首都师范大学873数学基础2010-2019真题
(北京卷)十年真题(2010_2019)高考数学真题分类汇编专题05三角函数与解三角形文(含解析)
专题05三角函数与解三角形历年考题细目表历年高考真题汇编1.【2019年北京文科06】设函数f(x)=cos x+b sin x(b为常数),则“b=0”是“f(x)为偶函数”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【解答】解:设函数f(x)=cos x+b sin x(b为常数),则“b=0”⇒“f(x)为偶函数”,“f(x)为偶函数”⇒“b=0”,∴函数f(x)=cos x+b sin x(b为常数),则“b=0”是“f(x)为偶函数”的充分必要条件.故选:C.2.【2019年北京文科08】如图,A,B是半径为2的圆周上的定点,P为圆周上的动点,∠APB是锐角,大小为β,图中阴影区域的面积的最大值为()A.4β+4cosβB.4β+4sinβC.2β+2cosβD.2β+2sinβ【解答】解:由题意可得∠AOB=2∠APB=2β,要求阴影区域的面积的最大值,即为直线QO⊥AB,即有QO=2,Q到线段AB的距离为2+2cosβ,AB=2•2sinβ=4sinβ,扇形AOB的面积为•2β•4=4β,△ABQ的面积为(2+2cosβ)•4sinβ=4sinβ+4sinβcosβ=4sinβ+2sin2β,S△AOQ+S△BOQ=4sinβ+2sin2β•2•2sin2β=4sinβ,即有阴影区域的面积的最大值为4β+4sinβ.故选:B.3.【2018年北京文科07】在平面直角坐标系中,,,,是圆x2+y2=1上的四段弧(如图),点P其中一段上,角α以Ox为始边,OP为终边.若tanα<cosα<sinα,则P所在的圆弧是()A.B.C.D.【解答】解:A.在AB段,正弦线小于余弦线,即cosα<sinα不成立,故A不满足条件.B.在CD段正切线最大,则cosα<sinα<tanα,故B不满足条件.C.在EF段,正切线,余弦线为负值,正弦线为正,满足tanα<cosα<sinα,D.在GH段,正切线为正值,正弦线和余弦线为负值,满足cosα<sinα<tanα不满足tanα<cosα<sinα.故选:C.4.【2013年北京文科05】在△ABC中,a=3,b=5,sin A,则sin B=()A.B.C.D.1【解答】解:∵a=3,b=5,sin A,∴由正弦定理得:sin B.故选:B.5.【2010年北京文科07】某班设计了一个八边形的班徽(如图),它由腰长为1,顶角为α的四个等腰三角形,及其底边构成的正方形所组成,该八边形的面积为()A.2sinα﹣2cosα+2 B.sinαcosα+3C.3sinαcosα+1 D.2sinα﹣cosα+1【解答】解:由正弦定理可得4个等腰三角形的面积和为:41×1×sinα=2sinα由余弦定理可得正方形边长为:故正方形面积为:2﹣2cosα所以所求八边形的面积为:2sinα﹣2cosα+2故选:A.6.【2018年北京文科14】若△ABC的面积为(a2+c2﹣b2),且∠C为钝角,则∠B=;的取值范围是.【解答】解:△ABC的面积为(a2+c2﹣b2),可得:(a2+c2﹣b2)ac sin B,,可得:tan B,所以B,∠C为钝角,A∈(0,),tan A,∈(,+∞).cos B sin B∈(2,+∞).故答案为:;(2,+∞).7.【2017年北京文科09】在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称,若sinα,则sinβ=.【解答】解:∵在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称,∴α+β=π+2kπ,k∈Z,∵sinα,∴sinβ=sin(π+2kπ﹣α)=sinα.故答案为:.8.【2016年北京文科13】在△ABC中,∠A,a c,则.【解答】解:在△ABC中,∠A,a c,由正弦定理可得:,,sin C,C,则B.三角形是等腰三角形,B=C,则b=c,则1.故答案为:1.9.【2015年北京文科11】在△ABC中,a=3,b,∠A,则∠B=.【解答】解:由正弦定理可得,,即有sin B,由b<a,则B<A,可得B.故答案为:.10.【2014年北京文科12】在△ABC中,a=1,b=2,cos C,则c=;sin A=.【解答】解:∵在△ABC中,a=1,b=2,cos C,∴由余弦定理得:c2=a2+b2﹣2ab cos C=1+4﹣1=4,即c=2;∵cos C,C为三角形内角,∴sin C,∴由正弦定理得:sin A.故答案为:2;.11.【2012年北京文科11】在△ABC中,若a=3,b,,则∠C的大小为.【解答】解:∵△ABC中,a=3,b,,∴由正弦定理得:,∴sin∠B.又b<a,∴∠B<∠A.∴∠B.∴∠C=π.故答案为:.12.【2011年北京文科09】在△ABC中.若b=5,,sin A,则a=.【解答】解:在△ABC中.若b=5,,sin A,所以,a.故答案为:.13.【2010年北京文科10】在△ABC中,若b=1,c,∠C,则a=.【解答】解:在△ABC中由正弦定理得,∴sin B,∵b<c,故B,则A由正弦定理得∴a 1故答案为:114.【2019年北京文科15】在△ABC中,a=3,b﹣c=2,cos B.(Ⅰ)求b,c的值;(Ⅱ)求sin(B+C)的值.【解答】解:(1)∵a=3,b﹣c=2,cos B.∴由余弦定理,得b2=a2+c2﹣2ac cos B,∴b=7,∴c=b﹣2=5;(2)在△ABC中,∵cos B,∴sin B,由正弦定理有:,∴sin A,∴sin(B+C)=sin(A)=sin A.15.【2018年北京文科16】已知函数f(x)=sin2x sin x cos x.(Ⅰ)求f(x)的最小正周期;(Ⅱ)若f(x)在区间[,m]上的最大值为,求m的最小值.【解答】解:(I)函数f(x)=sin2x sin x cos x sin2x=sin(2x),f(x)的最小正周期为Tπ;(Ⅱ)若f(x)在区间[,m]上的最大值为,可得2x∈[,2m],即有2m,解得m,则m的最小值为.16.【2017年北京文科16】已知函数f(x)cos(2x)﹣2sin x cos x.(I)求f(x)的最小正周期;(II)求证:当x∈[,]时,f(x).【解答】解:(Ⅰ)f(x)cos(2x)﹣2sin x cos x,(co2x sin2x)﹣sin2x,cos2x sin2x,=sin(2x),∴Tπ,∴f(x)的最小正周期为π,(Ⅱ)∵x∈[,],∴2x∈[,],∴sin(2x)≤1,∴f(x)17.【2016年北京文科16】已知函数f(x)=2sinωx cosωx+cos2ωx(ω>0)的最小正周期为π.(1)求ω的值;(2)求f(x)的单调递增区间.【解答】解:f(x)=2sinωx cosωx+cos2ωx,=sin2ωx+cos2ωx,,由于函数的最小正周期为π,则:T,解得:ω=1.(2)由(1)得:函数f(x),令(k∈Z),解得:(k∈Z),所以函数的单调递增区间为:[](k∈Z).18.【2015年北京文科15】已知函数f(x)=sin x﹣2sin2.(1)求f(x)的最小正周期;(2)求f(x)在区间[0,]上的最小值.【解答】解:(1)∵f(x)=sin x﹣2sin2=sin x﹣2=sin x cos x=2sin(x)∴f(x)的最小正周期T2π;(2)∵x∈[0,],∴x∈[,π],∴sin(x)∈[0,1],即有:f(x)=2sin(x)∈[,2],∴可解得f(x)在区间[0,]上的最小值为:.19.【2014年北京文科16】函数f(x)=3sin(2x)的部分图象如图所示.(Ⅰ)写出f(x)的最小正周期及图中x0,y0的值;(Ⅱ)求f(x)在区间[,]上的最大值和最小值.【解答】解:(Ⅰ)∵f(x)=3sin(2x),∴f(x)的最小正周期Tπ,可知y0为函数的最大值3,x0;(Ⅱ)∵x∈[,],∴2x∈[,0],∴当2x0,即x时,f(x)取最大值0,当2x,即x时,f(x)取最小值﹣320.【2013年北京文科15】已知函数f(x)=(2cos2x﹣1)sin2x cos4x.(1)求f(x)的最小正周期及最大值;(2)若α∈(,π),且f(α),求α的值.【解答】解:(Ⅰ)因为∴T,函数的最大值为:.(Ⅱ)∵f(x),,所以,∴,k∈Z,∴,又∵,∴.21.【2013年北京文科18】已知函数f(x)=x2+x sin x+cos x.(Ⅰ)若曲线y=f(x)在点(a,f(a))处与直线y=b相切,求a与b的值;(Ⅱ)若曲线y=f(x)与直线y=b有两个不同交点,求b的取值范围.【解答】解:(I)f′(x)=2x+x cos x=x(2+cos x),∵曲线y=f(x)在点(a,f(a))处与直线y=b相切,∴f′(a)=a(2+cos a)=0,f(a)=b,联立,解得,故a=0,b=1.(II)∵f′(x)=x(2+cos x).令f′(x)=0,得x=0,x,f(x),f′(x)的变化情况如表:所以函数f(x)在区间(﹣∞,0)上单调递减,在区间(0,+∞)上单调递增,f(0)=1是f(x)的最小值.当b≤1时,曲线y=f(x)与直线x=b最多只有一个交点;当b>1时,f(﹣2b)=f(2b)≥4b2﹣2b﹣1>4b﹣2b﹣1>b,f(0)=1<b,所以存在x1∈(﹣2b,0),x2∈(0,2b),使得f(x1)=f(x2)=b.