初中数学平面几何题20道学习辅助线的添加
初中数学常见辅助线做法
初中数学常用辅助线一.添辅助线有二种情况:1按定义添辅助线:如证明二直线垂直可延长使它们,相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。
2按基本图形添辅助线:每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!这样可防止乱添线,添辅助线也有规律可循。
举例如下:〔1〕平行线是个基本图形:当几何中出现平行线时添辅助线的关键是添与二条平行线都相交的等第三条直线〔2〕等腰三角形是个简单的基本图形:当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。
出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。
〔3〕等腰三角形中的重要线段是个重要的基本图形:出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。
〔4〕直角三角形斜边上中线基本图形出现直角三角形斜边上的中点往往添斜边上的中线。
出现线段倍半关系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。
〔5〕三角形中位线基本图形几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。
〔6〕全等三角形:全等三角形有轴对称形,中心对称形,旋转形与平移形等;如果出现两条相等线段或两个档相等角关于某一直线成轴对称就可以添加轴对称形全等三角形:或添对称轴,或将三角形沿对称轴翻转。
当几何问题中出现一组或两组相等线段位于一组对顶角两边且成一直线时可添加中心对称形全等三角形加以证明,添加方法是将四个端点两两连结或过二端点添平行线*〔7〕相似三角形:相似三角形有平行线型〔带平行线的相似三角形〕,相交线型,旋转型;当出现相比线段重叠在一直线上时〔中点可看成比为1〕可添加平行线得平行线型相似三角形。
初中平面几何常见添加辅助线的方法
初中平面几何常见添加辅助线的方法平面几何是数学中的一个重要分支,通过在平面上描述和研究几何图形之间的关系和性质。
在解决平面几何问题中,添加辅助线是一种常见且有效的方法,可以帮助我们更好地理解和分析问题。
下面是初中平面几何常见的添加辅助线的方法:1.使用垂直辅助线:垂直辅助线是指与已知线段垂直的辅助线,可以用来分割和构造几何图形。
比如,在矩形中,可以通过连接矩形的对角线来构造一条垂直辅助线,从而将矩形分割为两个等腰直角三角形。
2.使用平行辅助线:平行辅助线是指与已知线段平行的辅助线,可以用来帮助构造平行线段和证明平行性质。
例如,在平行四边形中,可以通过连接相邻顶点和平行线段的端点来构造平行辅助线,从而证明平行四边形的对边相等。
3.使用角平分线:角平分线是指将一个角平分为两个等角的辅助线。
在解决涉及角的等分、相等或相似性质问题时,添加角平分线是非常有用的方法。
例如,在等腰三角形中,可以通过连结底边中点和顶角顶点的直线来构造角平分线,从而证明等腰三角形的顶角相等。
4.使用中线:中线是指连接一个几何图形的两边中点的辅助线。
在解决涉及几何图形的中点、平行四边形和三角形性质问题时,添加中线是一种常见的方法。
例如,在四边形中,可以通过连接相对边的中点来构造中线,从而证明中线互相平分。
5.使用高线:高线是指从多边形的一个顶点向对边所引的垂线。
在解决多边形的高、重心、垂心和外心问题时,添加高线是非常有用的方法。
例如,在三角形中,可以通过从一个顶点向对边引垂线来构造高线,从而证明高线汇聚于三角形的垂心。
6.使用辅助图形:有时,我们可以通过在平面上添加一些辅助图形来辅助解决几何问题。
例如,在求解平行四边形的面积时,可以通过添加一个垂直边和一个三角形来将平行四边形划分为两个高度相等的矩形,从而方便计算面积。
在实际应用中,我们可以根据具体问题的要求来灵活地选择合适的辅助线方法。
添加辅助线不仅可以帮助我们更好地理解和分析问题,还可以提高解题效率和准确性。
中考数学点对点-几何问题辅助线添加技巧(解析版)
专题29 几何问题辅助线添加技巧专题知识点概述全国各地每年的中考试卷里都会出现考查几何的证明和计算问题,在解答试题过程中,我们发现当题设条件不够,必须添加辅助线,把分散条件集中,建立已知和未知的桥梁,结合学过的知识,采用一定的数学方法,把问题转化为自己能解决的问题。
学会添加辅助线技巧,是培养学生科学思维、科学探究的重要途径。
所以希望大家学深学透添加辅助线的技巧和方法。
一、以基本图形为切入点研究添加辅助线的技巧策略1.三角形问题方法1:有关三角形中线的题目,常将中线加倍。
含有中点的题目,常常利用三角形的中位线,通过这种方法,把要证的结论恰当的转移,很容易地解决了问题。
方法2:含有平分线的题目,常以角平分线为对称轴,利用角平分线的性质和题中的条件,构造出全等三角形,从而利用全等三角形的知识解决问题。
方法3:结论是两线段相等的题目常画辅助线构成全等三角形,或利用关于平分线段的一些定理。
方法4:结论是一条线段与另一条线段之和等于第三条线段这类题目,常采用截长法或补短法,所谓截长法就是把第三条线段分成两部分,证其中的一部分等于第一条线段,而另一部分等于第二条线段。
2.平行四边形问题平行四边形(包括矩形、正方形、菱形)的两组对边、对角和对角线都具有某些相同性质,所以在添辅助线方法上也有共同之处,目的都是造就线段的平行、垂直,构成三角形的全等、相似,把平行四边形问题转化成常见的三角形、正方形等问题处理,其常用方法有下列几种,举例简解如下:(1)连对角线或平移对角线:(2)过顶点作对边的垂线构造直角三角形;(3)连接对角线交点与一边中点,或过对角线交点作一边的平行线,构造线段平行或中位线;(4)连接顶点与对边上一点的线段或延长这条线段,构造三角形相似或等积三角形;(5)过顶点作对角线的垂线,构成线段平行或三角形全等。
3.梯形问题梯形是一种特殊的四边形。
它是平行四边形、三角形知识的综合,通过添加适当的辅助线将梯形问题化归为平行四边形问题或三角形问题来解决。
【初中数学】几何题,辅助线的添加方法和典型例题
初中数学几何题型,辅助线的画法和典型例题(1).倍长中线法1、已知,如图,△ABC 中,D 是BC 中点,DE ⊥DF,试判断BE +CF 与EF 的大小关系,并证明你的结论.FED C B A【思路点拨】因为D 是BC 的中点,按倍长中线法,倍长过中点的线段DF ,使DG =DF,证明△EDG ≌△EDF ,△FDC ≌△GDB ,这样就把BE 、CF 与EF 线段转化到了△BEG 中,利用两边之和大于第三边可证.【答案与解析】BE +CF >EF ;证明:延长FD 到G ,使DG =DF,连接BG 、EG∵D 是BC 中点∴BD =CD又∵DE ⊥DF在△EDG 和△EDF 中ED ED EDG EDF DG DF =⎧⎪∠=∠⎨⎪=⎩∴△EDG ≌△EDF (SAS )∴EG =EF在△FDC 与△GDB 中⎪⎩⎪⎨⎧=∠=∠=DG DF BD CD 21∴△FDC ≌△GDB(SAS)∴CF =BG∵BG +BE >EG∴BE +CF >EF【总结升华】有中点的时候作辅助线可考虑倍长中线法(或倍长过中点的线段).举一反三:【变式】已知:如图所示,CE 、CB 分别是△ABC 与△ADC 的中线,且∠ACB =∠ABC .求证:CD =2CE .【答案】证明:延长CE至F使EF=CE,连接BF.∵ EC为中线,∴ AE=BE.在△AEC与△BEF中,,,,AE BEAEC BEF CE EF=⎧⎪∠=∠⎨⎪=⎩∴△AEC≌△BEF(SAS).∴ AC=BF,∠A=∠FBE.