历年高考真题——理科数学
高三理科数学试题及答案
高三理科数学试题及答案一、选择题(每题4分,共40分)1. 函数y=\(\frac{1}{x}\)的图象在第一象限内是()A. 递增函数B. 递减函数C. 先递增后递减D. 先递减后递增2. 已知向量\(\vec{a}=(3,-2)\),\(\vec{b}=(2,3)\),则\(\vec{a}\cdot\vec{b}\)的值为()A. -5B. 5C. 13D. -133. 已知双曲线的方程为\(\frac{x^2}{a^2}-\frac{y^2}{b^2}=1\),其中a>0,b>0,若该双曲线的渐近线方程为y=±\(\frac{b}{a}\)x,则该双曲线的离心率为()A. \(\sqrt{2}\)B. \(\sqrt{3}\)C. \(\sqrt{5}\)D. 24. 已知函数f(x)=x^3-3x+1,若f(x)在区间(1,2)内有零点,则零点的个数为()A. 0B. 1C. 2D. 35. 已知等比数列{an}的前n项和为S_n,若S_3=7,S_6=28,则S_9的值为()A. 63B. 77C. 84D. 1266. 已知直线l的方程为y=kx+b,若直线l过点(1,2)且与直线y=-2x 平行,则直线l的方程为()A. y=-2x+4B. y=-2x+3C. y=2x-1D. y=2x+17. 已知函数f(x)=\(\ln(x+\sqrt{x^2+1})\),若f(x)在区间(0,+∞)上单调递增,则该函数的值域为()A. (0,+∞)B. (-∞,+∞)C. [0,+∞)D. R8. 已知抛物线C的方程为y^2=4x,若直线l与抛物线C相切,则直线l的斜率的取值范围为()A. (-∞,0]B. (0,+∞)C. [0,+∞)D. R9. 已知椭圆E的方程为\(\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\),其中a>b>0,若椭圆E的离心率为\(\frac{\sqrt{2}}{2}\),则椭圆E 的短轴长为()A. \(\sqrt{2}\)B. 1C. 2D. \(\sqrt{3}\)10. 已知函数f(x)=\(\frac{1}{x}\),若f(x)在区间[1,2]上的平均值为\(\frac{7}{12}\),则f(x)在区间[2,3]上的平均值为()A. \(\frac{7}{20}\)B. \(\frac{7}{15}\)C. \(\frac{7}{12}\)D. \(\frac{7}{10}\)二、填空题(每题4分,共20分)1. 已知函数f(x)=\(\frac{1}{x}\),若f(x)在区间[1,2]上的平均值为\(\frac{7}{12}\),则f(x)在区间[2,3]上的平均值为\(\frac{7}{20}\)。
历年高考真题理科数学(新课标Ⅰ卷)
15.已知A,B,C是圆O上的三点,若 ,则 与 的夹角为.
【答案】:
【解析】:∵ ,∴O为线段BC中点,故BC为 的直径,
∴ ,∴ 与 的夹角为 。
16.已知 分别为 的三个内角 的对边, =2,且 ,则 面积的最大值为.
【答案】: 20
【解析】: 展开式的通项为 ,
∴ ,
∴ 的展开式中 的项为 ,故系数为 20。
14.甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,
甲说:我去过的城市比乙多,但没去过B城市;
乙说:我没去过C城市;
丙说:我们三人去过同一个城市.
由此可判断乙去过的城市为.【答案】:A【解析】:∵丙说:三人同去过同一个城市,甲说没去过B城市,乙说:我没去过C城市
(i)利用该正态分布,求 ;
(ii)某用户从该企业购买了100件这种产品,记 表示这100件产品中质量指标值为于区间(187.8,212.2)的产品件数,利用(i)的结果,求 .
附: ≈12.2.
. .3 . .
【答案】:A
【解析】:由 : ,得 ,
设 ,一条渐近线 ,即 ,则点 到 的一条渐近线的距离 = ,选A..
5.4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率
. . . .
【答案】:D
【解析】:4位同学各自在周六、周日两天中任选一天参加公益活动共有 种,
周六、周日都有同学参加公益活动有两种情况:①一天一人一天三人有 种;②每天2人有 种,则周六、周日都有同学参加公益活动的概率为 ;或间接解法:4位同学都在周六或周日参加公益活动有2种,则周六、周日都有同学参加公益活动的概率为 ;选D.
2023年高考全国乙卷数学(理科)真题解析
2023年普通高等学校招生全国统一考试全国乙卷(理科数学)一、选择题1.设252i1i i z +=++,则z =()A.12i -B.12i+ C.2i- D.2i+【答案】B 【解析】【分析】由题意首先计算复数z 的值,然后利用共轭复数的定义确定其共轭复数即可.【详解】由题意可得()252i 2i 2i 2i2i 112i 1i i 11i i 1z +++-=====-++-+-,则12i z =+.故选:B.2.设集合U =R ,集合{}1M x x =<,{}12N x x =-<<,则{}2x x ≥=()A.()U M N ðB.U N Mð C.()U M N ð D.U M N⋃ð【答案】A 【解析】【分析】由题意逐一考查所给的选项运算结果是否为{}|2x x ≥即可.【详解】由题意可得{}|2M N x x =< ,则(){}|2U M N x x =≥ ð,选项A 正确;{}|1U M x x =≥ð,则{}|1U N M x x =>- ð,选项B 错误;{}|11M N x x =-<< ,则(){|1U M N x x ⋂=≤-ð或}1x ≥,选项C 错误;{|1U N x x =≤-ð或}2x ≥,则U M N = ð{|1x x <或}2x ≥,选项D 错误;故选:A.3.如图,网格纸上绘制的一个零件的三视图,网格小正方形的边长为1,则该零件的表面积为()A.24B.26C.28D.30【答案】D 【解析】【分析】由题意首先由三视图还原空间几何体,然后由所得的空间几何体的结构特征求解其表面积即可。
【详解】如图所示,在长方体1111ABCD A B C D -中,2AB BC ==,13AA =点,,,H I J K 为所在棱上靠近点1111,,,B C D A 的三等分点,则,,,O L M N 为所在棱的中点则三视图所对应的几何体为长方体1111ABCD A B C D -去掉长方体11ONIC LMHB -之后所得的几何体:该几何体的表面积和原来的长方体的表面积相比少2个边长为1的正方形其表面积为:()()()22242321130⨯⨯+⨯⨯-⨯⨯=.故选:D.4.已知e ()e 1xax x f x =-是偶函数,则=a ()A.2- B.1- C.1D.2【答案】D 【解析】【分析】根据偶函数的定义运算求解.【详解】因为()e e 1x ax x f x =-为偶函数,则()()()()1e e e e 0e 1e 1e 1a x x x x ax ax ax x x x f x f x ---⎡⎤--⎣⎦--=-==---,又因为x 不恒为0,可得()1e e 0a x x --=,即()1e e a x x -=,则()1x a x =-,即11a =-,解得2a =.故选:D.5.设O 为平面坐标系的坐标原点,在区域(){}22,14x y x y ≤+≤内随机取一点,记该点为A ,则直线OA 的倾斜角不大于π4的概率为()A.18B.16C.14D.12【答案】C 【解析】【分析】根据题意分析区域的几何意义,结合几何概型运算求解.【详解】因为区域(){}22,|14x y x y ≤+≤表示以()0,0O 圆心,外圆半径2R =,内圆半径1r =的圆环,则直线OA 的倾斜角不大于π4的部分如阴影所示,在第一象限部分对应的圆心角π4MON ∠=,结合对称性可得所求概率π2142π4P ⨯==.故选:C.6.已知函数()sin()f x x ωϕ=+在区间π2π,63⎛⎫ ⎪⎝⎭单调递增,直线π6x =和2π3x =为函数()y f x =的图像的两条对称轴,则5π12f ⎛⎫-= ⎪⎝⎭()A.32-B.12-C.12D.2【答案】D【解析】【分析】根据题意分别求出其周期,再根据其最小值求出初相,代入5π12x =-即可得到答案.【详解】因为()sin()f x x ωϕ=+在区间π2π,63⎛⎫⎪⎝⎭单调递增,所以2πππ2362T =-=,且0ω>,则πT =,2π2w T ==,当π6x =时,()f x 取得最小值,则ππ22π62k ϕ⋅+=-,Z k ∈,则5π2π6k ϕ=-,Z k ∈,不妨取0k =,则()5πsin 26f x x ⎛⎫=- ⎪⎝⎭,则5π5π3sin 1232f ⎛⎫⎛⎫-=-= ⎪ ⎪⎝⎭⎝⎭,故选:D.7.甲乙两位同学从6种课外读物中各自选读2种,则这两人选读的课外读物中恰有1种相同的选法共有()A.30种B.60种C.120种D.240种【答案】C 【解析】【分析】相同读物有6种情况,剩余两种读物的选择再进行排列,最后根据分步乘法公式即可得到答案.【详解】首先确定相同得读物,共有16C 种情况,然后两人各自的另外一种读物相当于在剩余的5种读物里,选出两种进行排列,共有25A 种,根据分步乘法公式则共有1265C A 120⋅=种,故选:C.8.已知圆锥PO O 为底面圆心,P A ,PB 为圆锥的母线,120AOB ∠=︒,若PAB的面积等于)A.π B.C.3πD.【答案】B 【解析】【分析】根据给定条件,利用三角形面积公式求出圆锥的母线长,进而求出圆锥的高,求出体积作答.【详解】在AOB 中,120AOB ∠=o ,而OA OB ==,取AC 中点C ,连接,OC PC ,有,OC AB PC AB ⊥⊥,如图,30ABO = ∠,3232OC AB BC ===,由PAB 的面积为934,得193324PC ⨯⨯=,解得332PC =,于是PO ==,所以圆锥的体积2211ππ33V OA PO =⨯⨯=⨯⨯.故选:B9.已知ABC 为等腰直角三角形,AB 为斜边,ABD △为等边三角形,若二面角C AB D --为150︒,则直线CD 与平面ABC 所成角的正切值为()A.15B.5C.5D.25【答案】C 【解析】【分析】根据给定条件,推导确定线面角,再利用余弦定理、正弦定理求解作答.【详解】取AB 的中点E ,连接,CE DE ,因为ABC 是等腰直角三角形,且AB 为斜边,则有CE AB ⊥,又ABD △是等边三角形,则DE AB ⊥,从而CED ∠为二面角C AB D --的平面角,即150CED ∠= ,显然,,CE DE E CE DE ⋂=⊂平面CDE ,于是AB ⊥平面CDE ,又AB ⊂平面ABC ,因此平面CDE ⊥平面ABC ,显然平面CDE ⋂平面ABC CE =,直线CD ⊂平面CDE ,则直线CD 在平面ABC 内的射影为直线CE ,从而DCE ∠为直线CD 与平面ABC 所成的角,令2AB =,则1,CE DE ==CDE 中,由余弦定理得:CD ===由正弦定理得sin sin DE CDDCE CED=∠∠,即sin DCE ∠==,显然DCE ∠是锐角,cosDCE ∠=所以直线CD 与平面ABC 所成的角的正切为5.故选:C 10.已知等差数列{}n a 的公差为23π,集合{}*cos N n S a n =∈,若{},S a b =,则ab =()A.-1B.12-C.0D.12【答案】B 【解析】【分析】根据给定的等差数列,写出通项公式,再结合余弦型函数的周期及集合只有两个元素分析、推理作答.【详解】依题意,等差数列{}n a 中,112π2π2π(1)()333n a a n n a =+-⋅=+-,显然函数12π2πcos[()]33y n a =+-的周期为3,而N n *∈,即cos n a 最多3个不同取值,又{cos |N }{,}n a n a b *∈=,则在123cos ,cos ,cos a a a 中,123cos cos cos a a a =≠或123cos cos cos a a a ≠=,于是有2πcos cos(3θθ=+,即有2π(2π,Z 3k k θθ++=∈,解得ππ,Z 3k k θ=-∈,所以Z k ∈,2ππ4πππ1cos(πcos[(π)]cos(πcos πcos πcos 333332ab k k k k k =--+=--=--.故选:B11.设A ,B 为双曲线2219y x -=上两点,下列四个点中,可为线段AB 中点的是()A.()1,1 B.()1,2- C.()1,3 D.()1,4--【答案】D 【解析】【分析】根据点差法分析可得9AB k k ⋅=,对于A 、B 、D :通过联立方程判断交点个数,逐项分析判断;对于C :结合双曲线的渐近线分析判断.【详解】设()()1122,,,A x y B x y ,则AB 的中点1212,22x x y y M ++⎛⎫⎪⎝⎭,可得1212121212122,2ABy y y y y y k k x x x x x x +-+===+-+,因为,A B 在双曲线上,则221122221919y x y x ⎧-=⎪⎪⎨⎪-=⎪⎩,两式相减得()2222121209y yx x ---=,所以221222129AB y y k k x x -⋅==-.对于选项A :可得1,9AB k k ==,则:98AB y x =-,联立方程229819y x y x =-⎧⎪⎨-=⎪⎩,消去y 得272272730x x -⨯+=,此时()2272472732880∆=-⨯-⨯⨯=-<,所以直线AB 与双曲线没有交点,故A 错误;对于选项B :可得92,2ABk k =-=-,则95:22AB y x =--,联立方程22952219y x y x ⎧=--⎪⎪⎨⎪-=⎪⎩,消去y 得245245610x x +⨯+=,此时()224544561445160∆=⨯-⨯⨯=-⨯⨯<,所以直线AB 与双曲线没有交点,故B 错误;对于选项C :可得3,3AB k k ==,则:3AB y x =由双曲线方程可得1,3a b ==,则:3AB y x =为双曲线的渐近线,所以直线AB 与双曲线没有交点,故C 错误;对于选项D :94,4AB k k ==,则97:44AB y x =-,联立方程22974419y x y x ⎧=-⎪⎪⎨⎪-=⎪⎩,消去y 得2631261930x x +-=,此时21264631930∆=+⨯⨯>,故直线AB 与双曲线有交两个交点,故D 正确;故选:D.12.已知O 的半径为1,直线PA 与O 相切于点A ,直线PB 与O 交于B ,C 两点,D 为BC的中点,若PO =PA PD ⋅的最大值为() A.122B.1222+C.1+D.2+【答案】A 【解析】【分析】由题意作出示意图,然后分类讨论,利用平面向量的数量积定义可得PA PD ⋅1sin 2224πα⎛⎫=-- ⎪⎝⎭,或PA PD ⋅1sin 2224πα⎛⎫=++ ⎪⎝⎭然后结合三角函数的性质即可确定PA PD ⋅的最大值.【详解】如图所示,1,OA OP ==:45APO ∠= ,由勾股定理可得1PA ==当点,A D 位于直线PO 异侧时,设=,04OPC παα∠≤≤,则:PA PD ⋅ =||||cos 4PA PD πα⎛⎫⋅+ ⎪⎝⎭ 12cos 4παα⎛⎫=+ ⎪⎝⎭22222ααα⎛⎫=- ⎪ ⎪⎝⎭2cos sin cos ααα=-1cos 21sin 222αα+=-12sin 2224πα⎛⎫=-- ⎪⎝⎭04πα≤≤,则2444πππα-≤-≤∴当ππ244α-=-时,PA PD ⋅ 有最大值1.当点,A D 位于直线PO 同侧时,设=,04OPC παα∠≤≤,则:PA PD ⋅ =||||cos 4PA PD πα⎛⎫⋅- ⎪⎝⎭ 12cos 4παα⎛⎫=- ⎪⎝⎭22222ααα⎛⎫=+ ⎪ ⎪⎝⎭2cos sin cos ααα=+1cos 21sin 222αα+=+12sin 2224πα⎛⎫=++ ⎪⎝⎭04πα≤≤,则2442πππα≤+≤∴当242ππα+=时,PA PD ⋅ 有最大值122.综上可得,PA PD⋅ 的最大值为122+.故选:A.【点睛】本题的核心在于能够正确作出示意图,然后将数量积的问题转化为三角函数求最值的问题,考查了学生对于知识的综合掌握程度和灵活处理问题的能力.二、填空题13.已知点(A 在抛物线C :22y px =上,则A 到C 的准线的距离为______.【答案】94【解析】【分析】由题意首先求得抛物线的标准方程,然后由抛物线方程可得抛物线的准线方程为54x =-,最后利用点的坐标和准线方程计算点A 到C 的准线的距离即可.【详解】由题意可得:221p =⨯,则25p =,抛物线的方程为25y x =,准线方程为54x =-,点A 到C 的准线的距离为59144⎛⎫--= ⎪⎝⎭.故答案为:94.14.若x ,y 满足约束条件312937x y x y x y -≤-⎧⎪+≤⎨⎪+≥⎩,则2z x y =-的最大值为______.【答案】8【解析】【分析】作出可行域,转化为截距最值讨论即可.【详解】作出可行域如下图所示:2z x y =-,移项得2y x z =-,联立有3129x y x y -=-⎧⎨+=⎩,解得52x y =⎧⎨=⎩,设()5,2A ,显然平移直线2y x =使其经过点A ,此时截距z -最小,则z 最大,代入得8z =,故答案为:8.15.已知{}n a 为等比数列,24536a a a a a =,9108a a =-,则7a =______.【答案】2-【解析】【分析】根据等比数列公式对24536a a a a a =化简得11a q =,联立9108a a =-求出32q =-,最后得55712a a q q q =⋅==-.【详解】设{}n a 的公比为()0q q ≠,则3252456a q a a q a a a a ==⋅,显然0n a ≠,则24a q =,即321a q q =,则11a q =,因为9108a a =-,则89118a q a q ⋅=-,则()()3315582q q ==-=-,则32q =-,则55712a a q q q =⋅==-,故答案为:2-.16.设()0,1a ∈,若函数()()1xx f x a a =++在()0,∞+上单调递增,则a 的取值范围是______.