属切割法以外,普遍采用火焰切割法进行大厚度钢材的切割。
尤其是对大厚度的重型废钢,例如轧辊,大直径曲轴等的切割,传统的切割方式为人工切割,粗放型的气割方式,废弃的轧辊、曲轴等,平放至地面上进行切割,从割缝中流下的熔渣直接流到地面上,形成熔渣块。
这种方式效率低,工人的工作环境恶劣,而且严重污染环境等;随着切割技术的发展,大厚度的火焰切割机,可以实现大厚度、大直径废钢钢材的切割,钢材等被放在支撑钢材的支撑架上,支撑架设置成间隔,便于火焰切割,在支撑架的下面有的是地面,有的是水槽等,如图l。
对于熔渣的清理这些在一定程度上比较困难,且不方便。
本文针对重型废钢处理生产线上的重废钢火焰切割处理,给出几种处理切割熔渣的方法。
一、大厚度火焰切割的原理钢材的火焰切割是利用气体火焰将钢材表面加热到能够在氧气流中燃烧的温度,然后送进高纯度、高流速的切割氧,使钢中的铁在氯氛围中燃烧生成氧化铁熔渣,同时放出大量的热,借助这些燃烧热和熔渣不断加热钢材下层和切口前缘,使之也达到燃点,直至工件的底部。
与此同时,切割氧流把氧化铁熔渣吹掉,从而形成切口将钢材割开。
钢材火焰切割的实质是被切割的材料在纯氧中燃烧的过程,不是熔化过程。
钢材被切割时铁与氧的反应有以下几种形式,这些反应为放热反应。
Fe+0502:Fe0+267.8kJ2Fe+l.502:Fe203+8232kJ3Fe+202:Fe304+ll20.5kJ上述反应在切割过程中几乎同时进行,快速反应,在切割反应区形成三种铁的氧化物,放出大量的热量。
连铸工艺
连铸:转炉生产出来的钢水经过精炼炉精炼以后,需要将钢水铸造成不同类型、不同规格的钢坯。
连铸工段就是将精炼后的钢水连续铸造成钢坯的生产工序,主要设备包括回转台、中间包,结晶器、拉矫机等。
连铸的工艺流程:将装有精炼好钢水的钢包运至回转台,回转台转动到浇注位置后,将钢水注入中间包,中间包再由水口将钢水分配到各个结晶器中去。
结晶器是连铸机的核心设备之一,它使铸件成形并迅速凝固结晶。
拉矫机与结晶振动装置共同作用,将结晶器内的铸件拉出,经冷却、电磁搅拌后,切割成一定长度的板坯。
连铸自动化控制主要有连铸机拉坯辊速度控制、结晶器振动频率的控制、定长切割控制等控制技术。
连铸的主要工艺设备介绍:钢包回转台钢包回转台:设在连铸机浇铸位置上方用于运载钢包过跨和支承钢包进行浇铸的设备。
由底座、回转臂、驱动装置、回转支撑、事故驱动控制系统、润滑系统和锚固件6部分组成。
单臂钢包回转台:由底座、立柱、上转臂、上转臂驱动装置、下转臂、下转臂驱动装置组成。
蝶形钢包回转台:由底座、升降液压缸、回转架、钢包支座、回转臂、平行连杆、驱动装置、防护板组成。
钢包回转台是连铸机的关键设备之一,起着连接上下两道工序的重要作用。
钢包回转台的回转情况基本上包括两侧无钢包、单侧有钢包、两侧有钢包三种情况,而单个钢包重量已超过140吨。
三种情况下,钢包回转台受力有很大不同,但无论在何种情况下,都要保证钢包回转台的旋转平稳,定位准确,起停时要尽可能减小对机械部分的冲击,为减少中间包液面波动和温降,要缩短旋转时间。
因此,我们在变频器的容量选择上,留有余地,即比电机功率加大一级。
同时利用变频器的s曲线加速功能,通过调整s曲线保证加、减速曲线平滑快速,减少对减速机的冲击,再通过PLC判断变速限位、停止限位实现旋转过程中高、低速自动变换及到位停车,同时满足了对旋转时间和平稳运行的要求。
顺时针,逆时针,旋转中间包是短流程炼钢中用到的一个耐火材料容器,首先接受从钢包浇下来的钢水,然后再由中间包水口分配到各个结晶器中去。
中厚板知识及现状
中厚板知识及现状钢材事业部中厚板组集体供稿2021年6月15日生产工段:中厚板轧制工艺及钢厂相关信息一、中厚板生产流程图铁矿石炼铁精轧生铁炼钢粗轧钢水盘子粗轧品钢坯舞阳4100mm中厚板轧机区生产现场中厚板轧机指定的工作辊辊身长度所能生产的成品最大宽度为轧机尺寸减去200~300mm。
一、轧机型式中厚钢板轧机型式有:二辊式、三辊劳特式、四辊式、万能式。
5一二辊可逆式轧机优点:低速咬入,高速轧制,咬入角大,压下量大,产量高。
原材料适应性强。
它可以轧制大锭和板坯。
缺点:二辊轧机辊系刚度差,钢板厚度公差大。
适用范围适用于生产厚钢板,作为双机架布置中的粗轧机架。
六2三辊劳特轧机优点缺点设备投资少,厂房建设快,轧机辊系刚度比两辊可逆轧机大,生产的钢板精度也更高。
中辊直径小,受驱动,咬入能力弱;轧机轧辊系的刚度还不够大,产品的产量和质量都差。
适用范围用于生产4.0~20mm中板,或者作为双机布置中的粗轧机使用。
7三四辊可逆式轧机图2-4四辊轧机电机直接驱动1辊电机主传动图;2-传动轴;3-从气缸上拆下连接轴;4-连接轴平衡装置;5-万向节轴;6.工作基础4万能磨坊图2-5万能式轧机轧制过程示意图图2-6 V-H轧机精轧机单机架单机架中厚板轧机,一个机架既是粗轧机,又是精轧机。
采用单机架生产,只要按规程勤换辊,钢板表面质量是可以保证的。
因此,有些新建厂因限于产量和投资,先采用单机架,预留第二架位置,将来扩建成双机架。
二辊式轧机淘汰改造独处三辊劳特式轧机四辊式轧机双机架(主要布置形式)双机架中厚板轧机纵向布置。
第一台是粗轧机,最后一台是精轧机的四辊四辊轧机组成型式两卷四卷三卷四卷优点:粗、精轧制道次分配合理、产量高;使进入精轧机的来料断面较均匀,质量好;粗轧可以独立生产,较灵活。