(全等三角形对应边、角相等)又∵∠ACB=∠ABC,∠DBC=∠ACB+∠A,∠FBC=∠ABC+∠A.∴ AC=AB,∠DBC=∠FBC.∴ AB=BF.又∵ BC为△ADC的中线,∴ AB=BD.即BF=BD.在△FCB与△DCB中,,,,BF BDFBC DBC BC BC=⎧⎪∠=∠⎨⎪=⎩∴△FCB≌△DCB(SAS).∴ CF=CD.即CD=2CE.(2).作以角平分线为对称轴的翻折变换构造全等三角形2、已知:如图所示,在△ABC中,∠C=2∠B,∠1=∠2.求证:AB=AC+CD.【答案与解析】证明:在AB上截取AE=AC.在△AED与△ACD中,()12()() AE ACAD AD=⎧⎪∠=∠⎨⎪=⎩已作,已知,公用边,∴△AED≌△ACD(SAS).∴ ED=CD.∴∠AED=∠C(全等三角形对应边、角相等).又∵∠C=2∠B ∴∠AED=2∠B.由图可知:∠AED=∠B+∠EDB,∴ 2∠B=∠B+∠EDB.∴∠B=∠EDB.∴ BE=ED.即BE=CD.∴ AB=AE+BE=AC+CD(等量代换).【总结升华】本题图形简单,结论复杂,看似无从下手,结合图形发现AB>AC.故用截长补短法.在AB 上截取AE=AC.这样AB就变成了AE+BE,而AE=AC.只需证BE=CD即可.从而把AB=AC+CD转化为证两线段相等的问题.举一反三:【变式】如图,AD是ABC∆的角平分线,H,G分别在AC,AB上,且HD=BD.(1)求证:∠B与∠AHD互补;(2)若∠B+2∠DGA=180°,请探究线段AG与线段AH、HD之间满足的等量关系,并加以证明.【答案】证明:(1)在AB上取一点M, 使得AM=AH, 连接DM.∵∠CAD=∠BAD, AD=AD,∴△AHD≌△AMD.∴ HD=MD, ∠AHD=∠AMD.∵ HD=DB,∴ DB= MD.∴∠DMB=∠B.∵∠AMD+∠DMB =180︒,∴∠AHD+∠B=180︒.即∠B与∠AHD互补.(2)由(1)∠AHD=∠AMD, HD=MD, ∠AHD+∠B=180︒.∵∠B+2∠DGA =180︒,∴∠AHD=2∠DGA.∴∠AMD=2∠DGM.∵∠AMD=∠DGM+∠GDM.∴ 2∠DGM=∠DGM+∠GDM.∴∠DGM=∠GDM.∴ MD=MG.∴ HD= MG.∵ AG= AM+MG,∴ AG= AH+HD.(3).利用截长(或补短)法作构造全等三角形3、如图所示,已知△ABC中AB>AC,AD是∠BAC的平分线,M是AD上任意一点,求证:MB-MC<AB-AC.M GHDCBA【思路点拨】因为AB >AC ,所以可在AB 上截取线段AE =AC ,这时BE =AB -AC ,如果连接EM ,在△BME 中,显然有MB -ME <BE .这表明只要证明ME =MC ,则结论成立.【答案与解析】证明:因为AB >AC ,则在AB 上截取AE =AC ,连接ME .在△MBE 中,MB -ME <BE (三角形两边之差小于第三边).在△AMC 和△AME 中,()()()AC AE CAM EAM AM AM =⎧⎪∠=∠⎨⎪=⎩所作,角平分线的定义,公共边, ∴ △AMC ≌△AME (SAS ).∴ MC =ME (全等三角形的对应边相等).又∵ BE =AB -AE ,∴ BE =AB -AC ,∴ MB -MC <AB -AC .【总结升华】充分利用角平分线的对称性,截长补短是关键.举一反三:【变式】如图,AD 是△ABC 的角平分线,AB >AC,求证:AB -AC >BD -DC【答案】证明:在AB 上截取AE =AC,连结DE∵AD 是△ABC 的角平分线,∴∠BAD =∠CAD在△AED 与△ACD 中 ⎪⎩⎪⎨⎧=∠=∠=AD AD CAD BAD AC AE ∴△AED ≌△ADC (SAS )∴DE =DC在△BED 中,BE >BD -DC即AB -AE >BD -DC∴AB -AC >BD -DC E D CB A(4).在角的平分线上取一点向角的两边作垂线段4、如图所示,已知E 为正方形ABCD 的边CD 的中点,点F 在BC 上,且∠DAE =∠FAE .求证:AF =AD +CF .【思路点拨】四边形ABCD 为正方形,则∠D =90°.而∠DAE =∠FAE 说明AE 为∠FAD 的平分线,按常规过角平分线上的点作出到角两边的距离,而E 到AD 的距离已有,只需作E 到AF 的距离EM 即可,由角平分线性质可知ME =DE .AE =AE .Rt △AME 与Rt △ADE 全等有AD =AM .而题中要证AF =AD +CF .根据图知AF =AM +MF .故只需证MF =FC 即可.从而把证AF =AD +CF 转化为证两条线段相等的问题.【答案与解析】证明: 作ME ⊥AF 于M ,连接EF .∵ 四边形ABCD 为正方形,∴ ∠C =∠D =∠EMA =90°.又∵ ∠DAE =∠FAE ,∴ AE 为∠FAD 的平分线,∴ ME =DE .在Rt △AME 与Rt △ADE 中,()()AE AE DE ME =⎧⎨=⎩公用边,已证,∴ Rt △AME ≌Rt △ADE(HL).∴ AD =AM(全等三角形对应边相等).又∵ E 为CD 中点,∴ DE =EC .∴ ME =EC .在Rt △EMF 与Rt △ECF 中,()(ME CE EF EF =⎧⎨=⎩已证,公用边),∴ Rt △EMF ≌Rt △ECF(HL).∴ MF =FC(全等三角形对应边相等).由图可知:AF =AM +MF ,∴ AF =AD +FC(等量代换).【总结升华】与角平分线有关的辅助线: 在角两边截取相等的线段,构造全等三角形;在角的平分线上取一点向角的两边作垂线段.5、如图所示,在△ABC 中,AC=BC ,∠ACB=90°,D 是AC 上一点,且AE 垂直BD 的延长线于E , 12AE BD =,求证:BD 是∠ABC 的平分线.【答案与解析】证明:延长AE和BC,交于点F,∵AC⊥BC,BE⊥AE,∠ADE=∠BDC(对顶角相等),∴∠EAD+∠ADE=∠CBD+∠BDC.即∠EAD=∠CBD.在Rt△ACF和Rt△BCD中.所以Rt△ACF≌Rt△BCD(ASA).则AF=BD(全等三角形对应边相等).∵AE=BD,∴AE=AF,即AE=EF.在Rt△BEA和Rt△BEF中,则Rt△BEA≌Rt△BEF(SAS).所以∠ABE=∠FBE(全等三角形对应角相等),即BD是∠ABC的平分线.【总结升华】如果由题目已知无法直接得到三角形全等,不妨试着添加辅助线构造出三角形全等的条件,使问题得以解决.平时练习中多积累一些辅助线的添加方法.类型二、全等三角形动态型问题6、在△ABC中,∠ACB=90°,AC=BC,直线l经过顶点C,过A,B两点分别作l的垂线AE,BF,垂足分别为E,F.(1)如图1当直线l不与底边AB相交时,求证:EF=AE+BF.(2)将直线l绕点C顺时针旋转,使l与底边AB相交于点D,请你探究直线l在如下位置时,EF、AE、BF之间的关系,①AD>BD;②AD=BD;③AD<BD.【答案与解析】证明:(1)∵AE ⊥l ,BF ⊥l ,∴∠AEC =∠CFB =90°,∠1+∠2=90°∵∠ACB =90°,∴∠2+∠3=90°∴∠1=∠3。
初中数学几何图形辅助线添加方法大全
初中数学添加辅助线的方法汇总作辅助线的基本方法一:中点、中位线,延长线,平行线。
如遇条件中有中点,中线、中位线等,那么过中点,延长中线或中位线作辅助线,使延长的某一段等于中线或中位线;另一种辅助线是过中点作已知边或线段的平行线,以达到应用某个定理或造成全等的目的。
二:垂线、分角线,翻转全等连。
如遇条件中,有垂线或角的平分线,可以把图形按轴对称的方法,并借助其他条件,而旋转180度,得到全等形,,这时辅助线的做法就会应运而生。
其对称轴往往是垂线或角的平分线。