【答案】51,12⎫-⎪⎪⎣⎭【解析】【分析】原问题等价于()()()ln 1ln 10xx f x a a a a '=+++≥恒成立,据此将所得的不等式进行恒等变形,可得()1ln ln 1xa a a a +⎛⎫≥- ⎪+⎝⎭,由右侧函数的单调性可得实数a 的二次不等式,求解二次不等式后可确定实数a 的取值范围.【详解】由函数的解析式可得()()()ln 1ln 10xx f x a a a a '=+++≥在区间()0,∞+上恒成立,则()()1ln 1ln xxa a a a ++≥-,即()1ln ln 1xa a a a +⎛⎫≥- ⎪+⎝⎭在区间()0,∞+上恒成立,故()01ln 1ln 1a a a a +⎛⎫=≥- ⎪+⎝⎭,而()11,2a +∈,故()ln 10a +>,故()ln 1ln 01a a a ⎧+≥-⎨<<⎩即()1101a a a ⎧+≥⎨<<⎩,故112a ≤<,结合题意可得实数a 的取值范围是1,12⎫-⎪⎪⎣⎭.故答案为:1,12⎫-⎪⎪⎣⎭.三、解答题17.某厂为比较甲乙两种工艺对橡胶产品伸缩率的处理效应,进行10次配对试验,每次配对试验选用材质相同的两个橡胶产品,随机地选其中一个用甲工艺处理,另一个用乙工艺处理,测量处理后的橡胶产品的伸缩率,甲、乙两种工艺处理后的橡胶产品的伸缩率分别记为i x ,i y (1,2,10i =⋅⋅⋅),试验结果如下试验序号i 12345678910伸缩率i x 545533551522575544541568596548伸缩率iy 536527543530560533522550576536记(1,2,,10)i i i z x y i =-= ,记1z ,2z ,…,10z 的样本平均数为z ,样本方差为2s ,(1)求z ,2s ;(2)判断甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率是否有显著提高(如果z ≥,则认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高,否则不认为有显著提高).【答案】(1)11z =,261s =;(2)认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高.【解析】【分析】(1)直接利用平均数公式即可计算出,x y ,再得到所有的i z 值,最后计算出方差即可;(2)根据公式计算出的值,和z 比较大小即可.【小问1详解】545533551522575544541568596548552.310x +++++++++==,536527543530560533522550576536541.310y +++++++++==,552.3541.311z x y =-=-=,i i i z x y =-的值分别为:9,6,8,8,15,11,19,18,20,12-,故2222222222(911)(611)(811)(811)(1511)0(1911)(1811)(2011)(1211)6110s -+-+-+--+-++-+-+-+-==【小问2详解】由(1)知:11z =,==,故有z ≥所以认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高.18.在ABC 中,已知120BAC ∠=︒,2AB =,1AC =.(1)求sin ABC ∠;(2)若D 为BC 上一点,且90BAD ∠=︒,求ADC △的面积.【答案】(1)2114;(2)310.【解析】【分析】(1)首先由余弦定理求得边长BC 的值为BC =,然后由余弦定理可得57cos 14B =,最后由同角三角函数基本关系可得sin 14B =;(2)由题意可得4ABD ACD S S =△△,则15ACD ABC S S =△△,据此即可求得ADC △的面积.【小问1详解】由余弦定理可得:22222cos BC a b c bc A ==+-41221cos1207=+-⨯⨯⨯= ,则BC =22257cos 214a c b B ac +-===,21sin 14B =.【小问2详解】由三角形面积公式可得1sin 90241sin 302ABD ACDAB AD S S AC AD ⨯⨯⨯==⨯⨯⨯ △△,则11121sin12055210ACD ABC S S ⎛⎫==⨯⨯⨯⨯= ⎪⎝⎭ △△.19.如图,在三棱锥-P ABC 中,AB BC ⊥,2AB =,BC =PB PC ==BP ,AP ,BC 的中点分别为D ,E ,O,AD =,点F 在AC 上,BF AO ⊥.(1)证明://EF 平面ADO ;(2)证明:平面ADO ⊥平面BEF ;(3)求二面角D AO C --的正弦值.【答案】(1)证明见解析;(2)证明见解析;(3)22.【解析】【分析】(1)根据给定条件,证明四边形ODEF 为平行四边形,再利用线面平行的判定推理作答.(2)由(1)的信息,结合勾股定理的逆定理及线面垂直、面面垂直的判定推理作答.(3)由(2)的信息作出并证明二面角的平面角,再结合三角形重心及余弦定理求解作答.【小问1详解】连接,DE OF ,设AF tAC =,则(1)BF BA AF t BA tBC =+=-+ ,12AO BA BC =-+,BF AO ⊥,则2211[(1)]()(1)4(1)4022BF AO t BA tBC BA BC t BA tBC t t ⋅=-+⋅-+=-+=-+= ,解得12t =,则F 为AC 的中点,由,,,D E O F 分别为,,,PB PA BC AC 的中点,于是11//,,//,22DE AB DE AB OF AB OF AB ==,即,//DE OF DE OF =,则四边形ODEF 为平行四边形,, //EF DO EF DO =,又EF ⊄平面,ADO DO ⊂平面ADO ,所以//EF 平面ADO .【小问2详解】由(1)可知//EF OD,则2AO DO ==,得2AD ==,因此222152OD AO AD +==,则OD AO ⊥,有EF AO ⊥,又,AO BF BF EF F ⊥= ,,BF EF ⊂平面BEF ,则有AO ⊥平面BEF ,又AO ⊂平面ADO ,所以平面ADO ⊥平面B EF .【小问3详解】过点O 作//OH BF 交AC 于点H ,设AD BE G = ,由AO BF ⊥,得HO AO ⊥,且13FH AH =,又由(2)知,OD AO ⊥,则DOH ∠为二面角D AO C --的平面角,因为,D E 分别为,PB PA 的中点,因此G 为PAB 的重心,即有11,33DG AD GE BE ==,又1 3FH AH =,即有32DH GF =,2315422cos 62ABD +-∠==PA =,同理得2BE =,于是2223BE EF BF +==,即有BE EF ⊥,则222153223GF ⎛⎛=⨯+= ⎝⎭⎝⎭,从而153GF =,31515232DH =⨯=,在DOH △中,13615,,2222OH BF OD DH ====,于是6315444cos 26322DOH +-∠=-,2sin 2DOH ∠==,所以二面角D AO C --的正弦值为2.20.已知椭圆C :()222210y x a b a b +=>>的离心率为3,点()2,0A -在C 上.(1)求C 的方程;(2)过点()2,3-的直线交C 于点P ,Q 两点,直线AP ,AQ 与y 轴的交点分别为M ,N ,证明:线段MN 的中点为定点.【答案】(1)22194y x +=(2)证明见详解【解析】【分析】(1)根据题意列式求解,,a b c ,进而可得结果;(2)设直线PQ 的方程,进而可求点,M N 的坐标,结合韦达定理验证2M Ny y +为定值即可.【小问1详解】由题意可得222253b a b c c e a ⎧⎪=⎪⎪=+⎨⎪⎪==⎪⎩,解得32a b c ⎧=⎪=⎨⎪=⎩,所以椭圆方程为22194y x +=.【小问2详解】由题意可知:直线PQ 的斜率存在,设()()()1122:23,,,,PQ y k x P x y Q x y =++,联立方程()2223194y k x y x ⎧=++⎪⎨+=⎪⎩,消去y 得:()()()222498231630k x k k x k k +++++=,则()()()2222Δ64236449317280kk k k k k =+-++=->,解得0k <,可得()()2121222163823,4949k k k k x x x x k k +++=-=++,因为()2,0A -,则直线()11:22y AP y x x =++,令0x =,解得1122y y x =+,即1120,2y M x ⎛⎫⎪+⎝⎭,同理可得2220,2y N x ⎛⎫ ⎪+⎝⎭,则()()1212121222232322222y y k x k x x x x x +++++⎡⎤⎡⎤++⎣⎦⎣⎦=+++()()()()()()12211223223222kx k x kx k x x x +++++++⎡⎤⎡⎤⎣⎦⎣⎦=++()()()()1212121224342324kx x k x x k x x x x +++++=+++()()()()()()222222323843234231084949336163162344949k k k k k k k k k k k k k k k +++-++++===++-+++,所以线段PQ 的中点是定点()0,3.【点睛】方法点睛:求解定值问题的三个步骤(1)由特例得出一个值,此值一般就是定值;(2)证明定值,有时可直接证明定值,有时将问题转化为代数式,可证明该代数式与参数(某些变量)无关;也可令系数等于零,得出定值;(3)得出结论.21.已知函数1()ln(1)f x a x x ⎛⎫=++ ⎪⎝⎭.(1)当1a =-时,求曲线()y f x =在点()()1,1f 处的切线方程;(2)是否存在a ,b ,使得曲线1y f x ⎛⎫= ⎪⎝⎭关于直线x b =对称,若存在,求a ,b 的值,若不存在,说明理由.(3)若()f x 在()0,∞+存在极值,求a 的取值范围.【答案】(1)()ln 2ln 20x y +-=;(2)存在11,22a b ==-满足题意,理由见解析.(3)10,2⎛⎫ ⎪⎝⎭.【解析】【分析】(1)由题意首先求得导函数的解析式,然后由导数的几何意义确定切线的斜率和切点坐标,最后求解切线方程即可;(2)首先求得函数的定义域,由函数的定义域可确定实数b 的值,进一步结合函数的对称性利用特殊值法可得关于实数a 的方程,解方程可得实数a 的值,最后检验所得的,a b 是否正确即可;(3)原问题等价于导函数有变号的零点,据此构造新函数()()()2=1ln 1g x ax x x x +-++,然后对函数求导,利用切线放缩研究导函数的性质,分类讨论0a ≤,12a ≥和102a <<三中情况即可求得实数a 的取值范围.【小问1详解】当1a =-时,()()11ln 1f x x x ⎛⎫=-+⎪⎝⎭,则()()2111ln 111x f x x x x ⎛⎫'=-⨯++-⨯ ⎪+⎝⎭,据此可得()()10,1ln 2f f '==-,函数在()()1,1f 处的切线方程为()0ln 21y x -=--,即()ln 2ln 20x y +-=.【小问2详解】由函数的解析式可得()11ln 1f x a x x ⎛⎫⎛⎫=++ ⎪ ⎪⎝⎭⎝⎭,函数的定义域满足1110x x x ++=>,即函数的定义域为()(),10,-∞-⋃+∞,定义域关于直线12x =-对称,由题意可得12b =-,由对称性可知111222f m f m m ⎛⎫⎛⎫⎛⎫-+=--> ⎪ ⎪⎝⎭⎝⎭⎝⎭,取32m =可得()()12f f =-,即()()11ln 22ln2a a +=-,则12a a +=-,解得12a =,经检验11,22a b ==-满足题意,故11,22a b ==-.即存在11,22a b ==-满足题意.【小问3详解】由函数的解析式可得()()2111ln 11f x x a x x x ⎛⎫⎛⎫=-+'++ ⎪ ⎪+⎝⎭⎝⎭,由()f x 在区间()0,∞+存在极值点,则()f x '在区间()0,∞+上存在变号零点;令()2111ln 101x a x x x ⎛⎫⎛⎫-+++= ⎪ ⎪+⎝⎭⎝⎭,则()()()21ln 10x x x ax -++++=,令()()()2=1ln 1g x ax x x x +-++,()f x 在区间()0,∞+存在极值点,等价于()g x 在区间()0,∞+上存在变号零点,()()()12ln 1,21g x ax x g x a x '=''=-+-+当0a ≤时,()0g x '<,()g x 在区间()0,∞+上单调递减,此时()()00g x g <=,()g x 在区间()0,∞+上无零点,不合题意;当12a ≥,21a ≥时,由于111x <+,所以()()''0,g x g x >'在区间()0,∞+上单调递增,所以()()00g x g ''>=,()g x 在区间()0,∞+上单调递增,()()00g x g >=,所以()g x 在区间()0,∞+上无零点,不符合题意;当102a <<时,由()''1201g x a x =-=+可得1=12x a-,当10,12x a ⎛⎫∈- ⎪⎝⎭时,()0g x ''<,()g x '单调递减,当11,2x a ⎛⎫∈-+∞ ⎪⎝⎭时,()0g x ''>,()g x '单调递增,故()g x '的最小值为1112ln 22g a a a ⎛⎫-=-+⎪⎝⎭',令()()1ln 01m x x x x =-+<<,则()10x m x x-+'=>,函数()m x 在定义域内单调递增,()()10m x m <=,据此可得1ln 0x x -+<恒成立,则1112ln 202g a a a ⎛⎫-=-+<⎪'⎝⎭,令()()2ln 0h x x x x x =-+>,则()221x x h x x-++'=,当()0,1x ∈时,()()0,h x h x '>单调递增,当()1,x ∈+∞时,()()0,h x h x '<单调递减,故()()10h x h ≤=,即2ln x x x ≤-(取等条件为1x =),所以()()()()()222ln 12112g x ax x ax x x ax x x ⎡⎤=-+>-+-+=-+⎣⎦',()()()()22122121210g a a a a a ⎡⎤->---+-=⎣⎦',且注意到()00g '=,根据零点存在性定理可知:()g x '在区间()0,∞+上存在唯一零点0x .当()00,x x ∈时,()0g x '<,()g x 单调减,当()0,x x ∈+∞时,()0g x '>,()g x 单调递增,所以()()000g x g <=.令()11ln 2n x x x x ⎛⎫=-- ⎪⎝⎭,则()()22211111022x n x x x x--⎛⎫=-+=≤ ⎪⎝⎭',则()n x 单调递减,注意到()10n =,故当()1,x ∈+∞时,11ln 02x x x ⎛⎫--< ⎪⎝⎭,从而有11ln 2x x x ⎛⎫<- ⎪⎝⎭,所以()()()2=1ln 1g x ax x x x +-++()()211>1121ax x x x x ⎡⎤+-+⨯+-⎢⎥+⎣⎦21122a x ⎛⎫=-+ ⎪⎝⎭,令211022a x ⎛⎫-+= ⎪⎝⎭得2x =,所以0g >,所以函数()g x 在区间()0,∞+上存在变号零点,符合题意.综合上面可知:实数a 得取值范围是10,2⎛⎫ ⎪⎝⎭.【点睛】(1)求切线方程的核心是利用导函数求切线的斜率,求函数的导数要准确地把函数拆分成基本初等函数的和、差、积、商,再利用运算法则求导,合函数求导,应由外到内逐层求导,必要时要进行换元.(2)根据函数的极值(点)求参数的两个要领:①列式:根据极值点处导数为0和极值这两个条件列方程组,利用待定系数法求解;②验证:求解后验证根的合理性.本题中第二问利用对称性求参数值之后也需要进行验证.四、选做题【选修4-4】(10分)22.在直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为ππ2sin 42⎛⎫=≤≤ ⎪⎝⎭ρθθ,曲线2C :2cos 2sin x y αα=⎧⎨=⎩(α为参数,2απ<<π).(1)写出1C 的直角坐标方程;(2)若直线y x m =+既与1C 没有公共点,也与2C 没有公共点,求m 的取值范围.【答案】(1)()[][]2211,0,1,1,2x y x y +-=∈∈(2)()(),0-∞+∞【解析】【分析】(1)根据极坐标与直角坐标之间的转化运算求解,注意,x y 的取值范围;(2)根据曲线12,C C 的方程,结合图形通过平移直线y x m =+分析相应的临界位置,结合点到直线的距离公式运算求解即可.【小问1详解】因为2sin ρθ=,即22sin ρρθ=,可得222x y y +=,整理得()2211x y +-=,表示以()0,1为圆心,半径为1的圆,又因为2cos 2sin cos sin 2,sin 2sin 1cos 2x y ======-ρθθθθρθθθ,且ππ42θ≤≤,则π2π2≤≤θ,则[][]sin 20,1,1cos 21,2x y =∈=-∈θθ,故()[][]221:11,0,1,1,2C x y x y +-=∈∈.【小问2详解】因为22cos :2sin x C y αα=⎧⎨=⎩(α为参数,ππ2α<<),整理得224x y +=,表示圆心为()0,0O ,半径为2,且位于第二象限的圆弧,如图所示,若直线y x m =+过()1,1,则11m =+,解得0m =;若直线y x m =+,即0x y m -+=与2C相切,则20m =>⎩,解得m =,若直线y x m =+与12,C C 均没有公共点,则m >或0m <,即实数m 的取值范围()(),0-∞+∞ .【选修4-5】(10分)23.已知()22f x x x =+-.(1)求不等式()6f x x ≤-的解集;(2)在直角坐标系xOy 中,求不等式组()60f x y x y ≤⎧⎨+-≤⎩所确定的平面区域的面积.【答案】(1)[2,2]-;(2)6.【解析】【分析】(1)分段去绝对值符号求解不等式作答.(2)作出不等式组表示的平面区域,再求出面积作答.【小问1详解】依题意,32,2()2,0232,0x x f x x x x x ->⎧⎪=+≤≤⎨⎪-+<⎩,不等式()6f x x ≤-化为:2326x x x >⎧⎨-≤-⎩或0226x x x ≤≤⎧⎨+≤-⎩或0326x x x <⎧⎨-+≤-⎩,解2326x x x >⎧⎨-≤-⎩,得无解;解0226x x x ≤≤⎧⎨+≤-⎩,得02x ≤≤,解0326x x x <⎧⎨-+≤-⎩,得20x -≤<,因此22x -≤≤,所以原不等式的解集为:[2,2]-【小问2详解】作出不等式组()60f x y x y ≤⎧⎨+-≤⎩表示的平面区域,如图中阴影ABC,由326y x x y =-+⎧⎨+=⎩,解得(2,8)A -,由26y x x y =+⎧⎨+=⎩,解得(2,4)C ,又(0,2),(0,6)B D ,所以ABC 的面积11|||62||2(2)|822ABC C A S BD x x =⨯-=-⨯--= .。