宝钢5000宽厚板车间布置图1-板坯二次切割线;2-连续式加热炉3-高压水除鳞箱;4-精轧机;5-加速冷却装置;6-热矫直机;7-宽冷床;8-特厚板冷床;9-检查修磨台架;10-超声波探伤装置;11-切头剪;12-双边剪和剖分剪;13-定尺剪;14-横移修磨台架;15-冷矫直机;16-压力矫直机;17-热处理线;18-涂漆线12除垢:清除板坯表面的一次和二次氧化铁垢。
Q345E-40~60mm厚钢板焊接工艺
Q345E\40~60mm厚钢板焊接工艺摘要:本文对Q345E厚钢板焊接工艺做了简单的介绍。
关键词:Q345E钢板;施工工艺Abstract: in this paper, the Q345E thick steel plate welding process to a simple introduction.Keywords: Q345E steel plate; Construction technologyQ345E钢板具有良好的韧性、塑性、冷弯性和焊接性能。
一般在热轧或正火状态下使用。
广泛适用于桥梁、车辆、船舶、管道、锅炉、各种容器、油罐、电站、厂房结构、低温压力容器等结构件。
一般20mm以下的中板焊接时不用焊前预热和焊前热处理。
40~60mm算厚度板,由于较大的拘束度,焊接时需采取焊前预热、后热等措施。
1、下料加工:采用氧—液化石油气切割,与氧—乙炔气切割相比,虽然预热时间较长、切割速度较慢,但切割面光滑,渗碳少,成本下降20%以上,比较经济安全。
2、焊接方法:用焊条电弧焊打底,填充和盖面采用埋弧自动焊。
3、焊接坡口:精度要求较高的坡口,采用龙门刨刨削而成,加工后用样板检查坡口尺寸,厚钢板对接在专用平台上进行,以保证对口错边不大于2mm。
一般要求的,坡口采用火焰切割加工。
4、坡口尺寸:坡口形式及尺寸见图1。
5、钢板对接:钢板对接前,对坡口及坡口边缘100mm范围内的油、锈、漆等污物进行彻底清理,直到露出金属光泽为止。
并采用超声波检查内部缺陷,对毛边、夹层、裂纹、夹灰等缺陷及时进行处理。
6、焊接材料:对于焊接材料的选用, 应严格控制其含扩散氢含量。
一般要求选用低氢型(E5015/J507)或超低氢型焊条。
焊条的含氢量不超过5ml/100g (水银法扩散氢测定法)。
焊前严格按规定烘干350~380℃并保温1.5~2h。
烘好的焊条放于保温桶中,随用随取;焊条连续烘干次数不得超过3次。
对于采用埋弧自动焊时, 焊剂中不准混入灰尘、铁屑及其它杂物。
气体火焰切割工艺及参数
气体火焰切割工艺及参数影响气割过程的主要参数影响气体火焰切割过程(包括切割速度和质量)的主要工艺因素有:①切割氧的纯度;②切割氧的流量、压力及氧流形状;③切割氧流的流速、动量和攻角;④预热火焰的功率;⑤被切割金属的成分、性能、表面状态及初始温度;⑥其他工艺因素。
其中切割氧流起着主导作用。
切割氧流既要使金属燃烧,又要把燃烧生成的氧化物从切口中吹掉。
因此,切割氧的纯度、流量、流速和氧流形状对气割质量和切割速度有重要的影响。
⑴切割氧的纯度氧气的纯度是影响气割过程和质量的重要因素。
氧气纯度差,不但切割速度大为降低、切割面粗糙、切口下缘沾渣,而且氧气消耗量的增加。
氧气纯度从99.5%降到98%,即下降1.5%,切割速度下降25%,而耗氧量增加50%。
一般认为,氧气纯度低于95%,就不能气割,要获得无粘渣的气割切口,氧气纯度需达到99.6%。
⑵切割氧流量切割厚度12mm钢板时氧气流量对切割速度的影响如图1所示。
由图可见,随着氧流量的增加,切割速度逐渐增大,切割速度提高,但超过某个界限值反而降低。
因此,对某一钢板厚度存在一个最佳氧流量值,此时不但切割质量最高,而且切割质量最好。
⑶切割氧压力随着切割氧压力的提高,氧流量相应增加,因此能够切割板厚度随之增大。
但压力增加到一定值,可切割的厚度也达到最大值,再增大压力,可切割的厚度反而减小。
切割氧压力对切割速度的影响大致相同。
如图2所示。
由图2可见,用普通割嘴气割时,在压力较低的情况下,随着压力增加,切割速度也提高,但当压力超过0.3MP以后,切割速度反而下降;再继续加大压力,不但切割速度降低,而且切口加宽,切口断面粗糙。
用扩散形割嘴气割时,如果切割氧压力符合割嘴的设计压力,则压力增大时,由于切割氧流的流速和动量增大,所以切割速度比用普通割嘴时也有所增加。
气割工艺参数气割的工艺参数包括预热火焰功率、氧气压力、切割速度、割嘴到工件的距离以及切割倾角等。
⑴预热火焰的选择预热火焰是影响气割质量的重要工艺参数。
厚度大于50mm的厚钢板一般采用火焰切割
厚度大于50mm 的厚钢板一般采用火焰切割,也叫氧气切割。
一、火焰切割工艺:(1)根据切割钢板的厚度安装适当孔径的割嘴;(2)将氧气和燃气压力调至规定值;(3)用切割点火器点燃预热焰,接着慢慢打开预热氧气阀,调节火焰白心长度,使火焰成中性焰,预热起割点;(4)在切割起点上只用预热焰加热,割嘴垂直于钢板表面,火焰白心尖端距钢板表面1."5~2."5mm ;(5)当起点达到燃烧温度(辉红色)时,打开切割氧气阀,瞬间就可进行切割;(6)在确认已割至钢板下表面后,就沿着切割线以适当的速度移动割嘴继续往前切割;(7)切割终了时,先关闭切割氧气阀,再关闭预热焰的氧气阀。
二、定尺切割定尺方式有碰球定尺和非在线定尺切割:(1)碰球定尺即切割机定尺脉冲信号由定尺碰球发出,但由于钢坯表面的氧化皮的导电率差,尽管碰到了碰球,但不一定接触良好,为防止误切,系统利用拉矫机速度信号进行积分运算来计算坯长,并与定尺信号进行比较,确保定尺信号的准确性。