由于函数f(x)在区间(﹣∞,0)和(0,+∞)上均单调,所以当b>1时曲线y=f(x)与直线y=b有且只有两个不同的交点.综上可知,如果曲线y=f(x)与直线y=b有且只有两个不同的交点,那么b的取值范围是(1,+∞).22.【2012年北京文科15】已知函数f(x).(1)求f(x)的定义域及最小正周期;(2)求f(x)的单调递减区间.【解答】解:(1)由sin x≠0得x≠kπ(k∈Z),故求f(x)的定义域为{x|x≠kπ,k∈Z}.∵f(x)=2cos x(sin x﹣cos x)=sin2x﹣cos2x﹣1sin(2x)﹣1∴f(x)的最小正周期Tπ.(2)∵函数y=sin x的单调递减区间为[2kπ,2kπ](k∈Z)∴由2kπ2x2kπ,x≠kπ(k∈Z)得kπx≤kπ,(k∈Z)∴f(x)的单调递减区间为:[kπ,kπ](k∈Z)23.【2011年北京文科15】已知f(x)=4cos x sin(x)﹣1.(Ⅰ)求f(x)的最小正周期;(Ⅱ)求f(x)在区间[,]上的最大值和最小值.【解答】解:(Ⅰ)∵,=4cos x()﹣1sin2x+2cos2x﹣1sin2x+cos2x=2sin(2x),所以函数的最小正周期为π;(Ⅱ)∵x,∴2x,∴当2x,即x时,f(x)取最大值2,当2x时,即x时,f(x)取得最小值﹣1.24.【2010年北京文科15】已知函数f(x)=2cos2x+sin2x﹣4cos x.(Ⅰ)求的值;(Ⅱ)求f(x)的最大值和最小值.【解答】解:(Ⅰ);(Ⅱ)f(x)=2(2cos2x﹣1)+(1﹣cos2x)﹣4cos x=3cos2x﹣4cos x﹣1,因为cos x∈[﹣1,1],所以当cos x =﹣1时,f (x )取最大值6;当时,取最小值.考题分析与复习建议本专题考查的知识点为:同角三角函数基本关系、诱导公式,三角函数的图象与性质,三角恒等变换,正余弦定理,解三角形的综合应用等.历年考题主要以选择填空或解答题题型出现,重点考查的知识点为:诱导公式,三角函数的图象与性质,三角恒等变换,正余弦定理,解三角形等.预测明年本考点题目会比较稳定,备考方向以同角三角函数基本关系、诱导公式,三角函数的图象与性质,三角恒等变换,正余弦定理,解三角形的综合应用等为重点较佳.最新高考模拟试题1.函数2sin()(0,0)y x ωϕωϕπ=+><<的部分图象如图所示.则函数()f x 的单调递增区间为( )A .,63k k ππππ轾犏-+犏臌,k z ∈ B .,33k k ππππ⎡⎤-+⎢⎥⎣⎦,k z ∈C .,36k k ππππ⎡⎤-+⎢⎥⎣⎦,k z ∈D .,66k k ππππ⎡⎤-+⎢⎥⎣⎦,k z ∈2.将函数()2sin(2)3f x x π=+的图像先向右平移12π个单位长度,再向上平移1个单位长度,得到()g x 的图像,若()()129g x g x =且12,[2,2]x x ππ∈-,则122x x -的最大值为( )A .4912π B .356π C .256π D .174π 3.将函数222()2cos 4x f x ϕ+=(0πϕ-<<)的图像向右平移3π个单位长度,得到函数()g x 的图像,若()(4)g x g x π=-则ϕ的值为( )A .23-π B .3π-C .6π-D .2π-4.已知函数()sin()(0,0)f x x ωϕωϕπ=+><<的图象经过两点(0,(,0)24A B π, ()f x 在(0,)4π内有且只有两个最值点,且最大值点大于最小值点,则()f x =( ) A .sin 34x π⎛⎫+⎪⎝⎭B .3sin 54x π⎛⎫+⎪⎝⎭C .sin 74x π⎛⎫+⎪⎝⎭D .3sin 94x π⎛⎫+⎪⎝⎭5.已知函数()cos f x x x =,则下列结论中正确的个数是( ). ①()f x 的图象关于直线3x π=对称;②将()f x 的图象向右平移3π个单位,得到函数()2cos g x x =的图象;③,03π⎛⎫- ⎪⎝⎭是()f x 图象的对称中心;④()f x 在,63ππ⎡⎤⎢⎥⎣⎦上单调递增. A .1B .2C .3D .46.在ABC ∆中,角A 、B 、C 的对边长分别a 、b 、c ,满足()22sin 40a a B B -+=,b =则ABC △的面积为A .BC .D 7.设锐角三角形ABC 的内角,,A B C 所对的边分别为,,a b c ,若2,2a B A ==,则b 的取值范围为( )A .(0,4)B .(2,C .D .4)8.已知V ABC 的内角,,A B C 所对的边分别为,,a b c ,若6sin cos 7sin2C A A =,53a b =,则C =( ). A .3π B .23π C .34π D .56π9.若函数()2sin()f x x ωϕ=+ (01ω<<,02πϕ<<)的图像过点,且关于点(2,0)-对称,则(1)f -=_______.10.若实数,x y 满足()()()2221122cos 11x y xyx y x y ++--+-=-+.则xy 的最小值为____________11.设函数()sin(2)3f x x π=+,若120x x <,且12()()0f x f x +=,则21x x -的取值范围是_______.12.已知角α为第一象限角,sin cos a αα-=,则实数a 的取值范围为__________.13.已知函数sin 2cos ()()(()0)f x x x ϕϕϕ+=+<<π-的图象关于直线x π=对称,则cos 2ϕ=___.14.如图,四边形ABCD 中,4AB =,5BC =,3CD =,90ABC ∠=︒,120BCD ∠=°,则AD 的长为______15.在锐角ABC ∆中,角AB C ,,的对边分别为a b c ,,.且c o s c o s A B a b +=,b =则a c +的取值范围为_____.16.在ABC ∆中,已知AB 边上的中线1CM =,且1tan A ,1tan C ,1tan B成等差数列,则AB 的长为________.17.在ABC ∆中,AB C ,,的对边分别a b c ,,,60,cos A B ︒==(Ⅰ)若D 是BC 上的点,AD 平分BAC ∠,求DCBD的值; (Ⅱ)若 ccos cos 2B b C +=,求ABC ∆的面积.18.在ABC ∆中,角,,A B C 所对的边分别,,a b c ,()()()()2sin cos sin f x x A x B C x R =-++∈,函数()f x 的图象关于点,06π⎛⎫⎪⎝⎭对称. (1)当0,2x π⎛⎫∈ ⎪⎝⎭时,求()f x 的值域;(2)若7a =且sin sin 14B C +=,求ABC ∆的面积.19.在ABC ∆中,已知2AB =,cos B =,4C π=.(1)求BC 的长; (2)求sin(2)3A π+的值.20.如图,在四边形ABCD 中,60A ∠=︒,90ABC ∠=︒.已知AD =BD =.。
【合集打印】2010-2019年全国硕士研究生招生考试数学试题(数学一)真题【 40页 】
真题汇总一2010-20192019年全国硕士研究生招生考试试题一、选择题(本题共8小题,每小题4分,共32分.在每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.)(I )当X ----+ 0时,若x -ta n x 与x k是同阶无穷小,则k =((A )l .(B)2.(C)3.、丿(D)4.(2)设函数f(x )= {XIXI 'X 冬O '则X = 0是f (x)的()x l n x, x > 0,(A )可导点,极值点(B )不可导点,极值点(C)可导点,非极值点(D)不可导点,非极值点(3)设飞}是单调增加的有界数列,则下列级数中收敛的是()C B)Ic-1尸—1 ""'u ; (C )�(i-2:;)·(D )�(u !., 一式).(4)设函数Q(x ,y )=今.如果对上半平面(y > O )内的任意有向光滑封闭曲线C 都有乎P(x,y )d x + Q (x,y )d y = 0, 那么函数P(X ,y )可取为()(A )y -子 1 x 2(B)—-—1 1 (C)—-—.1(D)x-—. yy(5)设A是3阶实对称矩阵,E 是3阶单位矩阵.若A 2+ A = 2E , 且IA I =4, 则二次型x T A x 的规范形为()00u(A )I 二n=ln(A ) Y i + y ; + y ; ·(B) Y i + y ; -y ; ·(C) Y i -y ; -Yi·(D)-Yi -y ; -y ; ·(6)如图所示,有3张平面两两相交,交线相互平行,它们的方程a i l x + a i2y + a i3z = d;(i = l , 2 , 3)组成的线性方程组的系数矩阵和增广矩阵分别记为A,A,则((A )r (A) =2, r (A ) = 3.(B)r (A) =2, r (A ) = 2.(C)r(A) = 1,r (A ) = 2.(D)r(A) = 1,r (A ) = 1.(7)设A,B为随机事件,则P(A)= P (B )的充分必要条件是()(A ) P (A U B ) = P (A ) + P (B ) .(B ) P (AB ) = P (A) P (B) .(C) p (A B) = p (B A) .