高考数学真题2024年高考全国甲卷数学(理)真题 原卷版
2024年高考全国甲卷数学(理)真题学校:___________姓名:___________班级:___________考号:___________一、单选题1.设5i z =+,则()i z z +=()A .10iB .2iC .10D .2-2.集合{}{}1,2,3,4,5,9,A B x x A ==∈,则()A A B ⋂=ð()A .{}1,4,9B .{}3,4,9C .{}1,2,3D .{}2,3,53.若实数,x y 满足约束条件43302202690x y x y x y --≥⎧⎪--≤⎨⎪+-≤⎩,则5z x y =-的最小值为()A .5B .12C .2-D .72-4.等差数列{}n a 的前n 项和为n S ,若510S S =,51a =,则1a =()A .2-B .73C .1D .25.已知双曲线的两个焦点分别为(0,4),(0,4)-,点(6,4)-在该双曲线上,则该双曲线的离心率为()A .4B .3C .2D 26.设函数()2e 2sin 1x xf x x+=+,则曲线()y f x =在()0,1处的切线与两坐标轴围成的三角形的面积为()A .16B .13C .12D .237.函数()()2e e sin x xf x x x -=-+-在区间[2.8,2.8]-的大致图像为()A .B .C .D .8.已知cos cos sin ααα=-πtan 4α⎛⎫+= ⎪⎝⎭()A .1B .1C .2D .19.已知向量()()1,,,2a x x b x =+=,则()A .“3x =-”是“a b ⊥”的必要条件B .“3x =-”是“//a b”的必要条件C .“0x =”是“a b ⊥”的充分条件D .“1x =-”是“//a b”的充分条件10.设αβ、是两个平面,m n 、是两条直线,且m αβ= .下列四个命题:①若//m n ,则//n α或//n β②若m n ⊥,则,n n αβ⊥⊥③若//n α,且//n β,则//m n ④若n 与α和β所成的角相等,则m n⊥其中所有真命题的编号是()A .①③B .②④C .①②③D .①③④11.在ABC 中内角,,A B C 所对边分别为,,a b c ,若π3B =,294b ac =,则sin sin A C +=()A .32B C D 12.已知b 是,a c 的等差中项,直线0ax by c ++=与圆22410x y y ++-=交于,A B 两点,则AB 的最小值为()A .2B .3C .4D .二、填空题13.1013x ⎛⎫+ ⎪⎝⎭的展开式中,各项系数的最大值是.14.已知甲、乙两个圆台上、下底面的半径均为1r 和2r ,母线长分别为()212r r -和()213r r -,则两个圆台的体积之比=V V 甲乙.15.已知1a >,8115log log 42a a -=-,则=a .16.有6个相同的球,分别标有数字1、2、3、4、5、6,从中不放回地随机抽取3次,每次取1个球.记m 为前两次取出的球上数字的平均值,n 为取出的三个球上数字的平均值,则m 与n 差的绝对值不超过12的概率是.三、解答题17.某工厂进行生产线智能化升级改造,升级改造后,从该工厂甲、乙两个车间的产品中随机抽取150件进行检验,数据如下:优级品合格品不合格品总计甲车间2624050乙车间70282100总计96522150(1)填写如下列联表:优级品非优级品甲车间乙车间能否有95%的把握认为甲、乙两车间产品的优级品率存在差异?能否有99%的把握认为甲,乙两车间产品的优级品率存在差异?(2)已知升级改造前该工厂产品的优级品率0.5p =,设p 为升级改造后抽取的n 件产品的优级品率.如果p p >+150件产品的数据,能否认为生产线智能化升级改造后,该工厂产品的优级品率提高了?12.247≈)附:22()()()()()n ad bc K a b c d a c b d -=++++()2P K k ≥0.0500.0100.001k 3.841 6.63510.82818.记n S 为数列{}n a 的前n 项和,且434n n S a =+.(1)求{}n a 的通项公式;(2)设1(1)n n n b na -=-,求数列{}n b 的前n 项和为n T .19.如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,四边形ABCD 与四边形ADEF 均为等腰梯形,//,//BC AD EF AD ,4,2AD AB BC EF ====,ED FB ==M 为AD 的中点.(1)证明://BM 平面CDE ;(2)求二面角F BM E --的正弦值.20.设椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,点31,2M ⎛⎫ ⎪⎝⎭在C 上,且MF x ⊥轴.(1)求C 的方程;(2)过点()4,0P 的直线与C 交于,A B 两点,N 为线段FP 的中点,直线NB 交直线MF 于点Q ,证明:AQ y ⊥轴.21.已知函数()()()1ln 1f x ax x x =-+-.(1)当2a =-时,求()f x 的极值;(2)当0x ≥时,()0f x ≥恒成立,求a 的取值范围.22.在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为cos 1ρρθ=+.(1)写出C 的直角坐标方程;(2)设直线l :x ty t a =⎧⎨=+⎩(t 为参数),若C 与l 相交于A B 、两点,若2AB =,求a 的值.23.实数,a b 满足3a b +≥.(1)证明:2222a b a b +>+;(2)证明:22226a b b a -+-≥.。
近五年高考数学试卷
近五年高考数学试卷一、选择题(每题5分,共60分)1. 已知集合A = {xx^2-3x + 2 = 0},B={xx^2-ax + a - 1 = 0},若A∪ B = A,则实数a的值为()A. 2B. 3C. 2或3D. 1或2或32. 复数z=(1 + i)/(1 - i)(i为虚数单位)的共轭复数是()A. iB. -iC. 1 - iD. 1 + i3. 已知向量→a=(1,2),→b=(x,1),若→a⊥→b,则x的值为()A. -2B. -1C. 1D. 24. 在等差数列{a_n}中,a_3=5,a_7=13,则a_11的值为()A. 19B. 21C. 23D. 255. 函数y = sin(2x+(π)/(3))的图象向右平移(π)/(6)个单位长度后得到的函数图象的解析式为()A. y=sin2xB. y = sin(2x-(π)/(6))C. y=cos2xD. y = sin(2x+(π)/(6))6. 若log_a2<1(a>0且a≠1),则a的取值范围是()A. (0,1)B. (0,1)∪(2,+∞)C. (2,+∞)D. (1,2)7. 一个几何体的三视图如图所示(单位:cm),则该几何体的表面积是()A. 20 + 2√(5) cm^2B. 24 + 2√(5) cm^2C. 20 + 4√(5) cm^2D. 24 + 4√(5) cm^28. 从1,2,3,4,5这5个数中任取2个数,则这2个数之和为偶数的概率为()A. (1)/(5)B. (2)/(5)C. (3)/(5)D. (4)/(5)9. 若双曲线frac{x^2}{a^2}-frac{y^2}{b^2} = 1(a>0,b>0)的一条渐近线方程为y=√(3)x,则双曲线的离心率为()A. √(2)B. √(3)C. 2D. 410. 已知函数f(x)=x^3+ax^2+bx + c,x∈[-2,2]表示的曲线过原点,且在x = ±1处的切线斜率均为-1,则f(x)的解析式为()A. f(x)=x^3-4x,x∈[-2,2]B. f(x)=x^3-3x,x∈[-2,2]C. f(x)=x^3-2x,x∈[-2,2]D. f(x)=x^3-x,x∈[-2,2]11. 若x,y满足约束条件x - y+1≥0 x + y - 3≥0 x≤2,则z = 2x - y的最大值为()A. -1B. 1C. 3D. 512. 已知函数f(x)=(1)/(2)x^2-9ln x在区间[a - 1,a + 1]上单调递减,则实数a的取值范围是()A. (1,2]B. [4,+∞)C. (-∞,2]D. (0,3]二、填空题(每题5分,共20分)13. 若(1 + 2x)^n展开式中x^3的系数为80,则n=______。
2023年全国甲卷【理科】数学高考真题
姓名:座位号(在此试卷上答题无效)绝密★启用前2023年普通高等学校招生全国统一考试数学(理科)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合{31Z},A x x k k ==+Î,{32Z},B x x k k ==+Î,U 为整数集,则()U C A B =I A .{3Z},x x k k =ÎB .{31Z},x x k k =-ÎB .C .{31Z},x x k k =-ÎD .Æ2-若复数(i)(1i)2a a +-=,则a =A .1-B .0C .1D .23.执行下面的程序框图,输出的B =A .21B .34C .55D .894.向量1a b ==,c 且0a b c ++=,则cos a b b c ,<-->=A .15-B .25-C .25D .455.已知数列{}n a 中,n S 为{}n a 前n 项和,5354S S =-,则4S =A .7B .9C .15D .206.有50人报名足球俱乐部,60人报名乒乓球俱乐部,结束70人报名足球或乒乓球俱乐部,若已知某人报足球俱乐部,则其报乒乓球,俱乐部的概率为A .0.8B .0.4C .0.2D .0.17.“22sin sin 1a b +=”是“cos cos 0a b +=”的A .充分条件但不是必要条件B .必要条件但不是充分条件C .充要条件D .既不是充分条件也不是必要条件8.已知双曲线22221(00),x y a b a b+=>>的离心率为,其中一条渐近线与圆22(2)(3)1x y -+-=交于A ,B 两点,则AB =A .15B C D 9.有五名志愿者参加社区服务,共服务星期六、星期天两天,每天从中任选两人参加服务,则两天中恰有1人连续参加两天服务的选择种数为A .120B .60C .40D .3010.已知()f x 为函数πcos(2)4y x =+向左平移π6个单位所得函数,则()y f x =与1122y x =-,交点个数为A .1B .2C .3D .411.在四棱锥P ABCD -中,底面ABCD 为正方形,4AB =,3PC PD ==,45PCA Ð=°,则△PBC 的面积为A .B .C .D .12.已知椭圆22196x y +=,F 1、F 2为两个焦点,O 为原点,P 为椭有圆上一点,123cos 5∠F PF =,则|OP =A .25B .302C .35D .352二、填空题:本题共4小题,每小题5分,共20分。
历年真题:江西高考理科数学试题含答案(Word版)
普通高等学校招生全国统一考试(江西卷)数学(理科)一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的。
1. z 是z 的共轭复数. 若2=+z z ,(2)(=-i z z (i 为虚数单位),则=z ( ) A. i +1 B. i --1 C. i +-1 D. i -12. 函数)ln()(2x x x f -=的定义域为( )A.)1,0(B. ]1,0[C. ),1()0,(+∞-∞D. ),1[]0,(+∞-∞ 3. 已知函数||5)(x x f =,)()(2R a x ax x g ∈-=,若1)]1([=g f ,则=a ( ) A. 1 B. 2 C. 3 D. -14.在ABC ∆中,内角A,B,C 所对应的边分别为,,,c b a ,若,3,6)(22π=+-=C b a c 则ABC ∆的面积( ) A.3 B.239 C.233 D.33 5.一几何体的直观图如右图,下列给出的四个俯视图中正确的是( )6.某人研究中学生的性别与成绩、视力、智商、阅读量这4个变量之间的关系,随机抽查52名中学生,得到统计数据如表1至表4,泽宇性别有关联的可能性最大的变量是( )A.成绩B.视力C.智商D.阅读量7.阅读如下程序框图,运行相应的程序,则程序运行后输出的结果为( )A.7B.9C.10D.11 8.若12()2(),f x x f x dx =+⎰则1()f x dx =⎰( )A.1-B.13- C.13D.1 9.在平面直角坐标系中,,A B 分别是x 轴和y 轴上的动点,若以AB 为直径的圆C 与直线240x y +-=相切,则圆C 面积的最小值为( ) A.45π B.34π C.(625)π- D.54π10.如右图,在长方体1111ABCD A B C D -中,AB =11,AD =7,1AA =12,一质点从顶点A 射向点()4312E ,,,遇长方体的面反射(反射服从光的反射原理),将1i -次到第i 次反射点之间的线段记为()2,3,4i L i =,1L AE =,将线段1234,,,L L L L 竖直放置在同一水平线上,则大致的图形是( )二.选做题:请考生在下列两题中任选一题作答,若两题都做,则按所做的第一题评阅计分,本题共5分.在每小题给出的四个选项中,只有一项是符合题目要求的.11(1).(不等式选做题)对任意,x y R ∈,111x x y y -++-++的最小值为( )A.1B.2C.3D.411(2).(坐标系与参数方程选做题)若以直角坐标系的原点为极点,x 轴的非负半轴为极轴建立极坐标系,则线段()101y x x =-≤≤的极坐标为( ) A.1,0cos sin 2πρθθθ=≤≤+ B.1,0cos sin 4πρθθθ=≤≤+C.cos sin ,02πρθθθ=+≤≤D.cos sin ,04πρθθθ=+≤≤三.填空题:本大题共4小题,每小题5分,共20分.12.10件产品中有7件正品,3件次品,从中任取4件,则恰好取到1件次品的概率是________. 13.若曲线xy e -=上点P 处的切线平行于直线210x y ++=,则点P 的坐标是________. 14.已知单位向量1e 与2e 的夹角为α,且1cos 3α=,向量1232a e e =-与123b e e =-的夹角为β,则cos β=15.过点(1,1)M 作斜率为12-的直线与椭圆C :22221(0)x y a b a b +=>>相交于,A B ,若M 是线段AB 的中点,则椭圆C 的离心率为三.简答题16.已知函数()sin()cos(2)f x x a x θθ=+++,其中,(,)22a R ππθ∈∈- (1)当2,4a πθ==时,求()f x 在区间[0,]π上的最大值与最小值;(2)若()0,()12f f ππ==,求,a θ的值.17、(本小题满分12分) 已知首项都是1的两个数列(),满足.(1) 令,求数列的通项公式; (2) 若,求数列的前n 项和.18、(本小题满分12分) 已知函数.(1) 当时,求的极值;(2) 若在区间上单调递增,求b 的取值范围.19(本小题满分12分)如图,四棱锥ABCD P -中,ABCD 为矩形,平面⊥PAD 平面ABCD . (1)求证:;PD AB ⊥(2)若,2,2,90===∠PC PB BPC 问AB 为何值时,四棱锥ABCD P -的体积最大?并求此时平面PBC 与平面DPC 夹角的余弦值.20.(本小题满分13分)如图,已知双曲线)0(1222>=-a y ax C n 的右焦点F ,点B A ,分别在C 的两条渐近线上,x AF ⊥轴,BF OB AB ,⊥∥OA (O 为坐标原点). (1)求双曲线C 的方程;(2)过C 上一点)0)((00,0≠y y x P 的直线1:020=-y y a x x l 与直线AF 相交于点M ,与直线23=x 相交于点N ,证明点P 在C 上移动时,NFMF恒为定值,并求此定值21.(满分14分)随机将()1,2,,2,2n n N n *⋅⋅⋅∈≥这2n 个连续正整数分成A,B 两组,每组n 个数,A 组最小数为1a ,最大数为2a ;B 组最小数为1b ,最大数为1b ,记2112,a a b b ξη=-=- (1)当3n =时,求ξ的分布列和数学期望;(2)令C 表示事件ξ与η的取值恰好相等,求事件C 发生的概率()p c ;对(2)中的事件C,c 表示C 的对立事件,判断()p c 和()p c 的大小关系,并说明理由。
历年高考理科数学真题汇编+答案解析(6):解析几何
| AF2 | 2 | F2B | , | AB || BF1 | ,则 C 的方程为
A. x2 y2 1 2
B. x2 y2 1 32
C. x2 y2 1 43
D. x2 y2 1 54
【解析】由题意,设椭圆
C
的方程为
x2 a2
y2 b2
1
(a b 0) .
∵| AF2 | 2 | BF2 | ,| AB | 3 | BF2 | ,又∵ | AB || BF1 | ,| BF1 | 3 | BF2 | .
11.(2018 全国 III 卷理 6)直线 x y 2 0 分别与 x 轴, y 轴交于 A ,B 两点,点 P 在圆 x 22 y2 2
上,则△ABP 面积的取值范围是
A. 2,6
B. 4,8
C. 2 ,3 2
D. 2 2 ,3 2
【解析】如图所示,由题意可知 A(2,0) 、 B(2,0) ,∴ | AB | 2 2 . 过点 P 作△ABP 的高 PH,由图可以看出,当高 PH 所在的直线过圆心 (2,0) 时,高 PH 取最小值 或最大值. 此时高 PH 所在的直线的方程为 x y 2 0 .