(2)非在线定尺切割利用专门的非在线式铸坯长度测量装置,根据热坯热辐射的原理,通过探头锁定铸坯在导轨内的区域,当铸坯进入区域并占满整个区域后发出定尺信号,然后再给出剪切命令。
三、氧气切割的基本原理:氧气切割是利用气体火焰的热能将工件切割处预热到燃点后,喷出高速切割氧流,使金属燃烧并放出热量而实现切割的方法。
四、氧气切割过程:⑴预热气割开始时,利用气体火焰(氧乙炔焰或氧丙烷焰)将工件待切割处预热到该种金属材料的燃烧温度——燃点(对于碳钢约为1100~1150℃)。
⑵燃烧喷出高速切割氧流,使已达燃点的金属在氧流中激烈燃烧,生成氧化物。
⑶吹渣金属燃烧生成的氧化物被氧流吹掉,形成切口,使金属分离,完成切割过程。
五、氧气切割的三条件:金属材料要进行氧气切割应满足以下三个条件:1)金属燃烧生成氧化物的熔点应低于金属熔点,且流动性要好。
2)金属的燃点应比熔点低。
3)金属在氧流中燃烧时能放出大量的热量,且金属本身的导热性要低。
连铸工艺与设备连铸的工艺流程与设备
2.2.8 结晶器和足辊
1) 功能 结晶器使钢水生成带液芯的坯壳。足辊起托住坯壳, 并按规定的半径导向坯壳。 2) 位置 插在振动台上结晶器的支承壳座中。
17
2.2.9 二冷固定扇形段
RH
RVc/K2 铸坯越厚,拉速Vc越快,铸机半径R就越大,铸机 半径R与凝固系数平方成反比。 ❖对高拉速连铸机,铸机半径相当大,为了减小铸机 半径,而采用带液芯多点矫直。
33
❖ 铸机圆弧半径指铸坯外弧曲率半径,是确定弧形连 铸机总高度重要参数,标志所能浇铸铸坯厚度范围 的参数。如果圆弧半径选得过小,矫直时铸坯内弧 面变形太大容易开裂。可用经验公式确定基本圆弧 半径即连铸机最小圆弧半径:
24
2.2.15 火焰切割机系统
采用气动夹钳使切割机与铸坯同步行走,电机驱 动切割小车行走,直流调速电机驱动,水冷切枪进 行切割,此系统还有火焰自动调节系统和切割时的 喷铁粉装置。在切割不锈钢时配置喷铁粉装置,可 以切割钢坯(包括不锈钢)。 ❖厚度大于50mm的厚钢板一般采用火焰切割,也 叫氧气切割。
R cD
R—连铸机圆弧半径,D—铸坯厚度; c—系数,一般中小型铸坯取30~36;对大型板坯 及合金钢,取40以上。国外,普通钢取33~35,优质 钢取42~45。
34
2.2.22 液相深度
液相深度L液是指铸坯从结晶器液面开始到铸坯 中心液相凝固终了的长度,也称为液芯长度。
浇铸前引锭头和部分过渡件进入结晶器形成结晶器可活动的内底浇铸开始后钢水凝固与引锭头凝结在一起由拉矫机牵引着引锭杆把铸坯连续地从结晶器拉出直到引锭头通过拉矫机后方与铸坯分离进入引锭杆存放装置
气体火焰切割工艺及参数
气体火焰切割工艺及参数影响气割进程的重要参数影响气体火焰切割进程(包含切割速度和质量)的重要工艺身分有:①切割氧的纯度;②切割氧的流量.压力及氧流外形;③切割氧流的流速.动量和攻角;④预热火焰的功率;⑤被切割金属的成分.机能.概况状况及初始温度;⑥其他工艺身分.个中切割氧流起着主导感化.切割氧流既要使金属燃烧,又要把燃烧生成的氧化物从瘦语中吹掉落.是以,切割氧的纯度.流量.流速和氧流外形对气割质量和切割速度有重要的影响.⑴切割氧的纯度氧气的纯度是影响气割进程和质量的重要身分.氧气纯度差,不单切割速度大为降低.切割面光滑.瘦语下缘沾渣,并且氧气消费量的增长.氧气纯度从99.5%降到98%,即降低1.5%,切割速度降低25%,而耗氧量增长50%.一般以为,氧气纯度低于95%,就不克不及气割,要获得无粘渣的气割瘦语,氧气纯度需达到99.6%.⑵切割氧流量切割厚度12mm钢板时氧气流量对切割速度的影响如图1所示.由图可见,跟着氧流量的增长,切割速度逐渐增大,切割速度进步,但超出某个界线值反而降低.是以,对某一钢板厚度消失一个最佳氧流量值,此时不单切割质量最高,并且切割质量最好.⑶切割氧压力跟着切割氧压力的进步,氧流量响应增长,是以可以或许切割板厚度随之增大.但压力增长到必定值,可切割的厚度也达到最大值,再增大压力,可切割的厚度反而减小.切割氧压力对切割速度的影响大致雷同.如图2所示.由图2可见,用通俗割嘴气割时,在压力较低的情形下,跟着压力增长,切割速度也进步,但当压力超出0.3MP今后,切割速度反而降低;再持续加大压力,不单切割速度降低,并且瘦语加宽,瘦语断面光滑.用集中形割嘴气割时,假如切割氧压力相符割嘴的设计压力,则压力增大时,因为切割氧流的流速和动量增大,所以切割速度比用通俗割嘴时也有所增长.气割工艺参数气割的工艺参数包含预热火焰功率.氧气压力.切割速度.割嘴到工件的距离以及切割倾角等.⑴预热火焰的选择预热火焰是影响气割质量的重要工艺参数.气割时一般选用中性焰或稍微的氧化焰.同时火焰的强度要适中.应依据工件厚度.割嘴种类和质量请求选用预热火焰.①预热火焰的功率要跟着板厚的增大而加大,割件越厚,预热火焰功率越大.氧-乙炔预热火焰的功率与板厚的关系见表1.表1 氧-乙炔预热火焰的功率与板厚的关系②在切割较厚钢板时,应采取轻度碳化焰,以免瘦语上缘熔塌,同时也可使外焰长一些.③应用集中行割嘴和氧帘割嘴切割厚度200mm以下钢板时,火焰功率选大一些,以加快瘦语的前缘加热到燃点,从而获得较高的切割速度.④切割碳含量较高或合金元素教多的钢材时,因为他们燃点较高,预热火焰的功率要大一些.⑤用单割嘴切割坡口时,因熔渣被吹向瘦语外侧,为填补能量,要加大火焰功率.气体火焰切割的预热时光应依据割件厚度而定,表2列出火焰切割选定预热时光的经验数据.表2 气体火焰切割选定预热时光的经验数据⑵切割氧压力的选定切割氧压力取决于割嘴类型和嘴号,可依据工件厚度选择氧气压力.