(D) p (AB) = p (A B ).(8)设随机变豐X 与Y相互独立,且都服从正态分布N(µ,矿),则P l I X -Y I < 1 f ()(A)与µ无关,而与矿有关.(B)与µ有关,而与矿无关(C)与µ,矿都有关(D)µ,矿都无关二、填空题(本题共6小题,每小题4分,共24分,把答案填在题中横线上.)(9)设函数八u)可导,z = /(sin y -sin x ) + x y, 则一—-. -+ . 一1加1加COS X彻co s y 切(10)微分方程2yy'-r 2-2 = 0满足条件y(O )= 1的特解y =(11)幕级数2(-1)"几=O(2n ) ! x"在(0,+oo)内的和函数S(x)=(12)设凶设为曲面x 2+ y 2+ 4z 2 = 4(z�0)的上侧,则ff J 4 -x 2-4z 2d x d y =(13)设A = (a 1 , a 2 , a 3)为3阶矩阵.若a 1'a 2线性无关,且a 3= -a 1 + 2a 2 , 则线性方程组Ax =0的通解为(14)设随机变掀X的概率密度为八x)= (f'O <x < 2'F(x)为X的分布函数,E(X)为X的0, 其他,数学期望,则Pj F(X) > E(X) -1 l—,•三、解答题(本题共9小题,共94分,解答应写出文字说明、证明过程或演算步骤.)(15)(本题满分10分)设函数y(x)是微分方程y'+xy = e 寻满足条件y(O )= 0的特解(I )求y(x);(II)求曲线y = y(x)的凹凸区间及拐点.(16)(本题满分10分)设a ,b为实数,函数z = 2 + a x 2 + by 2在点(3,4)处的方向导数中,沿方向l = -3i -4j 的方向导数最大,最大值为10.(I )求a,b ;(II)求曲面z = 2 + ax 2+ by 2 (z ;;,: 0)的面积.(17)(本题满分10分)求曲线y = e 一允sin x (x�0)与x轴之间图形的面积(18)(本题满分10分)1设a ,.=Lx "Jl了五x (n = 0, 1 , 2,…). (I)证明数列{叮单调递减,且a ,.=—一-n -1 n + 2a 几一2(n = 2, 3,-·· );(II ) .a求hm n .n----+oo a几一1(19)(本题满分10分)设0是由锥面忒+(y-z)2 = (l -z)2(0�z�1)与平面z = 0围成的锥体,求0的形心坐标(20)(本题满分11分)设向量组a (1 2 1 = )平=(1 , 3, 2) T ,a 3 = (1 , a , 3尸为R 3的一个基,/J =(l,1,l)T 在这个基下的坐标为(b,c, 1)飞(I )求a,b,c;(II )证明生立3/J 为R 3的一个基,并求生立3/J 到叮生立3的过渡矩阵.(21)(本题满分11分)已知矩阵A=厂。
(北京卷)十年真题(2010_2019)高考数学真题分类汇编专题03函数概念与基本初等函数文(含解析)
专题03函数概念与基本初等函数历年考题细目表历年高考真题汇编1.【2019年北京文科03】下列函数中,在区间(0,+∞)上单调递增的是()A.y=x B.y=2﹣x C.y=log x D.y【解答】解:在(0,+∞)上单调递增,和在(0,+∞)上都是减函数.故选:A.2.【2018年北京文科05】“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献,十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率为f,则第八个单音的频率为()A.f B.f C.f D.f【解答】解:从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率为f,则第八个单音的频率为:.故选:D.3.【2017年北京文科05】已知函数f(x)=3x﹣()x,则f(x)()A.是偶函数,且在R上是增函数B.是奇函数,且在R上是增函数C.是偶函数,且在R上是减函数D.是奇函数,且在R上是减函数【解答】解:f(x)=3x﹣()x=3x﹣3﹣x,∴f(﹣x)=3﹣x﹣3x=﹣f(x),即函数f(x)为奇函数,又由函数y=3x为增函数,y=()x为减函数,故函数f(x)=3x﹣()x为增函数,故选:B.4.【2017年北京文科08】根据有关资料,围棋状态空间复杂度的上限M约为3361,而可观测宇宙中普通物质的原子总数N约为1080,则下列各数中与最接近的是()(参考数据:lg3≈0.48)A.1033B.1053C.1073D.1093【解答】解:由题意:M≈3361,N≈1080,根据对数性质有:3=10lg3≈100.48,∴M≈3361≈(100.48)361≈10173,∴1093,故选:D.5.【2016年北京文科04】下列函数中,在区间(﹣1,1)上为减函数的是()A.y B.y=cos x C.y=ln(x+1)D.y=2﹣x【解答】解:A.x增大时,﹣x减小,1﹣x 减小,∴增大;∴函数在(﹣1,1)上为增函数,即该选项错误;B.y=cos x在(﹣1,1)上没有单调性,∴该选项错误;C.x增大时,x+1增大,ln(x+1)增大,∴y=ln(x+1)在(﹣1,1)上为增函数,即该选项错误;D.;∴根据指数函数单调性知,该函数在(﹣1,1)上为减函数,∴该选项正确.故选:D.6.【2016年北京文科08】某学校运动会的立定跳远和30秒跳绳两个单项比赛分成预赛和决赛两个阶段,表中为10名学生的预赛成绩,其中有三个数据模糊.在这10名学生中,进入立定跳远决赛的有8人,同时进入立定跳远决赛和30秒跳绳决赛的有6人,则()A.2号学生进入30秒跳绳决赛B.5号学生进入30秒跳绳决赛C.8号学生进入30秒跳绳决赛D.9号学生进入30秒跳绳决赛【解答】解:∵这10名学生中,进入立定跳远决赛的有8人,故编号为1,2,3,4,5,6,7,8的学生进入立定跳远决赛,又由同时进入立定跳远决赛和30秒跳绳决赛的有6人,则3,6,7号同学必进入30秒跳绳决赛,剩下1,2,4,5,8号同学的成绩分别为:63,a,60,63,a﹣1有且只有3人进入30秒跳绳决赛,故成绩为63的同学必进入30秒跳绳决赛,故选:B.7.【2015年北京文科03】下列函数中为偶函数的是()A.y=x2sin x B.y=x2cos x C.y=|lnx| D.y=2﹣x【解答】解:对于A,(﹣x)2sin(﹣x)=﹣x2sin x;是奇函数;对于B,(﹣x)2cos(﹣x)=x2cos x;是偶函数;对于C,定义域为(0,+∞),是非奇非偶的函数;对于D,定义域为R,但是2﹣(﹣x)=2x≠2﹣x,2x≠﹣2﹣x;是非奇非偶的函数;故选:B.8.【2015年北京文科08】某辆汽车每次加油都把油箱加满,下表记录了该车相邻两次加油时的情况注:“累计里程”指汽车从出厂开始累计行驶的路程,在这段时间内,该车每100千米平均耗油量为()A.6升B.8升C.10升D.12升【解答】解:由表格信息,得到该车加了48升的汽油,跑了600千米,所以该车每100千米平均耗油量48÷6=8;故选:B.9.【2014年北京文科02】下列函数中,定义域是R且为增函数的是()A.y=e﹣x B.y=x C.y=lnx D.y=|x|【解答】解:A.函数的定义域为R,但函数为减函数,不满足条件.B.函数的定义域为R,函数增函数,满足条件.C.函数的定义域为(0,+∞),函数为增函数,不满足条件.D.函数的定义域为R,在(0,+∞)上函数是增函数,在(﹣∞,0)上是减函数,不满足条件.故选:B.10.【2014年北京文科06】已知函数f(x)log2x,在下列区间中,包含f(x)零点的区间是()A.(0,1)B.(1,2)C.(2,4)D.(4,+∞)【解答】解:∵f(x)log2x,∴f(2)=2>0,f(4)0,满足f(2)f(4)<0,∴f(x)在区间(2,4)内必有零点,故选:C.11.【2014年北京文科08】加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”,在特定条件下,可食用率p与加工时间t(单位:分钟)满足函数关系p=at2+bt+c(a,b,c是常数),如图记录了三次实验的数据,根据上述函数模型和实验数据,可以得到最佳加工时间为()A.3.50分钟B.3.75分钟C.4.00分钟D.4.25分钟【解答】解:将(3,0.7),(4,0.8),(5,0.5)分别代入p=at2+bt+c,可得,解得a=﹣0.2,b=1.5,c=﹣2,∴p=﹣0.2t2+1.5t﹣2,对称轴为t 3.75.故选:B.12.【2013年北京文科03】下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是()A.B.y=e﹣x C.y=lg|x| D.y=﹣x2+1【解答】解:A中,y为奇函数,故排除A;B中,y=e﹣x为非奇非偶函数,故排除B;C中,y=lg|x|为偶函数,在x∈(0,1)时,单调递减,在x∈(1,+∞)时,单调递增,所以y=lg|x|在(0,+∞)上不单调,故排除C;D中,y=﹣x2+1的图象关于y轴对称,故为偶函数,且在(0,+∞)上单调递减,故选:D.13.【2012年北京文科05】函数f(x)()x的零点个数为()A.0 B.1 C.2 D.3【解答】解:函数f(x)的定义域为[0,+∞)∵y在定义域上为增函数,y在定义域上为增函数∴函数f(x)在定义域上为增函数而f(0)=﹣1<0,f(1)0故函数f(x)的零点个数为1个故选:B.14.