历年高考理科数学真题汇编+答案解析
专题 6 解析几何
(2020 年版)
考查频率:一般为 2 个小题和 1 个大题. 考试分值:22 分 知识点分布:必修 2、选修 2-1
一、选择题和填空题(每题 5 分)
1.(2019 全国 I 卷理 10)已知椭圆 C 的焦点为 F1( 1, 0),F2(1, 0),过 F2 的直线与 C 交于 A,B 两点.若
3 的两条渐近线的交点分别为 M、N.若△OMN 为直角三角形,则|MN|=
历年真题:陕西高考理科数学试题含答案(Word版)
陕西高考数学试题(理)一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合2{|0},{|1,}M x x N x x x R =≥=<∈,则M N =( ).[0,1]A .[0,1)B .(0,1]C .(0,1)D 【答案】 B【解析】B N M N M 选,).1,0[),11-(),,0[=∩∴=+∞=2.函数()cos(2)6f x x π=-的最小正周期是( ).2A π .B π .2C π .4D π【答案】 B 【解析】B T 选∴,π2π2||π2===ω 3.定积分1(2)xx edx +⎰的值为( ).2Ae + .1B e + .C e .1De -【答案】 C 【解析】C e e e e x dx e x x x 选∴,-0-1|)()2(1001102∫=+=+=+4.根据右边框图,对大于2的整数N ,输出数列的通项公式是( ).2n A a n = .2(1)n B a n =- .2n n C a = 1.2n n D a -=【答案】 C 【解析】C q a a a a a n 选的等比数列是.2,2∴,8,4,21321=====5.已知底面边长为1则正四棱柱的各顶点均在同一个球面上,则该球的体积为( )32.3A π .4B π .2C π 4.3D π【答案】 D 【解析】D r r r r 选解得设球的半径为.π3434V ∴,1,4)2(11)2(,32222====++=π6.从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于该正方形边长的概率为( )1.5A2.5B3.5C 4.5D 【答案】 C 【解析】C p 选反向解题.53C 4C 4-1.2525=== 7.下列函数中,满足“()()()f x y f x f y +=”的单调递增函数是( )(A )()12f x x =(B )()3f x x = (C )()12xf x ⎛⎫= ⎪⎝⎭(D )()3xf x =【答案】 D 【解析】D y f x f y x f D C y x y x y x 选而言,对不是递增函数只有.333)()(,3)(.++=•=•=+8.原命题为“若12,z z 互为共轭复数,则12z z =”,关于逆命题,否命题,逆否命题真假性的判断依次如下,正确的是( )(A )真,假,真 (B )假,假,真 (C )真,真,假 (D )假,假,假 【答案】 B 【解析】Bz z b a z b a z bi a z bi a z 选选择完成判断逆命题的真假即可逆否名称也为真,不需,原命题为真,则设,逆命题和否命题等价原命题和逆否名称等价.,||||∴,||||,-,.2122222111=+=+==+=设样本数据1210,,,x x x 的均值和方差分别为1和4,若i i y x a =+(a 为非零常数,1,2,,10i =),则12,10,y y y 的均值和方差分别为( )(A )1+,4a (B )1,4a a ++ (C )1,4 (D )1,4+a【答案】 A 【解析】A 选变均值也加此数,方差不样本数据加同一个数,.10.如图,某飞行器在4千米高空水平飞行,从距着陆点A 的水平距离10千米处下降, 已知下降飞行轨迹为某三次函数图像的一部分,则函数的解析式为( )(A )3131255y x x =- (B )3241255y x x =-(C )33125y x x =- (D )3311255y x x =-+【答案】 A【解析】AA f x f f x f A f x 选符合只有,,而言,对即为极值点且),三次奇函数过点..053-53)5(53-1253x )(2-3-1)5(∴x 53-x 1251)(.0)5(,5,2-5(),0,0(23==′=′====′= 第二部分(共100分)二、填空题:把答案填写在答题卡相应题号后的横线上(本大题共5小题,每小题5分,共25分).11.已知,lg ,24a x a==则x =________. 【答案】10【解析】.1010,21lg 12a ∴,lg ,224212aa========x a x a x 所以,12.若圆C 的半径为1,其圆心与点)0,1(关于直线x y =对称,则圆C 的标准方程为_______.【答案】11-(22=+)y x 【解析】.11-(1),1,0(∴)1,0()0,1(22=+=)的标准方程为半径为圆心为,的对称点关于点y x x y 设20πθ<<,向量()()sin 2cos cos 1a b θθθ==,,,,若b a //,则=θtan _______.【答案】 21【解析】.21t a n θθ,cos θcos θsin 2θcos θ2sin ∴//).1,θ(cos ),θcos ,θ2(sin 22=====解得即 14.猜想一般凸多面体中,E V F ,,所满足的等式是_________. 【答案】 2+=+E V F 【解析】.2+=+E V F 经观察规律,可得15.(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分).A (不等式选做题)设,,,a b m n R ∈,且225,5a b ma nb +=+=的最小值为.B (几何证明选做题)如图,ABC ∆中,6BC =,以BC 为直径的半圆分别交,AB AC于点,E F ,若2AC AE =,则EF =.C (坐标系与参数方程选做题)在极坐标系中,点(2,)6π到直线sin()16πρθ-=的距离是 【答案】 A 5 B 3 C 1【解析】A5.≤5)φθsin(∴5)φθsin(5os θ5θsin 5,os θ5,θsin 5∴,52222222222的最小值为所以,,则设n m n m n m n m c n m nb ma c b a b a ++=++=++=+=+===+B.3,2,6∴Δ=∴===ΔEF AE AC BC CBEFAC AE ACB AEF ,且相似与 C1|1323-3|023-1,3(∴,2-3121os θρ-23θsin ρ)6π-θsin(ρ,1,3()6π,2(=++==+==••=d y x x y c 的距离)到直线点即对应直线)对应直角坐标点极坐标点 三、解答题:解答应写出文字说明、证明过程或演算步骤(本大题共6小题,共75分) 16. (本小题满分12分)ABC ∆的内角C B A ,,所对的边分别为c b a ,,. (I )若c b a ,,成等差数列,证明:()C A C A +=+sin 2sin sin ; (II )若c b a ,,成等比数列,求B cos 的最小值. 【答案】 (1) 省略 (2)21【解析】(1)C)sin(A sinC sinA .∴C),sin(A sinB sinC.sinA 2sinB c,a b 2∴,,+=++=+=+= 即成等差,c b a(2).,21cosB 212ac ac -2ac 2ac b -2ac ≥2ac b -c a cosB ac.b ∴,,22222这时三角形为正三角形取最小值时,仅当又成等比,b c a c b a ====+==17. (本小题满分12分)四面体ABCD 及其三视图如图所示,过棱AB 的中点E 作平行于AD ,BC 的平面分 别交四面体的棱CA DC BD ,,于点H G F ,,.(I )证明:四边形EFGH 是矩形;(II )求直线AB 与平面EFGH 夹角 的正弦值.【答案】 (1) 省略 (2)510【解析】 (1).FG.⊥BCD ⊥,//∴,,AD//HG AD//EF,∴ADHG ADEF EFGH ⊂HG EF,EFGH,AD//HC AH EH//BC,∴EHBC EFGH,⊂EH EFGH,//B BCD⊥AD DC,⊥BD Δ,Δ为矩形所以,四边形,即面,且且共面和,面面同理且共面面面面且为等腰由题知,EHGF EF EF HG EF HG EF GC DG FB DF C RT BCD ====(2)510|,cos |sin 510252||||,cos ),0,1,1(0),,,()0,1-1(),2100(),1-20()0,0,1(),211,0(),0,1,0(),020(),100(,,,,(1)=><==<∴=======∴n AB n AB n FG n FE n z y x EHGF G E F B A z y x θ所以,,解得一个则法向量,设面,,,,,,,,,,轴建系,则为知,分别以由18.(本小题满分12分)在直角坐标系xOy 中,已知点)2,3(),3,2(),1,1(C B A ,点),(y x P 在ABC ∆三边围成的 区域(含边界)上(1)若=++,;(2)设),(R n m n m ∈+=,用y x ,表示n m -,并求n m -的最大值.【答案】 (1) 22 (2)m-n=y-x, 1【解析】 (1)22|OP |22|OP |,2,2,0-2-3-1,0-3-2-1(0,0))-2,-3()-3,-2()-1,-1(PC PB PA ∴),,(),2,3(),3,2(),11(22==+=∴===++=++∴=++=++所以,解得,y x y x y y y x x x y x y x y x y x P C B A (2)1---.1-)3,2(.,,-.--.2,2),1,2()2,1(y)x ,(∴,最大值为,所以,取最大值时,经计算在三个顶点求线性规划问题,可以代含边界内的最大值,属在三角形即求解得即n m x y n m x y B C B A ABC x y x y n m n m y n m x n m n m ==+=+=+=+= 19.(本小题满分12分)在一块耕地上种植一种作物,每季种植成本为1000元,此作物的市场价格和这块地上 的产量具有随机性,且互不影响,其具体情况如下表:(1)设X 表示在这块地上种植1季此作物的利润,求X 的分布列;(2)若在这块地上连续3季种植此作物,求这3季中至少有2季的利润不少于...2000元 的概率.【答案】 (1)(800,0.2)(2000,0.5)(4000,0.3) (2) 0.896【解析】 (1)3.06.0*5.0)4000(,5.04.0*5.06.0*5.0)2000(,2.04.0*5.0)800(.4000,2000,80040001000-10*50020001000-6*50020001000-10*3008001000-6*300.-*====+==========X p X p X p X X 三个,即,,,可以取考虑产量和价格,利润成本价格产量利润(2)896.020*******.08.02.0*8.0*3)-1()-1(200023.8.03.05.02000)1(8001000-6*300.-*32333223的概率是季的利润不少于季中至少有所以,的概率季的利润不少于季中至少有则的概率知,一季利润不少于由,可以取考虑产量和价格,利润成本价格产量利润=+=+==+===p p C p p C P p X X20.(本小题满分13分)如图,曲线C 由上半椭圆22122:1(0,0)y x C a b y a b+=>>≥和部分抛物线22:1(0)C y x y =-+≤连接而成,12,C C 的公共点为,A B,其中1C 的离心率为2. (1)求,a b 的值;(2)过点B 的直线l 与12,C C 分别交于,P Q (均异于点,A B ),若AP AQ ⊥,求直线l的方程.【答案】 (1) a=2,b=1 (2) )1-(38-x y =【解析】 (1)14,3,1,2∴,23.1∴)0,1(),0,1-(1-2222222=+===+===+=x yc b a c b a a c b x y 椭圆方程为联立解得又,交于点抛物线 (2))1-(38-.38-,0)2(4-)2,1)(4-,(,0)2k -k - -k,()4k8- 1,44-(,0∴⊥),0,1-()2k --k ,1--k (,2k --k )1-(,1--k 0,1-k -:1-)4k8-,44-(,4k 8-)1-(,44-04-2-)4(,44)12x -(14),,(),,(),1-()0,1(222222222222222112212222222222211x y k k k k k k k k A Q x k y x kx x x y k k k P k x k y k k x k x k x k x x k x y y x Q y x P x k y B ===+=+=•+++=•====++=+++==+==++=++=+=所以,所求直线方程为解得即即即由韦达定理得联立得与即由韦达定理得,即联立得与的直线方程为设过21.(本小题满分14分) 设函数()ln(1),()'(),0f x x g x xf x x =+=≥,其中'()f x 是()f x 的导函数.(1)11()(),()(()),n n g x g x g x g g x n N ++==∈,求()n g x 的表达式;(2)若()()f x ag x ≥恒成立,求实数a 的取值范围;(3)设n N +∈,比较(1)(2)()g g g n +++与()n f n -的大小,并加以证明.【答案】 (1) nx x x g n +=1)((2),1](-∞ (3) 前式 > 后式【解析】 (1)+++++=++=+=++=+++=+==+=+++=+===+=+=′′=+=N n nx xx g xk xx g k n x k x kxx kx xx g kx x x g k n x xxx x xx g x x x g x g g x g x g x g xx x g x x f x x f x x g x x f n k k k n n ∈,1)(,.)1(1)(1∴)1(1111)(.1)(1≥21111)(1)(∴))(()()()(1)(,11)(∴,0≥),()(),1ln()(112111综上也成立时,当则时,假设当,,, (2),1](-a 1.a 0.≥-1),0[∈∃0≥(x)h ,0),,0[∈∃∴0≥0≥h(x),0h(0))1(-1)1()-1(-11(x)h ,0.≥,1-)1ln(h(x)0.≥,≥1-)1ln(∴1)(),(≥)(22∞∈≤+′>=++=+++=′++=+++=所以,解得,即使上恒成立在则令a x t x t t x x x ax x x x a x x x ax x x x axx x x x g x ag x f(3)+∈>++++>>++∴>∈++=+++++++++=+++++••••=++++=+++++=+=+=N n f(n)-n )()3()2()1(0)(,011-n 1n ln .0)()2(],1,0,1 -)1ln()((a) )11-n 1n (ln )311-34(ln )211-23(ln )111-12(ln 11--311-211-111-n 1n 342312ln 11--311-211-111-f(n)f(n)]-[n -)()3()2()1(∴11-11)(∴,1)(,所以,恒成立式恒成立恒成立知,则由(令)(n g g g g a nx h x xxx x h nnnn g g g g nn n n g x x x g。
云南高考理科历年真题数学
云南高考理科历年真题数学云南高考理科数学试题一直以其难度较大而著称,考察学生对数学知识的掌握程度和解决问题的能力。
下面将以近年来云南高考理科数学试题为例,进行分析和讨论。
一、选择题1.已知函数f(x) = ax^2 + bx + c的图像经过点(-1,6),(2,3),(3,4),则a,b,c的值分别为()A. 1,-2,3B. -1,-4,3C. 1,2,3D. 1,3,72.方程x^2 – 3x + a = 0恰有一个根,则a的取值范围是()A. (-4,4)B. (-∞,1)C. (1,4)D. (1,∞)3.已知数列{an}是公比为1的等差数列,an+1 = 3an – 2,a1 = 2,则an的表达式是()A. an = n + 1B. an = 2n – 1C. an = 2n + 1D. an = 3n – 1二、填空题1.已知ΔABC中,∠B = 90°,BC = 2AB,设AC = x,则sin∠BAC = ,cos∠ABC = 。
答:sin∠BAC = 1/√(5),cos∠ABC = 1/√(5)2.已知函数f(x) = x^3 + ax^2 + bx + c,f(1) = 0,f’(3) = 0,则a + b + c的值为。
答:-29三、解答题1.已知四棱锥的底面是边长为a的正方形,侧面有一个高为h的等腰直角三角形构成,则这个四棱锥的体积为多少?解:由勾股定理,可得等腰直角三角形的斜边为a√2,底面积为a^2,高为a,故体积为(V = a^2h/3)。
2.已知函数f(x) = x^2 + ax + b,当x = 1时,f(x) = 4,f’(x) = -1,则a,b的值分别为多少?解:代入条件可得方程组a + b = 3,2 + a = -1,解得a = -3,b = 6。
通过以上分析可见,云南高考理科数学试题涵盖了数学的各个方面,考查了学生的数学思维和分析问题的能力。
历年真题:重庆高考理科数学试题含答案(Word版)
重庆高考数学试题(理)一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在复平面内表示复数(12)i i -的点位于( ).A 第一象限 .B 第二象限.C 第三象限 .D 第四象限2.对任意等比数列{}n a ,下列说法一定正确的是( )139.,,A a a a 成等比数列 236.,,B a a a 成等比数列248.,,C a a a 成等比数列 239.,,D a a a 成等比数列3.已知变量x 与y 正相关,且由观测数据算得样本的平均数 2.5x =, 3.5y =,则由观测的数据得线性回归方程可能为( ).0.4 2.3A y x =+ .2 2.4B y x =-.29.5C y x =-+ .0.3 4.4C y x =-+4.已知向量(,3),(1,4),(2,1)a k b c ===,且()23a b c -⊥,则实数k=9.2A - .0B C.3 D. 1525.执行如题(5)图所示的程序框图,若输出k 的值为6,则判断框内可填入的条件是。
A .12s > B.1224abc ≤≤ 35s > C. 710s > D.45s > 6.已知命题:p 对任意x R ∈,总有20x >;:"1"q x >是"2"x >的充分不必要条件 则下列命题为真命题的是( ).A p q ∧ .B p q ⌝∧⌝ .C p q ⌝∧ .D p q ∧⌝7.某几何体的三视图如图所示,则该几何体的表面积为( )A.54B.60C.66D.72 8.设21F F ,分别为双曲线)0,0(12222>>=-b a b y a x 的左、右焦点,双曲线上存在一点P 使得,49||||,3||||2121ab PF PF b PF PF =⋅=+则该双曲线的离心率为( ) A.34 B.35 C.49D.39.某次联欢会要安排3个歌舞类节目、2个小品类节目和1个相声类节目的演出顺序,则 类节目不相邻的排法种数是( )A.72B.120C.144D.310.已知A B C ∆的内角21)sin()sin(2sin ,+--=+-+B A C C B A A C B A 满足,,面积满足C B A c b a S ,,,,21分别为,记≤≤所对的边,则下列不等式成立的是( )A.8)(>+c b bcB.)(c a ac +C.126≤≤abcD. 1224abc ≤≤二、填空题 本大题共6小题,考生作答5小题,每小题5分,共25分,把答案填在答题卡相应位置上。