切割氧气压力过大,易使瘦语变宽.光滑;压力过小,使切割进程迟缓,易造成沾渣.表3 切割氧气压力的推举值在现实切割工作中,最佳切割氧压力可用试放“风线”的办法来肯定.对所采取的割嘴,当风线最清楚.且长度最长时,这时的切割压力即为适合值,可获得最佳的切割后果.⑶切割速度切割速度与工件厚度.割嘴情势有关,一般随工件厚度增大而减慢.切割速度必须与瘦语内金属的氧化速度想顺应.切割速度太慢会使瘦语上缘融化,太快则后拖量过大,甚至割不透,造成切割中止.在切割操纵时,切割速度可依据熔渣火花在瘦语中落下的倾素来控制,当火花呈垂直或稍倾向前方排出时,即为正常速度.在直线切割时,可采取火花稍倾向后方排出的较快的速度.氧化速度快,排渣才能强,则可以进步切割速度.切割速渡过慢会降低临盆率,且会造成瘦语局部融化,影响割口概况质量.机械切割速度比手工切割速度平均可进步20%,表4列出机械化切割时切割速度的推举数据.⑷割嘴到工件概况的距离割嘴到工件概况的距离是依据工件厚度及预热火焰长度来肯定.割嘴高渡过低会使瘦语上线产生熔塌,飞溅时易堵塞割嘴,甚至引起回火.割嘴高渡过大,热损掉增长,且预热火焰对瘦语前缘的加热感化削弱,预热不充分,切割氧流淌能降低,使排渣艰苦,影响切割质量.同时进入瘦语的氧纯度也降低,导致后拖量和瘦语宽度增大,在切割薄板场合还会使切割速度降低.表4 机械切割时切割速度的推举数据(5)切割倾角割嘴与割件间的切割倾角直接影响气割速度和后拖量.切割倾角的大小重要依据工件厚度而定,工件厚度在30mm以下时,后倾角为20°~30°;工件厚度大于30mm时,起割是为5°~10°的前倾角,割透后割嘴垂直于工件,停滞时为5°~10°的后倾角.手工曲线切割时,割嘴垂直于工件.割嘴的切割倾角与切割厚度的关系如图3所示.气体火焰切割的工艺要点(1)气割前的预备工作被切割金属的概况,应细心地消除铁锈.尘垢或油污.被切割件应垫平,以便于散放热量和消除熔渣.决不克不及放在水泥地上切割,因为水泥地面遇高温后会崩裂.切割前的具体请求如下.①检讨工作场地是否相符安然请求,割炬.氧气瓶.乙炔瓶(或乙炔产生器及回火防止器).橡胶管.压力表等是否正常,将气割装备按操纵规程衔接好.②切割前,起首将工件垫平,工件下面留出必定的间隙,以利于氧化铁渣的吹除.切割时,为了防止操纵者被飞溅的氧化铁渣烧伤,须要时可加挡板遮挡.③将氧气调节到所需的压力.对于射吸式割炬,应检讨割炬是否有射吸才能.检讨的办法是:起首拔下乙炔进气软管并弯折起来,再打开乙炔阀门和预热氧阀门.这时,将手指放在割炬的乙炔过气管接头上,假如手指觉得有抽力并能吸附在乙炔进气管接头上,解释割炬有射吸才能,可以应用;反之,解释割炬不正常,不克不及应用,应检讨补缀.本文章更多内容:<<上一页 - 1 - 2 - 3 - 4 - 5 - 下一页>>本文章共6789字,分5页,当前第3页,快速翻页:12345④检讨风线,办法是点燃火焰并将预热火焰调剂恰当.然后打开切割氧气阀门,不雅察切割氧流(即风线)的外形,风线应为笔挺.清楚的圆柱体并有恰当的长度.如许才干使工件瘦语概况滑腻清洁,宽窄一致.假如风线不规矩,应封闭所有的阀门,用通针或其他对象修整割嘴的内概况,使之滑腻.预热火焰的功率应依据板材厚度不合加以调剂,火焰性质应采取中性焰.(2)手工气割的操纵要点气割操纵中,起首点燃割炬,随即调剂火焰.火焰的大小依据钢板的厚度进行调剂,然后预热工件和进行切割.1)火焰调剂依据燃气与氧的混杂比不合,切割火焰分为碳化焰.中性焰和氧化焰,如图4所示.在应用乙炔的场合,氧与乙炔的体积比(O2/C2H2)为1.1~1.15时,形成的火焰为中性焰,由焰芯.内焰和外焰构成.焰芯为C2H2与O2的混杂气.内焰为C2H2与O2产生一次燃烧的反响区,其反响式为C2H2 O2→2CO H2在内焰中距离焰芯2~3mm处,温度最高,约3100°C.外焰是一次燃烧生成的CO和H2.空气中氧化合成而燃烧的区域,其反响式为→2CO2 H2O火焰温度约2500°C.外焰越长,呵护切割氧流的后果越好.O2/C2H2比值小于1.1时形成碳化焰,也有焰芯.内焰和外焰,内焰中消失未燃烧的碳,火焰长而软,温度也较低.O2/C2H2比值小于1.15时形成氧化焰,只有焰芯和外焰两部分.火焰短而挺直并陪同随“嘶.嘶……”声,最高温度可达约3300°C.因火焰中消失多余氧,具有氧化性.气割时一般应调剂火焰到中性焰,同时火焰的强度要适中.一般不采取碳化焰,因为碳化焰会使切割边沿增碳.调剂好火焰后,应该放出切割氧,检讨火焰性质是否有变更.切割火焰过强时会消失以下问题:①瘦语上边沿熔塌,并粘有颗粒状熔滴;②切割面不服整,光滑度变差;③瘦语下缘粘渣.切割火焰过弱时会产生以下问题:①切割速度减慢,且易产生切割中止现象;②易产生回火;③后拖量增大.应依据工件厚度.割嘴种类和质量请求肯定预热和切割火焰,其要点如下:①预热和切割火焰的功率(乙炔流量.氧气流量)要跟着钢板厚度增大而加大;②切割较厚钢板时,火焰宜用轻度碳化焰,以免瘦语上缘熔塌,同时也可使外焰长一些;③应用集中形割嘴和氧帘割嘴切割厚度20mm以下钢板时,火焰功率应大一些,以加快瘦语前缘加热到燃点,从而获得较高的切割速度;④切割碳含量较高或合金元素含量较高的钢材时,因它们的燃点较高,预热火焰的功率要大一些;⑤用单割嘴切割坡口时,因熔渣被吹向瘦语外侧,为填补热量,要加大火焰的功率;⑥应用石油气或自然气作为燃气,因其火焰温度低,预热时光较长;在切割小尺寸零件等需频仍预热起割的场合,为进步切割效力,可把火焰调节成氧化焰,开端切割后再恢复到中性焰.2)操纵技巧气割操纵因小我的习惯不合,可以有所不合.