三:边边若相等,旋转做实验。
如遇条件中有多边形的两边相等或两角相等,有时边角互相配合,然后把图形旋转一定的角度,就可以得到全等形,这时辅助线的做法仍会应运而生。
其对称中心,因题而异,有时没有中心。
故可分“有心”和“无心”旋转两种。
四:造角、平、相似,和、差、积、商见。
如遇条件中有多边形的两边相等或两角相等,欲证线段或角的和差积商,往往与相似形有关。
在制造两个三角形相似时,一般地,有两种方法:第一,造一个辅助角等于已知角;第二,是把三角形中的某一线段进行平移。
故作歌诀:“造角、平、相似,和差积商见。
”托列米定理和梅叶劳定理的证明辅助线分别是造角和平移的代表)五:两圆若相交,连心公共弦。
如果条件中出现两圆相交,那么辅助线往往是连心线或公共弦。
六:两圆相切、离,连心,公切线。
如条件中出现两圆相切(外切,内切),或相离(内含、外离),那么,辅助线往往是连心线或内外公切线。
七:切线连直径,直角与半圆。
如果条件中出现圆的切线,那么辅助线是过切点的直径或半径使出现直角;相反,条件中是圆的直径,半径,那么辅助线是过直径(或半径)端点的切线。
即切线与直径互为辅助线。
如果条件中有直角三角形,那么作辅助线往往是斜边为直径作辅助圆,或半圆;相反,条件中有半圆,那么在直径上找圆周角——直角为辅助线。
即直角与半圆互为辅助线。
八:弧、弦、弦心距;平行、等距、弦。
如遇弧,则弧上的弦是辅助线;如遇弦,则弦心距为辅助线。
初中数学常见辅助线做法
初中数学常用辅助线一.添辅助线有二种情况:1按定义添辅助线:如证明二直线垂直可延长使它们,相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。
2按基本图形添辅助线:每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往就是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!这样可防止乱添线,添辅助线也有规律可循。
举例如下:(1)平行线就是个基本图形:当几何中出现平行线时添辅助线的关键就是添与二条平行线都相交的等第三条直线(2)等腰三角形就是个简单的基本图形:当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。
出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。
(3)等腰三角形中的重要线段就是个重要的基本图形:出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。
(4)直角三角形斜边上中线基本图形出现直角三角形斜边上的中点往往添斜边上的中线。
出现线段倍半关系且倍线段就是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。
(5)三角形中位线基本图形几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点就是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。
(6)全等三角形:全等三角形有轴对称形,中心对称形,旋转形与平移形等;如果出现两条相等线段或两个档相等角关于某一直线成轴对称就可以添加轴对称形全等三角形:或添对称轴,或将三角形沿对称轴翻转。
初中几何辅助线大全(潜心整理)
初中几何辅助线口诀三角形图中有角平分线,可向两边作垂线。
也可将图对折看,对称以后关系现。
角平分线平行线,等腰三角形来添。
角平分线加垂线,三线合一试试看。
线段垂直平分线,常向两端把线连。
要证线段倍与半,延长缩短可试验。
三角形中两中点,连接则成中位线。
三角形中有中线,延长中线等中线。
四边形平行四边形出现,对称中心等分点。
梯形里面作高线,平移一腰试试看。
平行移动对角线,补成三角形常见。
证相似,比线段,添线平行成习惯。
等积式子比例换,寻找线段很关键。
直接证明有困难,等量代换少麻烦。
斜边上面作高线,比例中项一大片。
圆半径与弦长计算,弦心距来中间站。
圆上若有一切线,切点圆心半径连。
切线长度的计算,勾股定理最方便。
要想证明是切线,半径垂线仔细辨。
是直径,成半圆,想成直角径连弦。
弧有中点圆心连,垂径定理要记全。
圆周角边两条弦,直径和弦端点连。
弦切角边切线弦,同弧对角等找完。
要想作个外接圆,各边作出中垂线。
还要作个内接圆,内角平分线梦圆如果遇到相交圆,不要忘作公共弦。
内外相切的两圆,经过切点公切线。
若是添上连心线,切点肯定在上面。
要作等角添个圆,证明题目少困难。
辅助线,是虚线,画图注意勿改变。
假如图形较分散,对称旋转去实验。
基本作图很关键,平时掌握要熟练。
解题还要多心眼,经常总结方法显。
切勿盲目乱添线,方法灵活应多变。
分析综合方法选,困难再多也会减。
虚心勤学加苦练,成绩上升成直线作辅助线的方法一、中点、中位线,延线,平行线。
如遇条件中有中点,中线、中位线等,那么过中点,延长中线或中位线作辅助线,使延长的某一段等于中线或中位线;另一种辅助线是过中点作已知边或线段的平行线,以达到应用某个定理或造成全等的目的。
二、垂线、分角线,翻转全等连。
如遇条件中,有垂线或角的平分线,可以把图形按轴对称的方法,并借助其他条件,而旋转180度,得到全等形,,这时辅助线的做法就会应运而生。
其对称轴往往是垂线或角的平分线。
三、边边若相等,旋转做实验。
初中数学辅助线的九种添加方法
初中数学辅助线的九种添加方法况种助1添辅线有二情按定义添辅助线:1;证线段倍半关系可倍相交后证交角为如证明二直线垂直可延长使它们,90°线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。
按基本图形添辅助线:2把它叫做基本图形,添辅助我们每个几何定理都有与它相对应的几何图形,添线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“!这样可防止乱添线,添辅助线也有规律可循。
举例如下:”补图应该叫做线”“)平行线是个基本图形:1(当几何中出现平行线时添辅助线的关键是添与二条平行线都相交的等第三条直线)等腰三角形是个简单的基本图形:(2当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。
出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。
)等腰三角形中的重要线段是个重要的基本图形:3(.出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。
)直角三角形斜边上中线基本图形(4出现直角三角形斜边上的中点往往添斜边上的中线。
出现线段倍半关系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。
)三角形中位线基本图形5(几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中当有中位线三角形不完整时则需补完整三角形;点没有中位线时则添中位线,当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。
)全等三角形:(6全等三角形有轴对称形,中心对称形,旋转形与平移形等;如果出现两条相等线段或两个档相等角关于某一直线成轴对称就可以添加轴对称形全等三角形:或添对称轴,或将三角形沿对称轴翻转。
.当几何问题中出现一组或两组相等线段位于一组对顶角两边且成一直线时可添加中心对称形全等三角形加以证明,添加方法是将四个端点两两连结或过二端点添平行线)相似三角形:7(相似三角形有平行线型(带平行线的相似三角形),相交线型,旋转型;当)可添加平行线得平行出现相比线段重叠在一直线上时(中点可看成比为1线型相似三角形。