2024高考数学真题分类汇编(解析)
一.复数1.(2024年新课标全国Ⅰ卷)若1i 1zz =+-,则z =()A .1i --B .1i-+C .1i -D .1i+【详解】因为11111i 111z z z z z -+==+=+---,所以111i i z =+=-.故选:C.2.(2024年新课标全国Ⅱ卷)已知1i z =--,则z =()A .0B .1C D .2【详解】若1i z =--,则z ==故选:C.3.(2024年高考全国甲卷数学(理))设5i z =+,则()i z z +=()A .10iB .2iC .10D .2-【详解】由5i 5i,10z z z z =+⇒=-+=,则()i 10i z z +=.故选:A二.集合1.(2024年新课标全国Ⅰ卷)已知集合{}355,{3,1,0,2,3}A x x B =-<<=--∣,则A B = ()A .{1,0}-B .{2,3}C .{3,1,0}--D .{1,0,2}-【详解】因为{{}|,3,1,0,2,3A x x B =<=--,且注意到12<<,从而A B ={}1,0-.故选:A.2.(2024年高考全国甲卷数学(理))集合{}{}1,2,3,4,5,9,A B A ==∈,则()A A B ⋂=ð()A .{}1,4,9B .{}3,4,9C .{}1,2,3D .{}2,3,5【详解】因为{}{}1,2,3,4,5,9,A B A ==∈,所以{}1,4,9,16,25,81B =,则{}1,4,9A B = ,(){}2,3,5A A B = ð故选:D三.命题与逻辑1.(2024年新课标全国Ⅱ卷)已知命题p :x ∀∈R ,|1|1x +>;命题q :0x ∃>,3x x =,则()A .p 和q 都是真命题B .p ⌝和q 都是真命题C .p 和q ⌝都是真命题D .p ⌝和q ⌝都是真命题【详解】对于p 而言,取=1x -,则有101x +=<,故p 是假命题,p ⌝是真命题,对于q 而言,取1x =,则有3311x x ===,故q 是真命题,q ⌝是假命题,综上,p ⌝和q 都是真命题.故选:B.2.(2024年高考全国甲卷数学(理))设αβ、是两个平面,m n 、是两条直线,且m αβ= .下列四个命题:①若//m n ,则//n α或//n β②若m n ⊥,则,n n αβ⊥⊥③若//n α,且//n β,则//m n ④若n 与α和β所成的角相等,则m n⊥其中所有真命题的编号是()A .①③B .②④C .①②③D .①③④【详解】对①,当n ⊂α,因为//m n ,m β⊂,则//n β,当n β⊂,因为//m n ,m α⊂,则//n α,当n 既不在α也不在β内,因为//m n ,,m m αβ⊂⊂,则//n α且//n β,故①正确;对②,若m n ⊥,则n 与,αβ不一定垂直,故②错误;对③,过直线n 分别作两平面与,αβ分别相交于直线s 和直线t ,因为//n α,过直线n 的平面与平面α的交线为直线s ,则根据线面平行的性质定理知//n s ,同理可得//n t ,则//s t ,因为s ⊄平面β,t ⊂平面β,则//s 平面β,因为s ⊂平面α,m αβ= ,则//s m ,又因为//n s ,则//m n ,故③正确;对④,若,m n αβ⋂=与α和β所成的角相等,如果//,//αβn n ,则//m n ,故④错误;综上只有①③正确,故选:A.四.向量1.(2024年新课标全国Ⅰ卷)已知向量(0,1),(2,)a b x == ,若(4)b b a ⊥- ,则x =()A .2-B .1-C .1D .2【详解】因为()4b b a ⊥- ,所以()40b b a ⋅-= ,所以240b a b -⋅=即2440x x +-=,故2x =,故选:D.2.(2024年新课标全国Ⅱ卷)已知向量,a b满足1,22a a b =+= ,且()2b a b -⊥ ,则b = ()A .12B C D .1【详解】因为()2b a b -⊥ ,所以()20b a b -⋅= ,即22b a b =⋅,又因为1,22a a b =+= ,所以22144164a b b b +⋅+=+= ,从而2=b 故选:B.3.(2024年高考全国甲卷数学(理))已知向量()()1,,,2a x x b x =+=,则()A .“3x =-”是“a b ⊥”的必要条件B .“3x =-”是“//a b”的必要条件C .“0x =”是“a b ⊥”的充分条件D .“1x =-+”是“//a b ”的充分条件【详解】对A ,当a b ⊥时,则0a b ⋅= ,所以(1)20x x x ⋅++=,解得0x =或3-,即必要性不成立,故A 错误;对C ,当0x =时,()()1,0,0,2a b == ,故0a b ⋅= ,所以a b ⊥,即充分性成立,故C 正确;对B ,当//a b时,则22(1)x x +=,解得1x =B 错误;对D ,当1x =-时,不满足22(1)x x +=,所以//a b不成立,即充分性不立,故D 错误.故选:C.5.解三角形1.(2024年新课标全国Ⅰ卷)记ABC 内角A 、B 、C 的对边分别为a ,b ,c ,已知sin C B =,222a b c +-(1)求B ;(2)若ABC 的面积为3c .【详解】(1)由余弦定理有2222cos a b c ab C +-=,对比已知222a b c +-=,可得222cos 222a b c C ab ab +-===,因为()0,πC ∈,所以sin 0C >,从而sin2C==,又因为sin C B=,即1cos2B=,注意到()0,πB∈,所以π3B=.(2)由(1)可得π3B=,cos2C=,()0,πC∈,从而π4C=,ππ5ππ3412A=--=,而5πππ1sin sin sin124622224A⎛⎫⎛⎫==+=⨯+⨯=⎪ ⎪⎝⎭⎝⎭,由正弦定理有5πππsin sin sin1234a b c==,从而,a b====,由三角形面积公式可知,ABC的面积可表示为21113sin222228ABCS ab C c c c==⋅=,由已知ABC的面积为32338c+=c=2.(2024年新课标全国Ⅱ卷)记ABC的内角A,B,C的对边分别为a,b,c,已知sin2A A+=.(1)求A.(2)若2a=sin sin2C c B=,求ABC的周长.【详解】(1)方法一:常规方法(辅助角公式)由sin2A A=可得1sin122A A+=,即sin()1π3A+=,由于ππ4π(0,π)(,333A A∈⇒+∈,故ππ32A+=,解得π6A=方法二:常规方法(同角三角函数的基本关系)由sin2A A=,又22sin cos1A A+=,消去sin A得到:24cos30(2cos0A A A-+=⇔-=,解得cos A=又(0,π)A∈,故π6A=方法三:利用极值点求解设()sin(0π)f x x x x=<<,则π()2sin(0π)3f x x x⎛⎫=+<<⎪⎝⎭,显然π6x=时,max()2f x=,注意到π()sin22sin(3f A A A A=+==+,max ()()f x f A =,在开区间(0,π)上取到最大值,于是x A =必定是极值点,即()0cos sin f A A A '==,即tan A =,又(0,π)A ∈,故π6A =方法四:利用向量数量积公式(柯西不等式)设(sin ,cos )a b A A ==,由题意,sin 2a b A A ⋅=+=,根据向量的数量积公式,cos ,2cos ,a b a b a b a b ⋅==,则2cos ,2cos ,1a b a b =⇔= ,此时,0a b =,即,a b 同向共线,根据向量共线条件,1cos sin tan A A A ⋅=⇔=又(0,π)A ∈,故π6A =方法五:利用万能公式求解设tan 2A t =,根据万能公式,22sin 21tA A t ==+整理可得,222(2(20((2t t t --+-==--,解得tan22A t ==22tan 13t A t ==-,又(0,π)A ∈,故π6A =(2)由题设条件和正弦定理sin sin 2sin 2sin sin cos C c B B C C B B =⇔=,又,(0,π)B C ∈,则sin sin 0B C ≠,进而cos 2B =,得到π4B =,于是7ππ12C A B =--=,sin sin(π)sin()sin cos sin cos C A B A B A B B A =--=+=+=由正弦定理可得,sin sin sin a b cA B C ==,即2ππ7πsin sin sin6412bc==,解得b c ==故ABC的周长为2+3.(2024年高考全国甲卷数学(理))在ABC 中内角,,A B C 所对边分别为,,a b c ,若π3B =,294b ac =,则sin sin A C +=()A .32B C D 【详解】因为29,34B b ac π==,则由正弦定理得241sin sin sin 93A CB ==.由余弦定理可得:22294b ac ac ac =+-=,即:22134a c ac +=,根据正弦定理得221313sin sin sin sin 412A C A C +==,所以2227(sin sin )sin sin 2sin sin 4A C A C A C +=++=,因为,A C 为三角形内角,则sin sin 0A C +>,则sin sin A C +=.故选:C.6.概率统计1.(2024年新课标全国Ⅰ卷)为了解推动出口后的亩收入(单位:万元)情况,从该种植区抽取样本,得到推动出口后亩收入的样本均值 2.1x =,样本方差20.01s =,已知该种植区以往的亩收入X 服从正态分布()21.8,0.1N ,假设推动出口后的亩收入Y 服从正态分布()2,N x s ,则()(若随机变量Z 服从正态分布()2,N u σ,()0.8413P Z u σ<+≈)A .(2)0.2P X >>B .(2)0.5P X ><C .(2)0.5P Y >>D .(2)0.8P Y ><【详解】依题可知,22.1,0.01x s ==,所以()2.1,0.1Y N ,故()()()2 2.10.1 2.10.10.84130.5P Y P Y P Y >=>-=<+≈>,C 正确,D 错误;因为()1.8,0.1X N ,所以()()2 1.820.1P X P X >=>+⨯,因为()1.80.10.8413P X <+≈,所以()1.80.110.84130.15870.2P X >+≈-=<,而()()()2 1.820.1 1.80.10.2P X P X P X >=>+⨯<>+<,B 正确,A 错误,故选:BC .2.(2024年新课标全国Ⅰ卷)甲、乙两人各有四张卡片,每张卡片上标有一个数字,甲的卡片上分别标有数字1,3,5,7,乙的卡片上分别标有数字2,4,6,8,两人进行四轮比赛,在每轮比赛中,两人各自从自己持有的卡片中随机选一张,并比较所选卡片上数字的大小,数字大的人得1分,数字小的人得0分,然后各自弃置此轮所选的卡片(弃置的卡片在此后的轮次中不能使用).则四轮比赛后,甲的总得分不小于2的概率为.【详解】设甲在四轮游戏中的得分分别为1234,,,X X X X ,四轮的总得分为X .对于任意一轮,甲乙两人在该轮出示每张牌的概率都均等,其中使得甲获胜的出牌组合有六种,从而甲在该轮获胜的概率()631448k P X ===⨯,所以()()31,2,3,48k E X k ==.从而()()()441234113382k k k E X E X X X X E X ===+++===∑∑.记()()0,1,2,3k p P X k k ===.如果甲得0分,则组合方式是唯一的:必定是甲出1,3,5,7分别对应乙出2,4,6,8,所以04411A 24p ==;如果甲得3分,则组合方式也是唯一的:必定是甲出1,3,5,7分别对应乙出8,2,4,6,所以34411A 24p ==.而X 的所有可能取值是0,1,2,3,故01231p p p p +++=,()1233232p p p E X ++==.所以121112p p ++=,1213282p p ++=,两式相减即得211242p +=,故2312p p +=.所以甲的总得分不小于2的概率为2312p p +=.故答案为:12.3.(2024年新课标全国Ⅱ卷)某农业研究部门在面积相等的100块稻田上种植一种新型水稻,得到各块稻田的亩产量(单位:kg )并部分整理下表亩产量[900,950)[950,1000)[1000,1050)[1100,1150)[1150,1200)频数612182410据表中数据,结论中正确的是()A .100块稻田亩产量的中位数小于1050kgB .100块稻田中亩产量低于1100kg 的稻田所占比例超过80%C .100块稻田亩产量的极差介于200kg 至300kg 之间D .100块稻田亩产量的平均值介于900kg 至1000kg 之间【详解】对于A,根据频数分布表可知,612183650++=<,所以亩产量的中位数不小于1050kg ,故A 错误;对于B ,亩产量不低于1100kg 的频数为341024=+,所以低于1100kg 的稻田占比为1003466%100-=,故B 错误;对于C ,稻田亩产量的极差最大为1200900300-=,最小为1150950200-=,故C 正确;对于D ,由频数分布表可得,亩产量在[1050,1100)的频数为100(612182410)30-++++=,所以平均值为1(692512975181025301075241125101175)1067100⨯⨯+⨯+⨯+⨯+⨯+⨯=,故D 错误.故选;C.4.(2024年新课标全国Ⅱ卷)在如图的4×4方格表中选4个方格,要求每行和每列均恰有一个方格被选中,则共有种选法,在所有符合上述要求的选法中,选中方格中的4个数之和的最大值是.【详解】由题意知,选4个方格,每行和每列均恰有一个方格被选中,则第一列有4个方格可选,第二列有3个方格可选,第三列有2个方格可选,第四列有1个方格可选,所以共有432124⨯⨯⨯=种选法;每种选法可标记为(,,,)a b c d ,a b c d ,,,分别表示第一、二、三、四列的数字,则所有的可能结果为:(11,22,33,44),(11,22,34,43),(11,22,33,44),(11,22,34,42),(11,24,33,43),(11,24,33,42),(12,21,33,44),(12,21,34,43),(12,22,31,44),(12,22,34,40),(12,24,31,43),(12,24,33,40),(13,21,33,44),(13,21,34,42),(13,22,31,44),(13,22,34,40),(13,24,31,42),(13,24,33,40),(15,21,33,43),(15,21,33,42),(15,22,31,43),(15,22,33,40),(15,22,31,42),(15,22,33,40),所以选中的方格中,(15,21,33,43)的4个数之和最大,为152********+++=.故答案为:24;1125.(2024年高考全国甲卷数学(理))1013x ⎛⎫+ ⎪⎝⎭的展开式中,各项系数的最大值是.【详解】由题展开式通项公式为101101C 3rr r r T x -+⎛⎫= ⎪⎝⎭,010r ≤≤且r ∈Z ,设展开式中第1r +项系数最大,则1091101010111101011C C 3311C C 33rrr r r rr r --+---⎧⎛⎫⎛⎫≥⎪ ⎪⎪⎝⎭⎝⎭⎨⎛⎫⎛⎫⎪≥ ⎪ ⎪⎝⎭⎝⎭⎩,294334r r ⎧≥⎪⎪⇒⎨⎪≤⎪⎩,即293344r ≤≤,又r ∈Z ,故8r =,所以展开式中系数最大的项是第9项,且该项系数为28101C 53⎛⎫= ⎪⎝⎭.故答案为:5.6.(2024年高考全国甲卷数学(理))有6个相同的球,分别标有数字1、2、3、4、5、6,从中不放回地随机抽取3次,每次取1个球.记m 为前两次取出的球上数字的平均值,n 为取出的三个球上数字的平均值,则m 与n 差的绝对值不超过12的概率是.【详解】从6个不同的球中不放回地抽取3次,共有36A 120=种,设前两个球的号码为,a b ,第三个球的号码为c ,则1322a b c a b +++-≤,故2()3c a b -+≤,故32()3c a b -≤-+≤,故323a b c a b +-≤≤++,若1c =,则5a b +≤,则(),a b 为:()()2,3,3,2,故有2种,若2c =,则17a b ≤+≤,则(),a b 为:()()()()()1,3,1,4,1,5,1,6,3,4,()()()()()3,1,4,1,5,1,6,1,4,3,故有10种,当3c =,则39a b ≤+≤,则(),a b 为:()()()()()()()()1,2,1,4,1,5,1,6,2,4,2,5,2,6,4,5,()()()()()()()()2,1,4,1,5,1,6,1,4,2,5,2,6,2,5,4,故有16种,当4c =,则511a b ≤+≤,同理有16种,当5c =,则713a b ≤+≤,同理有10种,当6c =,则915a b ≤+≤,同理有2种,共m 与n 的差的绝对值不超过12时不同的抽取方法总数为()22101656++=,故所求概率为56712015=.故答案为:7157.(2024年高考全国甲卷数学(理))某工厂进行生产线智能化升级改造,升级改造后,从该工厂甲、乙两个车间的产品中随机抽取150件进行检验,数据如下:优级品合格品不合格品总计甲车间2624050乙车间70282100总计96522150(1)填写如下列联表:优级品非优级品甲车间乙车间能否有95%的把握认为甲、乙两车间产品的优级品率存在差异?能否有99%的把握认为甲,乙两车间产品的优级品率存在差异?(2)已知升级改造前该工厂产品的优级品率0.5p =,设p 为升级改造后抽取的n 件产品的优级品率.如果p p >+150件产品的数据,能否认为生产线智能化升级改造后,该工厂产品的优级品率提高了?12.247≈)附:22()()()()()n ad bc K a b c d a c b d -=++++()2P K k ≥0.0500.0100.001k3.8416.63510.828【详解】(1)根据题意可得列联表:优级品非优级品甲车间2624乙车间7030可得()2215026302470754.687550100965416K ⨯-⨯===⨯⨯⨯,因为3.841 4.6875 6.635<<,所以有95%的把握认为甲、乙两车间产品的优级品率存在差异,没有99%的把握认为甲,乙两车间产品的优级品率存在差异.(2)由题意可知:生产线智能化升级改造后,该工厂产品的优级品的频率为960.64150=,用频率估计概率可得0.64p =,又因为升级改造前该工厂产品的优级品率0.5p =,则0.50.50.5 1.650.56812.247p +++⨯≈,可知p p >+所以可以认为生产线智能化升级改造后,该工厂产品的优级品率提高了.8.(2024年新课标全国Ⅱ卷)某投篮比赛分为两个阶段,每个参赛队由两名队员组成,比赛具体规则如下:第一阶段由参赛队中一名队员投篮3次,若3次都未投中,则该队被淘汰,比赛成员为0分;若至少投中一次,则该队进入第二阶段,由该队的另一名队员投篮3次,每次投中得5分,未投中得0分.该队的比赛成绩为第二阶段的得分总和.某参赛队由甲、乙两名队员组成,设甲每次投中的概率为p ,乙每次投中的概率为q ,各次投中与否相互独立.