一般是右手把住割炬把手,以右手的拇指和食指把住预热氧的阀门,以便于调剂预热火焰和当回火时实时割断预热氧气.左手的拇指和食指把住开关心割氧的阀门,同时还要起控制倾向的感化.其余三个手指安稳地托住混杂室.上身不要弯得太低,呼吸要有节拍;眼睛应注目和割嘴,并侧重注目割口前面的割线.这种气割办法为“抱切法”,一般是按照从右向左的倾向切割.开端切割时,先预热钢板的边沿,待瘦语地位消失微红的时刻,将火焰局部移出边沿线以外,同时慢慢打开切割氧气阀门.当有氧化铁渣随氧气流一腾飞出时,证实已经割透,这时应移动割炬逐渐向前切割.切割很厚的金属时,割嘴与被切割金属概况大约成10°~20°倾角,以便能更好地加热割件边沿,使切割进程轻易开端.切割厚度50mm 以下的金属,割嘴开端应与被切割金属概况成垂直地位.假如是从零件内廓开端切割,必须预先在被切割件上面作孔(孔的直径等于切割宽度).开端切割时,先用预热火焰加热金属边沿,直至加热到使其能在氧中可以燃烧的温度,即在割件概况层消失将要融化的状况时,再放出切割氧进行切割.切割时割嘴与被切割金属概况的距离应依据火焰焰心长度来决议,最好使焰心尖端距割件 1.5~3mm,毫不成使火焰焰心触及割件概况.为了包管割缝质量,在全体气割进程中,割嘴到割件概况的距离应保持一致.沿直线切割钢板时,割枪应向活动反倾向竖直20°~30°,这时切割最为有用.但在沿曲线外轮廓切割时,割嘴必须严厉垂直于切割金属的概况.切割进程中,有时因割嘴过热和氧化铁渣的飞溅,使切割割嘴堵住或乙炔供给不实时,割嘴产生鸣爆并产生回火现象.这时应敏捷封闭预热氧气阀门,阻拦氧气倒流入乙炔管内,使回火熄灭.假如此时割炬内还在发出嘶嘶的响声,解释割炬内回火尚未熄灭,这时应敏捷再将乙炔阀门封闭或敏捷拔下割炬上的乙炔软管,使回火的火焰气体排出.处理完毕后,应先检讨割炬的射吸才能,然后才可以从新点燃割炬.气割进程中,若操纵者需移出发体地位时,应先封闭切割氧阀门,然后移出发体地位.假如切割较薄的钢板,在封闭切割氧的同时,火焰应敏捷分开钢板概况,以防止因板薄受热快,引起变形和使割缝从新粘合.当持续切割时,割嘴必定要瞄准割缝的接割处,并恰当预热,然后慢慢打开切割氧气阀门,持续进行切割.切割邻近终点时,割嘴应向切割进步的反倾向竖直一些,以利于钢板的下部提前割透,使收尾的割缝较整洁.当到达终点时,应敏捷封闭切割氧气的阀门并将割炬抬起,然后封闭乙炔阀门,最后封闭预热氧气阀门.假如停滞工作时光较长,应将氧气阀门封闭,松开减压器调节螺丝,并将氧气胶管中的氧气放出.停滞切割工作时,将减压器卸下并将乙炔供气阀门封闭.气割缺点及防止措施气体火焰切割功课中,经常因为气割工艺参数调剂和操纵不当,会造成各类切割缺点.切割之后的瘦语状况及原因见图 5.气割临盆中罕有缺点的种类.产生原因及防止措施见表6.。
热加工定义
机械热加工实习报告热加工定义在金属学中,把高于金属再结晶温度的加工叫热加工。
热加工可分为金属铸造、热扎、锻造、焊接和金属热处理等工艺。
有时也将热切割、热喷涂等工艺包括在内。
热加工能使金属零件在成形的同时改善它的组织,或者使已成形的零件改变结晶状态以改善零件的机械性能。
铸造、焊接是将金属熔化再凝固成型。
热扎、锻造是将金属加热到塑性变形阶段,再进行成型加工,如合金钢需加热到形成均匀奥氏体后,进行热扎、锻造,温度低塑性不好,易产生裂纹,温度过高金属件易过分氧化,影响加工件质量。
金属热处理只改变金属件的金相组织,它包括:退火、正火、淬火、回火等。
火焰切割数控火焰切割适用于切割5-300mm碳钢板材料,其切割厚度大,效率高,切割无坡口,使用简单,切割所用原料主要为氧气和切割气体(炳烷、乙炔、煤气等),切割成本低,是比较实用和常见的一种切割类型。
火焰切割(Flame Cutting)是钢板粗加工的一种常用方式。
火焰切割是最老的热切割方式,其切割金属厚度从1毫米到1.2米,但是当您需要切割的绝大多数低碳钢钢板厚度在20毫米以下时,应采用其他切割方式。
火焰切割是利用氧化铁燃烧过程中产生的高温来切割碳钢,火焰割炬的设计为燃烧氧化铁提供了充分的氧气,以保证获得良好的切割效果。
火焰切割设备的成本低并且是切割厚金属板唯一经济有效的手段,但是在薄板切割方面有其不足之处。
与等离子比较起来,火焰切割的热影响区要大许多,热变形比较大。
为了切割准确有效,操作人员需要拥有高超技术才能在切割过程中及时回避金属板的热变形。
火焰切割方法有割炬切割和切割机切割两种。
割炬切割割炬又称火焰枪。
采用的燃气不同,构造也不同。
常用的是氧一乙炔火焰枪。
乙炔压力为0.01~012MPa,氧气压力为0.50~l.0MPa。
两种气体分别通过各自的通路在火焰枪内混合燃烧,喷出的火焰大小和性质可调节人工手持火焰枪进行切割,通常用于大管坯和板坯轧后的切断或用于钢材矫直后去除缺陷的补充切割。
一般数控切割工艺参数
一般数控切割工艺参数1上机操作前注意事项检查各气管、阀门,不许诺有泄漏,检查气体平安装置是不是有效。
检查所提供入口气体压力。
(符合规定)2 火焰切割标准火焰切割前应将钢材表面距切割边缘50mm范围内的锈斑、油污等清除干净。
切割宜采纳周紧密割,氧气纯度、丙烷纯度应达到国家标准纯度。
调整被切割的钢板、尽可能与轨道维持平行。
依照板厚和材质,选择适当割嘴。
割嘴尽可能与钢板垂直。
依照不同板厚和材质、从头设定机械中的切割速度和预热时刻,设定预热氧、切割氧合理压力。