初中平面几何如何添加辅助线
初中平面几何如何添加辅助线平面几何作为数学的一个重要分支,研究平面上的几何图形和它们之间的关系。
在解决平面几何问题时,添加辅助线是一种常用的方法,可以帮助我们更好地理解和解决问题。
接下来,我将详细介绍平面几何中添加辅助线的方法和技巧。
一、为了更好地理解问题和图形,我们可以根据题目的条件和要求,主动添加辅助线。
具体的添加方法有以下几种:1.平分辅助线:平分辅助线是一条将一些角度或线段平分为两等分的线。
我们可以将图形的一些角度平分,以便于进行计算或找出更多的几何性质。
平分辅助线对于证明问题的唯一性或求证一些等式非常有效。
2.垂直辅助线:垂直辅助线是指与目标线段或角度相交且垂直于之前的线段或角度的线。
它能够将原有的图形分割成更容易处理的几何图形,从而解决问题。
垂直辅助线常常用于求证两条线段垂直、平行四边形性质、直角三角形性质等问题。
3.平行辅助线:平行辅助线是指通过一个点与条线段平行的线。
通过添加平行辅助线,我们可以将原有的图形拆分为多个平行四边形或相似三角形,从而更好地理解和利用图形的对称性质、比例性质等。
平行辅助线常用于证明线段平行和求证两角相等或互补、邻补等等。
4.中垂线:中垂线是指连接一个线段的中点和它的垂直平分线的线段。
通过添加中垂线,我们可以找到线段的垂直平分线,并利用垂直平分线的性质,如:两条垂直平分线相交于线段中点、垂直平分线的垂足在线段上等等。
中垂线常用于证明一个角平分线和对边中点的连线垂直、线段中点和三角形顶点的连线互相垂直等问题。
以上是常用的几种添加辅助线的方法,根据问题的不同,我们可以选择不同的方法来添加辅助线,以期达到更好地解题目的效果。
二、在实际操作过程中,我们要根据具体的题目和要求,灵活运用添加辅助线的方法。
以下是一些关于添加辅助线的技巧和要点:1.选择合适的线段或角度:在选择辅助线时,我们应该尽量选择图形中已知的线段或角度,以便于减少未知的数量,简化问题。
2.利用对称性质:对称性质是几何图形中常见的性质,可用于添加辅助线。
初中数学常见辅助线的做法
初中数学常见辅助线的做法一、中点模型的构造1.已知任意三角形一边上的中点,可以考虑:(1)倍长中线或类中线(与中点有关的线段)构造全等三角形.如图1、图2所示.(2)三角形中位线定理.2.已知直角三角形斜边中点,可以考虑构造斜边中线.3.已知等腰三角形底边中点,可以考虑与顶点连接用“三线合一二4.有些题目的中点不直接给出,此时需要我们挖掘题目中的隐含中点,例如:直角三角形中斜边中点, 等腰三角形底边上的中点,当没有这些条件的时候,可以用辅助线添加.二、角平分线模型的构造与角平分线有关的常用辅助线作法,即角平分线的四大基本模型.已知。
是4MON平分线上一点,(1)若以_L 0M于点4 ,如图1,可以过户点作PB1ON于点&则与二以.可记为“图中有角平分线, 可向两边作垂线”.(2)若点4是射线0M上任意一点,如图2,可以在ON上截取(用=0/1 ,连接/7人构造△()*?三△ /%.可记为“图中有角平分线,可以将图对折看,对称以后关系现二⑶若翼妆舔踹嚼鼠3耳以黠部交0N于点从周造A4 0H基尊健三角形/是底边4加勺中点.可记为“角平分线加垂线,三线合一试试看二(4)若过P点作PQ//0N交0M于点0,如图4,可以构造△P0Q是等腰三角形,可记为“角平分线+平行线,等腰三角形必呈现二三、轴对称模型的构造下面给出几种常见考虑要用或作轴对称的基本图形.(1 )线段或角度存在2倍关系的,可考虑对称.(2)有互余、互补关系的图形,可考虑对称.(3)角度和或差存在特殊角度的,可考虑对称.(4)路径最短问题,基本上运用轴对称,将分散的线段集中到两点之间,从而运用两点之间线段最短,来实现最短路径的求解.所以最短路径问题,需考虑轴对称.几何最值问题的儿种题型及解题作图方法如下表所示.四、圆中辅助线构造在平面几何中,解决与圆有关的问题时,常常需要添加适当的辅助线,架起题设和结论间的桥梁,从而使问题化难为易,顺其自然地得到解决,因此, 灵活掌握作辅助线的一般规律和常见方法,对.提高学生分析问题和解决问题的能力是大有帮助的。
平面几何辅助线添加技法总结与例题详解
第一讲 注意添加平行线证题在同一平面内,不相交的两条直线叫平行线.平行线是初中平面几何最基本的,也是非常重要的图形.在证明某些平面几何问题时,若能依据证题的需要,添加恰当的平行线,则能使证明顺畅、简洁. 添加平行线证题,一般有如下四种情况.1 为了改变角的位置大家知道,两条平行直线被第三条直线所截,同位角相等,内错角相等,同旁内角互补.利用这些性质,常可通过添加平行线,将某些角的位置改变,以满足求解的需要. 例1 设P 、Q 为线段BC 上两点,且BP =CQ , A 为BC 外一动点(如图1).当点A 运动到使 ∠BAP =∠CAQ 时,△ABC 是什么三角形?试 证明你的结论.答: 当点A 运动到使∠BAP =∠CAQ 时,△ABC 为等腰三角形.证明:如图1,分别过点P 、B 作AC 、AQ 的平行线得交点D .连结DA .在△DBP =∠AQC 中,显然∠DBP =∠AQC ,∠DPB =∠C . 由BP =CQ ,可知 △DBP ≌△AQC .有DP =AC ,∠BDP =∠QAC .于是,DA ∥BP ,∠BAP =∠BDP .则A 、D 、B 、P 四点共圆,且四边形ADBP 为等腰梯形.故AB =DP . 所以AB =AC .这里,通过作平行线,将∠QAC “平推”到∠BDP 的位置.由于A 、D 、B 、P 四点共圆,使证明很顺畅. 例2 如图2,四边形ABCD 为平行四边形, ∠BAF =∠BCE .求证:∠EBA =∠ADE . 证明:如图2,分别过点A 、B 作ED 、EC 的平行线,得交点P ,连PE .由AB CD ,易知△PBA ≌△ECD .有P A =ED ,PB =EC . 显然,四边形PBCE 、P ADE 均为平行四边形.有∠BCE =∠BPE ,∠APE =∠ADE .由∠BAF =∠BCE ,可知 ∠BAF =∠BPE . 有P 、B 、A 、E 四点共圆.于是,∠EBA =∠APE . 所以,∠EBA =∠ADE .这里,通过添加平行线,使已知与未知中的四个角通过P 、B 、A 、E 四点共圆,紧密联系起来.∠APE 成为∠EBA 与∠ADE 相等的媒介,证法很巧妙.2 为了改变线段的位置 利用“平行线间距离相等”、“夹在平行线间的平行线段相等”这两条,常可通过添加平行线,将某些线段“送”到恰当位置,以证题.例3 在△ABC 中,BD 、CE 为角平分线,P 为ED 上任意一点.过P 分别作AC 、AB 、BC 的垂线,M 、N 、Q 为垂足.求证:PM +PN =PQ .证明:如图3,过点P 作AB 的平行线交BD∥=A D B Q C 图1P ED G AB FC 图2A N E BQ K G CD M F P 图3于F ,过点F 作BC 的平行线分别交PQ 、AC 于K 、G ,连PG .由BD 平行∠ABC ,可知点F 到AB 、BC 两边距离相等.有KQ =PN . 显然,PD EP =FD EF =GDCG,可知PG ∥EC . 由CE 平分∠BCA ,知GP 平分∠FGA .有PK =PM .于是, PM +PN =PK +KQ =PQ .这里,通过添加平行线,将PQ “掐开”成两段,证得PM =PK ,就有PM +PN =PQ .证法非常简捷.3 为了线段比的转化由于“平行于三角形一边的直线截其它两边,所得对应线段成比例”,在一些问题中,可以通过添加平行线,实现某些线段比的良性转化.这在平面几何证题中是会经常遇到的.例4 设M 1、M 2是△ABC 的BC 边上的点,且BM 1=CM 2.