(1)若0.4p =,0.5q =,甲参加第一阶段比赛,求甲、乙所在队的比赛成绩不少于5分的概率.(2)假设0p q <<,(i )为使得甲、乙所在队的比赛成绩为15分的概率最大,应该由谁参加第一阶段比赛?(ii )为使得甲、乙,所在队的比赛成绩的数学期望最大,应该由谁参加第一阶段比赛?【详解】(1)甲、乙所在队的比赛成绩不少于5分,则甲第一阶段至少投中1次,乙第二阶段也至少投中1次,∴比赛成绩不少于5分的概率()()3310.610.50.686P =--=.(2)(i )若甲先参加第一阶段比赛,则甲、乙所在队的比赛成绩为15分的概率为331(1)P p q ⎡⎤=--⎣⎦甲,若乙先参加第一阶段比赛,则甲、乙所在队的比赛成绩为15分的概率为331(1)P q p ⎡⎤=--⋅⎣⎦乙,0p q << ,3333()()P P q q pq p p pq ∴-=---+-甲乙()2222()()()()()()q p q pq p p q p pq q pq p pq q pq ⎡⎤=-+++-⋅-+-+--⎣⎦()2222()333p q p q p q pq =---3()()3()[(1)(1)1]0pq p q pq p q pq p q p q =---=---->,P P ∴>甲乙,应该由甲参加第一阶段比赛.(ii)若甲先参加第一阶段比赛,数学成绩X 的所有可能取值为0,5,10,15,333(0)(1)1(1)(1)P X p p q ⎡⎤==-+--⋅-⎣⎦,32123(5)1(1)C (1)P X p q q ⎡⎤==--⋅-⎣⎦,3223(10)1(1)C (1)P X p q q ⎡⎤==--⋅-⎣⎦,33(15)1(1)P X p q ⎡⎤==--⋅⎣⎦,()332()151(1)1533E X p q p p p q⎡⎤∴=--=-+⋅⎣⎦记乙先参加第一阶段比赛,数学成绩Y 的所有可能取值为0,5,10,15,同理()32()1533E Y q q q p=-+⋅()()15[()()3()]E X E Y pq p q p q pq p q ∴-=+---15()(3)p q pq p q =-+-,因为0p q <<,则0p q -<,31130p q +-<+-<,则()(3)0p q pq p q -+->,∴应该由甲参加第一阶段比赛.7.立体几何1.(2024年新课标全国Ⅰ卷)已知圆柱和圆锥的底面半径相等,侧面积相等,且它们的高)A .B .C .D .【详解】设圆柱的底面半径为r而它们的侧面积相等,所以2ππr r =即=,故3r =,故圆锥的体积为1π93⨯=.故选:B.2.(2024年新课标全国Ⅱ卷)已知正三棱台111ABC A B C -的体积为523,6AB =,112A B =,则1A A 与平面ABC 所成角的正切值为()A .12B .1C .2D .3【详解】解法一:分别取11,BC B C 的中点1,D D ,则11AD A D ==可知11111662222ABC A B C S S =⨯⨯⨯==⨯⨯ 设正三棱台111ABC A B C -的为h ,则(11115233ABC A B C V h -==,解得h =如图,分别过11,A D 作底面垂线,垂足为,M N ,设AM x =,则1AA=DN AD AM MN x=--=,可得1DD==结合等腰梯形11BCC B可得22211622BB DD-⎛⎫=+⎪⎝⎭,即()221616433x x+=++,解得x=所以1A A与平面ABC所成角的正切值为11tan1A MA ADAMÐ==;解法二:将正三棱台111ABC AB C-补成正三棱锥-P ABC,则1A A与平面ABC所成角即为PA与平面ABC所成角,因为11113PA A BPA AB==,则111127P A B CP ABCVV--=,可知1112652273ABC A B C P ABCV V--==,则18P ABCV-=,设正三棱锥-P ABC的高为d,则116618322P ABCV d-=⨯⨯⨯⨯,解得d=,取底面ABC的中心为O,则PO⊥底面ABC,且AO=所以PA与平面ABC所成角的正切值tan1POPAOAO∠==.故选:B.3.(2024年高考全国甲卷数学(理))已知甲、乙两个圆台上、下底面的半径均为1r和2r,母线长分别为()212r r-和()213r r-,则两个圆台的体积之比=VV甲乙.【详解】由题可得两个圆台的高分别为)12h r r==-甲,)12h r r==-乙,所以((21211313S S h V h V h S S h ++-==++甲甲甲乙乙乙4.(2024年新课标全国Ⅰ卷)如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,2PA AC ==,1,BC AB =.(1)若AD PB ⊥,证明://AD 平面PBC ;(2)若AD DC ⊥,且二面角A CP D --的正弦值为7,求AD .【详解】(1)(1)因为PA ⊥平面ABCD ,而AD ⊂平面ABCD ,所以PA AD ⊥,又AD PB ⊥,PB PA P = ,,PB PA ⊂平面PAB ,所以AD ⊥平面PAB ,而AB ⊂平面PAB ,所以AD AB ⊥.因为222BC AB AC +=,所以BC AB ⊥,根据平面知识可知//AD BC ,又AD ⊄平面PBC ,BC ⊂平面PBC ,所以//AD 平面PBC .(2)如图所示,过点D 作DE AC ⊥于E ,再过点E 作EF CP ⊥于F ,连接DF ,因为PA ⊥平面ABCD ,所以平面PAC ⊥平面ABCD ,而平面PAC 平面ABCD AC =,所以DE ⊥平面PAC ,又EF CP ⊥,所以⊥CP 平面DEF ,根据二面角的定义可知,DFE ∠即为二面角ACP D --的平面角,即sin 7DFE ∠=,即tan DFE ∠=因为AD DC⊥,设AD x =,则CD=DE =,又242xCE -==,而EFC 为等腰直角三角形,所以2EF =,故22tan4DFEx∠==x=AD=5.(2024年新课标全国Ⅱ卷)如图,平面四边形ABCD中,8AB=,3CD=,AD=,90ADC︒∠=,30BAD︒∠=,点E,F满足25AE AD=,12AF AB=,将AEF△沿EF对折至PEF!,使得PC=.(1)证明:EF PD⊥;(2)求面PCD与面PBF所成的二面角的正弦值.【详解】(1)由218,,52AB AD AE AD AF AB====,得4AE AF==,又30BAD︒∠=,在AEF△中,由余弦定理得2EF,所以222AE EF AF+=,则AE EF⊥,即EF AD⊥,所以,EF PE EF DE⊥⊥,又,PE DE E PE DE=⊂、平面PDE,所以EF⊥平面PDE,又PD⊂平面PDE,故EF⊥PD;(2)连接CE,由90,3ADC ED CD︒∠===,则22236CE ED CD=+=,在PEC中,6PC PE EC===,得222EC PE PC+=,所以PE EC ⊥,由(1)知PE EF ⊥,又,EC EF E EC EF =⊂ 、平面ABCD ,所以PE ⊥平面ABCD ,又ED ⊂平面ABCD ,所以PE ED ⊥,则,,PE EF ED 两两垂直,建立如图空间直角坐标系E xyz -,则(0,0,0),(0,0,(2,0,0),(0,E P D C F A -,由F 是AB的中点,得(4,B ,所以(4,22(2,0,2PC PD PB PF =-===-,设平面PCD 和平面PBF 的一个法向量分别为111222(,,),(,,)n x y z m x y z ==,则11111300n PC x n PD ⎧⋅=+-=⎪⎨⋅=-=⎪⎩,222224020m PB x m PF x ⎧⋅=+-=⎪⎨⋅=-=⎪⎩,令122,y x =11220,3,1,1x z y z ===-=,所以(0,2,3),1,1)n m ==-,所以cos ,m nm n m n ⋅===设平面PCD 和平面PBF 所成角为θ,则sin 65θ==,即平面PCD 和平面PBF所成角的正弦值为65.6.(2024年高考全国甲卷数学(理))如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,四边形ABCD 与四边形ADEF 均为等腰梯形,//,//BC AD EF AD ,4,2AD AB BC EF ====,ED FB ==M 为AD的中点.(1)证明://BM 平面CDE ;(2)求二面角F BM E --的正弦值.【详解】(1)因为//,2,4,BC AD EF AD M ==为AD 的中点,所以//,BC MD BC MD =,四边形BCDM 为平行四边形,所以//BM CD ,又因为BM ⊄平面CDE ,CD ⊂平面CDE ,所以//BM 平面CDE ;(2)如图所示,作BO AD ⊥交AD 于O ,连接OF ,因为四边形ABCD 为等腰梯形,//,4,BC AD AD =2AB BC ==,所以2CD =,结合(1)BCDM 为平行四边形,可得2BM CD ==,又2AM =,所以ABM 为等边三角形,O 为AM中点,所以OB =又因为四边形ADEF 为等腰梯形,M 为AD 中点,所以,//EF MD EF MD =,四边形EFMD 为平行四边形,FM ED AF ==,所以AFM △为等腰三角形,ABM 与AFM △底边上中点O 重合,OF AM ⊥,3OF =,因为222OB OF BF +=,所以OB OF ⊥,所以,,OB OD OF 互相垂直,以OB 方向为x 轴,OD 方向为y 轴,OF 方向为z 轴,建立O xyz -空间直角坐标系,()0,0,3F,)()(),0,1,0,0,2,3BM E,()(),BM BF ==,()2,3BE = ,设平面BFM 的法向量为()111,,m x y z =,平面EMB 的法向量为()222,,n x y z =,则00m BM m BF ⎧⋅=⎪⎨⋅=⎪⎩,即1111030y z ⎧+=⎪⎨+=⎪⎩,令1x =113,1y z ==,即)m = ,则00n BM n BE ⎧⋅=⎪⎨⋅=⎪⎩,即222220230y y z ⎧+=⎪⎨++=⎪⎩,令2x =,得223,1y z ==-,即)1n =-,11cos ,13m n m n m n ⋅===⋅,则sin ,m n =故二面角F BM E --8.解析几何1.(2024年高考全国甲卷数学(理))已知双曲线的两个焦点分别为(0,4),(0,4)-,点(6,4)-在该双曲线上,则该双曲线的离心率为()A .4B .3C .2D .2【详解】设()10,4F -、()20,4F 、()6,4-P ,则1228F F c ==,()22164410PF =++=,()2226446PF =+-=,则1221064a PF PF =-=-=,则28224c e a ===.故选:C.2.(2024年新课标全国Ⅰ卷)造型可以做成美丽的丝带,将其看作图中曲线C 的一部分.已知C 过坐标原点O.且C 上的点满足横坐标大于2-,到点(2,0)F 的距离与到定直线(0)x a a =<的距离之积为4,则()A .2a =-B .点(22,0)在C 上C .C 在第一象限的点的纵坐标的最大值为1D .当点()00,x y 在C 上时,0042y x ≤+【详解】对于A :设曲线上的动点(),P x y ,则2x >-且()2224x y x a -+⨯-=,因为曲线过坐标原点,故()2202004a -+⨯-=,解得2a =-,故A 正确.对于B :又曲线方程为()22224x y x -+⨯+=,而2x >-,5.(2024年高考全国甲卷数学(理)22410++-=交于Ax y yA.2B.3C.4a b c成等差数列,所以【详解】因为,,++-=,即aax by b a20故选:C.(202427.(2024年新课标全国Ⅰ卷)已知(1)求C的离心率;(2)若过P的直线l交C于另一点⎧⎪⎪8.(2024年高考全国甲卷数学在C上,且MF x⊥轴.(1)求C的方程;由223412(4)x y y k x ⎧+=⎨=-⎩可得(34+故()(42Δ102443464k k =-+23264k由已知有22549m =-=,故当12k =时,过()15,4P 且斜率为22392x x +⎛⎫-= ⎪⎝⎭.解得3x =-或5x =,所以该直线与9.函数与导数1.(2024年新课标全国Ⅰ卷)已知cos(),tan tan 2m αβαβ+==,则cos()αβ-=()A .3m -B .3m -C .3mD .3m【详解】因为()cos m αβ+=,所以cos cos sin sin m αβαβ-=,而tan tan 2αβ=,所以sin sin 2cos cos αβαβ=,故cos cos 2cos cos m αβαβ-=即cos cos m αβ=-,从而sin sin 2m αβ=-,故()cos 3m αβ-=-,故选:A.2.(2024年新课标全国Ⅰ卷)已知函数为22,0()e ln(1),0x x ax a x f x x x ⎧---<=⎨++≥⎩,在R 上单调递增,则a 取值的范围是()A .(,0]-∞B .[1,0]-C .[1,1]-D .[0,)+∞【详解】因为()f x 在R 上单调递增,且0x ≥时,()()e ln 1xf x x =++单调递增,则需满足()02021e ln1aa -⎧-≥⎪⨯-⎨⎪-≤+⎩,解得10a -≤≤,即a 的范围是[1,0]-.故选:B.3.(2024年新课标全国Ⅰ卷)当[0,2]x πÎ时,曲线sin y x =与2sin 36y x π⎛⎫=- ⎪⎝⎭的交点个数为()A .3B .4C .6D .8【详解】因为函数sin y x =的的最小正周期为2πT =,函数π2sin 36y x ⎛⎫=- ⎪⎝⎭的最小正周期为2π3T =,所以在[]0,2πx ∈上函数π2sin 36y x ⎛⎫=- ⎪⎝⎭有三个周期的图象,在坐标系中结合五点法画出两函数图象,如图所示:由图可知,两函数图象有6个交点.故选:C4.(2024年新课标全国Ⅰ卷)已知函数为()f x 的定义域为R ,()(1)(2)f x f x f x >-+-,且当3x <时()f x x =,则下列结论中一定正确的是()A .(10)100f >B .(20)1000f >C .(10)1000f <D .(20)10000f <【详解】因为当3x <时()f x x =,所以(1)1,(2)2f f ==,又因为()(1)(2)f x f x f x >-+-,则(3)(2)(1)3,(4)(3)(2)5f f f f f f >+=>+>,(5)(4)(3)8,(6)(5)(4)13,(7)(6)(5)21f f f f f f f f f >+>>+>>+>,(8)(7)(6)34,(9)(8)(7)55,(10)(9)(8)89f f f f f f f f f >+>>+>>+>,(11)(10)(9)144,(12)(11)(10)233,(13)(12)(11)377f f f f f f f f f >+>>+>>+>(14)(13)(12)610,(15)(14)(13)987f f f f f f >+>>+>,(16)(15)(14)15971000f f f >+>>,则依次下去可知(20)1000f >,则B 正确;且无证据表明ACD 一定正确.故选:B.5.(2024年新课标全国Ⅰ卷)设函数2()(1)(4)f x x x =--,则()A .3x =是()f x 的极小值点B .当01x <<时,()2()f x f x <C .当12x <<时,4(21)0f x -<-<D .当10x -<<时,(2)()f x f x ->【详解】对A ,因为函数()f x 的定义域为R ,而()()()()()()22141313f x x x x x x =--+-=--',易知当()1,3x ∈时,()0f x '<,当(),1x ∞∈-或()3,x ∞∈+时,()0f x '>函数()f x 在(),1∞-上单调递增,在()1,3上单调递减,在()3,∞+上单调递增,故3x =是函数()f x 的极小值点,正确;对B ,当01x <<时,()210x x x x -=->,所以210x x >>>,而由上可知,函数()f x 在()0,1上单调递增,所以()()2f x f x >,错误;对C ,当12x <<时,1213x <-<,而由上可知,函数()f x 在()1,3上单调递减,所以()()()1213f f x f >->,即()4210f x -<-<,正确;对D ,当10x -<<时,()()()()()()222(2)()12141220f x f x x x x x x x --=------=-->,所以(2)()f x f x ->,正确;故选:ACD.6.(2024年新课标全国Ⅰ卷)若曲线e x y x =+在点()0,1处的切线也是曲线ln(1)y x a =++的切线,则=a .【详解】由e x y x =+得e 1x y '=+,00|e 12x y ='=+=,故曲线e x y x =+在()0,1处的切线方程为21y x =+;由()ln 1y x a =++得11y x '=+,设切线与曲线()ln 1y x a =++相切的切点为()()00,ln 1x x a ++,由两曲线有公切线得0121y x '==+,解得012x =-,则切点为11,ln 22a ⎛⎫-+ ⎪⎝⎭,切线方程为112ln 21ln 222y x a x a ⎛⎫=+++=++- ⎪⎝⎭,根据两切线重合,所以ln 20a -=,解得ln 2a =.故答案为:ln 27.(2024年新课标全国Ⅱ卷)设函数2()(1)1f x a x =+-,()cos 2g x x ax =+,当(1,1)x ∈-时,曲线()y f x =与()y g x =恰有一个交点,则=a ()A .1-B .12C .1D .2【详解】解法一:令()()f x g x =,即2(1)1cos 2a x x ax +-=+,可得21cos a x ax -=+,令()()21,cos a x F x ax G x =-=+,原题意等价于当(1,1)x ∈-时,曲线()y F x =与()y G x =恰有一个交点,注意到()(),F x G x 均为偶函数,可知该交点只能在y 轴上,可得()()00F G =,即11a -=,解得2a =,若2a =,令()()F x G x =,可得221cos 0x x +-=因为()1,1x ∈-,则220,1cos 0x x ≥-≥,当且仅当0x =时,等号成立,可得221cos 0x x +-≥,当且仅当0x =时,等号成立,则方程221cos 0x x +-=有且仅有一个实根0,即曲线()y F x =与()y G x =恰有一个交点,所以2a =符合题意;综上所述:2a =.解法二:令()()()2()1cos ,1,1h x f x g x ax a x x =-=+--∈-,原题意等价于()h x 有且仅有一个零点,因为()()()()221cos 1cos h x a x a x ax a x h x -=-+---=+--=,则()h x 为偶函数,根据偶函数的对称性可知()h x 的零点只能为0,即()020h a =-=,解得2a =,若2a =,则()()221cos ,1,1h x x x x =+-∈-,又因为220,1cos 0x x ≥-≥当且仅当0x =时,等号成立,可得()0h x ≥,当且仅当0x =时,等号成立,即()h x 有且仅有一个零点0,所以2a =符合题意;故选:D.8.