在点火一刻任何人不得进入点火区。
工作人员应尽可能采取飞溅小的切割方式,爱惜割嘴。
检查加热火焰,和切割射流,如发觉割嘴弄脏或损坏,应及时改换、清理。
清理割嘴应用随机专用工具清理。
切割进程中发生回火现象,应及时切断电源,停机关闭气体阀门,回火阀片如被烧化,应停止利用,等待厂家或专业人员进行改换。
操作人员应注意,切割完一个工件后,应将喷枪提升回原位,运行到下一个工位时,再进行切割。
3 CNCSG-4500型数控切割机设备要紧参数CNCSG-4500型数控切割机氧、燃气(乙炔、丙烷)切割工艺参数工作压力设备的工作压力调整。
在机械上均有切割氧、预热氧、燃气三种调压阀,通过这些阀可方便地操纵氧和燃气必要的工件压力,能够从切割表中查得所需要的值。
调整各减压阀必需打开割炬上相应的手控阀来调整所需的工作压力。
利用不合理的工作压力将会造成切割效率低或切割表面不佳等缺点。
设定切割速度和燃气压力切割表中所规定的切割速度,燃气耗量,压力等值均是平均值,该机械可能高于或低于这些平均值来操作,操作人员应依照这些特性及时把握好切割速度,压力的参数,铁锈尘埃及氧化层会使切割氧降低,一样地火焰调剂不正确使得切割速度和质量发生误差。
调剂加热焰打开加热氧阀和燃气阀,点燃喷出的混合气体,调整好适合的加热焰。
如以下图。
必需用弱加热焰来切割薄板,用较强的加热焰来切割厚钢板,若是切割边缘开始溶化,有残余滴挂或形成一串溶化小球,那么加热太强了。
钢板火焰切割面质量要求
SW ********设备制造有限公司企业标准Q/SW.J04.01-04 ——————————————————钢板火焰切割面质量要求(试行)2004年8月29日发布 2004年8月31日实施——————————————————————————————*******机电设备制造有限公司批准钢板火焰切割面质量要求(试行)1.主要内容与适用范围本标准规定了钢板、型材火焰切割面质量要求和精度等级以及切割表面加工余量标准。
本标准主要适用于机械自动、半自动火焰切割,板厚4.5~200mm范围。
2.引用标准:JB/T 10045.3-1999 热切割气割质量和尺寸偏差S/ZZM0004.2-86 氧割下料质量技术要求Q/MTZ1015-85 金属焊接结构件通用技术条件MT/T587-1996 液压支架结构件制造技术条件3.氧割手工划线宽度不大于0.5mm,交角处圆角半径等于1.0mm。
4.切割表面的质量4.1.切割表面垂直度(平面度)的偏差(C):指实际切割断面与被切割金属表面的垂线之间的最大偏差,或是沿切割方向垂直于切割面上的凹凸程度。
按表4-1的规定表4-1 mm注:对不重要的切割表面,其垂直度应放宽取Ⅳ级精度c≤%4δ。
本公司选用Ⅱ级。
手工切割按Ⅲ级标准要求执行。
4.2.切割表面的粗糙度:指切割表面波纹峰与谷之间的距离。
(取任意5点的平均值,用G表示)。
按表4-2的规定:本公司选用Ⅱ-Ⅲ级表4-2 mm注:对不重要的切割表面粗糙度可从宽,作为Ⅳ级对待G<0.35mm。
4.3.切割表面的直线度:是指切割直线时,沿切割方向将起止两端连成的直线同实际切割面之间的间隙。
其公差由板厚δ和长度L决定(用P表示)应符合表4-3的规定。
表4-3 mm4.4.切割面角度偏差,倒角(坡口)偏差,应符合表4-4的规定。
表4-4 mm注:1) 表中Ⅰ、Ⅱ级适用于机械切割,Ⅲ级适用于手工切割,4.5.切割表面上缘熔化程度(S):指切割产生塌角及形成间断或连续性熔滴及熔化条状物的程度。
世界轧机之王-5500mm轧机,设备及生产情况
世界轧机之王——鞍钢5500mm特宽厚板轧机2009-12-01 15:22:59 作者:来源:互联网分享到5工程总投资:54.6亿元工程期限:2005年——2009年你知道这块钢板有多厚吗?这块测试用的钢板厚达200mm,竟然被炮弹像切豆腐一样穿透。
“每一块钢铁里,都隐藏着一个国家兴衰的秘密。
”——Peter Krass,美国钢铁大王卡内基的传记作者。
钢铁工业是重要的基础产业,被誉为工业的脊梁。
轧钢机是钢铁工业核心装备之一。
无论是决定战争胜负的航空母舰、核潜艇等尖端武器;还是关乎社会安危的核电站、巨型桥梁、水库闸门等基础设施;又或是人们日常生活中的汽车、冰箱、洗衣机等消费品;都离不开大型轧钢机生产的优质钢材。
鞍钢是我国最早的钢铁生产基地,始建于1916年,前身为日伪时期的鞍山制铁所和昭和制钢所。
1936年鞍钢第一中板厂建成我国第一台2300mm三辊劳特式中板轧机。
1945年8月苏联红军出兵东北后,将鞍钢7万多吨设备物资拆运回国,使鞍钢生产完全瘫痪,偌大厂区陷入破败境地。
1949年7月9日,新成立的鞍钢公司在一片废墟上恢复建设。
到1957年生铁产量达到336.1万吨,钢291.07万吨,钢材192.39万吨,成为中国第一大钢铁基地,向全国输送了大量专业人才,被誉为共和国钢铁工业的摇篮。
然而同大多数国有企业一样,在上世纪90年代市场大潮的冲击下,积弊严重的鞍钢曾濒临绝境,历经转轨阵痛,通过投巨资对生产线进行技术改造才重获生机。
走过60年风雨历程的鞍钢,目前是我国四大钢铁集团之一,拥有职工十余万人,2008年生产铁1608万吨,钢1604万吨,钢材1499万吨,实现收入796亿元。