任作一直线分别交AB 、AC 、AM 1、AM 2于P 、Q 、N 1、N 2.试证:AP AB+AQ AC =11AN AM +22AN AM . 证明:如图4,若PQ ∥BC ,易证结论成立. 若PQ 与BC 不平行,设PQ 交直线BC 于D .过点A 作PQ 的平行线交直线BC 于 E .由BM 1=CM 2,可知BE +CE =M 1E + M 2E ,易知AP AB =DE BE ,AQ AC =DECE,11AN AM =DE E M 1,22AN AM =DE E M 2.则AP AB +AQ AC =DE CE BE +=DE E M E M 21+=11AN AM +22AN AM . 所以,AP AB+AQ AC =11AN AM +22AN AM . 这里,仅仅添加了一条平行线,将求证式中的四个线段比“通分”,使公分母为DE ,于是问题迎刃而解.例5 AD 是△ABC 的高线,K 为AD 上一点,BK 交AC 于E ,CK 交AB 于F .求证:∠FDA =∠EDA . 证明:如图5,过点A 作BC 的平行线,分别交直线DE 、DF 、BE 、CF 于Q 、P 、N 、M . 显然,AN BD =KA KD =AMDC. 有BD ·AM =DC ·AN . (1) 由BD AP =FB AF =BC AM , 有AP =BCAM BD ·. (2) A PEDM 2M 1BQ N 1N 2图4图5M P A Q NF BDCEK由DC AQ =EC AE =BC AN , 有AQ =BCANDC ·. (3) 对比(1)、(2)、(3)有AP =AQ . 显然AD 为PQ 的中垂线,故AD 平分∠PDQ . 所以,∠FDA =∠EDA .这里,原题并未涉及线段比,添加BC 的平行线,就有大量的比例式产生,恰当地运用这些比例式,就使AP 与AQ 的相等关系显现出来.4 为了线段相等的传递当题目给出或求证某点为线段中点时,应注意到平行线等分线段定理,用平行线将线段相等的关系传递开去. 例6 在△ABC 中,AD 是BC 边上的中线,点M 在AB 边上,点N 在AC 边上,并且∠MDN =90°.如果BM 2+CN 2=DM 2+DN 2,求证:AD 2=41(AB 2+AC 2). 证明:如图6,过点B 作AC 的平行线交ND 延长线于E .连ME .由BD =DC ,可知ED =DN .有△BED ≌△CND . 于是,BE =NC . 显然,MD 为EN 的中垂线.有 EM =MN . 由BM 2+BE 2=BM 2+NC 2=MD 2+DN 2=MN 2=EM 2,可知△BEM 为直角三角形,∠MBE =90°.有∠ABC +∠ACB =∠ABC +∠EBC =90°.于是,∠BAC =90°. 所以,AD 2=221⎪⎭⎫⎝⎛BC =41(AB 2+AC 2).这里,添加AC 的平行线,将BC 的以D 为中点的性质传递给EN ,使解题找到出路.例7 如图7,AB 为半圆直径,D 为AB 上一点,分别在半圆上取点E 、F ,使EA =DA ,FB =DB .过D 作AB 的垂线,交半圆于C .求证:CD 平 分EF .证明:如图7,分别过点E 、F 作AB 的垂线,G 、H 为垂足,连F A 、EB .易知 DB 2=FB 2=AB ·HB ,AD 2=AE 2=AG ·AB . 二式相减,得 DB 2-AD 2=AB ·(HB -AG ),或 (DB -AD )·AB =AB ·(HB -AG ). 于是,DB -AD =HB -AG ,或 DB -HB =AD -AG .就是DH =GD . 显然,EG ∥CD ∥FH . 故CD 平分EF .这里,为证明CD 平分EF ,想到可先证CD 平分GH .为此添加CD 的两条平行线EG 、FH ,从而得到G 、H 两点.证明很精彩.经过一点的若干直线称为一组直线束.一组直线束在一条直线上截得的线段相等,在该直线的平行直线上截得的线段也相等. 如图8,三直线AB 、AN 、AC 构成一组直线束,DE 是与BC 平行的直线.于是,有BN DM =AN AM =NCME, 即 BN DM=NC ME 或ME DM =NCBN .此式表明,DM =ME 的充要条件是 BN =NC .利用平行线的这一性质,解决某些线段相等的问题会很漂亮.图6A NC DEB MA G D O HB FC E图7图8A DBN C EM例8 如图9,ABCD 为四边形,两组对边延长 后得交点E 、F ,对角线BD ∥EF ,AC 的延长 线交EF 于G .求证:EG =GF .证明:如图9,过C 作EF 的平行线分别交AE 、AF 于M 、N .由BD ∥EF ,可知MN ∥BD .易知 S △BEF =S △DEF . 有S △BEC =S △ⅡKG - *5ⅡDFC .可得MC =CN . 所以,EG =GF .例9 如图10,⊙O 是△ABC 的边BC 外的旁 切圆,D 、E 、F 分别为⊙O 与BC 、CA 、AB 的切点.若OD 与EF 相交于K ,求证:AK 平 分BC .证明:如图10,过点K 作BC 的行平线分别 交直线AB 、AC 于Q 、P 两点,连OP 、OQ 、 OE 、OF . 由OD ⊥BC ,可知OK ⊥PQ . 由OF ⊥AB ,可知O 、K 、F 、Q 四点共圆,有 ∠FOQ =∠FKQ .由OE ⊥AC ,可知O 、K 、P 、E 四点共圆.有∠EOP =∠EKP .显然,∠FKQ =∠EKP , 可知 ∠FOQ =∠EOP .由OF =OE ,可知 Rt △OFQ ≌Rt △OEP . 则OQ =OP . 于是,OK 为PQ 的中垂线,故QK =KP . 所以,AK 平分BC .综上,我们介绍了平行线在平面几何问题中的应用.同学们在实践中应注意适时添加平行线,让平行线在平面几何证题中发挥应有的作用.第二讲 巧添辅助圆在某些数学问题中,巧妙添置辅助圆常可以沟通直线形和圆的内在联系,通过圆的有关性质找到解题途径.下面举例说明添置辅助圆的若干思路. 1 挖掘隐含的辅助圆解题有些问题的题设或图形本身隐含着“点共圆”,此时若能把握问题提供的信息,恰当补出辅助圆,并合理挖掘图形隐含的性质,就会使题设和结论的逻辑关系明朗化. 1.1 作出三角形的外接圆例1 如图1,在△ABC 中,AB =AC ,D 是底边BC上一点,E 是线段AD 上一点且∠BED =2∠CED =∠A .求证:BD =2CD .分析:关键是寻求∠BED =2∠CED 与结论的联系.容易想到作∠BED 的平分线,但因BE ≠ED ,故不能 直接证出BD =2CD .若延长AD 交△ABC 的外接圆 于F ,则可得EB =EF ,从而获取. 证明:如图1,延长AD 与△ABC 的外接圆相交于点F ,连结CF 与BF ,则∠BF A =∠BCA =∠ABC =∠AFC ,即∠BFD =∠CFD .故BF :CF =BD :DC .又∠BEF =∠BAC ,∠BFE =∠BCA ,从而∠FBE =∠ABC =∠ACB =∠BFE . 故EB =EF .作∠BEF 的平分线交BF 于G ,则BG =GF .图9AB M E NDCGO 图10A B GC D FE 图1因∠GEF =21∠BEF =∠CEF ,∠GFE =∠CFE ,故△FEG ≌△FEC .从而GF =FC . 于是,BF =2CF .故BD =2CD . 1.2 利用四点共圆 例2 凸四边形ABCD 中,∠ABC =60°,∠BAD = ∠BCD =90°,AB =2,CD =1,对角线AC 、BD 交于点O ,如图2. 则sin ∠AOB =____.分析:由∠BAD =∠BCD =90°可知A 、B 、C 、D四点共圆,欲求sin ∠AOB ,联想到托勒密定理,只须求出BC 、AD 即可. 