MATLAB作图(超详细)
MATLAB作图教程
2
Matlab 绘图
如何画出 y=sin(x) 在 [0, 2*pi] 上的图像?
3
Matlab 绘图
手工作图
找点: x=0, pi/3, pi/2, 2*pi/3, pi, … 计算函数值: y=sin(0), sin(pi/3), sin(pi/2), 描点:在坐标系中画出这些离散点
…
19
以下标为横坐标,元素值为纵坐标,等价于:
x=[1:length(y)];plot(x,y);
例:>> y=[0,0.48,0.84,1,0.91,6.14];
>> plot(y); >> figure(2); plot([1:length(y)], y)
自己动手
plot(Y): 当 Y 是矩阵时的图形是什么? >> Y=[1 2; 3 5; 6 9]; plot(Y); >> plot(Y’);
25
图形的其他属性
图形标注与坐标控制 有关图形标注函数的调用格式为: title(图形名称) xlabel(x轴说明) ylabel(y轴说明) text(x,y,图形说明) legend(图例1,图例2,…)
26
图形的其他属性ຫໍສະໝຸດ 标题 title(’text’)
例
可以指定文本的属性 title('text', 'Property1', value1, ' Property2', value2, ...)
自己动手
在0≤x≤2区间内,绘制曲线
y=2e-0.5x cos(4πx)
14
【例】在0≤x≤2区间内,绘制曲线
y=2e-0.5x cos(4πx)
matlab作图
第四章M ATLAB的图视化功能1.MATLAB的图视化概论数据图视化能使人们用视觉器官直接感受到数据的许多内在本质。
因此,数据可视化是人们研究科学、认识世界所不可缺少的手段。
MATLAB不仅数值计算方面是一个优秀的科技应用软件,在数据可视化方面也具有上佳表现。
MATLAB具有二维、三维乃至四维的图形表现能力。
可以从线型、边界面、色彩、渲染、光线、视角等方面把数据的特征表现出来。
MAT LAB的图视化功能是建立在一组“图形对象”的基础之上的。
“图形对象”的核心是图形的句柄(Granhics Handle)操作。
MATLAB的有两个层次的绘图指令:(1)底层(Low-leve)绘图指令:是直接对句柄进行操作。
底层绘图指令控制和表现数据图形的能力比高层绘图指令强。
特点是灵活多变,较难掌握。
(2)高层(High-level)绘图指令:建立在底层指令上的绘图指令。
最常用的是高层绘图指令。
高层绘图指令简单明了容易掌握,本章介绍高层绘图指令。
本章内容按“前易后难”的原则安排。
最常用的二个绘图指令是: plot ;mesh2.二维图形(1)p lot函数以下例子用来体会plot 的基本的绘图原理。
例:绘向量得折线图:hold onx=[2.3,4.3,3,4,4.9,1.5,2.8,4.6,5.5];plot(x)plot(x,'ro')注1:plot 绘图的基本素材是二维点组(xi,yi)(1=1,2,….n)。
二维点组(xi,yi)(1=1,2,….n)的定义形式:*1) x=[2.3,4.3,3,4,4.9,1.5,2.8,4.6,5.5];*2) y=0:0.1:5这种定义方法,默认横坐标是自然数(1,2,3,4…..)*3) t=0:pi/100:2*pix=sin(t)*4) x=[1.5,2.3,2.8,3,4,4.3,4.6,4.9,5.5];y=x.^2这种定义方法,要注意自变量保持升序。
最全面的MATLAB作图
Matlab绘图强大的绘图功能是Matlab的特点之一,Matlab提供了一系列的绘图函数,用户不需要过多的考虑绘图的细节,只需要给出一些基本参数就能得到所需图形,这类函数称为高层绘图函数。
此外,Matlab还提供了直接对图形句柄进行操作的低层绘图操作。
这类操作将图形的每个图形元素(如坐标轴、曲线、文字等)看做一个独立的对象,系统给每个对象分配一个句柄,可以通过句柄对该图形元素进行操作,而不影响其他部分。
本章介绍绘制二维和三维图形的高层绘图函数以及其他图形控制函数的使用方法,在此基础上,再介绍可以操作和控制各种图形对象的低层绘图操作。
一.二维绘图二维图形是将平面坐标上的数据点连接起来的平面图形。
可以采用不同的坐标系,如直角坐标、对数坐标、极坐标等。
二维图形的绘制是其他绘图操作的基础。
一.绘制二维曲线的基本函数在Matlab中,最基本而且应用最为广泛的绘图函数为plot,利用它可以在二维平面上绘制出不同的曲线。
1.plot函数的基本用法plot函数用于绘制二维平面上的线性坐标曲线图,要提供一组x坐标和对应的y坐标,可以绘制分别以x和y为横、纵坐标的二维曲线。
plot函数的应用格式plot(x,y) 其中x,y为长度相同的向量,存储x坐标和y坐标。
例51 在[0 , 2pi]区间,绘制曲线程序如下:在命令窗口中输入以下命令>> x=0:pi/100:2*pi;>> y=2*exp(-0.5*x).*sin(2*pi*x);>> plot(x,y)程序执行后,打开一个图形窗口,在其中绘制出如下曲线注意:指数函数和正弦函数之间要用点乘运算,因为二者是向量。
例52 绘制曲线这是以参数形式给出的曲线方程,只要给定参数向量,再分别求出x,y向量即可输出曲线:>> t=-pi:pi/100:pi;>> x=t.*cos(3*t);>> y=t.*sin(t).*sin(t);>> plot(x,y)程序执行后,打开一个图形窗口,在其中绘制出如下曲线以上提到plot函数的自变量x,y为长度相同的向量,这是最常见、最基本的用法。
MATLAB画图——基础篇
MATLAB画图——基础篇MATLAB画图——基础篇在MATLAB使⽤的过程中,学会画图是⼀项必要的技能。
在这⾥,我总结了部分简单的画图函数,同时附上代码(本⽂中的程序为了⽅便给出的数据都很简单,⼤家可以⾃⼰去尝试其他数据)。
这对刚刚开始接触MATLAB的⼩⽩来说,我认为还是很有帮助的。
⽂章⽬录⼀、plot()函数1.⼆维图形(1)绘图选项线型颜⾊标记符号-实线b蓝⾊.点s⽅块:虚线g绿⾊o圆圈d菱形.-点划线r红⾊x叉v朝下三⾓符号-双划线c青⾊+加号^朝上三⾓符号m品红*星号<朝左三⾓符号y黄⾊>朝右三⾓符号p五⾓星k⿊⾊h六⾓星w⽩⾊(2)图形的辅助标注和窗⼝的分割title(图形说明)xlabel(x轴说明)ylabel(y轴说明)text(x,y图形说明)——在x,y轴处添加⽂字说明legend(图例⼀,图例⼆,…)subplot(m,n,p)——将绘图区域分割成m*n个⼦区域,并按照⾏从左⾄ 右,从上⾄下依次编号。
p表⽰第p个绘图⼦区域。
注意:如果是要两个图画到同⼀个坐标⾥⾯,则在两个plot函数之间添加⼀⾏hold on(3)格式plot(x)——缺省⾃变量绘图格式plot(x,y)——基本格式。
以y(x)的函数关系作图。
如果y是n*m的矩 阵,则x为⾃变量,作出m条曲线。
plot(x1,y1,x2,y2,…,xn,yn)——多条曲线绘图格式plot(x1,y1,选项1,x2,y2,选项2,…,xn,yn,选项n)——含选项的绘图格式x1=[1 2 3 4 5 6 7 8 9];x2=[2 4 6 8 10 12 14 16 18];y1=[1 4 9 16 25 36 49 64 81];y2=[18 16 14 12 10 8 6 4 2];subplot(4,1,1);plot(x1);title('例⼀');xlabel('⾃变量');ylabel('因变量');subplot(4,1,2);plot(x1,y1);title('例⼆');xlabel('⾃变量');ylabel('因变量');subplot(4,1,3);plot(x1,y1,x2,y2);title('例三');xlabel('⾃变量');ylabel('因变量');subplot(4,1,4);plot(x1,y1,'m+',x2,y2,'c*');title('例四');xlabel('⾃变量');ylabel('因变量');2.三维图形(1)格式plot3(x1,y1,z1,‘选项⼀’,x2,y2,z1,‘选项⼆’,…)x,y,z是长度相同的向量:⼀条曲线x,y,z是维度相同的矩阵:多条曲线(2)⽹格矩阵⽣成函数:meshgrid[X,Y]=meshgrid(x,y)x,y是给定的向量,X,Y是⽹格划分后得到的⽹格矩阵注意,这个函数⽤来⽣成⽹格矩阵,不是直接⽤来画图的,配合mesh使⽤。
详尽全面的matlab绘图教程
详尽全⾯的matlab绘图教程Matlab绘图强⼤的绘图功能是Matlab的特点之⼀,Matlab提供了⼀系列的绘图函数,⽤户不需要过多的考虑绘图的细节,只需要给出⼀些基本参数就能得到所需图形,这类函数称为⾼层绘图函数。