【2012年北京文科08】某棵果树前n年的总产量S n与n之间的关系如图所示.从目前记录的结果看,前m年的年平均产量最高,则m的值为()A.5 B.7 C.9 D.11【解答】解:若果树前n年的总产量S与n在图中对应P(S,n)点则前n年的年平均产量即为直线OP的斜率由图易得当n=9时,直线OP的斜率最大即前9年的年平均产量最高,故选:C.15.【2011年北京文科03】如果x y<0,那么()A.y<x<1 B.x<y<1 C.1<x<y D.1<y<x【解答】解:不等式可化为:又∵函数的底数0 1故函数为减函数∴x>y>1故选:D.16.【2010年北京文科06】给定函数①,②,③y=|x﹣1|,④y=2x+1,其中在区间(0,1)上单调递减的函数序号是()A.①②B.②③C.③④D.①④【解答】解:①是幂函数,其在(0,+∞)上即第一象限内为增函数,故此项不符合要求;②中的函数是由函数向左平移1个单位长度得到的,因为原函数在(0,+∞)内为减函数,故此项符合要求;③中的函数图象是由函数y=x﹣1的图象保留x轴上方,下方图象翻折到x轴上方而得到的,故由其图象可知该项符合要求;④中的函数图象为指数函数,因其底数大于1,故其在R上单调递增,不合题意.故选:B.17.【2017年北京文科11】已知x≥0,y≥0,且x+y=1,则x2+y2的取值范围是.【解答】解:x≥0,y≥0,且x+y=1,则x2+y2=x2+(1﹣x)2=2x2﹣2x+1,x∈[0,1],则令f(x)=2x2﹣2x+1,x∈[0,1],函数的对称轴为:x,开口向上,所以函数的最小值为:f().最大值为:f(1)=2﹣2+1=1.则x2+y2的取值范围是:[,1].故答案为:[,1].18.【2016年北京文科10】函数f(x)(x≥2)的最大值为.【解答】解:;∴f(x)在[2,+∞)上单调递减;∴x=2时,f(x)取最大值2.故答案为:2.19.【2016年北京文科14】某网店统计了连续三天售出商品的种类情况:第一天售出19种商品,第二天售出13种商品,第三天售出18种商品;前两天都售出的商品有3种,后两天都售出的商品有4种,则该网店①第一天售出但第二天未售出的商品有种;②这三天售出的商品最少有种.【解答】解:①设第一天售出商品的种类集为A,第二天售出商品的种类集为B,第三天售出商品的种类集为C,如图,则第一天售出但第二天未售出的商品有19﹣3=16种;②由①知,前两天售出的商品种类为19+13﹣3=29种,第三天售出但第二天未售出的商品有18﹣4=14种,当这14种商品第一天售出但第二天未售出的16种商品中时,即第三天没有售出前两天的商品时,这三天售出的商品种类最少为29种.故答案为:①16;②29.20.【2015年北京文科10】2﹣3,,log25三个数中最大数的是.【解答】解:由于0<2﹣3<1,12,log25>log24=2,则三个数中最大的数为log25.故答案为:log25.21.【2014年北京文科14】顾客请一位工艺师把A,B两件玉石原料各制成一件工艺品,工艺师带一位徒弟完成这项任务,每件原料先由徒弟完成粗加工,再由师傅进行精加工完成制作,两件工艺品都完成后交付顾客,两件原料每道工序所需时间(单位:工作日)如下:则最短交货期为个工作日.【解答】解:由题意,徒弟利用6天完成原料B的加工,由师傅利用21天完成精加工,与此同时,徒弟利用9天完成原料A的加工,最后由师傅利用15天完成精加工,故最短交货期为6+21+15=42 个工作日.故答案为:42.22.【2013年北京文科13】函数f(x)的值域为.【解答】解:当x≥1时,f(x);当x<1时,0<f(x)=2x<21=2.所以函数的值域为(﹣∞,2).故答案为(﹣∞,2).23.【2012年北京文科12】已知函数f(x)=lgx,若f(ab)=1,则f(a2)+f(b2)=.【解答】解:∵函数f(x)=lgx,f(ab)=lg(ab)=1,f(a2)+f(b2)=lga2+lgb2=lg(ab)2=2lg(ab)=2.故答案为:2.24.【2012年北京文科14】已知f(x)=m(x﹣2m)(x+m+3),g(x)=2x﹣2.若∀x∈R,f(x)<0或g (x)<0,则m的取值范围是.【解答】解:∵g(x)=2x﹣2,当x≥1时,g(x)≥0,又∵∀x∈R,f(x)<0或g(x)<0∴此时f(x)=m(x﹣2m)(x+m+3)<0在x≥1时恒成立则由二次函数的性质可知开口只能向下,且二次函数与x轴交点都在(1,0)的左面则∴﹣4<m<0故答案为:(﹣4,0)25.【2011年北京文科13】已知函数若关于x的方程f(x)=k有两个不同的实根,则数k的取值范围是.【解答】解:函数的图象如下图所示:由函数图象可得当k∈(0,1)时方程f(x)=k有两个不同的实根,故答案为:(0,1)26.【2011年北京文科14】设A(0,0),B(4,0),C(t+4,3),D(t,3)(t∈R).记N(t)为平行四边形ABCD内部(不含边界)的整点的个数,其中整点是指横、纵坐标都是整数的点,则N(0)=,N(t)的所有可能取值为.【解答】解:当t=0时,平行四边形ABCD内部的整点有(1,1);(1,2);(2,1);(2,2);(3,1);(3,2)共6个点,所以N(0)=6作出平行四边形ABCD将边OD,BC变动起来,结合图象得到N(t)的所有可能取值为6,7,8故答案为:6;6,7,827.【2010年北京文科09】已知函数y,如图表示的是给定x的值,求其对应的函数值y 的程序框图,①处应填写;②处应填写.【解答】解:由题目可知:该程序的作用是计算分段函数y的值,由于分段函数的分类标准是x是否大于2,而满足条件时执行的语句为y=2﹣x,易得条件语句中的条件为x<2不满足条件时②中的语句为y=log2x故答案为:x<2,y=log2x.28.【2010年北京文科14】(北京卷理14)如图放置的边长为1的正方形PABC沿x轴滚动.设顶点P(x,y)的轨迹方程是y=f(x),则f(x)的最小正周期为;y=f(x)在其两个相邻零点间的图象与x轴所围区域的面积为说明:“正方形PABC沿X轴滚动”包括沿x轴正方向和沿x轴负方向滚动.沿x轴正方向滚动指的是先以顶点A为中心顺时针旋转,当顶点B落在x轴上时,再以顶点B为中心顺时针旋转,如此继续.类似地,正方形PABC可以沿x轴负方向滚动.【解答】解:不难想象,从某一个顶点(比如A)落在x轴上的时候开始计算,到下一次A点落在x轴上,这个过程中四个顶点依次落在了x轴上,而每两个顶点间距离为正方形的边长1,因此该函数的周期为4.下面考察P点的运动轨迹,不妨考察正方形向右滚动,P点从x轴上开始运动的时候,首先是围绕A点运动个圆,该圆半径为1,然后以B点为中心,滚动到C点落地,其间是以BP为半径,旋转90°,然后以C为圆心,再旋转90°,这时候以CP为半径,因此最终构成图象如下:故其与x轴所围成的图形面积为.故答案为:4,π+1.考题分析与复习建议本专题考查的知识点为:函数,函数的单调性与最值,函数的奇偶性与周期性,幂函数与二次函数,指数函数,对数函数,分段函数,函数的图象,函数与方程等.历年考题主要以选择填空题型出现,重点考查的知识点为:函数的单调性与最值,函数的奇偶性与周期性,指数函数,对数函数,分段函数,函数的图象,函数与方程等.预测明年本考点题目会比较稳定,备考方向以知识点函数的单调性与最值,函数的奇偶性与周期性,指数函数,对数函数,分段函数,函数的图象,函数与方程等为重点较佳.最新高考模拟试题1.已知是定义域为[a ,a +1]的偶函数,则2b a a -=( )A .0B .34CD .4 【答案】B【解析】∵f (x )在[a ,a +1]上是偶函数,∴﹣a =a +1⇒a 12=-, 所以f (x )的定义域为[12-,12], 故:f (x )12=-x 2﹣bx +1, ∵f (x )在区间[12-,12]上是偶函数, 有f (12-)=f (12),代入解析式可解得:b =0; ∴2b a a -13144=-=. 故选:B .2.已知函数()y f x =的定义域为R ,)1(+x f 为偶函数,且对121x x ∀<≤,满足.若(3)1f =,则不等式的解集为( ) A .1,82⎛⎫ ⎪⎝⎭B .)8,1(C .D .【答案】A【解析】因为对121x x ∀<≤,满足,所以()y f x =当1≤x 时,是单调递减函数,又因为)1(+x f 为偶函数,所以()y f x =关于1x =对称,所以函数()y f x =当1>x 时,是增函数,又因为(3)1f =,所以有1)1(=-f ,当2log 1x ≤时,即当02x <≤时,当2log 1x >时,即当2x >时,,综上所述:不等式的解集为1,82⎛⎫ ⎪⎝⎭,故本题选A.3.函数的单调减区间为( ) A .(,1)-∞-B .3(,)2-∞-C .3(,)2+∞D .(4,)+∞ 【答案】A【解析】 函数,所以或1x <-,所以函数()f x 的定义域为4x >或1x <-,当3(,)2-∞时,函数是单调递减,而1x <-,所以函数的单调减区间为(),1-∞-,故本题选A 。
(北京卷)十年真题(2010_2019)高考数学真题分类汇编专题11平面解析几何解答题文(含解析)