解:因∠BAD =∠BCD =90°,故A 、B 、C 、D 四点共圆.延长BA 、CD 交于P ,则∠ADP =∠ABC =60°. 设AD =x ,有AP =3x ,DP =2x .由割线定理得(2+3x )3x =2x (1+2x ).解得AD =x =23-2,BC =21BP =4-3. 由托勒密定理有BD ·CA =(4-3)(23-2)+2×1=103-12.又S ABCD =S △ABD +S △BCD =233. 故sin ∠AOB =263615 .例3 已知:如图3,AB =BC =CA =AD ,AH ⊥CD 于H ,CP ⊥BC ,CP 交AH 于P .求证:△ABC 的面积S =43AP ·BD .分析:因S △ABC =43BC 2=43AC ·BC ,只 须证AC ·BC =AP ·BD ,转化为证△APC ∽△BCD .这由A 、B 、C 、Q 四点共圆易证(Q 为BD 与AH 交点).证明:记BD 与AH 交于点Q ,则由AC =AD ,AH ⊥CD 得∠ACQ =∠ADQ . 又AB =AD ,故∠ADQ =∠ABQ .从而,∠ABQ =∠ACQ .可知A 、B 、C 、Q 四点共圆. ∵∠APC =90°+∠PCH =∠BCD ,∠CBQ =∠CAQ , ∴△APC ∽△BCD . ∴AC ·BC =AP ·BD . 于是,S =43AC ·BC =43AP ·BD . 2 构造相关的辅助圆解题有些问题貌似与圆无关,但问题的题设或结论或图形提供了某些与圆的性质相似的信息,此时可大胆联想构造出与题目相关的辅助圆,将原问题转化为与圆有关的问题加以解决. 2.1 联想圆的定义构造辅助圆例4 如图4,四边形ABCD 中,AB ∥CD ,AD =DC =DB =p ,BC =q .求对角线AC 的长.A B C D PO图2A图3BP QDHC分析:由“AD =DC =DB =p ”可知A 、B 、C 在 半径为p 的⊙D 上.利用圆的性质即可找到AC 与 p 、q 的关系.解:延长CD 交半径为p 的⊙D 于E 点,连结AE . 显然A 、B 、C 在⊙D 上.∵AB ∥CD , ∴BC =AE . 从而,BC =AE =q . 在△ACE 中,∠CAE =90°,CE =2p ,AE =q ,故AC =22AE CE -=224q p -.2.2 联想直径的性质构造辅助圆例5 已知抛物线y =-x 2+2x +8与x 轴交于B 、C 两点,点D 平分BC .若在x 轴上侧的A 点为抛物线上的动点,且∠BAC 为锐角,则AD 的取值范围是____.分析:由“∠BAC 为锐角”可知点A 在以定线段BC 为直径的圆外,又点A 在x 轴上侧,从而可确定动点A 的范围,进而确定AD 的取值范围.解:如图5,所给抛物线的顶点为A 0(1,9),对称轴为x =1,与x 轴交于两点B (-2,0)、C (4,0).分别以BC 、DA 为直径作⊙D 、⊙E ,则 两圆与抛物线均交于两点P (1-22,1)、 Q (1+22,1).可知,点A 在不含端点的抛物线P A 0Q 内时,∠BAC <90°.且有3=DP =DQ <AD ≤DA 0=9,即AD 的取值范围是3<AD ≤9. 2.3 联想圆幂定理构造辅助圆例6 AD 是Rt △ABC 斜边BC 上的高,∠B 的平行线交AD 于M ,交AC 于N .求证:AB 2-AN 2=BM ·BN .分析:因AB 2-AN 2=(AB +AN )(AB -AN )=BM ·BN ,而由题设易知AM =AN ,联想割线定理,构造辅助圆即可证得结论.证明:如图6,∵∠2+∠3=∠4+∠5=90°, 又∠3=∠4,∠1=∠5, ∴∠1=∠2.从而,AM =AN . 以AM 长为半径作⊙A ,交AB 于F ,交 BA 的延长线于E .则AE =AF =AN . 由割线定理有BM ·BN =BF ·BE =(AB +AE )(AB -AF )=(AB +AN )(AB -AN ) =AB 2-AN 2, 即 AB 2-AN 2=BM ·BN .例7 如图7,ABCD 是⊙O 的内接四边形,延长AB 和DC 相交于E ,延长AB 和DC 相交于E ,延长AD 和BC 相交于F ,EP 和FQ 分别切⊙O 于P 、Q .求证:EP 2+FQ 2=EF 2.分析:因EP 和FQ 是⊙O 的切线,由结论联想到切割线定理,构造辅助圆使EP 、FQ 向EF 转化. 证明:如图7,作△BCE 的外接圆交EF 于G ,连 结CG .A EDCB图4图5EA NBFM12345图6因∠FDC =∠ABC =∠CGE ,故F 、D 、C 、 G 四点共圆.由切割线定理,有 EF 2=(EG +GF )·EF=EG ·EF +GF ·EF =EC ·ED +FC ·FB=EC ·ED +FC ·FB =EP 2+FQ 2, 即 EP 2+FQ 2=EF 2.2.4 联想托勒密定理构造辅助圆例8 如图8,△ABC 与△A 'B 'C '的三边分别为a 、b 、c 与a '、b '、c ',且∠B =∠B ',∠A +∠A '=180°.试证:aa '=bb '+cc '.分析:因∠B =∠B ',∠A +∠A '=180°,由结论联想到托勒密定理,构造圆内接四边形加以证明.证明:作△ABC 的外接圆,过C 作CD ∥AB 交圆于D ,连结AD 和BD ,如图9所示. ∵∠A +∠A '=180°=∠A +∠D ,∠BCD =∠B =∠B ',∴∠A '=∠D ,∠B '=∠BCD . ∴△A 'B 'C '∽△DCB . 有DC B A ''=CB C B ''=DB C A '',即 DC c '=aa '=DBb '. 故DC =''a ac ,DB =''a ab . 又AB ∥DC ,可知BD =AC =b ,BC =AD =a .从而,由托勒密定理,得 AD ·BC =AB ·DC +AC ·BD , 即 a 2=c ·''a ac +b ·''a ab . 故aa '=bb '+cc '. 练习题1. 作一个辅助圆证明:△ABC 中,若AD 平分∠A ,则AC AB =DCBD. (提示:不妨设AB ≥AC ,作△ADC 的外接圆交AB 于E ,证△ABC ∽△DBE ,从而AC AB =DE BD =DCBD.) 2. 已知凸五边形ABCDE 中,∠BAE =3a ,BC =CD =DE ,∠BCD =∠CDE =180°-2a .求证:∠BAC =∠CAD =∠DAE .(提示:由已知证明∠BCE =∠BDE =180°-3a ,从而A 、B 、C 、D 、E 共圆,得∠BAC =∠CAD =∠DAE .) 3. 在△ABC 中AB =BC ,∠ABC =20°,在AB 边上取一点M ,使BM =AC .求∠AMC 的度数. (提示:以BC 为边在△ABC 外作正△KBC ,连结KM ,证B 、M 、C 共圆,从而∠BCM =21∠BKM =10°,得∠AMC =30°.)4.如图10,AC 是ABCD 较长的对角线,过C 作CF ⊥AF ,CE ⊥AE .求证:AB ·AE +AD ·AF =AC 2. (提示:分别以BC 和CD 为直径作圆交AC 于点G 、H .则CG =AH ,由割线定理可证得结论.)5. 如图11.已知⊙O 1和⊙O 2相交于A 、B ,直线CD 过A 交⊙O 1和⊙O 2于C 、D ,且AC =AD ,EC 、ED 分别切两圆于C 、D .求证:AC 2=AB ·AE .(提示:作△BCD 的外接圆⊙O 3,延长BA 交⊙O 3(1)(2)图8AC A'B'c b c'b'A BCD abb c 图9F DA E C图10图11于F ,证E 在⊙O 3上,得△ACE ≌△ADF ,从而AE =AF ,由相交弦定理即得结论.)6.已知E 是△ABC 的外接圆之劣弧BC 的中点. 求证:AB ·AC =AE 2-BE 2.(提示:以BE 为半径作辅助圆⊙E ,交AE 及其延长线于N 、M ,由△ANC ∽△ABM 证AB ·AC =AN ·AM .) 7. 若正五边形ABCDE 的边长为a ,对角线长为b ,试证:a b -ba=1. (提示:证b 2=a 2+ab ,联想托勒密定理作出五边形的外接圆即可证得.)。