此外,Matlab还提供了直接对图形句柄进⾏操作的低层绘图操作。
这类操作将图形的每个图形元素(如坐标轴、曲线、⽂字等)看做⼀个独⽴的对象,系统给每个对象分配⼀个句柄,可以通过句柄对该图形元素进⾏操作,⽽不影响其他部分。
本章介绍绘制⼆维和三维图形的⾼层绘图函数以及其他图形控制函数的使⽤⽅法,在此基础上,再介绍可以操作和控制各种图形对象的低层绘图操作。
⼀.⼆维绘图⼆维图形是将平⾯坐标上的数据点连接起来的平⾯图形。
可以采⽤不同的坐标系,如直⾓坐标、对数坐标、极坐标等。
⼆维图形的绘制是其他绘图操作的基础。
⼀.绘制⼆维曲线的基本函数在Matlab中,最基本⽽且应⽤最为⼴泛的绘图函数为plot,利⽤它可以在⼆维平⾯上绘制出不同的曲线。
1. plot函数的基本⽤法plot函数⽤于绘制⼆维平⾯上的线性坐标曲线图,要提供⼀组x坐标和对应的y坐标,可以绘制分别以x和y为横、纵坐标的⼆维曲线。
plot函数的应⽤格式plot(x,y) 其中x,y为长度相同的向量,存储x坐标和y坐标。
例51 在[0 , 2pi]区间,绘制曲线程序如下:在命令窗⼝中输⼊以下命令>> x=0:pi/100:2*pi;>> y=2*exp(-0.5*x).*sin(2*pi*x);>> plot(x,y)程序执⾏后,打开⼀个图形窗⼝,在其中绘制出如下曲线注意:指数函数和正弦函数之间要⽤点乘运算,因为⼆者是向量。
例52 绘制曲线这是以参数形式给出的曲线⽅程,只要给定参数向量,再分别求出x,y向量即可输出曲线:>> t=-pi:pi/100:pi;>> x=t.*cos(3*t);>> y=t.*sin(t).*sin(t);>> plot(x,y)程序执⾏后,打开⼀个图形窗⼝,在其中绘制出如下曲线以上提到plot函数的⾃变量x,y为长度相同的向量,这是最常见、最基本的⽤法。
第四章___matlab_绘图
例,绘制阶梯曲线 x=0:pi/20:2*pi;y=sin(x);stairs(x,y)
1
0 .8
0 .6
0 .4
0 .2
0
-0 .2
-0 .4
-0 .6
-0 .8
-1
0
1
2
3
4
5
6
7
例:阶梯绘图
h2=[1 1;1 -1];h4=[h2 h2;h2 -h2]; h8=[h4 h4;h4 -h4];t=1:8; subplot(8,1,1);stairs(t,h8(1,:));axis('off') subplot(8,1,2);stairs(t,h8(2,:));axis('off') subplot(8,1,3);stairs(t,h8(3,:));axis('off') subplot(8,1,4);stairs(t,h8(4,:));axis('off') subplot(8,1,5);stairs(t,h8(5,:));axis('off') subplot(8,1,6);stairs(t,h8(6,:));axis('off') subplot(8,1,7);stairs(t,h8(7,:));axis('off') subplot(8,1,8);stairs(t,h8(8,:));axis('off')
1 0.8 0.6 0.4 0.2
0 -0.2 -0.4
y
y1 y2
例 3:y=sin(t);y1=sin(t+0.25);y2=sin(t+0.5); y3=cos(t);y4=cos(t+0.25);y5=cos(t+0.5); plot(t,[y',y1',y2',y3',y4',y5'])
第5章MATLAB绘图99930资料
程序如下:
x=(0:pi/100:2*pi)';
y1=2*exp(-0.5*x)*[1,-1];
y2=2*exp(-0.5*x).*sin(2*pi*x);
plot(x,y1,'b:'); axis([0,2*pi,-2,2]); %设置坐标 hold on; %设置图形保持状态
plot(x,y2,'k');
参数的grid命令在两种状态之间进行切换。 box on/off命令控制是加还是不加边框线,不带
参数的box命令在两种状态之间进行切换。
例5.5 绘制分段函数曲线并添加图形标注。
程序如下:
x=linspace(0,10,100);
y=[];
for x0=x
if x0>=8
y=[y,1];
elseif x0>=6
subplot(4,4,8);
%选择4×4个区中的8号区
plot(x,ct);title('cotangent(x)');axis ([0,2*pi,-40,40]);
对图形窗口灵活分割。
5.1.3 绘制二维图形的其他函数 1. 其他形式的线性直角坐标图
在线性直角坐标系中,其他形式的图形有 条形图、阶梯图、杆图和填充图等,所 采用的函数分别是:
当前图形窗口,图形窗口原有图形将不复 存在。若希望在已存在的图形上再继续添 加新的图形,可使用图形保持命令hold。 hold on/off命令控制是保持原有图形还是刷 新原有图形,不带参数的hold命令在两种状 态之间进行切换。
Matlab绘图教程(大量实例PPT)
MATLAB绘图二维数据曲线图pplot函数的基本调用格式为:x,y) )plot(plot(x,y其中x和y为长度相同的向量,分别用于存储x坐标和y坐标数据。
数据例1 在0≤x2π区间内,绘制曲线y=2e-0.5x cos(4πx)1≤区间内绘制曲线205x(4)程序如下:x=0:pi/100:2*pi;cos(4*pi*x);0.5*x).*cos(4*pi*x);y=2*exp(--0.5*x).*y=2*exp(x,y))plot(x,yplot(x yplot(x y)例2 绘制曲线。
绘制曲线程序如下:t=0:0.1:2*pi;x=t.sin(3t);x=t*sin(3*t);y=t.*sin(t).*sin(t); plot(x,y););plot(x,y数最简单的调用格式是包含个输参数plot函数最简单的调用格式是只包含一个输入参数:p()plot(x)在这种情况下,当x是实向量时,以该向量元素的下标为横坐标,元素值为纵坐标画出条连续曲线,标为横坐标,元素值为纵坐标画出一条连续曲线,这实际上是绘制折线图。
绘制多根二维曲线1.plot函数的输入参数是矩阵形式时数的输参数是矩阵形式时(1) 当x是向量,y是有一维与x同维的矩阵时,则绘制出多根不同颜色的曲线。
曲线条数等于y矩阵的另一维数,x被作为这些曲线共同的横坐标。
(2) 当x,y是同维矩阵时,则以x,y对应列元素为横、纵坐标分别绘制曲线,曲线条数等于矩阵的列数。
纵坐标分别绘制曲线曲线条数等于矩阵的列数(3) 对只包含一个输入参数的plot函数,当输入参数对包含个输参数的数当输参数是实矩阵时,则按列绘制每列元素值相对其下标的曲线曲线条数等于输入参数矩阵的列数的曲线,曲线条数等于输入参数矩阵的列数。
当输入参数是复数矩阵时,则按列分别以元素实部和虚部为横、纵坐标绘制多条曲线。
2.含多个输入参数的plot函数含多个输参数的数调用格式为:plot(x1,y1,x2,y2,…,xn,yn)(1) 当输入参数都为向量时,x1和y1,x2和y2,…,(1)当输入参数都为向量时xn和yn分别组成一组向量对,每一组向量对的长度可以不同每一向量对可以绘制出一条曲线度可以不同。
怎样用Matlab绘图
help plothelp axisa1=plot();hlod ona2=plot();legend([a1 a2],'图1 名',‘图2 名')hold offx1=-pi:pi/12:pi;x2=-pi:pi/12:pi;y1=sin(x1);y2=cos(x2);plot(x1,y1,x2,y2);axis([-2*pi 2*pi -2 2]);xlabel('x');ylabel('y');title('sin(x) & cos(x)');MATLAB受到控制界广泛接受的一个重要原因是因为它提供了方便的绘图功能.这里主要介绍2 维图形对象的生成函数及图形控制函数的使用方法,还将简单地介绍一些图形的修饰与标注函数及操作和控制MATLAB 各种图形对象的方法.第一节图形窗口与坐标系一.图形窗口1.MATLAB 在图形窗口中绘制或输出图形,因此图形窗口就像一张绘图纸.2.在MATLAB 下,每一个图形窗口有唯一的一个序号h,称为该图形窗口的句柄.MATLAB 通过管理图形窗口的句柄来管理图形窗口;3.当前窗口句柄可以由MATLAB 函数gcf 获得;4. 在任何时刻, 只有唯一的一个窗口是当前的图形窗口( 活跃窗口);figure(h)----将句柄为h 的窗口设置为当前窗口;5.打开图形窗口的方法有三种:1)调用绘图函数时自动打开;2)用File---New---Figure 新建;3)figure 命令打开,close 命令关闭.