形成了以汽车板、家电板、集装箱板、造船板、重轨、无缝钢管、冷轧硅钢为主的完整产品系列,是全球最大的集装箱钢板供货企业和国内主要的船用钢板、汽车钢板供货商;能够生产128个钢种的船用钢板,最大厚度100mm,强度级别从235MPa到550MPa,全部通过9国船级社认证;是世界第3家具备生产高档船体结构板和海洋工程结构钢板的企业。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
厚度大于50mm的厚钢板一般采用火焰切割,也叫氧气切割。
一、火焰切割工艺:(1)根据切割钢板的厚度安装适当孔径的割嘴;(2)将氧气和燃气压力调至规定值;(3)用切割点火器点燃预热焰,接着慢慢打开预热氧气阀,调节火焰白心长度,使火焰成中性焰,预热起割点;(4)在切割起点上只用预热焰加热,割嘴垂直于钢板表面,火焰白心尖端距钢板表面1.5~2.5mm;(5)当起点达到燃烧温度(辉红色)时,打开切割氧气阀,瞬间就可进行切割;(6)在确认已割至钢板下表面后,就沿着切割线以适当的速度移动割嘴继续往前切割;(7)切割终了时,先关闭切割氧气阀,再关闭预热焰的氧气阀。
二、定尺切割定尺方式有碰球定尺和非在线定尺切割:(1) 碰球定尺即切割机定尺脉冲信号由定尺碰球发出,但由于钢坯表面的氧化皮的导电率差,尽管碰到了碰球,但不一定接触良好,为防止误切,系统利用拉矫机速度信号进行积分运算来计算坯长,并与定尺信号进行比较,确保定尺信号的准确性。
(2) 非在线定尺切割利用专门的非在线式铸坯长度测量装置,根据热坯热辐射的原理,通过探头锁定铸坯在导轨内的区域,当铸坯进入区域并占满整个区域后发出定尺信号,然后再给出剪切命令。
三、氧气切割的基本原理:氧气切割是利用气体火焰的热能将工件切割处预热到燃点后,喷出高速切割氧流,使金属燃烧并放出热量而实现切割的方法。
四、氧气切割过程:⑴预热气割开始时,利用气体火焰(氧乙炔焰或氧丙烷焰)将工件待切割处预热到该种金属材料的燃烧温度——燃点(对于碳钢约为1100~1150℃)。
⑵燃烧喷出高速切割氧流,使已达燃点的金属在氧流中激烈燃烧,生成氧化物。
⑶吹渣金属燃烧生成的氧化物被氧流吹掉,形成切口,使金属分离,完成切割过程。
五、氧气切割的三条件:金属材料要进行氧气切割应满足以下三个条件:1)金属燃烧生成氧化物的熔点应低于金属熔点,且流动性要好。
2)金属的燃点应比熔点低。
3)金属在氧流中燃烧时能放出大量的热量,且金属本身的导热性要低。
符合上述气割条件的金属有纯铁、低碳钢、中碳钢、低合金钢以及钛。
其它常用的金属材料如铸铁、不锈钢、铝和铜等由于不满足此三条件,所以不能应用氧气切割,这些材料目前常用的切割方法是等离子弧切割。
六、氧气切割精度与切割质量气割精度是指被切割完的工作几何尺寸与其图纸尺寸对比的误差关系,切割质量是指工件切割断面的表面粗糙度、切口上边缘的熔化塌边程度、切口下边缘是否有挂渣和割缝宽度的均匀性等。
七、影响钢板火焰切割质量的三个基本要素(气体、切割速度、割嘴高度)1.气体(1)氧气氧气是可燃气体燃烧时所必须的,以便为达到钢材的点燃温度提供所需的能量;另外,氧气是钢材被预热达到燃点后进行燃烧所必须的。
切割钢材所用氧气必须要有较高的纯度,一般要求在99.5%以上,一些先进国家的工业标准要求氧气纯度在99.7%以上。
氧气纯度每降低0.5%,钢板的切割速度就要降低10%左右。
如果氧气纯度降低0.8%-1%,不仅切割速度下降15%-20%,同时,割缝也随之变宽,切口下端挂渣多并且清理困难,切割断面质量亦明显劣变,气体消耗量也随着增加。
显然,这就降低了生产效率和切割质量,生产成本也就明显地增加了(见图9-1)。
图9-1 在相同的氧气压力下,氧气纯度对切割时间和氧气消耗量的影响。
采用液氧切割,虽然一次性投资大,但从长远看,其综合经济指标比想象的要好得多。
气体压力的稳定性对工件的切割质量也是至关重要的。
波动的氧气压力将使切割断面质量明显劣变。
气压压力是根据所使用的割嘴类型、切割的钢板厚度而调整的。
切割时如果采用了超出规定数值的氧气压力,并不能提高切割速度,反而使切割断面质量下降,挂渣难清,增加了切割后的加工时间和费用。
表9-1是国内常用的上海气焊机厂生产的GK1系列快速割嘴(即采用拉伐尔喷管结构的割嘴)的使用参数(厂家可能随时对参数进行修改,应以割嘴所附说明书为准,此表仅供参考)。
表9-1 GK1割嘴性能参数表(2)可燃性气体火焰切割中,常用的可燃性气体有乙炔、煤气、天然气、丙烷等,国外有些厂家还使用MAPP,即:甲烷+乙烷+丙烷。
一般来说,燃烧速度快、燃烧值高的气体适用于薄板切割;燃烧值低、燃烧速度缓慢的可燃性气体更适用于厚板切割,尤其是厚度在200mm以上的钢板,如采用煤气或天然气进行切割,将会得到理想的切割质量,只是切割速度会稍微降低一些。
相比较而言,乙炔比天然气要贵得多,但由于资源问题,在实际生产中,一般多采用乙炔气体,只是在切割大厚板同时又要求较高的切割质量以及资源充足时,才考虑使用天然气。
(3)火焰的调整通过调整氧气和乙炔的比例可以得到三种切割火焰:中性焰(即正常焰),氧化焰,还原焰,见图9-2。
正常火焰的特征是在其还原区没有自由氧和活性碳,有三个明显的区域,焰芯有鲜明的轮廓(接近于圆柱形)。
焰芯的成分是乙炔和氧气,其末端呈均匀的圆形和光亮的外壳。
外壳由赤热的碳质点组成。
焰芯的温度达1000℃。
还原区处于焰芯之外,与焰芯的明显区别是它的亮度较暗。
还原区由乙炔未完全燃烧的产物——氧化碳和氢组成,还原区的温度可达3000℃左右。
外焰即完全燃烧区,位于还原区之外,它由二氧化碳和水蒸气、氮气组成,其温度在1200~2500℃之间变化。