初中数学辅助线添加及例题大全
平行四边形(包括矩形、正方形、菱形)的两组对边、对角和对角线都具有 某些相同性质,所以在添辅助线方法上也有共同之处, 目的都是造就线段的平行、 垂直,构成三角形的全等、相似,把平行四边形问题转化成常见的三角形、正方 形等问题处理,其常用方法有下列几种,举例简解如下:
(1)连对角线或平移对角线: (2)过顶点作对边的垂线构造直角三角形 (3)连接对角线交点与一边中点,或过对角线交点作一边的平行线,构造 线段平行或中位线 (4)连接顶点与对边上一点的线段或延长这条线段,构造三角形相似或等 积三角形。 (5)过顶点作对角线的垂线,构成线段平行或三角形全等 . 3.梯形中常用辅助线的添法 梯形是一种特殊的四边形。 它是平行四边形、 三角形知识的综合, 通过添加 适当的辅助线将梯形问题化归为平行四边形问题或三角形问题来解决。 辅助线的 添加成为问题解决的桥梁,梯形中常用到的辅助线有: (1)在梯形内部平移一腰。 (2)梯形外平移一腰 (3)梯形内平移两腰 (4)延长两腰 (5)过梯形上底的两端点向下底作高 (6)平移对角线 (7)连接梯形一顶点及一腰的中点。 (8)过一腰的中点作另一腰的平行线。
2 按基本图形添图形,我们
把它叫做基本图形,
添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图
形,因此“添线”应该叫做“补图”!这样可防止乱添线,添辅助线也有
规律可循。举例如下:
(1)平行线是个基本图形: 当几何中出现平行线时添辅助线的关键是添与二条平行线都相交的等 第三条直线
(7)相似三角形:
相似三角形有平行线型(带平行线的相似三角形),相交线型,旋转
型;当出现相比线段重叠在一直线上时(中点可看成比为
1 )可添加平行线
得平行线型相似三角形。若平行线过端点添则可以分点或另一端点的线段 为平行方向,这类题目中往往有多种浅线方法。
初中几何辅助线大全(很详细哦)
初中几何辅助线大全(很详细哦)初中几何辅助线―克胜秘籍等腰三角形1.作底边上的高,形成两个全等的直角三角形,这就是改得最少的一种方法;2.并作一腰上的高;3.过底边的一个端点作底边的垂线,与另一腰的延长线相交,构成直角三角形。
梯形1.旋转轴平行边2.垂直于下底,延长上底作一腰的平行线3.平行于两条斜边4.作两条垂直于下底的垂线5.延长两条斜边做成一个三角形菱形1.相连接两对角2.搞低平行四边形1.旋转轴平行边2.作对角线――把一个平行四边形分成两个三角形3.做高――形内形外都要注意矩形1.对角线2.作垂线很简单。
无论什么题目,第一位应该考虑到题目要求,比如ab=ac+bd....这类的就是想办法作出另一条ab等长的线段,再证全等说明ac+bd=另一条ab,就好了。
还有一些关于平方的考虑勾股,a字形等。
三角形图中存有角平分线,可以向两边并作垂线(垂线段成正比)。
也可以将图对折看看,等距以后关系现。
角平分线平行线,等腰三角形去迎。
角平分线提垂线,三线合一试一试。
线段垂直平分线,常向两端把线连。
必须证线段倍与半,缩短延长可以试验。
三角形中两中点,连接则成中位线。
三角形中有中线,延长中线等中线。
求解几何题时如何画辅助线?①见中点引中位线,见中线延长一倍在几何题中,如果得出中点或中线,可以考虑过中点并作中位线或把中线缩短一倍去化解有关问题。
②在比例线段证明中,常作平行线。
并作平行线时往往就是留存结论中的一个比,然后通过一个中间比与结论中的另一个比联系出来。
③对于梯形问题,常用的添加辅助线的方法有1、过上底的两端点向下底作垂线2、过上底的一个端点作一腰的平行线3、过上底的一个端点作一对角线的平行线4、过一腰的中点作另一腰的平行线5、过上底一端点和一腰中点的直线与下底的延长线平行6、并作梯形的中位线7、缩短两腰并使之平行四边形平行四边形发生,对称中心等分点。
梯形里面并作高线,位移一腰试一试。
平行移动对角线,补成三角形常用。
初中几何15中添加辅助线的方法
初中几何15中添加辅助线的方法在初中几何中,辅助线是解题时常常会使用的一种方法。
辅助线能够帮助我们理清思路,找到问题的关键,从而更容易解决问题。
在这里,我将介绍15种常见的添加辅助线的方法。
1.平行线辅助法:在平行的直线上添加一条辅助线,以便能够利用平行线的性质解题。
2.垂直线辅助法:在垂直的直线上添加一条辅助线,以便能够利用垂直线的性质解题。
3.切线辅助法:在圆和直线的切点处添加一条切线作为辅助线,以便能够利用切线的性质解题。
4.相等辅助法:在等长的线段上添加相等辅助线,以便能够利用线段相等的性质解题。
5.相似辅助法:在相似的图形中添加相似辅助线,以便能够利用相似图形的性质解题。
6.对称辅助法:在对称的图形中添加对称辅助线,以便能够利用对称图形的性质解题。
7.中垂线辅助法:在三角形的顶点处添加中垂线作为辅助线,以便能够利用中垂线的性质解题。
8.重心辅助法:在三角形的顶点处添加重心作为辅助线,以便能够利用重心的性质解题。
9.垂心辅助法:在三角形的顶点处添加垂心作为辅助线,以便能够利用垂心的性质解题。
10.外心辅助法:在三角形的顶点处添加外心作为辅助线,以便能够利用外心的性质解题。
11.内心辅助法:在三角形的顶点处添加内心作为辅助线,以便能够利用内心的性质解题。
12.中位线辅助法:在三角形的边上添加中位线作为辅助线,以便能够利用中位线的性质解题。
13.角平分线辅助法:在角的两边上添加角平分线作为辅助线,以便能够利用角平分线的性质解题。
14.高线辅助法:在三角形的一个顶点上添加高线作为辅助线,以便能够利用高线的性质解题。
15.弦辅助法:在圆上添加弦作为辅助线,以便能够利用弦的性质解题。
这些辅助线添加的方法,有助于我们在初中几何中更好地理解和解决问题。
当我们遇到几何问题时,可以灵活运用这些辅助线的方法,寻找问题的关键点,从而更轻松地解题。
通过多练习和实践,我们可以在初中几何中熟练地运用这些方法,从而提高解题的效率和准确性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、三角形ABC中,AD为中线,P为AD上任意一点,过p的直线交AB于M.交ac于N,若AN=AM,求证PM/PN=AC/AB证明:过P点作BC的平行线交AB,AC分别于M',N'点;再分别过M,M'两点分别作AC的平行线分别交AD(或延长线)于P',A'两点。
由M'N'平行BC得:AC/AN'=AB/AM',即AC/AB=AN'/AM'.且M'P=N'P由三角形AN'P全等三角形A'M'P得:M'A'=AN'.所以,AC/AB=A'M'/AM'由三角形AM'A'相似三角形AMP'得:AM/AM'=MP'/A'M',即A'M'/AM'=MP'/AM所以:AC/AB=MP'/AM由三角形MP'P相似三角形ANP得:MP'/AN=MP/PN而AN=AM所以:MP'/AM=MP/PN所以:AC/AB=MP/PN1题图2题图2、在三角形BCD中,BC=BD,延长BC至A,延长BD至E,使AC=BE,连接AD,AE,AD=AE,求BCD为等边证明:过点A作CD的平行线交BE的延长线于F点。
则∠BDC=∠F=∠BCD=∠A,即∠A=∠F.又因为:四边形AFDC是梯形所以:AC=DF=FE+DE而AC=BD+DE所以:BD=FE又因为:AD=AE,∠BDA=∠FEA所以:三角形ABD和三角形AFE全等所以:∠B=∠F所以:∠B=∠BCD=∠BDC=60°所以:三角形BCD是等边三角形。