在运行绘图程序前若已打开图形窗口,则绘图函数不再打开,而直接利用已打开的图形窗口;若运行程序前已存在多个图形窗口,并且没有指定哪个窗口为当前窗口时,则以最后使用过的窗口为当前窗口输出图形.6.窗口中的图形打印:用图形窗口的File 菜单中的Print 项.7.可以在图形窗口中设置图形对象的参数.具体方法是在图形窗口的Edit 菜单中选择Properties 项,打开图形对象的参数设置窗口,可以设置对象的属性.二.坐标系1.一个图形必须有其定位系统,即坐标系;2.在一个图形窗口中可以有多个坐标系,但只有一个当前的坐标系;3.每个坐标系都有唯一的标识符,即句柄值;4.当前坐标系句柄可以由MATLAB 函数gca 获得;5.使某个句柄标识的坐标系成为当前坐标系,可用如下函数:axes(h) h 为指定坐标系句柄值.6.一些有关坐标轴的函数:1)定义坐标范围:一般MATLAB 自动定义坐标范围,如用户认为设定的不合适,可用:axis([Xmin, Xmax, Ymin, Ymax])重新设定;2)坐标轴控制:MATLAB 的缺省方式是在绘图时,将所在的坐标系也画出来,为隐去坐标系,可用axis off;axis on 则显示坐标轴(缺省值).3)通常MATLAB 的坐标系是长方形,长宽比例大约是4:3,为了得到一个正方形的坐标系可用:axis square4)坐标系横纵轴的比例是自动设置的,比例可能不一样,要得到相同比例的坐标系,可用:axis equal第二节二维图形的绘制一. plot 函数plot 函数是最基本的绘图函数,其基本的调用格式为:1.plot(y)------绘制向量y 对应于其元素序数的二维曲线图,如果y 为复数向量,则绘制虚部对于实部的二维曲线图.例:绘制单矢量曲线图.y=[0 0.6 2.3 5 8.3 11.7 15 17.7 19.4 20];plot(y)由于y 矢量有10 个元素,x 坐标自动定义为[1 2 3 4 5 6 7 8 9 10].2.plot(x,y)------绘制由x,y 所确定的曲线.1)x,y 是两组向量,且它们的长度相等,则plot(x,y)可以直观地绘出以x 为横坐标,y 为纵坐标的图形.如:画正弦曲线:t=0:0.1:2*pi;y=sin(t);plot(t,y)2)当plot(x,y)中,x 是向量,y 是矩阵时,则绘制y 矩阵中各行或列对应于向量x的曲线.如果y 阵中行的长度与x 向量的长度相同,则以y 的行数据作为一组绘图数据;如果y 阵中列的长度与x 向量的长度相同,则以y 的列数据作为一组绘图数据;如果y 阵中行,列均与x 向量的长度相同,则以y 的每列数据作为一组绘图数据.例:下面的程序可同时绘出三条曲线.MATLAB 在绘制多条曲线时,会按照一定的规律自动变化每条曲线的的颜色.x=0:pi/50:2*pi;y(1,:)=sin(x);y(2,:)=0.6*sin(x);y(2,:)=0.3*sin(x);plot(x,y)或者还可以这样用:x=0:pi/50:2*pi;y=[ sin(x); 0.6*sin(x); 0.3*sin(x)];plot(x,y)3) 如果x,y 是同样大小的矩阵,则plot(x,y)绘出y 中各列相应于x 中各列的图形.例:x(1,:)=0:pi/50:2*pi;x(2,:)=pi/4:pi/50:2*pi+pi/4;x(3,:)=pi/2:pi/50:2*pi+pi/2;y(1,:)=sin(x(1,:));y(2,:)=0.6*sin(x(2,:));y(3,:)=0.3*sin(x(3,:));plot(x,y)x=x';y=y';figureplot(x,y)在这个例子中,x------3x101,y------3x101,所以第一个plot 按列画出101 条曲线,每条3 个点;而x'------101x3,y'------101x3,所以第二个plot 按列画出3 条曲线,每条101 个点.3.多组变量绘图:plot(x1, y1, 选项1, x2, y2, 选项2, ……)上面的plot 格式中,选项是指为了区分多条画出曲线的颜色,线型及标记点而设定的曲线的属性.MATLAB 在多组变量绘图时,可将曲线以不同的颜色,不同的线型及标记点表示出来.这些选项如下表所示:各种颜色属性选项'r' 红色'm' 粉红'g' 绿色'c' 青色'b' 兰色'w' 白色'y' 黄色'k' 黑色各种线型属性选项'-' 实线'--' 虚线':' 点线'-.' 点划线各种标记点属性选项'.' 用点号绘制各数据点'^' 用上三角绘制各数据点'+' 用'+'号绘制各数据点'v' 用下三角绘制各数据点'*' 用'*'号绘制各数据点'>' 用右三角绘制各数据点' .' 用'.'号绘制各数据点'<' 用左三角绘制各数据点's'或squar 用正方形绘制各数据点'p' 用五角星绘制各数据点'd'或diamond 用菱形绘制各数据点'h' 用六角星绘制各数据点这些选项可以连在一起用,如:'-.g'表示绘制绿色的点划线,'g+'表示用绿色的'+'号绘制曲线.注意:1)表示属性的符号必须放在同一个字符串中;2)可同时指定2~3 个属性;3)与先后顺序无关;4)指定的属性中,同一种属性不能有两个以上.例:t=0:0.1:2*pi;y1=sin(t);y2=cos(t);y3=sin(t).*cos(t);plot(t,y1, '-r',t,y2, ':g',t,y3, '*b')该程序还可以按下面的方式写:t=0:0.1:2*pi;y1=sin(t);y2=cos(t);y3=sin(t).*cos(t);plot(t,y1, '-r')hold onplot(t,y2, ':g')plot(t,y3, '*b')hold off注:在MATLAB 中,如画图前已有打开的图形窗口,则再画图系统将自动擦掉坐标系中已有的图形对象,但设置了hold on 后,可以保持坐标系中已绘出的图形.还可以进一步设置包括线的宽度(LineWidth), 标记点的边缘颜色(MarkerEdgeColor),填充颜色(MarkerFaceColor)及标记点的大小(MarkerSize)等其它绘图属性.例:设置绘图线的线型,颜色,宽度,标记点的颜色及大小.t=0:pi/20:pi;y=sin(4*t).*sin(t)/2;plot(t,y,'-bs','LineWidth',2,... %设置线的宽度为2'MarkerEdgeColor','k',... %设置标记点边缘颜色为黑色'MarkerFaceColor','y',... %设置标记点填充颜色为黄色'MarkerSize',10) %设置标记点的尺寸为104.双Y 轴绘图:plotyy()函数.其调用格式为: plotyy(x1,y1,x2,y2)------绘制由x1,y1 和x2,y2 确定的两组曲线,其中x1,y1 的坐标轴在图形窗口的左侧,x2,y2 的坐标轴在图形窗口的右侧.Plotyy(x1,y1,x2,y2, 'function1','function2')------功能同上,function 是指那些绘图函数如:plot,semilogx,loglog 等.例如:在一个图形窗口中绘制双Y 轴曲线.x=0:0.3:12;y=exp(-0.3*x).*sin(x)+0.5;plotyy(x,y,x,y,'plot','stem')stem:绘制stem 形式的曲线(上端带圈的竖线).绘图结果:两条图线自动用不同的颜色区分,两个坐标的颜色与图线的颜色相对应,左边的Y 轴坐标对应的是plot 形式的曲线,右边的Y 坐标对应的是stem 形式的曲线.二.对数坐标图绘制函数:在对数坐标图的绘制中,有三种绘图函数:semilogx,semilogy 和loglog 函数.1)semilogx( )------绘制以X 轴为对数坐标轴的对数坐标图. 其调用格式为:semilogx(x,y,'属性选项')其中属性选项同plot 函数.该函数只对横坐标进行对数变换,纵坐标仍为线性坐标.2)semilogy( )------绘制以Y 轴为对数坐标轴的对数坐标图. 其调用格式为:semilogy(x,y,'属性选项')该函数只对纵坐标进行对数变换,横坐标仍为线性坐标.3)loglog( )------ 绘制X,Y 轴均为对数坐标轴的图形.其调用格式为:loglog(x,y,'属性选项')该函数分别对横,纵坐标都进行对数变换.例:x=0:0.1:6*pi;y=cos(x/3)+1/9;subplot(221), semilogx(x,y);subplot(222), semilogy(x,y);subplot(223), loglog(x,y);4)MATLAB 还提供了一个实用的函数:logspace( )函数,可按对数等间距地分布来产生一个向量,其调用格式为:x=logspace(x1,x2,n)这里,x1 表示向量的起点;x2 表示向量的终点;n 表示需要产生向量点的个数(一般可以不给出,采用默认值50).