(2024年新课标全国Ⅱ卷)设函数()()ln()f x x a x b =++,若()0f x ≥,则22a b +的最小值为()A .18B .14C .12D .1【详解】解法一:由题意可知:()f x 的定义域为(),b -+∞,令0x a +=解得x a =-;令ln()0x b +=解得1x b =-;若-≤-a b ,当(),1x b b ∈--时,可知()0,ln 0x a x b +>+<,此时()0f x <,不合题意;若1b a b -<-<-,当(),1x a b ∈--时,可知()0,ln 0x a x b +>+<,此时()0f x <,不合题意;若1a b -=-,当(),1x b b ∈--时,可知()0,ln 0x a x b +<+<,此时()0f x >;当[)1,x b ∈-+∞时,可知()0,ln 0x a x b +≥+≥,此时()0f x ≥;可知若1a b -=-,符合题意;若1a b ->-,当()1,x b a ∈--时,可知()0,ln 0x a x b +<+>,此时()0f x <,不合题意;综上所述:1a b -=-,即1b a =+,则()2222211112222a b a a a ⎛⎫=++=++≥ ⎪⎝⎭+,当且仅当11,22a b =-=时,等号成立,所以22a b +的最小值为12;解法二:由题意可知:()f x 的定义域为(),b -+∞,令0x a +=解得x a =-;令ln()0x b +=解得1x b =-;则当(),1x b b ∈--时,()ln 0x b +<,故0x a +≤,所以10b a -+≤;()1,x b ∈-+∞时,()ln 0x b +>,故0x a +≥,所以10b a -+≥;故10b a -+=,则()2222211112222a b a a a ⎛⎫=++=++ ⎪⎝⎭+,当且仅当11,22a b =-=时,等号成立,所以22a b +的最小值为12.故选:C.9.(2024年新课标全国Ⅱ卷)对于函数()sin 2f x x =和π()sin(2)4g x x =-,下列正确的有()A .()f x 与()g x 有相同零点B .()f x 与()g x 有相同最大值C .()f x 与()g x 有相同的最小正周期D .()f x 与()g x 的图像有相同的对称轴【详解】A 选项,令()sin 20f x x ==,解得π,2k x k =∈Z ,即为()f x 零点,令π()sin(204g x x =-=,解得ππ,28k x k =+∈Z ,即为()g x 零点,显然(),()f x g x 零点不同,A 选项错误;B 选项,显然max max ()()1f x g x ==,B 选项正确;C 选项,根据周期公式,(),()f x g x 的周期均为2ππ2=,C 选项正确;D 选项,根据正弦函数的性质()f x 的对称轴满足πππ2π,224k x k x k =+⇔=+∈Z ,()g x 的对称轴满足πππ3π2π,4228k x k x k -=+⇔=+∈Z ,显然(),()f x g x 图像的对称轴不同,D 选项错误.故选:BC10.(2024年新课标全国Ⅱ卷)设函数32()231f x x ax =-+,则()A .当1a >时,()f x 有三个零点B .当0a <时,0x =是()f x 的极大值点C .存在a ,b ,使得x b =为曲线()y f x =的对称轴D .存在a ,使得点()()1,1f 为曲线()y f x =的对称中心【详解】A 选项,2()666()f x x ax x x a '=-=-,由于1a >,故()(),0,x a ∞∞∈-⋃+时()0f x '>,故()f x 在()(),0,,a ∞∞-+上单调递增,(0,)x a ∈时,()0f x '<,()f x 单调递减,则()f x 在0x =处取到极大值,在x a =处取到极小值,由(0)10=>f ,3()10f a a =-<,则(0)()0f f a <,根据零点存在定理()f x 在(0,)a 上有一个零点,又(1)130f a -=--<,3(2)410f a a =+>,则(1)(0)0,()(2)0f f f a f a -<<,则()f x 在(1,0),(,2)a a -上各有一个零点,于是1a >时,()f x 有三个零点,A 选项正确;B 选项,()6()f x x x a '=-,a<0时,(,0),()0x a f x '∈<,()f x 单调递减,,()0x ∈+∞时()0f x '>,()f x 单调递增,此时()f x 在0x =处取到极小值,B 选项错误;C 选项,假设存在这样的,a b ,使得x b =为()f x 的对称轴,即存在这样的,a b 使得()(2)f x f b x =-,即32322312(2)3(2)1x ax b x a b x -+=---+,根据二项式定理,等式右边3(2)b x -展开式含有3x 的项为303332C (2)()2b x x -=-,于是等式左右两边3x 的系数都不相等,原等式不可能恒成立,于是不存在这样的,a b ,使得x b =为()f x 的对称轴,C 选项错误;D 选项,方法一:利用对称中心的表达式化简(1)33f a =-,若存在这样的a ,使得(1,33)a -为()f x 的对称中心,则()(2)66f x f x a +-=-,事实上,32322()(2)2312(2)3(2)1(126)(1224)1812f x f x x ax x a x a x a x a +-=-++---+=-+-+-,于是266(126)(1224)1812a a x a x a-=-+-+-即126012240181266a a a a -=⎧⎪-=⎨⎪-=-⎩,解得2a =,即存在2a =使得(1,(1))f 是()f x 的对称中心,D 选项正确.方法二:直接利用拐点结论任何三次函数都有对称中心,对称中心的横坐标是二阶导数的零点,32()231f x x ax =-+,2()66f x x ax '=-,()126f x x a ''=-,由()02af x x ''=⇔=,于是该三次函数的对称中心为,22a a f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,由题意(1,(1))f 也是对称中心,故122aa =⇔=,即存在2a =使得(1,(1))f 是()f x 的对称中心,D 选项正确.故选:AD11.(2024年新课标全国Ⅱ卷)已知α为第一象限角,β为第三象限角,tan tan 4αβ+=,tan tan 1αβ=,则sin()αβ+=.【详解】法一:由题意得()tan tan tan1tan tan αβαβαβ++===--因为π3π2π,2π,2ππ,2π22k k m m αβ⎛⎫⎛⎫∈+∈++ ⎪⎝⎭⎝⎭,,Z k m ∈,则()()()22ππ,22π2πm k m k αβ+∈++++,,Z k m ∈,又因为()tan 0αβ+=-,则()()3π22π,22π2π2m k m k αβ⎛⎫+∈++++ ⎪⎝⎭,,Z k m ∈,则()sin 0αβ+<,则()()sin cos αβαβ+=-+()()22sin cos 1αβαβ+++=,解得()sin 3αβ+=-.法二:因为α为第一象限角,β为第三象限角,则cos 0,cos 0αβ><,cos α==cos β==则sin()sin cos cos sin cos cos (tan tan )αβαβαβαβαβ+=+=+4cos cos αβ=====故答案为:3-.12.(2024年高考全国甲卷数学(理))设函数()2e 2sin 1x xf x x +=+,则曲线()y f x =在()0,1处的切线与两坐标轴围成的三角形的面积为()A .16B .13C .12D .23【详解】()()()()()222e 2cos 1e 2sin 21xx x x x xf x x ++-+⋅'=+,则()()()()()02e 2cos 010e 2sin 000310f ++-+⨯'==+,即该切线方程为13y x -=,即31y x =+,令0x =,则1y =,令0y =,则13x =-,故该切线与两坐标轴所围成的三角形面积1111236S =⨯⨯-=.故选:A.13.(2024年高考全国甲卷数学(理))函数()()2e e sin x xf x x x -=-+-在区间[2.8,2.8]-的大致图像为()A .B .C .D .【详解】()()()()()22e e sin e e sin x x x xf x x x x x f x ---=-+--=-+-=,又函数定义域为[]2.8,2.8-,故该函数为偶函数,可排除A 、C ,又()11πe 11111e sin11e sin 10e e 622e 42e f ⎛⎫⎛⎫=-+->-+-=-->-> ⎪ ⎪⎝⎭⎝⎭,故可排除D.故选:B.14.(2024年高考全国甲卷数学(理))已知cos cos sin ααα=-πtan 4α⎛⎫+= ⎪⎝⎭()A .1B .1C .2D .1【详解】因为cos cos sin ααα=-所以11tan =-α,tan 13⇒α=-,所以tan 1tan 11tan 4α+π⎛⎫==-α+ ⎪-α⎝⎭,故选:B.15.(2024年高考全国甲卷数学(理))已知1a >,8115log log 42a a -=-,则=a .【详解】由题28211315log log log 4log 22a a a a -=-=-,整理得()2225log 60log a a --=,2log 1a ⇒=-或2log 6a =,又1a >,所以622log 6log 2a ==,故6264a ==故答案为:64.16.(2024年新课标全国Ⅰ卷)已知函数3()ln (1)2xf x ax b x x=++--(1)若0b =,且()0f x '≥,求a 的最小值;(2)证明:曲线()y f x =是中心对称图形;(3)若()2f x >-当且仅当12x <<,求b 的取值范围.【详解】(1)0b =时,()ln 2xf x ax x=+-,其中()0,2x ∈,则()()()112,0,222f x a x x x x x =+=+∈--',因为()22212x x x x -+⎛⎫-≤= ⎪⎝⎭,当且仅当1x =时等号成立,故()min 2f x a '=+,而()0f x '≥成立,故20a +≥即2a ≥-,所以a 的最小值为2-.,(2)()()3ln12x f x ax b x x=++--的定义域为()0,2,设(),P m n 为()y f x =图象上任意一点,(),P m n 关于()1,a 的对称点为()2,2Q m a n --,因为(),P m n 在()y f x =图象上,故()3ln 12m n am b m m=++--,而()()()()3322ln221ln 122m m f m a m b m am b m a m m -⎡⎤-=+-+--=-++-+⎢⎥-⎣⎦,2n a =-+,所以()2,2Q m a n --也在()y f x =图象上,由P 的任意性可得()y f x =图象为中心对称图形,且对称中心为()1,a .(3)因为()2f x >-当且仅当12x <<,故1x =为()2f x =-的一个解,所以()12f =-即2a =-,先考虑12x <<时,()2f x >-恒成立.此时()2f x >-即为()()3ln 21102x x b x x+-+->-在()1,2上恒成立,设()10,1t x =-∈,则31ln201t t bt t +-+>-在()0,1上恒成立,设()()31ln 2,0,11t g t t bt t t+=-+∈-,则()()2222232322311t bt b g t bt t t -++=-+=-'-,当0b ≥,232332320bt b b b -++≥-++=>,故()0g t '>恒成立,故()g t 在()0,1上为增函数,故()()00g t g >=即()2f x >-在()1,2上恒成立.当203b -≤<时,2323230bt b b -++≥+≥,故()0g t '≥恒成立,故()g t 在()0,1上为增函数,故()()00g t g >=即()2f x >-在()1,2上恒成立.当23b <-,则当01t <<时,()0g t '<故在⎛ ⎝上()g t 为减函数,故()()00g t g <=,不合题意,舍;综上,()2f x >-在()1,2上恒成立时23b ≥-.而当23b ≥-时,而23b ≥-时,由上述过程可得()g t 在()0,1递增,故()0g t >的解为()0,1,即()2f x >-的解为()1,2.综上,23b ≥-.17.(2024年新课标全国Ⅱ卷)已知函数3()e x f x ax a =--.(1)当1a =时,求曲线()y f x =在点()1,(1)f 处的切线方程;(2)若()f x 有极小值,且极小值小于0,求a 的取值范围.【详解】(1)当1a =时,则()e 1x f x x =--,()e 1x f x '=-,可得(1)e 2f =-,(1)e 1f '=-,即切点坐标为()1,e 2-,切线斜率e 1k =-,所以切线方程为()()()e 2e 11y x --=--,即()e 110x y ---=.(2)解法一:因为()f x 的定义域为R ,且()e '=-x f x a ,若0a ≤,则()0f x '≥对任意x ∈R 恒成立,可知()f x 在R 上单调递增,无极值,不合题意;若0a >,令()0f x '>,解得ln x a >;令()0f x '<,解得ln x a <;可知()f x 在(),ln a -∞内单调递减,在()ln ,a +∞内单调递增,则()f x 有极小值()3ln ln f a a a a a =--,无极大值,由题意可得:()3ln ln 0f a a a a a =--<,即2ln 10a a +->,构建()2ln 1,0g a a a a =+->,则()120g a a a'=+>,可知()g a 在()0,∞+内单调递增,且()10g =,不等式2ln 10a a +->等价于()()1g a g >,解得1a >,所以a 的取值范围为()1,+∞;解法二:因为()f x 的定义域为R ,且()e '=-x f x a ,若()f x 有极小值,则()e '=-x f x a 有零点,令()e 0x f x a '=-=,可得e x a =,可知e x y =与y a =有交点,则0a >,若0a >,令()0f x '>,解得ln x a >;令()0f x '<,解得ln x a <;。
高考理科数学试题(带答案解析)
高考理科数学试题(带答案解析)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个备选项中,只有一项是符合题目要求的(1)在等差数列{}n a 中,241,5a a ==,则{}n a 的前5项和5S =(A)7(B)15(C)20(D)25【答案】:B【解析】:422514,d a a =-=-=2d =,1252121,3167a a d a a d =-=-=-=+=+=155()5651522a a S +⨯⨯===【考点定位】本题考查等差数列的通项公式及前n 项和公式,解题时要认真审题,仔细解答.(2)不等式1021x x -≤+的解集为(A)1,12⎛⎤-⎥⎝⎦(B)1,12⎡⎤-⎢⎥⎣⎦(C)[)1,1,2⎛⎫-∞-+∞ ⎪⎝⎭(D)[)1,1,2⎡⎤-∞-+∞⎢⎥⎣⎦(3)对任意的实数k ,直线1y kx =+与圆222x y +=的位置关系一定是(A)相离(B)相切(C)相交但直线不过圆心(D)相交且直线过圆心(4)8+的展开式中常数项为(A)3516(B)358(C)354(D)105【答案】B【解析】:8821881()2rrr r r r r T C C --+==令820r -=解得4r =展开式中常数项为4458135()28T C ==【考点定位】本题考查利用二项展开式的通项公式求展开式的常数项(5)设tan ,tan αβ是方程2320x x -+=的两根,则tan()αβ+的值(A)-3(B)-1(C)1(D)3【答案】:A【解析】:tan tan 3,tan tan 2αβαβ+==,则tan tan 3tan()31tan tan 12αβαβαβ++===---【考点定位】本此题考查学生灵活运用韦达定理及两角和的正切函数公式化简求值.(6)设,,x y R ∈向量(,1),(1,),(2,4)a x b y c ===- ,且,//a c b c ⊥ ,则||a b +=(C)(D)10(7)已知()f x 是定义在R 上的偶函数,且以2为周期,则“()f x 为[0,1]上的增函数”是“()f x 为[3,4]上的减函数”的(A)既不充分也不必要的条件(B)充分而不必要的条件(C)必要而不充分的条件(D)充要条件【答案】:D【解析】:由()f x 是定义在R 上的偶函数及[0,1]上的增函数可知在[-1,0]减函数,又2为周期,所以[3,4]上的减函数【考点定位】本题主要通过常用逻辑用语来考查函数的奇偶性和对称性,进而来考查函数的周期性.根据图象分析出函数的性质及其经过的特殊点是解答本题的关键.(8)设函数()f x 在R 上可导,其导函数为()f x ',且函数(1)()y x f x '=-的图像如题(8)图所示,则下列结论中一定成立的是(A )函数()f x 有极大值(2)f 和极小值(1)f (B )函数()f x 有极大值(2)f -和极小值(1)f (C )函数()f x 有极大值(2)f 和极小值(2)f -(D )函数()f x 有极大值(2)f -和极小值(2)f(9)设四面体的六条棱的长分别为1,1,1,1,2和a ,且长为a 的棱与长为2的棱异面,则a 的取值范围是(A )(0,2)(B )(0,3)(C )(1,2)(D )(1,3)【答案】:A【解析】:2221()22BE =-=,BF BE <,22AB BF =<,【考点定位】本题考查棱锥的结构特征,考查空间想象能力,极限思想的应用,是中档题.(10)设平面点集{}221(,)()()0,(,)(1)(1)1A x y y x y B x y x y x⎧⎫=--≥=-+-≤⎨⎬⎩⎭,则A B 所表示的平面图形的面积为(A )34π(B )35π(C )47π(D )2π[【答案】:D【解析】:由对称性:221,,(1)(1)1y x y x y x≥≥-+-≤围成的面积与221,,(1)(1)1y x y x y x≤≥-+-≤围成的面积相等得:A B 所表示的平面图形的面积为22,(1)(1)1y x x y ≤-+-≤围成的面积即2122R ππ⨯=25115112lim lim 555n n n n nn n→∞→∞++++===【考点定位】本题考查极限的求法和应用,n 都没有极限,可先分母有理化再求极限;(13)设ABC ∆的内角,,A B C 的对边分别为,,a b c ,且35cos ,cos ,3,513A B b ===则c =【答案】:c =145【解析】:由35cos ,cos 513A B ==得412sin ,sin ,513A B ==由正弦定理sin sin a bA B=得43sin 13512sin 513b A a B ⨯===由余弦定理22a c =2+b -2cbcosA 得22590c -c+56=0则c =145【考点定位】利用同角三角函数间的基本关系求出sinB 的值本题的突破点,然后利用正弦定理建立已知和未知之间的关系.同时要求学生牢记特殊角的三角函数值.(14)过抛物线22y x =的焦点F 作直线交抛物线于,A B 两点,若25,,12AB AF BF =<则AF =。
历代高考数学试卷题目
一、1977年恢复高考1. 题目:求函数f(x) = x^2 - 4x + 3的零点。
解析:此题考查了二次方程的求解,属于基础题。
2. 题目:已知等差数列{an}的首项为a1,公差为d,求第10项an。
解析:此题考查了等差数列的通项公式,属于基础题。