3、三角形ABC中若圆O在变化过程中都落在三角形ABC内(含相切), A为60度,AC为8,AB 为10,X为未知数,是AE的长.圆O与AB,AC相切,圆O与AB的切点为E, X的范围是?解:如图,当元O与三角形ABC三条边都相切时,x的值最大。
此时:过B作BD垂直AC,则可求得BD=5(√3),DC=3根据勾股定理求得BC=2(√21)设元O与边AB,BC,CA的切点分别为E,F,G,且AE=x,BE=y,CF=z,则有方程组:x+y=10,x+z=8,y+z=2(√21),解这个方程组得:x=9-(√21)因此:x的范围是(0,9-√21 ]4、已知三角形ABE中 C 、D分别为AB、BE上的点,且AD=AE,三角形BCD为等边三角形,求证BC+DE=AC证明:过D点作BE的垂线DF,交AB于F点,过A点作BE的垂线AH,H是垂足,再过F 点作AH的垂线FG,G是垂足。
则:四边形DHGF是矩形,有FG=DH.而由△ADE是等腰三角形得知DH=HE,所以:FG=(1/2)DE.又由于角B=60°,所以:∠BAH=30°所以:FG=(1/2)AF所以:AF=DE而在直角△BDF中,由于∠B=∠BDC=60°所以:∠CDF=∠CFD=30°所以:CF=CD=BC所以:BC+DE=CF+AF即:BC+DE=AC5、已知在三角形ABC中,AD是BC边上的中线,E是AD上的一点,且BE=AC,延长BE交AC与F,求证AF=EF证明:如图,连接EC,取EC的中点G,AE的中点H,连接DG,HG则:GH=DG所以:角1=∠2,而∠1=∠4,∠2=∠3=∠5所以;∠4=∠5所以:AF=EF.6、在△ABC中,D是BC边中点,O是AD上一点,BO,CO的延长线分别交AC,AB于E,F 求证:EF平行BC。
证明:分别过B,C两点作AD的平行线分别交CF,BE的延长线于M,N两点。
则:四边形MBCN是平行四边形。
由MB‖AO‖CN,得:OF/FM=OA/BM,OE/EN=OA/CN.(相似三角形对应边成比例)而BM=CN所以:OF/FM=OE/EN所以:MN‖EF而MN‖BC所以:EF‖BC.7、已知:在△ABC和△A'B'C'中,AB=A'B', AC=A'C'.AD,A'D'分别是△ABC和△A'B'C'的中线,且AD=A'D'.求证:△ABC≌△A'B'C'证明:分别过B,B'点作BE‖AC,B'E'‖A'C'.交AD,A'D'的延长线于E,E'点。
则:△ADC≌△EDB, △A'D'C'≌△E'D'B'所以:AC=EB,A'C'=E'B';AD=DE, A'D'=D'E'.所以:BE=B'E', AE=A'E'所以:△ABE≌△A'B'E'所以:角E=∠E' 角BAD=角B'A'D'所以:角BAC=角B'A'C'所以:△ABC≌△A'B'C'8、四边形ABCD为菱形,E,F为AB,BC的中点,EP⊥CD,∠BAD=110º,求∠FPC的度数解:连接BD,交AC于O点,过A作CD的垂线,垂足为G,过O作BC的平行线交CD于H. 因为:角DAB=110°,∠GAB=90°所以:∠DAG=20°。
由∠AOD=∠AGD=90°知AOGD四点共元,所以∠DOG=∠DAG=20°由OH‖BC‖AD知:∠HOC=∠DAC=(1/2)∠BAD=55°所以:∠GOH=90°-20°-55°=15°而:∠OHG=∠BCD=110°所以:∠OGH=180°-15°-110°=55°由于:不难证明∠FPC=∠OGH (过程略)所以:∠FPC=55°9、已知:E是正方形ABCD内的一点,且∠DAE=∠ADE=15°,求证:△EBC是等边三角形证明:过E点作AB的平行线EP,交BC于P点,交AD于Q点,以D为角顶点,DA为角的一边,向正方形ABCD内作∠ADF=30°,角的一边交EP于F点。
设DQ=√3,则:FQ=1, DF=2, AD=2√3,PC=PB=AQ=√3,由角平分线定理得:QE/EF=QD/DF,即:QE/(1-QE)=(√3)/2解得:QE=2(√3)-3所以:PE=PQ-QE=2(√3)-[2(√3)-3]=3在△EPC中由勾股定理得:EC=√(PE²+PC²)=2√3而:BE=CE所以:BC=BE=CE=2√3即:△EBC是等边三角形。
10、在三角形ABC中,经过BC的中点M,有垂直相交于M的两条直线,它们与AB,AC分别交于D、E,求证,BD+CE>DE证明:如图,延长EM到E',使E'M=ME,则:DE=DE',由△BE'M≌△CEM得:CE=BE'在△BE'D中,有BD+BE'>DE'等量代换得:BD+CE>DE11、AB是等腰直角三角形ABC的斜边,若点M在边AC上,点N在边BC上,沿直线MN把△MCN 翻折,使点C落在AB上设其落点(1).如图一,当是AB的中点时,求证:PA/PB=CM/CN(2).如图二当P不是AB中点时,结论PA/PB=CM/CN是否成立?若成立,请给出证明(1)、证明:因为P是AB中点,所以:AP/PB=1,因为:P点是C点沿直线MN折叠的落点,所以:MN垂直平分PC,所以:CM=MP,由AP=BP得∠ACP=∠BCP=45°所以:CM=MN所以:CM/CN=1所以:PA/PB=CM/CN(2)、结论仍然成立。
证明:过P点分别作AC,BC的垂线PE,PD.E,D是垂足。
过C作CF垂直AB,F是垂足。
则:S△APC=(1/2)AC*PE=(1/2)AP*CFS△BPC=(1/2)BC*PD=(1/2)BP*CF而AC=BC所以:PE/PD=AP/BP由∠MCN=∠MPN=90°知MCNP四点共元所以:∠PME=∠PND所以:RT△PEM∽RT△PDN所以:PE/PD=PM/PN而PM=MC,PN=NC所以:PE/PD=MC/NC所以:AP/BP=MC/NC12、三角形ABC中,BC=5,M和I分别是三角形ABC的重心和内心,若MI平行于BC,则AB+AC 的值是多少?解:设内心到三边的距离为r,BC边上的高为AE=h,如图。
因为MI‖BC,AM=2MD所以:h=3r而:S△ABC=(1/2)BC*h=(5/2)h=(15/2)rS△ABC=S△ABI+S△BCI+S△ACE=(1/2))r(AB+AC+5)所以:(15/2)r=(1/2))r(AB+AC+5)解得:AB+AC=1013、已知圆O是三角形ABC的外接圆CD是AB边上的高,AE是圆O的直径。
求证:AC*BC=AE*CD证明:以E为圆心,以BC长为半径画弧交元O于F点。
连接EF,FA.则:EF=BC,∠AFE=90°所以:∠EAF=∠DAC (弦相等,弦所对的圆周角相等)所以:RT△ADC∽RT△EFA所以:AC/AE=CD/EF 即AC*EF=AE*CD而:EF=BC所以:AC*BC=AE*CD14、已知:D.E位△ABC内的两点求证:AB+AC>BD+DE+EC证明:设直线DE交AB于F,交AC于G,则:在△AFG中,有AF+AG>FD+DE+EG在△BFD中,有BF+FD>BD在△EGC中,有EG+GC>EC所以:三个不等式两边相加得AF+AG+BF+FD+EG+GC>FD+DE+EG+BD+EC即:AB+AC>DE+BD+EC15、在三角形ABC中,BD,CE是边AC,AB上的中点,BD与CE相交于点O,BO与OD的长度有什么关系?BC边上的中线是否一定过点O?为什么?答:BO=2DO,BC边上的中线过O点。
证明:连接AO,设M,N分别是BO,CO的中点,连接EM,DN,则:EM平行并等于AO的一半,DN平行并等于AO的一半所以:EM平行并等于DN所以:四边形EMND是平行四边形所以:MO=OD所以:BM=MO=OD所以:BO=2DO延长AO交BC于G,延长DN交BC于H,延长EM交BC于Q,则:由AG‖EQ‖DH,BM=MO=OD得知BQ=QG=GH=HC所以;BG=GC所以;BC边上的中线过O点。