在控制系统分析中一般采用这种方法来构成频率向量w.关于它的应用后面还要讲到.三.极坐标图的绘制函数:绘极坐标图可用polar( )函数.其调用格式如下:polar(theta, rho,'属性选项')------theta:角度向量,rho:幅值向量,属性内容与plot 函数基本一致.例如:极坐标模型为:3145/)/)cos((+ =θρ, ],[πθ80∈则绘出极坐标图的程序为:theta=0:0.1:8*pi;p=cos((5*theta)/4)+1/3;polar(theta,p)四.绘制多个子图:subplot( )函数MATLAB 允许在一个图形窗口上绘制多个子图(如对于多变量系统的输出),允许将窗口分成nxm 个部分.分割图形窗口用subplot 函数来实现,其调用格式为:subplot(n,m,k)或subplot(nmk)------n,m 分别表示将窗口分割的行数和列数,k 表示要画图部分的代号,表示第几个图形,nmk 三个数可以连写,中间不用符号分开.例如:将窗口划分成2x2=4 个部分,可以这样写:subplot(2,2,1),plot(……)subplot(2,2,2),……subplot(2,2,3),……subplot(2,2,4),……注:subplot 函数没有画图功能,只是将窗口分割.第三节图形的修饰与标注MATLAB 提供了一些特殊的函数修饰画出的图形,这些函数如下: 1)坐标轴的标题:title 函数其调用格式为:title('字符串')------字符串可以写中文如:title('My own plot')2)坐标轴的说明:xlabel 和ylabel 函数格式:xlabel('字符串')ylabel('字符串')如:xlabel('This is my X axis') ylabel('My Y axis')3)图形说明文字:text 和gtext 函数A.text 函数:按指定位置在坐标系中写出说明文字.格式为:text(x1, y1, '字符串', '选项') x1,y1 为指定点的坐标;'字符串'为要标注的文字;'选项'决定x1,y1 的坐标单位,如没有选项,则x1,y1 的坐标单位和图中一致;如选项为'sc', 则x1,y1 表示规范化窗口的相对坐标,其范围为0到1.如:text(1,2, '正弦曲线')B.gtext 函数:按照鼠标点按位置写出说明文字.格式为:gtext('字符串')当调用这个函数时,在图形窗口中出现一个随鼠标移动的大十字交叉线,移动鼠标将十字线的交叉点移动到适当的位置,点击鼠标左键,gtext 参数中的字符串就标注在该位置上.4)给图形加网格:grid 函数在调用时直接写grid 即可.上面的函数的应用实例:例:在图形中加注坐标轴标识和标题及在图形中的任意位置加入文本.t=0:pi/100:2*pi;y=sin(t);plot(t,y),grid,axis([0 2*pi -1 1])xlabel('0 leq itt rm leq pi','FontSize',16)ylabel('sin(t)','FontSize',20)title('正弦函数图形','FontName','隶书' ,'FontSize',20) text(pi,sin(pi),'leftarrowsin(t)=0','FontSize',16)text(3*pi/4,sin(3*pi/4),'leftarrowsin(t)=0.707','FontSize',16)text(5*pi/4,sin(5*pi/4),' sin(t)=-0.707rightarrow',... 'FontSize',16,'HorizontalAlignment','right')5)在图形中添加图例框:legend 函数其调用格式为:A.legend('字符串1', '字符串2', ……)------以字符串1,字符串2……作为图形标注的图例.B.legend('字符串1', '字符串2', ……, pos)------pos 指定图例框显示的位置.图例框被预定了6 个显示位置:0------取最佳位置;1------右上角(缺省值);2------左上角;3------左下角;4------右下角;-1------图的右侧.例:在图形中添加图例.x=0:pi/10:2*pi;y1=sin(x);y2=0.6*sin(x);y3=0.3*sin(x);plot(x,y1,x,y2,'-o',x,y3,'-*')legend('曲线1','曲线2','曲线3')6)用鼠标点选屏幕上的点:ginput 函数格式为:[x, y, button]=ginput(n)其中:n 为所选择点的个数;x,y 均为向量,x 为所选n 个点的横坐标;y 为所选n个点的纵坐标.button 为n 维向量,是所选n 个点所对应的鼠标键的标号:1------左键;2------中键;3------右键.可用不同的鼠标键来选点,以区别所选的点.此语句可以放在绘图语句之后,它可在绘出的图形上操作,选择你所感兴趣的点,如峰值点,达到稳态值的点等,给出点的坐标,可求出系统的性能指标.第四节MATLAB 下图形对象的修改MATLAB 图形对象是指图形系统中最基本,最底层的单元,这些对象包括:屏幕(Root), 图形窗口(Figures), 坐标轴(Axes), 控件(Uicontrol), 菜单(Uimenu),线(Lines),块(Patches),面(Surface),图像(Images),文本(Text)等等.根据各对象的相互关系,可以构成如下所示的树状层次:RootFiguresAxes Uicontrol Uimenu Uicontextmenu (对象菜单)Images Line Patch Surface Text对各种图形对象进行修改和控制,要使用MATLAB 的图形对象句柄(Handle).在MATLAB 中,每个图形对象创立时,就被赋予了唯一的标识,这个标识就是该对象的句柄.句柄的值可以是一个数,也可以是一个矢量.如每个计算机的根对象只有一个,它的句柄总是0,图形窗口的句柄总是正整数,它标识了图形窗口的序号等.利用句柄可以操纵一个已经存在的图形对象的属性,特别是对指定图形对象句柄的操作不会影响同时存在的其它图形对象,这一点是非常重要的.一.对图形对象的修改可以用下面函数:1)set 函数:用于设置句柄所指的图形对象的属性.Set 函数的格式为:set(句柄, 属性名1, 属性值1, 属性名2, 属性值2, ……) 例:h=plot(x,y)set(h, 'Color', [1,0,0])------将句柄所指曲线的颜色设为红色.2)get 函数:获取指定句柄的图形对象指定属性的当前值.格式为:get(句柄, '属性名')如: get(gca, 'Xcolor')------获得X 轴的当前颜色属性值. 执行后可返回X 轴的当前颜色属性值[0,0,0](黑色).3)如果没有设置句柄,则可以使用下列函数获得:gcf:获得当前图形窗口的句柄;gca:获得当前坐标轴对象的句柄;gco:获得当前对象的句柄.如:A.要对图形窗口的底色进行修改,可用:set(gcf, 'Color', [1,1,1])------将图形窗口底色设为白色B.要把当前X 轴的颜色改为绿色,可用:set(gca, 'Xcolor', [0,1,0])C.还可对坐标轴的显示刻度进行定义:t=-pi:pi/20:pi;y=sin(t);plot(t,y)set(gca,'xtick',[-pi:pi/2:pi],'xticklabel',['-pi','-pi/ 2','0','pi/2','pi'])本例中用'xtick'属性设置x 轴刻度的位置(从-pi~pi,间隔pi/2,共设置5 个点),用'xticklabel'来指定刻度的值,由于通常习惯于用角度度量三角函数,因此重新设置['-pi','-pi/2','0','pi/2','pi']5 个刻度值.二.一些常用的属性如下:1)Box 属性:决定图形坐标轴是否为方框形式,选项为'on'(有方框), 'off'(无方框);2)'ColorOrder'属性:设置多条曲线的颜色顺序,默认值为:[1 1 0;1 0 1;0 1 1;1 0 0;0 1 0;0 0 1]黄色粉色天蓝红色绿色兰色颜色向量还有:[1 1 1]------白色;[0 0 0]------黑色.3)坐标轴方向属性:'Xdir','Ydir','Zdir',其选项为:'normal'------正常'reverse'------反向4)坐标轴颜色和线型属性:'Xcolor','Ycolor','Zcolor'------ 轴颜色, 值为颜色向量如何在画好曲线后再在图上标刻度就是想在一些特定的点边上标上一串30.60.90~7200递增的数据,共有96个点要标!!im = imread(url);imshow(im)然后输入:text(100,100,'\o ','Color','red');matlab,用imread 读入一个图片,我想在图上的一些坐标点上做标记。