二、1980年代1. 题目:已知等比数列{an}的首项为a1,公比为q,求第5项an。
解析:此题考查了等比数列的通项公式,属于基础题。
2. 题目:已知函数f(x) = (x-1)^2 + 2x,求f(x)的最小值。
解析:此题考查了二次函数的最值问题,属于基础题。
三、1990年代1. 题目:已知函数f(x) = ax^2 + bx + c,若a > 0,且f(0) = 1,f(1) = 3,求a、b、c的值。
解析:此题考查了二次函数的性质和解析几何,属于中档题。
2. 题目:已知函数f(x) = log2(x+1),求f(x)的单调性。
解析:此题考查了对数函数的性质,属于中档题。
四、21世纪初1. 题目:已知数列{an}的前n项和为Sn,若Sn = n^2 + n,求第10项an。
解析:此题考查了数列的前n项和与通项公式的求解,属于中档题。
2. 题目:已知函数f(x) = e^x + 1,求f(x)在区间[0, 1]上的最大值。
解析:此题考查了指数函数的性质和最值问题,属于中档题。
五、21世纪10年代1. 题目:已知函数f(x) = x^3 - 3x + 2,求f(x)的极值点。
解析:此题考查了导数的应用,属于中档题。
2. 题目:已知函数f(x) = sin(x) + cos(x),求f(x)的周期。
解析:此题考查了三角函数的性质,属于中档题。
六、21世纪20年代1. 题目:已知函数f(x) = x^4 - 4x^3 + 6x^2 - 4x + 1,求f(x)的零点。
解析:此题考查了多项式的因式分解,属于中档题。
2. 题目:已知数列{an}的通项公式为an = n^2 - n + 1,求数列的前n项和Sn。
历年全国理科数学高考试题立体几何部分精选(含答案)
1。
在一个几何体的三视图中,正视图和俯视图如右图所示,则相应的俯视图可以为2。
已知矩形ABCD的顶点都在半径为4的球O的球面上,且6,23AB BC==,则棱锥-的体积为。
O ABCD3。
如图,四棱锥P—ABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD.(Ⅰ)证明:PA⊥BD;(Ⅱ)若PD=AD,求二面角A—PB-C的余弦值。
1.D2.833。
解:(Ⅰ)因为60,2DAB AB AD ∠=︒=, 由余弦定理得3BD AD =从而BD 2+AD 2= AB 2,故BD ⊥AD 又PD ⊥底面ABCD ,可得BD ⊥PD 所以BD ⊥平面PAD. 故 PA ⊥BD(Ⅱ)如图,以D 为坐标原点,AD 的长为单位长,射线DA 为x 轴的正半轴建立空间直角坐标系D —xyz ,则()1,0,0A ,()03,0B ,,()1,3,0C -,()0,0,1P .(1,3,0),(0,3,1),(1,0,0)AB PB BC =-=-=- 设平面PAB 的法向量为n=(x ,y ,z ),则0,0,{n AB n PB ⋅=⋅=即 3030x y y z -+=-=因此可取n=(3,1,3)设平面PBC 的法向量为m,则m 0,m 0,{PB BC ⋅=⋅=可取m=(0,—1,3-) 427cos ,727m n -==- 故二面角A-PB-C 的余弦值为 277-1。
正方体ABCD —1111A B C D 中,B 1B 与平面AC 1D 所成角的余弦值为A23 B 33 C 23D 63 2. 已知圆O 的半径为1,PA 、PB 为该圆的两条切线,A 、B 为俩切点,那么PA PB •的最小值为(A ) 42-+ (B)32-+ (C ) 422-+ (D )322-+3。
已知在半径为2的球面上有A 、B 、C 、D 四点,若AB=CD=2,则四面体ABCD 的体积的最大值为(A )233 (B)433 (C ) 23 (D) 8334. 如图,四棱锥S-ABCD 中,SD ⊥底面ABCD ,AB//DC ,AD ⊥DC,AB=AD=1,DC=SD=2,E 为棱SB 上的一点,平面EDC ⊥平面SBC .(Ⅰ)证明:SE=2EB ;(Ⅱ)求二面角A —DE —C 的大小 .1. D 2。
2024 年高考全国甲卷数学(理科)真题卷含答案
2024年高考全国甲卷数学(理)一、单选题1.设5i z =+,则()i z z +=( )2.集合{}1,2,3,4,5,9,A BA ==,则∁AA (AA ∩BB )=( )A .{}1,4,9B .{}3,4,9C .{}1,2,3D .{}2,3,53.若实数,x y 满足约束条件43302202690x y x y x y −−≥−−≤ +−≤ ,则5z x y =−的最小值为( )A .5B .12C .2−D .72−4.等差数列{}n a 的前n 项和为n S ,若510S S =,51a =,则1a =( ) A .2− B .73C .1D .25.已知双曲线2222:1(0,0)y x C a b a b−=>>的上、下焦点分别为()()120,4,0,4F F −,点()6,4P −在该双曲线上,则该双曲线的离心率为( )6.设函数()2e 2sin 1x xf x x+=+,则曲线()y f x =在()0,1处的切线与两坐标轴围成的三角形的面积为( ) A .16B .13C .12D .237.函数()()2e e sin x x f x x x −=−+−在区间[2.8,2.8]−的大致图像为( )A .B .C .D .8.已知cos cos sin ααα=−πtan 4α+=( )A .1B .1−CD .19.已知向量()()1,,,2a x x b x =+=,则( )A .“3x =−”是“a b ⊥”的必要条件B .“3x =−”是“//a b”的必要条件C .“0x =”是“a b ⊥”的充分条件 D .“1x =−”是“//a b”的充分条件是两个平面,是两条直线,且①若//m n ,则//n α或//n β ②若m n ⊥,则,n n αβ⊥⊥③若//n α,且//n β,则//m n ④若n 与α和β所成的角相等,则m n ⊥ 其中所有真命题的编号是( )A .①③B .②④C .①②③D .①③④【答案】A【分析】根据线面平行的判定定理即可判断①;举反例即可判断②④;根据线面平行的性质即可判断③. 【解析】①,当n ⊂α,因为//m n ,m β⊂,则//n β,当n β⊂,因为//m n ,m α⊂,则//n α, 当n 既不在α也不在β内,因为//m n ,,m m αβ⊂⊂,则//n α且//n β,①正确; ②,若m n ⊥,则n 与,αβ不一定垂直,②错误; ③,过直线n 分别作两平面与,αβ分别相交于直线s 和直线t ,因为//n α,过直线n 的平面与平面α的交线为直线s ,则根据线面平行的性质定理知//n s ,同理可得//n t ,则//s t ,因为s ⊄平面β,t ⊂平面β,则//s 平面β,因为s ⊂平面α,m αβ= ,则//s m ,又因为//n s ,则//m n ,③正确;④,若,m n αβ∩=与α和β所成的角相等,如果//,//αβn n ,则//m n ,④错误; ①③正确, 故选A.11.在ABC 中内角,,A B C 所对边分别为,,a b c ,若π3B =,294b ac =,则sin sin A C +=( )A .32BC D12.已知b 是,a c 的等差中项,直线0ax by c ++=与圆22410x y y ++−=交于,A B 两点,则AB 的最小值为( ) A .2B .3C .4D .【答案】C【分析】结合等差数列性质将c 代换,求出直线恒过的定点,采用数形结合法即可求解.【详解】因为,,a b c 成等差数列,所以2b a c =+,2c b a =−,代入直线方程0ax by c ++=得 20ax by b a ++−=,即()()120a x b y −++=,令1020x y −= += 得12x y = =− ,故直线恒过()1,2−,设()1,2P −,圆化为标准方程得:()22:25C x y ++=,故选C二、填空题13.1013x +的展开式中,各项系数的最大值是 .14.已知甲、乙两个圆台上、下底面的半径均为1r 和2r ,母线长分别为()212r r −和()213r r −,则两个圆台的体积之比=V V 甲乙.15.已知1a >,8115log log 42a a −=−,则=a . 为前两次取出的球上数字的平均值,n 为取出的三个球上数字的平均值,则m 与n 差的绝对值不超过12的概率是 .三、解答题17.某工厂进行生产线智能化升级改造,升级改造后,从该工厂甲、乙两个车间的产品中随机抽取150件进行检验,数据如下:优级品合格品不合格品总计甲车间26 24 0 50乙车间70 28 2 100总计96 52 2 150(1)填写如下列联表:优级品非优级品甲车间乙车间能否有95%的把握认为甲、乙两车间产品的优级品率存在差异?能否有99%的把握认为甲,乙两车间产品的优级品率存在差异?(2)已知升级改造前该工厂产品的优级品率0.5p=,设p为升级改造后抽取的n件产品的优级品率.如果p p>+则认为该工厂产品的优级品率提高了,根据抽取的150件产品的数据,能否认为生产线智能12.247≈)附:22()()()()()n ad bcKa b c d a c b d−=++++()2P K k≥0.050 0.010 0.001 k 3.841 6.635 10.82818.记n S 为数列{}n a 的前n 项和,且434n n S a =+. (1)求{}n a 的通项公式;(2)设1(1)n n n b na −−,求数列{}n b 的前n 项和为n T .4,2AD AB BC EF ====,ED FB =M 为AD 的中点.(1)证明://BM 平面CDE ;20.设椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,点31,2M 在C 上,且MF x ⊥轴.(1)求C 的方程;(2)过点()4,0P 的直线与C 交于,A B 两点,N 为线段FP 的中点,直线NB 交直线MF 于点Q ,证明:AQ y ⊥轴.21.已知函数()()()1ln 1f x ax x x =−+−.(1)当2a =−时,求()f x 的极值; 0f x ≥恒成立,求a 的取值范围.中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为cos 1ρρθ+.(1)写出C 的直角坐标方程;(2)设直线l :x t y t a = =+(t 为参数),若C 与l 相交于A B 、两点,若2AB =,求a 的值.满足.(1)证明:2222a b a b +>+;(2)证明:22226a b b a −+−≥.【答案】(1)见解析(2)见解析【分析】(1)直接利用22222()a b a b +≥+即可证明.(2)根据绝对值不等式并结合(1)中结论即可证明.。
2023年高考数学真题-(全国乙卷)理科数学(含答案及详细解析
2023年高考数学真题-(全国乙卷)理科数学一、选择题1.设,则()A.B.C.D.2.设集合,集合,,则()A.B.C.D.3.如图,网格纸上绘制的一个零件的三视图,网格小正方形的边长为1,则该零件的表面积为()A.24B.26C.28D.304.已知是偶函数,则()A.B.C.1D.25.设O为平面坐标系的坐标原点,在区域内随机取一点,记该点为A,则直线OA的倾斜角不大于的概率为()A.B.C.D.6.已知函数在区间单调递增,直线和为函数的图像的两条对称轴,则()A.B.C.D.7.甲乙两位同学从6种课外读物中各自选读2种,则这两人选读的课外读物中恰有1种相同的选法共有()A.30种B.60种C.120种D.240种8.已知圆锥PO的底面半径为,O为底面圆心,PA,PB为圆锥的母线,,若的面积等于,则该圆锥的体积为()A.B.C.D.9.已知为等腰直角三角形,AB为斜边,为等边三角形,若二面角为,则直线CD与平面ABC所成角的正切值为()A.B.C.D.10.已知等差数列的公差为,集合,若,则()A.-1B.C.0D.11.设A,B为双曲线上两点,下列四个点中,可为线段AB中点的是()A.B.C.D.12.已知的半径为1,直线PA与相切于点A,直线PB与交于B,C两点,D为BC的中点,若,则的最大值为()A.B.C.D.二、填空题13.已知点在抛物线C:上,则A到C的准线的距离为.14.若x,y满足约束条件,则的最大值为.15.已知为等比数列,,,则.16.设,若函数在上单调递增,则a的取值范围是.三、解答题17.某厂为比较甲乙两种工艺对橡胶产品伸缩率的处理效应,进行10次配对试验,每次配对试验选用材质相同的两个橡胶产品,随机地选其中一个用甲工艺处理,另一个用乙工艺处理,测量处理后的橡胶产品的伸缩率,甲、乙两种工艺处理后的橡胶产品的伸缩率分别记为,(),试验结果如下试验序号i12345678910伸缩率545533551522575544541568596548伸缩率536527543530560533522550576536记,记,,…,的样本平均数为,样本方差为,(1)求,;(2)判断甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率是否有显著提高(如果,则认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高,否则不认为有显著提高).18.在中,已知,,.(1)求;(2)若D为BC上一点,且,求的面积.19.如图,在三棱锥中,,,,,BP,AP,BC的中点分别为D,E,O,,点F在AC上,.(1)证明:平面;(2)证明:平面平面BEF;(3)求二面角的正弦值.20.已知椭圆C:的离心率为,点在C上.(1)求C的方程;(2)过点的直线交C于点P,Q两点,直线AP,AQ与y轴的交点分别为M,N,证明:线段MN的中点为定点.21.已知函数.(1)当时,求曲线在点处的切线方程;(2)是否存在a,b,使得曲线关于直线对称,若存在,求a,b的值,若不存在,说明理由.(3)若在存在极值,求a的取值范围.四、选做题22.在直角坐标系中,以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为,曲线:(为参数,).(1)写出的直角坐标方程;(2)若直线既与没有公共点,也与没有公共点,求的取值范围.23.已知(1)求不等式的解集;(2)在直角坐标系中,求不等式组所确定的平面区域的面积.答案解析部分1.【答案】B【解析】【解答】∵,∴∴故选:B.【分析】由虚数i的性质化简,依据复数除法运算计算z及其共轭复数得出答案. 2.【答案】A【解析】【解答】根据题意对A,,则,符合题意,对B,,则,不符合题意,对C,,则,不符合题意,对D,,则,不符合题意,故选:A.【分析】由交、并、补集的定义及运算,逐项判断可得答案.3.【答案】D【解析】【解答】如图该几何体是由边长为2的正方体和边长为1,2,2的长方体组成:表面积为:故选:D【分析】先将三视图还原空间几何体,再求解表面积。
高考理科数学试卷及答案解析(文字版)
普通高等学校招生全国统一考试数学(理工农医类)(福建卷及详解)一.选择题:本小题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.函数()sin cos f x x x =最小值是A .-1 B.12-C.12D.12.已知全集U=R ,集合2{|20}A x x x =->,则C U A 等于A .{x ∣0≤x ≤2}B {x ∣0<x<2}C .{x ∣x<0或x>2}D {x ∣x ≤0或x ≤2}3.等差数列{}n a 的前n 项和为n S ,且3S =6,1a =4,则公差d 等于A .1B53C.-2D 34.22(1cos )x dx ππ-+⎰等于A .π B.2C.π-2D.π+25.下列函数()f x 中,满足“对任意1x ,2x ∈(0,+∞),当1x <2x 时,都有1()f x >2()f x 的是A .()f x =1xB.()f x =2(1)x -C .()f x =xe D()ln(1)f x x =+6.阅读右图所示的程序框图,运行相应的程序,输出的结果是A .2B .4C.8D .167.设m ,n 是平面α内的两条不同直线,1l ,2l 是平面β内的两条相交直线,则α//β的一个充分而不必要条件是A.m //β且l //α B.m //l 且n //l 2C.m//β且n //βD.m//β且n //l 28.已知某运动员每次投篮命中的概率低于40%。
现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器算出0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果。
经随机模拟产生了20组随机数:907966191925271932812458569683431257393027556488730113537989据此估计,该运动员三次投篮恰有两次命中的概率为A .0.35B 0.25C 0.20D 0.159.设a ,b ,c 为同一平面内具有相同起点的任意三个非零向量,且满足a 与b 不共线,若a ⊥c 且∣a∣=∣c∣,则∣b •c∣的值一定等于A .以a ,b 为两边的三角形面积B 以b ,c 为两边的三角形面积C .以a ,b 为邻边的平行四边形的面积D 以b ,c 为邻边的平行四边形的面积10.函数()(0)f x ax bx c a =++≠的图象关于直线2bx a=-对称。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
理科数学
一、选择题:本大题共10小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.
(1)已知,a b R ∈,i 是虚数单位,若a i -与2bi +互为共轭复数,则2()a bi +=
(A )54i -(B )54i +(C )34i -(D )34i +
(2)设集合{||1|2}A x x =-<,{|2,[0,2]}x B y y x ==∈,则A B =I
(A )[0,2](B )(1,3)(C )[1,3)(D )(1,4)
(3)函数22()(log )1f x x =-的定义域为
(A )1(0,)2(B )(2,)+∞(C )1(0,)(2,)2+∞U (D )1(0,][2,)2+∞U
(4)用反证法证明命题:“已知,a b 为实数,则方程20x ax b ++=至少有一个实根”时,要做的假设是
(A )方程20x ax b ++=没有实根(B )方程20x ax b ++=至多有一个实根
(C )方程20x ax b ++=至多有两个实根(D )方程20x ax b ++=恰好有两个实根
(5)已知实数,x y 满足x y a a <(01a <<),则下列关系式恒成立的是
(A )221111
x y >++(B )22ln(1)ln(1)x y +>+ (C )sin sin x y >(D )22x y >
(6)直线4y x =与曲线3
y x =在第一象限内围成的封闭
图形的面积为
(A )22(B )42(C )2(D )4
(7)为研究某药品的疗效,选取若干名志愿者进行临床
试验,所有志愿者的舒张压数据(单位:kPa )的分组区
间为[12,13),[13,14),[14,15),[15,16),[16,17],
将其按从左到右的顺序分别编号为第一组,第二组,......,
第五组.右图是根据试验数据制成的频率分布直方图.已知
第一组与第二组共有20人,第三组中没有疗效的有6人,
则第三组中有疗效的人数为
(A )1(B )8(C )12(D )18
(8)已知函数()|2|1f x x =-+,()g x kx =,若()()f x g x =有两个不相等的实根,则实数k 的取值范围是。