氧化焰是在氧气过剩的情况下产生的,其焰芯呈圆锥形,长度明显地缩短,轮廓也不清楚,亮度是暗淡的;同样,还原区和外焰也缩短了,火焰呈紫蓝色,燃烧时伴有响声,响声大小与氧气的压力有关,氧化焰的温度高于正常焰。
如果使用氧化焰进行切割,将会使切割质量明显地恶化。
还原焰是在乙炔过剩的情况下产生的,其焰芯没有明显的轮廓,其焰芯的末端有绿色的边缘,按照这绿色的边缘来判断有过剩的乙炔;还原区异常的明亮,几乎和焰芯混为一体;外焰呈黄色。
当乙炔过剩太多时,开始冒黑烟,这是因为在火焰中乙炔燃烧缺乏必须的氧气造成的。
预热火焰的能量大小与切割速度、切口质量关系相当密切。
随着被切工件板厚的增大和切割速度的加快,火焰的能量也应随之增强,但又不能太强,尤其在割厚板时,金属燃烧产生的反应热增大,加强了对切割点前沿的预热能力,这时,过强的预热火焰将使切口上边缘严重熔化塌边。
太弱的预热火焰,又会使钢板得不到足够的能量,逼使减低切割速度,甚至造成切割过程中断。
所以说预热火焰的强弱与切割速度的关系是相互制约的。
一般来说,切割200mm以下的钢板使用中性焰可以获得较好的切割质量。
在切割大厚度钢板时应使用还原焰预热切割,因为还原焰的火焰比较长,火焰的长度应至少是板厚的1.2倍以上。
2.切割速度钢板的切割速度是与钢材在氧气中的燃烧速度相对应的。
在实际生产中,应根据所用割嘴的性能参数、气体种类及纯度、钢板材质及厚度来调整切割速度。
切割速度直接影响到切割过程的稳定性和切割断面质量。
如果想人为地调高切割速度来提高生产效率和用减慢切割速度来最佳地改善切割断面质量,那是办不到的,只能使切割断面质量变差。
过快的切割速度会使切割断面出现凹陷和挂渣等质量缺陷,严重的有可能造成切割中断;过慢的切割速度会使切口上边缘熔化塌边、下边缘产生圆角、切割断面下半部分出现水冲状的深沟凹坑等等。
通过观察熔渣从切口喷出的特点,可调整到合适的切割速度。
在正常的火焰切割过程中,切割氧流相对垂直的割炬来说稍微偏后一个角度,其对应的偏移叫后拖量(见图9-3)。
速度过低时,没有后拖量,工件下面割口处的火花束向切割方向偏移。
如提高割炬的运行速度,火花束就会向相反的方向偏移,当火花束与切割氧流平行时,就认为该切割速度正常。
速度过高时,火花束明显后偏,见图9-4。
3.割嘴与被切工件表面的高度在钢板火焰切割过程中,割嘴到被切工作表面的高度是决定切口质量和切割速度的主要因素之一。
不同厚度的钢板,使用不同参数的割嘴,应调整相应的高度。
为保证获得高质量的切口,割嘴到被割工件表面的高度,在整个切割过程中必须保持基本一致。
9.2 热变形的控制在切割过程中,由于对钢板的不均匀的加热和冷却,材料内部应力的作用将使被切割的工件发生不同程度的弯曲或移位——即热变形,具体表现是形状扭曲和切割尺寸偏差。
由于材料内部应力不可能平衡和完全消除,所以只能采取一些措施来设法减少热变形。
9.3 钢板表面预处理钢板从钢铁厂经过一系列的中间环节到达切割车间,在这段时间里,钢板表面难免产生一层氧化皮。
再者,钢板在轧制过程中也产生一层氧化皮附着在钢板表面。
这些氧化皮熔点高,不容易燃烧和熔化,增加了预热时间,降低了切割速度;同时经过加热,氧化皮四处飞溅,极易对割嘴造成堵塞,降低了割嘴的使用寿命。
所以,在切割前,很有必要对钢板表面进行除锈预处理。
常用的方法是抛丸除锈,之后喷漆防锈。
即将细小铁砂用喷丸机喷向钢板表面,靠铁砂对钢板的冲击力除去氧化皮,再喷上阻燃、导电性好的防锈漆。
钢板切割之前的除锈喷漆预处理已成为金属结构生产中一个不可缺少的环节。
9.4 数控火焰切割质量缺陷与原因分析在实际生产过程中,经常会产生这样或那样的质量问题,一般有如下几种缺陷:边缘缺陷,切割断面缺陷,挂渣、裂纹等。
而造成质量事故的原因很多,如果氧气纯度保证正常,设备运行正常,那么造成火焰切割质量缺陷的原因主要表现在如下几个方面:割炬、割嘴、钢材本身质量、钢板材质。
1.上边缘切割质量缺陷这是由于熔化而造成的质量缺陷。
(1)上边缘塌边现象:边缘熔化过快,造成圆角塌边。
原因:① 切割速度太慢,预热火焰太强;② 割嘴与工件之间的高度太高或太低;使用的割嘴号太大,火焰中的氧气过剩。
(2)水滴状熔豆串(见图9-9)现象:在切割的上边缘形成一串水滴状的熔豆。
原因:① 钢板表面锈蚀或有氧化皮;② 割嘴与钢板之间的高度太小,预热火焰太强;③ 割嘴与钢板之间的高度太大。
(3)上边缘塌边并呈现房檐状(见图9-10)现象:在切口上边缘,形成房檐状的凸出塌边。
原因:① 预热火焰太强;② 割嘴与钢板之间的高度太低;③ 切割速度太慢;割嘴与工件之间的高度太大,使用的割嘴号偏大,预热火焰中氧气过剩。
(4)切割断面的上边缘有挂渣(见图9-11)现象:切口上边缘凹陷并有挂渣。
原因:① 割嘴与工件之间的高度太大,切割氧压力太高;② 预热火焰太强。
2.切割断面凹凸不平,即平面度差(1)切割断面上边缘下方,有凹形缺陷(见图9-12)现象:在接受切割断面上边缘处有凹陷,同时上边缘有不同程度的熔化塌边。
原因:① 切割氧压力太高;② 割嘴与工件之间的高度太大;割嘴有杂物堵塞,使风线受到干扰变形。
(2)割缝从上向下收缩(见图9-13)现象:割缝上宽下窄。
原因:① 切割速度太快;② 割嘴与工件之间的高度太大,割嘴有杂物堵塞,使风线受到干扰变形。
(3)割缝上窄下宽(见图9-14)现象:割缝上窄下宽,成喇叭状。
原因:① 切割速度太快,切割氧压力太高;② 割嘴号偏大,使切割氧流量太大;③ 割嘴与工件之间的高度太大;(4)切割断面凹陷(见图9-15)现象:在整个切割断面上,尤其中间部位有凹陷。