matlab三维绘图命令和演示
三维绘图1三维绘图指令2基本XYZ 立体绘图命令●mesh 和plot 是三度空间立体绘图的基本命令,mesh 可画出立体网状图,plot 则可画出立体曲面图,两者产生的图形都会依高度而有不同颜色。
下列命令可画出由函数形成的立体网状图:x=linspace(-2,2,25);%在x 轴上取25点 y=linspace(-2,2,25);%在y 轴上取25点[xx,yy]=meshgrid(x,y);%xx 和yy 都是25x25的矩阵zz=xx.*exp(-xx.^2-yy.^2);%计算函数值,zz 也是21x21的矩阵 mesh(xx,yy,zz);%画出立体网状图● surf 和mesh 的用法类似:x=linspace(-2,2,25);%在x 轴上取25点y=linspace(-2,2,25);%在y轴上取25点[xx,yy]=meshgrid(x,y);%xx和yy都是25x25的矩阵zz=xx.*exp(-xx.^2-yy.^2);%计算函数值,zz也是25x25的矩阵surf(xx,yy,zz);%画出立体曲面图●peaks为了方便测试立体绘图,MATLAB提供了一个peaks函数,可产生一个凹凸有致的曲面,包含了三个局部极大点及三个局部极小点,其方程式为:要画出此函数的最快方法即是直接键入peaks:peaksz=3*(1-x).^2.*exp(-(x.^2)-(y+1).^2)-10*(x/5-x.^3-y.^5).*exp(-x.^2-y.^2)-1/3*exp(-(x+1).^2-y.^2)●我们亦可对peaks函数取点,再以各种不同方法进行绘图。
meshz可将曲面加上围裙:[x,y,z]=peaks;meshz(x,y,z);●waterfall可在x方向或y方向产生水流效果:[x,y,z]=peaks;waterfall(x,y,z);●下列命令产生在y方向的水流效果:[x,y,z]=peaks;waterfall(x',y',z');●meshc同时画出网状图与等高线:[x,y,z]=peaks;meshc(x,y,z);●surfc同时画出曲面图与等高线:[x,y,z]=peaks;surfc(x,y,z);●contour3画出曲面在三度空间中的等高线:contour3(peaks,20);●contour画出曲面等高线在XY平面的投影:contour(peaks,20);●plot3可画出三度空间中的曲线:t=linspace(0,20*pi,501);plot3(t.*sin(t),t.*cos(t),t);亦可同时画出两条三度空间中的曲线:t=linspace(0,10*pi,501);plot3(t.*sin(t),t.*cos(t),t,t.*sin(t),t.*cos(t),-t);3三维绘图的主要功能绘制三维线图绘制等高线图绘制伪彩色图绘制三维网线图?绘制三维曲面图、柱面图和球面图?绘制三维多面体并填充颜色(一)三维线图plot3?——?基本的三维图形指令调用格式:plot3(x,y,z)?——?x,y,z是长度相同的向量plot3(X,Y,Z)?——?X,Y,Z是维数相同的矩阵plot3(x,y,z,s)?——?带开关量plot3(x1,y1,z1,’s1’,?x2,y2,z2,’s2’,?…)二维图形的所有基本特性对三维图形全都适用。
matlab三维绘图命令和演示
三维绘图2 基本XYZ立体绘图命令●mesh和plot是三度空间立体绘图的基本命令,mesh可画出立体网状图,plot则可画出立体曲面图,两者产生的图形都会依高度而有不同颜色。
下列命令可画出由函数形成的立体网状图:x=linspace(-2, 2, 25); % 在x轴上取25点y=linspace(-2, 2, 25); % 在y轴上取25点[xx,yy]=meshgrid(x, y); % xx和yy都是25x25的矩阵zz=xx.*exp(-xx.^2-yy.^2); % 计算函数值,zz也是21x21的矩阵mesh(xx, yy, zz); % 画出立体网状图●surf和mesh的用法类似:x=linspace(-2, 2, 25); % 在x轴上取25点y=linspace(-2, 2, 25); % 在y轴上取25点[xx,yy]=meshgrid(x, y); % xx和yy都是25x25的矩阵zz=xx.*exp(-xx.^2-yy.^2); % 计算函数值,zz也是25x25的矩阵surf(xx, yy, zz); % 画出立体曲面图●peaks为了方便测试立体绘图,MATLAB提供了一个peaks函数,可产生一个凹凸有致的曲面,包含了三个局部极大点及三个局部极小点,其方程式为:要画出此函数的最快方法即是直接键入peaks:peaksz = 3*(1-x).^2.*exp(-(x.^2) - (y+1).^2) - 10*(x/5 - x.^3 - y.^5).*exp(-x.^2-y.^2) - 1/3*exp(-(x+1).^2 - y.^2)●我们亦可对peaks函数取点,再以各种不同方法进行绘图。
meshz可将曲面加上围裙:[x,y,z]=peaks;meshz(x,y,z);●waterfall可在x方向或y方向产生水流效果:[x,y,z]=peaks;waterfall(x,y,z);●下列命令产生在y方向的水流效果:[x,y,z]=peaks;waterfall(x',y',z');●meshc同时画出网状图与等高线:[x,y,z]=peaks;meshc(x,y,z);●surfc同时画出曲面图与等高线:[x,y,z]=peaks;surfc(x,y,z);●contour3画出曲面在三度空间中的等高线:contour3(peaks, 20);●contour画出曲面等高线在XY平面的投影:contour(peaks, 20);plot3可画出三度空间中的曲线:t=linspace(0,20*pi, 501);plot3(t.*sin(t), t.*cos(t), t);亦可同时画出两条三度空间中的曲线:t=linspace(0, 10*pi, 501);plot3(t.*sin(t), t.*cos(t), t, t.*sin(t), t.*cos(t), -t);三维绘图的主要功能:绘制三维线图绘制等高线图绘制伪彩色图绘制三维网线图绘制三维曲面图、柱面图和球面图绘制三维多面体并填充颜色(一)三维线图plot3 ——基本的三维图形指令调用格式:plot3(x,y,z) —— x,y,z是长度相同的向量plot3(X,Y,Z) —— X,Y,Z是维数相同的矩阵plot3(x,y,z,s) ——带开关量plot3(x1,y1,z1,’s1’,x2,y2,z2,’s2’,…)二维图形的所有基本特性对三维图形全都适用。
matlab 函数作图
03 函数作图1 平面图形(1)竖直条形图调用格式为:bar(x,y)(2)用描点法绘制函数y f ( x) 随x 从a 到b 间的图形.调用格式为:x=a:h:b ;y=f(x) ;plot(x,y)(3)在同一坐标系下绘制多个函数图形.调用格式为:x=a:h:b ;plot(x,y1,x,y2,…)(4)绘制函数y=f(x)随x 从a 到b 间的图形.调用格式为:explo t(‘f(x)’, [a,b])(5)x 从xa 到xb和y 从ya到yb间隐函数 f ( x, y) 0 的图形.调用格式为:ezplo t(‘x’,’y’,[xa, x b , y a , y b ])(6)绘制t 从ta 到tb间参数方程x x(t ),y y(t )的函数图形.调用格式为:ezplo t(‘x’,’y’,[ta, t b ])(7)在一坐标系下可以绘制一个或多个显函数图形,对变化剧烈的函数,用此命令来进行较精确的绘画.调用格式为:fplot(’fun(x)’,[a,b])fplo t (‘[f1(x),f2(x),…]’,[a,b])其中fun(x)可以是自定义函数,[f1(x),f2(x),…]是函数组.(8)绘制散点图.调用格式为:scatter(x,y)2 空间图形(1)空间曲线.调用格式为:plot3(x,y,z)(2)产生一个以向量x 为行,向量y 为列的矩阵.