专题11平面解析几何解答题历年考题细目表题型年份考点试题位置解答题2019 椭圆2019年北京文科19解答题2018 椭圆2018年北京文科20解答题2017 椭圆2017年北京文科19解答题2016 椭圆2016年北京文科19解答题2015 椭圆2015年北京文科20解答题2014 椭圆2014年北京文科19解答题2013 椭圆2013年北京文科19解答题2012 椭圆2012年北京文科19解答题2011 椭圆2011年北京文科19解答题2010 椭圆2010年北京文科19历年高考真题汇编1.【2019年北京文科19】已知椭圆C:1的右焦点为(1,0),且经过点A(0,1).(Ⅰ)求椭圆C的方程;(Ⅱ)设O为原点,直线l:y=kx+t(t≠±1)与椭圆C交于两个不同点P、Q,直线AP与x轴交于点M,直线AQ与x轴交于点N.若|OM|•|ON|=2,求证:直线l经过定点.【解答】解:(Ⅰ)椭圆C:1的右焦点为(1,0),且经过点A(0,1).可得b=c=1,a,则椭圆方程为y2=1;(Ⅱ)证明:y=kx+t与椭圆方程x2+2y2=2联立,可得(1+2k2)x2+4ktx+2t2﹣2=0,设P(x1,y1),Q(x2,y2),△=16k2t2﹣4(1+2k2)(2t2﹣2)>0,x1+x2,x1x2,AP的方程为y x+1,令y=0,可得y,即M(,0);AQ的方程为y x+1,令y=0,可得y.即N(,0).(1﹣y1)(1﹣y2)=1+y1y2﹣(y1+y2)=1+(kx1+t)(kx2+t)﹣(kx1+kx2+2t)=(1+t2﹣2t)+k2•(kt﹣k)•(),|OM|•|ON|=2,即为|•|=2,即有|t2﹣1|=(t﹣1)2,由t≠±1,解得t=0,满足△>0,即有直线l方程为y=kx,恒过原点(0,0).2.【2018年北京文科20】已知椭圆M:1(a>b>0)的离心率为,焦距为2.斜率为k的直线l与椭圆M有两个不同的交点A,B.(Ⅰ)求椭圆M的方程;(Ⅱ)若k=1,求|AB|的最大值;(Ⅲ)设P(﹣2,0),直线PA与椭圆M的另一个交点为C,直线PB与椭圆M的另一个交点为D.若C,D 和点Q(,)共线,求k.【解答】解:(Ⅰ)由题意可知:2c=2,则c,椭圆的离心率e,则a,b2=a2﹣c2=1,∴椭圆的标准方程:;(Ⅱ)设直线AB的方程为:y=x+m,A(x1,y1),B(x2,y2),联立,整理得:4x2+6mx+3m2﹣3=0,△=(6m)2﹣4×4×3(m2﹣1)>0,整理得:m2<4,x1+x2,x1x2,∴|AB|,∴当m=0时,|AB|取最大值,最大值为;(Ⅲ)设直线PA的斜率k PA,直线PA的方程为:y(x+2),联立,消去y整理得:(x12+4x1+4+3y12)x2+12y12x+(12y12﹣3x12﹣12x1﹣12)=0,由代入上式得,整理得:(4x1+7)x2+(12﹣4x12)x﹣(7x12+12x1)=0,x1•x C,x C,则y C(2),则C(,),同理可得:D(,),由Q(,),则(,),(,),由与共线,则,整理得:y2﹣x2=y1﹣x1,则直线AB的斜率k1,∴k的值为1.3.【2017年北京文科19】已知椭圆C的两个顶点分别为A(﹣2,0),B(2,0),焦点在x轴上,离心率为.(Ⅰ)求椭圆C的方程;(Ⅱ)点D为x轴上一点,过D作x轴的垂线交椭圆C于不同的两点M,N,过D作AM的垂线交BN于点E.求证:△BDE与△BDN的面积之比为4:5.【解答】解:(Ⅰ)由椭圆的焦点在x轴上,设椭圆方程:(a>b>0),则a=2,e,则c,b2=a2﹣c2=1,∴椭圆C的方程;(Ⅱ)证明:设D(x0,0),(﹣2<x0<2),M(x0,y0),N(x0,﹣y0),y0>0,则直线AM的斜率k AM,直线DE的斜率k DE,直线DE的方程:y(x﹣x0),直线BN的斜率k BN,直线BN的方程y(x﹣2),,解得:,过E做EH⊥x轴,△BHE∽△BDN,则|EH|,则,∴:△BDE与△BDN的面积之比为4:5.4.【2016年北京文科19】已知椭圆C:1过点A(2,0),B(0,1)两点.(1)求椭圆C的方程及离心率;(2)设P为第三象限内一点且在椭圆C上,直线PA与y轴交于点M,直线PB与x轴交于点N,求证:四边形ABNM的面积为定值.【解答】(1)解:∵椭圆C:1过点A(2,0),B(0,1)两点,∴a=2,b=1,则,∴椭圆C的方程为,离心率为e;(2)证明:如图,设P(x0,y0),则,PA所在直线方程为y,取x=0,得;,PB所在直线方程为,取y=0,得.∴|AN|,|BM|=1.∴.∴四边形ABNM的面积为定值2.5.【2015年北京文科20】已知椭圆C:x2+3y2=3,过点D(1,0)且不过点E(2,1)的直线与椭圆C交于A,B两点,直线AE与直线x=3交于点M.(1)求椭圆C的离心率;(2)若AB垂直于x轴,求直线BM的斜率;(3)试判断直线BM与直线DE的位置关系,并说明理由.【解答】解:(1)∵椭圆C:x2+3y2=3,∴椭圆C的标准方程为:y2=1,∴a,b=1,c,∴椭圆C的离心率e;(2)∵AB过点D(1,0)且垂直于x轴,∴可设A(1,y1),B(1,﹣y1),∵E(2,1),∴直线AE的方程为:y﹣1=(1﹣y1)(x﹣2),令x=3,得M(3,2﹣y1),∴直线BM的斜率k BM1;(3)结论:直线BM与直线DE平行.证明如下:当直线AB的斜率不存在时,由(2)知k BM=1,又∵直线DE的斜率k DE1,∴BM∥DE;当直线AB的斜率存在时,设其方程为y=k(x﹣1)(k≠1),设A(x1,y1),B(x2,y2),则直线AE的方程为y﹣1(x﹣2),令x=3,则点M(3,),∴直线BM的斜率k BM,联立,得(1+3k2)x2﹣6k2x+3k2﹣3=0,由韦达定理,得x1+x2,x1x2,∵k BM﹣1=0,∴k BM=1=k DE,即BM∥DE;综上所述,直线BM与直线DE平行.6.【2014年北京文科19】已知椭圆C:x2+2y2=4.(Ⅰ)求椭圆C的离心率;(Ⅱ)设O为原点,若点A在直线y=2上,点B在椭圆C上,且OA⊥OB,求线段AB长度的最小值.【解答】解:(Ⅰ)椭圆C:x2+2y2=4化为标准方程为,∴a=2,b,c,∴椭圆C的离心率e;(Ⅱ)设A(t,2),B(x0,y0),x0≠0,则∵OA⊥OB,∴0,∴tx0+2y0=0,∴t,∵,∴|AB|2=(x0﹣t)2+(y0﹣2)2=(x0)2+(y0﹣2)2=x02+y024=x0244(0<x02≤4),因为4(0<x02≤4),当且仅当,即x02=4时等号成立,所以|AB|2≥8.∴线段AB长度的最小值为2.7.【2013年北京文科19】直线y=kx+m(m≠0)与椭圆相交于A,C两点,O是坐标原点.(Ⅰ)当点B的坐标为(0,1),且四边形OABC为菱形时,求AC的长;(Ⅱ)当点B在W上且不是W的顶点时,证明:四边形OABC不可能为菱形.【解答】解:(I)∵点B的坐标为(0,1),当四边形OABC为菱形时,AC⊥OB,而B(0,1),O(0,0),∴线段OB的垂直平分线为y,将y代入椭圆方程得x=±,因此A、C的坐标为(,),如图,于是AC=2.(II)欲证明四边形OABC不可能为菱形,利用反证法,假设四边形OABC为菱形,则有OA=OC,设OA=OC=r,则A、C为圆x2+y2=r2与椭圆的交点,故,x2(r2﹣1),则A、C两点的横坐标相等或互为相反数.从而得到点B是W的顶点.这与题设矛盾.于是结论得证.8.【2012年北京文科19】已知椭圆C:1(a>b>0)的一个长轴顶点为A(2,0),离心率为,直线y=k(x﹣1)与椭圆C交于不同的两点M,N,(Ⅰ)求椭圆C的方程;(Ⅱ)当△AMN的面积为时,求k的值.【解答】解:(Ⅰ)∵椭圆一个顶点为A(2,0),离心率为,∴∴b∴椭圆C的方程为;(Ⅱ)直线y=k(x﹣1)与椭圆C联立,消元可得(1+2k2)x2﹣4k2x+2k2﹣4=0设M(x1,y1),N(x2,y2),则x1+x2,∴|MN|∵A(2,0)到直线y=k(x﹣1)的距离为∴△AMN的面积S∵△AMN的面积为,∴∴k=±1.9.【2011年北京文科19】已知椭圆G:1(a>b>0)的离心率为,右焦点为(2,0),斜率为1的直线l与椭圆G交与A、B两点,以AB为底边作等腰三角形,顶点为P(﹣3,2).(Ⅰ)求椭圆G的方程;(Ⅱ)求△PAB的面积.【解答】解:(Ⅰ)由已知得,c,,解得a,又b2=a2﹣c2=4,所以椭圆G的方程为.(Ⅱ)设直线l的方程为y=x+m,由得4x2+6mx+3m2﹣12=0.①设A,B的坐标分别为(x1,y1),(x2,y2)(x1<x2),AB的中点为E(x0,y0),则x0,y0=x0+m,因为AB是等腰△PAB的底边,所以PE⊥AB,所以PE的斜率k,解得m=2.此时方程①为4x2+12x=0.解得x1=﹣3,x2=0,所以y1=﹣1,y2=2,所以|AB|=3,此时,点P(﹣3,2).到直线AB:y=x+2距离d,所以△PAB的面积s|AB|d.10.【2010年北京文科19】已知椭圆C的左、右焦点坐标分别是,,离心率是,直线y =t椭圆C交与不同的两点M,N,以线段为直径作圆P,圆心为P.(Ⅰ)求椭圆C的方程;(Ⅱ)若圆P与x轴相切,求圆心P的坐标;(Ⅲ)设Q(x,y)是圆P上的动点,当t变化时,求y的最大值.【解答】解:(Ⅰ)因为,且,所以所以椭圆C的方程为(Ⅱ)由题意知p(0,t)(﹣1<t<1)由得所以圆P的半径为,则有t2=3(1﹣t2),解得所以点P的坐标是(0,)(Ⅲ)由(Ⅱ)知,圆P的方程x2+(y﹣t)2=3(1﹣t2).因为点Q(x,y)在圆P上.所以设t=cosθ,θ∈(0,π),则当,即,且x=0,y取最大值2.