调用格式为:meshgrid(x,y)(3)空间曲面.调用格式为:surf(x,y,z)(4)网格曲面.调用格式为:mesh(x,y,z)例 1 一次考试成绩0~10 分有0 人,10~20 分有0 人,20~30 分1 人,30~40 分有1 人,50~60 分有2 人,60~70 分有18 人,70~80 分有20 人,80~90 分有9 人,90~100 分有6 人.绘出成绩分析竖直条形图.【matlab 命令】>> x=0:10:90;>> y=[0,0,1,1,0,2,18,20,9,6];>> bar(x,y)【输出结果】20002图1例1输出图像例 2 绘制显函数图形.x(1)设 y 1x 3 2x , y2000 cos2sin x请分别作出这两个函数在区间 x[20,40] 的图像,然后将它们的图像在一个平面直角坐标系中,并判断方程 y 1x 3 2 x 1500cos x2sin x 有几个实数解.(2)在 x[0,4] 上画出分段函数方法一:【matlab 命令】>> x=-20:0.1:40;>> y1=x.^3-35*x.^2+100*x+1500; >> y2=2000*(cos(x/2)-sin(x)); >> figure(1)>> plot(x,y1,'b-'); >> figure(2) >> plot(x,y2,'k');f ( x )32 x 2x 20 x 2 x 2的图像>> figure(3)>> plot(x,y1,'b-',x,y2,'k')【输出结果】图2例2(1)函数y1图3 例 2(1)函数 y 2 输出图像图4例 2(1)函数 y 1 和 y 2 输出图像 从图中知:有 7 个交点,也就是有 7 个实数根.说明:绘制图形着色时,g 表示绿色,r 表示红色,b 表示蓝色,k 表示黑色.方法二:【matlab 命令2】%自定义函数M文件fx1 function y1=fx1(x)y1=x^3-35*x.^2+100*x+1500%自定义函数M文件fx2 function y2=fx2(x)y2=2000*(cos(x/2)-sin(x));Matlab命令窗口输入以下命令: >> figure(1)>> fplot('fx1(x)',[-20,40]); >> figure(2)>> fplot('fx2(x)',[-20,40]); >> figure(3)>> fplot('[fx1(x) , fx2(x)] ', [-20,40]); 【输出结果2】结果同上.【matlab 命令3】>> x=0:0.01:2;>> y=(2*x-x.^2).^(1/3);>> plot(x,y,'k','linewidth',2)>> hold on>> x=2:0.01:4;>> y=x-2;>> plot(x,y,'k','linewidth',2)【输出结果3】图5例2(2)函数f(x)的输出图像例3绘制隐函数和参数方程所确定函数的图形.(1)在x [3,3] 上画隐函数x 2 2 9 的图像.(2)在t [0,2] 上画参数方程x cos3 t ,y sin 3 t 的图像.【matlab 命令1】>> ezplot('x^2+y^2-9',[-3,3])>> axis equal【输出结果1】图6例3(1)输出图像说明:axis on 显示坐标轴,axis off 取消坐标轴,grid on 表示加网格线,grid off 表示不加网格线,clf 清楚图形窗口中的图形.也可以通过编辑图像的方法改变或增加设置,比如在图形窗口中,菜单栏Tools中鼠标选中Edit-Plot,可改变图像的颜色.【matlab 命令2】>> ezplot('cos(t)^3','sin(t)^3',[0,2*pi])【输出结果2】图7例3(2)输出图像例4将图4,5,6,7在同一个图形窗口表现出来.【matlab 命令】clfsubplot(2,2,1)x=-20:0.1:40;y1=x.^3-35*x.^2+100*x+1500;y2=2000*(cos(x/2)-sin(x));plot(x,y1,'b-',x,y2,'k');subplot(2,2,2)x=0:0.01:2;y=(2*x-x.^2).^(1/3);plot(x,y) holdon x=2:0.01:4;y=x-2;plot(x,y)subplot(2,2,3)ezplot('x^2+y^2-9',[-3,3])axis equal subplot(2,2,4)ezplot('cos(t)^3','sin(t)^3',[0,2*pi])【输出结果】图8 例4输出图像例5已知平面内8个散点的坐标(1,15,2,20(3,27(4,36(5,49,(6,65(7,87(8,117,在直角坐标系中绘制点图.【matlab 命令】 clf x=1:8; y=[15.3,20.5,27.4,36.6,49.1,65.6,87.8,117.6]; scatter(x,y,'ko') 【输出结果】图9例6 在区间[0,10] 上画出参数曲线x sin t, y cos t, z t .【matlab 命令】clft=0:pi/50:10*pi;plot3(sin(t),cos(t),t)【输出结果】图10例7画函数Z ( X Y) 2 的图形.【matlab 命令】clfx=-3:0.1:3; y=1:0.1:5;[X,Y]=meshgrid(x,y);Z=(X+Y).^2;surf(X,Y,Z)shading flat【输出结果】图11例8画出马鞍曲面Z X 2 Y2 在不同视角的网格图.【matlab 命令】clfx=-3:0.1:3; y=1:0.1:5;[X,Y]=meshgrid(x,y);Z=X.^2-Y.^2;mesh(X,Y,Z)【输出结果】图123 习题1.某城市一年12个月的日平均气温(单位: 0C )分别为:-10,-6,5,10,20,25,30,24,22,19,10,6,试画出条形图. 2.作出函数 f ( x )cos(e x ) e x / 2) 在区间 x [4,4] 的图形3.作隐函数 sin( xy ) 0 在 [6,6] 内的图形.cos x 2 x 2 4.已知分段函数 y x x 1 ,作出 15 x 15 的函数图形. 2 sin( x 1) 1x 15.在同一直角坐标系中,作出函数 y5 的图形和函数 x 3 的图形.6.已知sin( x 2 2 )7.绘制空间图形:(墨西哥帽子).x 2 2。
MATLAB中绘图命令介绍
MATLAB中绘图命令介绍本节将介绍MATLAB基本xy平面及xyz空间的各项绘图命令,包含一维曲线及二维曲面的绘制。
plot是绘制一维曲线的基本函数,但在使用此函数之前,我们需先定义曲线上每一点的x 及y座标。
下例可画出一条正弦曲线:close all;x=linspace(0, 2*pi, 100); % 100个点的x坐标y=sin(x); % 对应的y坐标plot(x,y);小整理:MATLAB基本绘图函数plot: x轴与y轴均为线性刻度(Linear scale)loglog: x轴与y轴均为对数刻度(Logarithmic scale)semilogx: x轴为对数刻度,y轴为线性刻度semilogy: x轴为线性刻度,y轴为对数刻度若要画出多条曲线,只需将座标对依次放入plot函数即可:hold on 保持当前图形,以便继续画图到当前坐标窗口hold off 释放当前图形窗口title(’图形名称’)(都放在单引号内)xlabel(’x轴说明’)ylabel(’y轴说明’)text(x,y,’图形说明’)legend(’图例1’,’图例2’,…)plot(x, sin(x), x, cos(x));若要改变颜色,在座标对後面加上相关字串即可:plot(x, sin(x), 'c', x, cos(x), 'g');若要同时改变颜色及图线型态,也是在座标对後面加上相关字串即可:plot(x, sin(x), 'co', x, cos(x), 'g*');小整理:plot绘图函数的叁数字元、颜色元、图线型态,y 黄色 .点k 黑色o 圆w 白色x xb 蓝色++g 绿色* *r 红色- 实线c 亮青色: 点线m锰紫色-. 点虚线-- 虚线plot3 三维曲线作图图形完成后,我们可用axis([xmin,xmax,ymin,ymax])函数来调整图轴的范围: axis([0, 6, -1.2, 1.2]);axis函数的功能丰富,其常用的用法有:axis equal :纵横坐标轴采用等长刻度axis square:产生正方形坐标系(默认为矩形)axis auto:使用默认设置axis off:取消坐标轴axis on :显示坐标轴此外,MATLAB也可对图形加上各种注解与处理:xlabel('Input Value'); % x轴注解ylabel('Function Value'); % y轴注解title('Two Trigonometric Functions'); % 图形标题legend('y = sin(x)','y = cos(x)'); % 图形注解grid on; % 显示格线我们可用subplot来同时画出数个小图形於同一个视窗之中:subplot(2,2,1); plot(x, sin(x));subplot(2,2,2); plot(x, cos(x));subplot(2,2,3); plot(x, sinh(x));subplot(2,2,4); plot(x, cosh(x));MATLAB还有其他各种二维绘图函数,以适合不同的应用,详见下表。