考题分析与复习建议本专题考查的知识点为:直线方程、圆的方程,直线与圆、圆与圆的位置关系,椭圆、双曲线、抛物线及其性质,直线与圆锥曲线,曲线与方程等.历年考题主要以解答题题型出现,重点考查的知识点为:直线与圆、圆与圆的位置关系,椭圆、双曲线、抛物线及其性质,直线与圆锥曲线等,预测明年本考点题目会比较稳定,备考方向以知识点直线与圆、圆与圆的位置关系,椭圆、双曲线、抛物线及其性质,直线与圆锥曲线等为重点较佳.最新高考模拟试题1.已知椭圆22122:1(0)x y C a b a b +=>>的离心率为3,椭圆22222:1(0)33x y C a b a b +=>>经过点⎝⎭. (1)求椭圆1C 的标准方程;(2)设点M 是椭圆1C 上的任意一点,射线MO 与椭圆2C 交于点N ,过点M 的直线l 与椭圆1C 有且只有一个公共点,直线l 与椭圆2C 交于,A B 两个相异点,证明:NAB △面积为定值.【答案】(1)22113y x +=; (2)见解析. 【解析】(1)解:因为1C, 所以22619b a=-,解得223a b =.①将点⎝⎭代入2222133x y a b +=,整理得2211144a b +=.② 联立①②,得21a =,213b =,故椭圆1C 的标准方程为22113y x +=. (2)证明:①当直线l 的斜率不存在时,点M 为()1,0或()1,0-,由对称性不妨取()1,0M ,由(1)知椭圆2C 的方程为2213x y +=,所以有()N .将1x =代入椭圆2C的方程得y =,所以11122NAB S MN AB ∆=⋅==. ②当直线l 的斜率存在时,设其方程为y kx m =+, 将y kx m =+代入椭圆1C 的方程 得()222136310kxkmx m +++-=,由题意得()()()2226413310km k m∆=-+-=,整理得22313m k =+.将y kx m =+代入椭圆2C 的方程, 得()222136330kxkmx m +++-=.设()11,A x y ,()22,B x y ,则122613km x x k +=-+,21223313m x x k-=+, 所以AB ===. 设()00,M x y ,()33,N x y ,ON MO λ=u u u vu u u u v,则可得30x x λ=-,30y y λ=-.因为220022333113x y x y ⎧+=⎪⎨+=⎪⎩,所以2200222003113x y x y λ⎧+=⎪⎛⎫⎨+= ⎪⎪⎝⎭⎩,解得3λ=(3λ=-舍去), 所以3ON MO =u u u vu u u u v,从而()31NM OM =+.又因为点O 到直线l 的距离为21m d k=+,所以点N 到直线l 的距离为()(231311m d k+⋅+=+,所以()()221126131312231NABmk S d AB m k∆+=+⋅=+⋅⋅+ 62=+,综上,NAB ∆的面积为定值62+. 2.如图,在平面直角坐标系xOy 中,椭圆C :22221x y a b+=(a >b >0)经过点(0,3-),点F 是椭圆的右焦点,点F 到左顶点的距离和到右准线的距离相等.过点F 的直线l 交椭圆于M ,N 两点.(1)求椭圆C 的标准方程;(2)当MF =2FN 时,求直线l 的方程;(3)若直线l 上存在点P 满足PM·PN=PF 2,且点P 在椭圆外,证明:点P 在定直线上.【答案】(1)22143x y +=;(25250x y ±=;(3)见解析. 【解析】(1)设椭圆的截距为2c ,由题意,b 3,由点F 到左顶点的距离和到右准线的距离相等,得a+c =2a c c-,又a 2=b 2+c 2,联立解得a =2,c =1.∴椭圆C 的标准方程为22143x y +=;(2)当直线l 与x 轴重合时,M (﹣2,0),N (2,0),此时MF =3NF ,不合题意; 当直线l 与x 轴不重合时,设直线l 的方程为x =my+1,M (x 1,y 1),N (x 2,y 2),联立22my 1x y 143x =+⎧⎪⎨+=⎪⎩,得(3m 2+4)y 2+6my ﹣9=0.△=36m 2+36(m 2+4)>0.122634m y y m +=-+ ①,1229y y 3m 4=-+②,由MF =2FN ,得y 1=﹣2y 2③, 联立①③得,1222126,3434m my y m m =-=++, 代入②得,()22227293434m m m-=-++,解得m =20y ±=;(3)当直线l 的斜率为0时,则M (2,0),N (﹣2,0),设P (x 0,y 0), 则PM•PN=|(x 0﹣2)(x 0+2)|,∵点P 在椭圆外,∴x 0﹣2,x 0+2同号, 又()()()()2220000PF x 1,x 2x 2x 1=-∴-+=-,解得052x =. 当直线l 的斜率不为0时,由(2)知,1212226m 9y y ,y y 3m 43m 4+=-=-++,10200PM y ,PN y ,PF =-=-=.∵点P 在椭圆外,∴y 1﹣y 0,y 2﹣y 0同号,∴PM•PN=(1+m 2)(y 1﹣y 0)(y 2﹣y 0)=()()221201201my yy y y y ⎡⎤+-++⎣⎦()()2222002269113434m m y m y m m ⎛⎫=++-=+ ⎪++⎝⎭,整理得032y m =,代入直线方程得052x =.∴点P 在定直线52x =上. 3.已知抛物线C :24y x =的焦点为F ,直线l 与抛物线C 交于A ,B 两点,O 是坐标原点. (1)若直线l 过点F 且8AB =,求直线l 的方程;(2)已知点(2,0)E -,若直线l 不与坐标轴垂直,且AEO BEO ∠=∠,证明:直线l 过定点. 【答案】(1)1y x =-或1y x =-+;(2)(2,0). 【解析】解:(1)法一:焦点(1,0)F ,当直线l 斜率不存在时,方程为1x =,与抛物线的交点坐标分别为(1,2),(1,2)-, 此时4AB =,不符合题意,故直线的斜率存在.设直线l 方程为(1)=-y k x 与24y x =联立得()2222220k x k x k -+-=,当0k =时,方程只有一根,不符合题意,故0k ≠.()212222k x x k++=,抛物线的准线方程为1x =-,由抛物线的定义得()()12||||||11AB AF BF x x =+=+++()222228k k+=+=,解得1k =±,所以l 方程为1y x =-或1y x =-+.法二:焦点(1,0)F ,显然直线l 不垂直于x 轴,设直线l 方程为1x my =+,与24y x =联立得2440y my --=,设11(,)A x y ,22(,)B x y ,124y y m +=,124y y =.||AB ==()241m ==+,由8AB =,解得1m =±, 所以l 方程为1y x =-或1y x =-+. (2)设11(,)A x y ,22(,)B x y ,设直线l 方程为(0)x my b m =+≠与24y x =联立得:2440y my b --=,可得124y y m +=,124y y b =-. 由AEO BEO ∠=∠得EA EB k k =,即121222y yx x =-++. 整理得121122220y x y x y y +++=,即121122()2()20y my b y my b y y +++++=, 整理得12122(2)()0my y b y y +++=, 即84(2)0bm b m -++=,即2b =. 故直线l 方程为2x my =+过定点(2,0).4.已知椭圆22221(0)x y a b a b+=>>,()2,0A 是长轴的一个端点,弦BC 过椭圆的中心O ,点C 在第一象限,且0AC BC ⋅=u u u r u u u r ,||2||OC OB AB BC -=+u u u r u u u r u u u r u u u r. (1)求椭圆的标准方程;(2)设P 、Q 为椭圆上不重合的两点且异于A 、B ,若PCQ ∠的平分线总是垂直于x 轴,问是否存在实数λ,使得PQ AB =λu u u r u u u r?若不存在,请说明理由;若存在,求λ取得最大值时的PQ 的长.【答案】(1) 223144x y += (2)3【解析】(1)∵0AC BC ⋅=u u u r u u u r,∴90ACB ∠=︒,∵||2||OC OB AB BC -=+u u u r u u u r u u u r u u u r.即||2||BC AC =u u u r u u u r ,∴AOC △是等腰直角三角形, ∵()2,0A ,∴()1,1C , 而点C 在椭圆上,∴22111a b +=,2a =,∴243b =, ∴所求椭圆方程为223144x y +=.