MATLAB第二章
function [egg1,egg2,chicken1]=myegg(n)
% egg1 隔1天的蛋个数 % egg2 隔2天的蛋个数 % chicken1 过n天后母鸡个数 if n==1
egg1=1; egg2=0; chicken1=1; elseif n==2 egg1=1; egg2=1; chicken1=1;
27
>> x=0:0.1:2*pi; >> y=sin(x); >> plot(x,y) >> plot(x,y,‘ro’) %默认是蓝色曲线 >> x=[0 1 2 5];y=[4 -2 1 2]; >> plot(x,y) >> fplot(‘x^2+4*x+1’,[-15 15]) %函数用字符串表示
1 -8 4 9 -4 5 7 -9 >> fun=@myfun5 %例28中的函数 fun =
@myfun5 >> y=fun(A) %直接调用 y=
1 -13 16 81 -5 25 49 -15 >> y=feval(fun,A) %利用feval y=
1 -13 16 81 -5 25 49 -15
1 4 9 16 5 10 15 20
2024/7/5
第二章 MATLAB编程与作图
24
>> k=5;
>> ff=@(x)x^2+2*x+k %可以使用空间中的变量k
ff =
@(x)x^2+2*x+k
>> ff(5)
ans =
40
>> A=[1 2 ;3 4]
第五讲 MATLAB绘图
第五讲 MATLAB绘图y 内容 y 画图入门 y 打印图象 y 联合作图 y 图像设置 循 结构( 固) y 循环结构(巩固) y 目的 y 能够进行MATLAB绘图1画图入门y MATLAB的扩展性和机制独立的画图功能是一个极其重要的功能.这个功能使数据画图变得十分简单.画一个数据图, 首先要创建两个向量,由x, y构成,然后使用plot函数。
x=0:1:10; 0 1 10 y=x.^2-10*x+15; plot(x y); plot(x,y);2y 正如我们所看到的,在MATLAB中画图是十分容易的.只要任何 对向量的长度相同,那么它就可以就能可视化地画出 任何一对向量的长度相同 来。
但是这还不是最后的结果,因为它还没有标题,坐标轴 标签,网格线。
y 给图增加标题和坐标轴标签将会用到title, xlabel, ylable函数。
调用每个函数时将会有一个字符串,这个字符串包含了图 象标题和坐标轴标签的信息 用grid 象标题和坐标轴标签的信息。
用 id命令可使网格线出现 或消失在图象中,grid on代表在图象中出现网格线,grid off代表去除网格线。
3给图增加标题和坐标轴标签将会用到title, xlabel, ylable函数。
调用每个函数时将会有一个字符串,这个字 符串包含了图象标题和坐标轴标签的信息。
用grid命令可 使网格线出现或消失在图象中,grid on代表在图象中出现 网格线 grid 网格线, id off ff代表去除网格线。
代表去除网格线 x 0:1:10; x=0:1:10; y=x.^2-10*x+15; plot(x,y); title ('Plot of y=x.^2-10*x+15'); xlabel ('x'); ylabel l b l ('y'); (' ') grid on;4打印图象y 一个图象一旦建立,我们就可以用print命令在打印机上打印出这幅图,也可以单击图象窗口的打印图标或者在文件 印出这幅图 也可以单击图象窗口的打印图标或者在文件 菜单中选择打印项打印。
第5章 MATLAB绘图
例5-7 在0≤x≤2区间内,绘制曲线y1=2e-0.5x和 y2=cos(4πx),并给图形添加图形标注。
程序如下:
x=0:pi/100:2*pi;
y坐标数据。
例5-1 在0≤x≤2区间内,绘制曲线 y=2e-0.5xcos(4πx)
程序如下: x=0:pi/100:2*pi; y=2*exp(-0.5*x).*cos(4*pi*x); plot(x,y)
例5-2 绘制曲线。 程序如下: t=0:0.1:2*pi; x=t.*sin(3*t); y=t.*sin(t).*sin(t); plot(x,y);
例5-9 用fplot函数绘制f(x)=cos(tan(πx))的曲线。 命令如下: fplot('cos(tan(pi*x))',[ 0,1],1e-4)
5.1.7 图形窗口的分割
subplot函数的调用格式为:
subplot(m,n,p)
该函数将当前图形窗口分成m×n个绘图区, 即每行n个,共m行,区号按行优先编号, 且选定第p个区为当前活动区。在每一个绘 图区允许以不同的坐标系单独绘制图形。
第5章 MATLAB绘图 5.1 二维数据曲线图 5.2 其他二维图形 5.3 隐函数绘图 5.4 三维图形 5.5 图形修饰处理 5.6 图像处理与动画制作
5.1 二维数据曲线图 5.1.1 绘制单根二维曲线 plot函数的基本调用格式为:
plot(x,y) 其中x和y为长度相同的向量,分别用于存储x坐标和
(2) 当x,y是同维矩阵时,则以x,y对应列元素为横、 纵坐标分别绘制曲线,曲线条数等于矩阵的列数。
如何在matlab中绘制图形
4.1 二维图形
二、subplot函数 函数
重新绘制上例4个图形,程序变动后如下:
x=linspace(0,2*pi,60); y=sin(x); z=cos(x); t=sin(x)./(cos(x)+eps); ct=cos(x)./(sin(x)+eps); axis ([0 2*pi -1 1]); H3=figure; 同上 plot(x,t); title('tangent(x)'); axis ([0 2*pi -40 40]); H4=figure; 同上 plot(x,ct); title('cotangent(x)'); axis ([0 2*pi -40 40]);
H1=figure;
%创建新窗口并返回句柄到变量H1
plot(x,y); %绘制图形并设置有关属性 title('sin(x)'); axis ([0 2*pi -1 1]);
H2=figure;
%创建第二个窗口并返回句柄到变量H2
plot(x,z); %绘制图形并设置有关属性 title('cos(x)')
grid on; title 'semilogy-logy=x^3';
4.2特殊坐标图形
(二)单对数坐标
以X轴为对数重新绘制上述曲线,程序为:
semilogx(x,y); 单对数X轴绘图命令
同样,可以以Y轴为对数重新绘制上述曲线,程序为:
semilogy(x,y); 单对数Y轴绘图命令
4.2特殊坐标图形
阅读如下程序:
x=linspace(0,2*pi,60); y=sin(x); z=cos(x); plot(x,y,'b');
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020/5/31
数学建模
3. 对数坐标图
在很多工程问题中,通过对数据进行对数转换可以 更清晰地看出数据的某些特征,在对数坐标系中描绘数 据点的曲线,可以直接地表现对数转换.对数转换有双对 数坐标转换和单轴对数坐标转换两种.用loglog函数 可以实现双对数坐标转换,用semilogx和semilogy 函数可以实现单轴对数坐标转换. loglog(Y) 表示 x、y坐标都是对数坐标系
单击鼠标左键,则在当前图形窗口中,以鼠标点中的点为 中心的图形放大2倍;单击鼠标右键,则缩小2倍.
zoom off 关闭缩放模式
grid on
%标注格栅
MATLAB liti37
例 创建一个简单的半对数坐标图. 解 输入命令:
x=0:.1:10;
semilogy(x,10.^x)
MATLAB liti38
例 绘制y=x3的函数图、对数坐标图、半对数坐标图.
2020/5/31
MATLAB liti22 数学建模
返回
三维图形 1. 空间曲线 2. 空间曲面
semilogx(Y) 表示 x坐标轴是对数坐标系
semilogy(…) 表示y坐标轴是对数坐标系
plotyy 有两个y坐标轴,一个在左边,一个在右边
2020/5/31
数学建模
例 用方形标记创建一个简单的loglog.
解 输入命令:
x=logspace(-1,2);
loglog(x,exp(x),’-s’)
数学建模
返回
2. 定制坐标 Axis([xmin xmax ymin ymax zmin zmax])定制图形坐标
x、y、z的最大、最小值
Axis
将坐标轴返回到自动缺省值
auto
例 在区间[0.005,0.01]显示sin(1/x)的图形.
解 x=linspace(0.0001,0.01,1000);
数学建模
例 将屏幕分割为四块,并分别画出y=sin(x),z=cos(x), a=sin(x)×cos(x),b=sin(x)/cos(x).
解x=linspace(0,2*pi,100); y=sin(x); z=cos(x);
MATLAB liti7
a=sin(x).*cos(x);b=sin(x)./(cos(x)+eps); subplot(2,2,1),plot(x,y),title(‘sin(x)’)%此处标点
数学建模与数学实验
MATLAB作图
2020/5/31
数学建模
二维图形 三维图形 图形处理
特殊二、三维图形
实例
2020/5/31
作 业
数学建模
1.曲线图
MATLAB作图是通过描点、连线来实现的,故在
画一个曲线图形之前,必须先取得该图形上的
一系列的点的坐标(即横坐标和纵坐标),然
后将该点集的坐标传给MATLAB函数画图.
y=sin(1./x);
plot(x,y);
MATLAB liti4
axis([0.005 0.01 –1 1]) %此处“-”与matlab中不相同。
返回
2020/5/31
数学建模
3. 图形保持
(1) hold on 保持当前图形, 以便继续画图到当前图上 hold of 释放当前图形窗口
例 将y=sin(x)、y=cos(x)分别用点和线画出在同一屏幕上.
y=1:0.1:5; [X,Y]=meshgrid(x,y);
MATLAB liti11
Z=(X+Y).^2;
surf(X,Y,Z) shading flat
%将当前图形变得平滑
2020/5/31
数学建模
(2) mesh(x,y,z) 画网格曲面
数据矩阵.分别表示 数据点的横坐标、纵 坐标、函数值
2020/5/31
数学建模
例 在区间[0,2π]画sin(x)的图形,并加注图例“自变量 X”、“函数Y”、“示意图”, 并加格栅.
解 x=linspace(0,2*pi,30);
y=sin(x);
MATLAB liti2
plot(x,y) xlabel('自变量X') ylabel('函数Y') title('示意图')
2020/5/31
数学建模
例 在[-1,2]上画 y e2x sin(3x2 ) 的图形.
解 先建M文件myfun1.m:
function Y=myfun1(x) Y=exp(2*x)+sin(3*x.^2)
MATLAB liti43
再输入命令:
fplot(‘myfun1’,[-1,2])
例 在[-2,2]范围内绘制函数tan的图形.
z=cos(x).
解 x=linspace(0,2*pi,100);
y=sin(x);z=cos(x);
plot(x,y); title('sin(x)');
MATLAB liti6
pause
figure(2);
plot(x,z);
title('cos(x)');2020/5/1返回数学建模
4. 割窗口 h=subplot(mrows,ncols,thisplot) 划分整个作图区域为mrows*ncols块(逐行对块访问)
例 在区间[0,2π]画sin(x),并分别标注“sin(x)” ”cos(x)”.
解 x=linspace(0,2*pi,30);
y=sin(x); z=cos(x);
MATLAB liti3
plot(x,y,x,z)
gtext(‘sin(x)’);gtext(’cos(x)’)
2020/5/31
grid on
2020/5/31
数学建模
(3) hh = gtext(‘string’)
命令gtext(‘string’)用鼠标放置标注在现有的图上. 运行命令gtext(‘string’)时,屏幕上出现当前图形,在 图形上出现一个交叉的十字,该十字随鼠标的移动移动, 当按下鼠标左键时,该标注string放在当前十交叉的位 置.
解 fplot(‘tan’,[-2,2])
MATLAB liti28
例 x、y 的取值范围都在[-2 π ,2 π ],
画函数 tanh(x),sin(x),cos(x)的图形.
解 输入命令:
MATLAB liti42
fplot(‘[tan(x),sin(x),cos(x)]’,2*pi*[-1 1 –1 1])
2020/5/31
数学建模
返回
空间曲线 1. 一条曲线
plot3(x,y,z,s)
n维向量,分别表示曲
线上点集的横坐标、纵 坐标、函数值
指定颜色、 线形等
例 在区间[0,10π]画出参数曲线 x=sint,y=cost,
z=t. 解 t=0:pi/50:10*pi;
plot3(sin(t),cos(t),t) rotate3d %旋转
例 在[0,2 π ]上画 x cos3 t , y sin3 t 星形图.
解 输入命令
MATLAB liti41
ezplot(‘cos(t)^3’,’sin(t)^3’,[0,2*pi])
例 在[-2,0.5],[0,2]上画隐函数 ex sin(xy) 0 的图.
解 输入命令
MATLAB liti40
并激活第thisplot块,其后的作图语句将图形画在该块上. subplot(mrows,ncols,thisplot)
激活已划分为mrows*ncols块的屏幕中的第thisplot块, 其后的作图语句将图形画在该块上.
subplot(1,1,1)
命令Subplot(1,1,1)返回非分割状态.
2020/5/31
例 画出曲面Z=(X+Y)2在不同视角的网格图.
解 x=-3:0.1:3; y=1:0.1:5; [X,Y]=meshgrid(x,y); Z=(X+Y).^2; mesh(X,Y,Z)
MATLAB liti24
2020/5/31
数学建模
(3)meshz(X,Y,Z) 在网格周围画一个curtain图(如,参考平面) 例 绘peaks的网格图
MATLAB liti9
(这里meshgrid(x,y)的作用 是产生一个以向量x为列、向量y 为行的矩阵即41*61矩阵)
2020/5/31
数学建模
返回
空间曲面
(1) surf(x,y,z) 画出数据点(x,y,z)表示的曲面
数据矩阵.分别表示 数据点的横坐标、纵 坐标、函数值
例 画函数Z=(X+Y)2 的图形. 解 x=-3:0.1:3;
数学建模
— 将多条线画在一起
例 在[0,2 π ]用红线画sin x,用绿圈画cos x. 解
x=linspace(0,2*pi,30);% %(30等分)
MATLAB liti1
y=sin(x); z=cos(x); plot(x,y,'r',x,z, 'go')
x
1 0.8 0.6 0.4 0.2
0
2020/5/31 -0.2
-0.4
数学建模
2.符号函数(显函数、隐函数和参数方程)画图
(1) ezplot
ezplot(‘f(x)’,[a,b])
表示在a<x<b绘制显函数f=f(x)的函数图.
ezplot(‘f(x,y)’,[xmin,xmax,ymin,ymax])
表示在区间xmin<x<xmax和 ymin<y<ymax绘制 隐函数f(x,y)=0的函数图.