(2)对于椭圆上两点P ,Q , ∵PCQ ∠的平分线总是垂直于x 轴, ∴PC 与CQ 所在直线关于1x =对称,PC k k =,则CQ k k =-,∵()1,1C ,∴PC 的直线方程为()11y k x =-+,①QC 的直线方程为()11y k x =--+,②将①代入223144x y +=,得()()22213613610k x k k x k k +--+--=,③∵()1,1C 在椭圆上,∴1x =是方程③的一个根,∴2236113P k k x k--=+, 以k -替换k ,得到2236131Q k k x k +-=+. ∴()213P Q PQ P Qk x x kk x x +-==-, ∵90ACB ∠=o ,()2,0A ,()1,1C ,弦BC 过椭圆的中心O , ∴()2,0A ,()1,1B --,∴13AB k =, ∴PQ AB k k =,∴PQ AB ∥,∴存在实数λ,使得PQ AB =λu u u r u u u r,||PQ =u u ur 3=≤, 当2219k k =时,即k =时取等号,max ||3PQ =u u u r ,又||AB =u u u r,maxλ==,∴λ取得最大值时的PQ的长为3. 5.已知抛物线216y x =,过抛物线焦点F 的直线l 分别交抛物线与圆22(4)16x y -+=于,,,A C D B (自上而下顺次)四点.(1)求证:||||AC BD ⋅为定值; (2)求||||AB AF ⋅的最小值. 【答案】(1)见证明;(2)108 【解析】(1)有题意可知,(4,0)F可设直线l 的方程为4x my =+,1122(,),(,)A x y B x y联立直线和抛物线方程2164y x x my ⎧=⎨=+⎩,消x 可得216640y my --=,所以1216y y m +=,1264y y =-, 由抛物线的定义可知,112||4,||42pAF x x BF x =+=+=+, 又||||4,||||4AC AF BD BF =-=-,所以2221212264||||(||4)(||4)16161616y y AC BD AF BF x x ⋅=--==⋅==,所以||||AC BD ⋅为定值16.(2)由(1)可知,12||||||8AB AF BF x x =+=++,1||4AF x =+,212111212||||(8)(4)12432AB AF x x x x x x x x ⋅=+++=++++,由1216x x =,可得2116x x =, 所以211164||||1248AB AF x x x ⋅=+++(其中1>0x ), 令264()1248f x x x x =+++,222642(2)(4)()212x x f x x x x -+'=+-=, 当(0,2)x ∈时,()0f x '<,函数单调递减,当(2,)x ∈+∞时,()0f x '>,函数单调递增, 所以()(2)108f x f ≥=. 所以||||AB AF ⋅的最小值为108.6.已知O 为坐标原点,点()()2,02,0A B -,,()01AC AD CB CD λλ===<<u u u r u u u r,过点B 作AC的平行线交AD 于点E .设点E 的轨迹为τ. (Ⅰ)求曲线τ的方程;(Ⅱ)已知直线l 与圆22:1O x y +=相切于点M ,且与曲线τ相交于P ,Q 两点,PQ 的中点为N ,求三角形MON 面积的最大值.【答案】(Ⅰ)()22105x y y +=≠;.【解析】(Ⅰ)因为,AD AC EB AC =∥, 故EBD ACD ADC ∠=∠=∠, 所以EB ED =,故EA EB EA ED AD +=+==由题设得()()2,02,04A B AB -=,,,由椭圆定义可得点E 的轨迹方程为:()22105x y y +=≠.(Ⅱ)由题意,直线l 的斜率存在且不为0, 设直线l 的方程为y kx m =+, 因为直线l 与圆O 相切,1=,∴221m k =+,由221,5,x y y kx m ⎧+=⎪⎨⎪=+⎩消去y 得()2221510550k x kmx m +++-=. 设()()1122,,,P x y Q x y ,由韦达定理知:()1212122210221515km mx x y y k x x m k k +=-+=++=++,. 所以PQ 中点N 的坐标为225,1515kmm k k ⎛⎫- ⎪++⎝⎭, 所以弦PQ 的垂直平分线方程为22151515m km y x k k k ⎛⎫-=-+ ⎪++⎝⎭,即 24015kmx ky k++=+.所以MN =.将m =MN =得2441155||||kMNk kk====++…(当且仅当k=,即m=取等号).所以三角形MON的面积为11122S OM MN=⨯⨯⨯≤,综上所述,三角形MON.7.已知椭圆2222:1(0)x yC a ba b+=>>的离心率为2,F是椭圆C的一个焦点.点(02)M,,直线MF的.(1)求椭圆C的方程;(2)若过点M的直线l与椭圆C交于A B,两点,线段AB的中点为N,且AB MN=.求l的方程.【答案】(1)22182x y+=;(2)2y x=+【解析】(1)由题意,可得23cac⎧=⎪⎪⎨⎪=⎪⎩,解得ac⎧=⎪⎨=⎪⎩,则222=2b a c=-,故椭圆C的方程为22182x y+=.(2)当l 的斜率不存在时,=2AB MN AB MN≠=,,,不合题意,故l的斜率存在.设l的方程为2y kx=+,联立221822x yy kx⎧+=⎪⎨⎪=+⎩,得22(14)1680k x kx+++=,设1122(()A x yB x y,),,,则12122216k8,14k14kx x x x+=-=++,()222(16)3214128320k k k∆=-+=->即214k>,设00()N x y ,,则12028214x x kx k+==-+,120||||,0AB MN x =-=-Q0x =,即28||14k k =+整理得21124k =>.故k =,l 的方程为2y x =+.8.已知椭圆2222:1(0)x y C a b a b+=>>过点(,右焦点F 是抛物线28y x =的焦点.(1)求椭圆C 的方程;(2)已知动直线l 过右焦点F ,且与椭圆C 分别交于M ,N 两点.试问x 轴上是否存在定点Q ,使得13516QM QN ⋅=-u u u u r u u u r 恒成立?若存在求出点Q 的坐标:若不存在,说明理由.【答案】(1) 2211612x y += (2)见解析【解析】(1)因为椭圆C 过点,所以221231a b +=, 又抛物线的焦点为()2,0,所以2c =. 所以2212314a a +=-,解得23a =(舍去)或216a =. 所以椭圆C 的方程为2211612x y +=.(2)假设在x 轴上存在定点(,0)Q m ,使得13516QM QN ⋅=-u u u u r u u u r .①当直线l 的斜率不存在时,则(2,3)M ,(2,3)N -,(2,3)QM m =-u u u u r ,(2,3)QN m =--u u u r, 由2135(2)916QM QN m ⋅=--=-u u u u r u u u r ,解得54m =或114m =;②当直线l 的斜率为0时,则(4,0)M -,(4,0)N ,(4,0)QM m =--u u u u r ,(4,0)QN m =-u u u r, 由21351616QM QN m ⋅=-=-u u u u r u u u r ,解得114m =-或114m =.由①②可得114m =,即点Q 的坐标为11,04⎛⎫ ⎪⎝⎭. 下面证明当114m =时,13516QM QN ⋅=-u u u u r u u u r 恒成立.当直线l 的斜率不存在或斜率为0时,由①②知结论成立.当直线l 的斜率存在且不为0时,设其方程为(2)(0)y k x k =-≠,()11,M x y ,()22,N x y .直线与椭圆联立得()()222234161630kxk x k +-+-=,直线经过椭圆内一点,一定与椭圆有两个交点,且21221643k x x k +=+,()212216343k x x k -=+. ()()()222121212122224y y k x k x k x x k x x k =-•-=-++,所以()1122121212111111121,,44416QM QN x y x y x x x x y y ⎛⎫⎛⎫•=-•-=-+++ ⎪ ⎪⎝⎭⎝⎭u u u u r u u u r ()()()()222222221212221631112111161211241244164344316k k k x x k x x k k k k k k -⎛⎫⎛⎫=+-++++=+-+++= ⎪ ⎪++⎝⎭⎝⎭13516-恒成立 综上所述,在x 轴上存在点11,04Q ⎛⎫ ⎪⎝⎭,使得13516QM QN ⋅=-u u u u r u u u r 恒成立.9.关于椭圆的切线由下列结论:若11(,)P x y 是椭圆22221(0)x y a b a b+=>>上的一点,则过点P 的椭圆的切线方程为11221x x y y a b +=.已知椭圆22:143x y C +=.(1)利用上述结论,求过椭圆C 上的点(1,)(0)P n n >的切线方程;(2)若M 是直线4x =上任一点,过点M 作椭圆C 的两条切线MA ,MB (A ,B 为切点),设椭圆的右焦点为F ,求证:MF AB ⊥.【答案】(1)240x y +-=(2)见证明 【解析】(1)由题意,将1x =代入椭圆方程22:143x y C +=,得32y =,所以3(1,)2P ,所以过椭圆C 上的点3(1,)2P 的切线方程为32143yx +=,即240x y +-=.(2)设(4,)M t ,11(,)A x y ,22(,)B x y ,则过A ,B 两点的椭圆C 的切线MA ,MB 的方程分别为11143x x y y +=,22143x x y y+=, 因为(4,)M t 在两条切线上,114143x y t ⨯∴+=,224143x y t⨯+=, 所以A ,B 两点均在直线4143x yt +=上,即直线AB 的方程为13tyx +=, 当0t ≠时,3AB k t=-,又(1,0)F ,0413MF t t k -==-,313AB MF tk k t ⋅=-⨯=-,所以MF AB ⊥, 若0t =,点(4,0)M 在x 轴上,A ,B 两点关于x 轴对称,显然MF AB ⊥.10.已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为12F F ,,离心率为12,P 为椭圆上一动点(异于左右顶点),若12AF F △. (1)求椭圆C 的方程;(2)若直线l 过点1F 交椭圆C 于,A B 两点,问在x 轴上是否存在一点Q ,使得QA QB ⋅u u u r u u u r为定值?若存在,求点Q 的坐标;若不存在,请说明理由.【答案】(1)22143x y +=(2)见解析【解析】(1)由题意,当P 在上或下顶点时,12PF F ∆的面积取值最大值,即最大值为bc = 又12c a =,且222a c b =+,解得24a =,23b =, 故椭圆C 的方程为22143x y +=.(2)易知()11,0F -,设直线l 的方程为1x my =-,()()()11220,,,,,0A x y B x y Q x ,联立方程组221431x y x my ⎧+=⎪⎨⎪=-⎩,整理得22(34)690m y my +--=, 则122634my y m +=+,122934y y m =-+, ()()()()10120200212,,y QA QB x x y x x y x x x x y y ⋅=-⋅-=--+u u u r u u u r()212001212x x x x x x y y =+-++,∵111x my =-,221x my =-,∴()()()2212121212215111134m x x my my m y y m y y m =--=+-+=-+, ()()()212122226112234m x x my my m y y m +=-+-=+-=-+, ∴222000222156912343434m m QA QB x x x m m m ⋅=-+-+-+++u u u r u u u r 2202281253434m x x m m +=+-++()222000231248534x m x x m -++-=+, 要使QA QB ⋅u u u r u u u r 为定值,则2200031248534x x x -+-=,解得0118x =-, 所以在x 轴上存在点11,08Q ⎛⎫-⎪⎝⎭,使得QA QB ⋅u u u r u u u r 为定值. 11.已知点()1,0F ,直线:1l x =-,P 为平面上的动点,过点P 作直线的垂线,垂足为Q ,且QP QF FP FQ ⋅=⋅u u u r u u u r u u u r u u u r .(1)求动点P 的轨迹C 的方程;(2)设直线y kx b =+与轨迹C 交于两点,()11,A x y 、()22,B x y ,且12y y a -= (0a >,且a 为常数),过弦AB 的中点M 作平行于x 轴的直线交轨迹C 于点D ,连接AD 、BD .试判断ABD ∆的面积是否为定值,若是,求出该定值,若不是,请说明理由 【答案】(1) 24y x = (2)见解析 【解析】(1)设(,)P x y ,则(1,)Q y -,QP QF FP FQ •=•u u u r u u u r u u u r u u u r Q ,(1,0)(2,)(1,)(2,)x y x y y ∴+•-=-•-,即22(1)2(1)x x y +=--+,即24y x =, 所以动点P 的轨迹的方程24y x =.(2)联立方程组2,4,y kx b y x =+⎧⎨=⎩消去x ,得2440ky y b -+=, 依题意,0k ≠,且124y y k+=,124b y y k =,由12y y a -=得()2212124y y y y a +-=, 即221616ba k k-=, 整理得:221616kb a k -=,所以2216(1)a k kb =-,① 因为AB 的中点222,bk M k k -⎛⎫⎪⎝⎭,所以点212,D k k ⎛⎫⎪⎝⎭,依题意, 122111||22BD bkS DM y y a k∆∆-=-=, 由方程2440ky y b -+=中的判别式16160kb ∆=->,得10kb ->,所以2112ABD bkS a k∆-=••, 由①知22116a k kb -=,所以23121632MBDa a S a ∆=••=,又a 为常数,故ABD S ∆的面积为定值. 12.已知点P 在抛物线()220C x py p =:>上,且点P 的横坐标为2,以P 为圆心,PO 为半径的圆(O 为原点),与抛物线C 的准线交于M ,N 两点,且2MN =. (1)求抛物线C 的方程;(2)若抛物线的准线与y 轴的交点为H .过抛物线焦点F 的直线l 与抛物线C 交于A ,B ,且AB HB ⊥,求AF BF -的值.【答案】(1) 24x y = (2)4 【解析】(1)将点P 横坐标2P x =代入22x py =中,求得2P y p=, ∴P (2,2p),2244OP p =+,点P 到准线的距离为22p d p =+, ∴222||||2MN OP d ⎛⎫=+ ⎪⎝⎭, ∴22222212p p p ⎛⎫⎛⎫+=++ ⎪ ⎪⎝⎭⎝⎭,解得24p =,∴2p =,∴抛物线C 的方程为:24x y =;(2)抛物线24x y =的焦点为F (0,1),准线方程为1y =-,()01H -,; 设()()1122A x y B x y ,,,, 直线AB 的方程为1y kx =+,代入抛物线方程可得2440x kx --=,∴121244x x k x x +==-,,…① 由AB HB ⊥,可得1AB HB k k ⋅=-, 又111AB AF y k k x -==,221HB y k x +=, ∴1212111y y x x -+⋅=-, ∴()()1212110y y x x -++=,即2212121111044x x x x ⎛⎫⎛⎫-++=⎪⎪⎝⎭⎝⎭,∴()22221212121110164x x x x x x +--+=,…② 把①代入②得,221216x x -=,则()22121211||||1116444AF BF y y x x -=+--=-=⨯=. 13.已知抛物线方程24y x =,F 为焦点,P 为抛物线准线上一点,Q 为线段PF 与抛物线的交点,定义:()PFd P FQ=. (1)当8(1)3P --,时,求()d P ; (2)证明:存在常数a ,使得2()d P PF a =+.(3)123,,P P P 为抛物线准线上三点,且1223PP P P =,判断13()()d P d P +与22()d P 的关系. 【答案】(1)83;(2)证明见解析;(3)()()()1322d P d P d P +>. 【解析】 (1)因为8443(1)233PFk y x ==⇒=-. 联立方程24(1)1344Qy x x y x ⎧=-⎪⇒=⎨⎪=⎩, 则1083()534PF d P QF ⎧=⎪⎪⇒=⎨⎪=⎪⎩. (2)当()1,0P -,易得2()2a d P PF =-=, 不妨设()1,P P y -,0P y >, 直线:1PF x my =+,则2P my =-,联立214x my y x=+⎧⎨=⎩,2440y my --=,2Q y m ==+()222212()||212221P P Q y m d P PF m y y m m m +-=-+=+++ 2212122m m m m m+-+=-+=.(3)设()()()1122331,,1,,1,P y P y P y ---,则()()()13224d P d P d P +-⎡⎤⎣⎦1322PF P F P F =+-2221324424y y y =+++222131344242y y y y +⎛⎫=+++ ⎪⎝⎭()22213134416y y y y =++++因为()222213134416y y y y ⎡⎤++-++⎣⎦22131224428y y y y =++-,又因()()()()2222213131313444480y y y y y y y y ++-+=+->,所以()()()1322d P d P d P +>.14.已知抛物线2:2(0)C x py p =>的焦点F 到准线距离为2. (1)若点(1,1)E ,且点P 在抛物线C 上,求||||PE PF +的最小值;(2)若过点(0,)N b 的直线l 与圆22:(2)4M x y +-=相切,且与抛物线C 有两个不同交点,A B ,求AOB ∆的面积.【答案】(1)2(2) 2ABC S b ∆=【解析】解:(1)根据题意可知2p =所以抛物线方程为24x y =则抛物线C 焦点为(0,1)F ,准线为1y =-;记点,P E 到抛物线C 准线的距离分别为12,d d ,故12||||||2PE PF PE d d +=+≥=,等号成立当且仅当PE 垂直于准线,故||||PE PF +的最小值为2(2)设()11,A x y ,()22,B x y由题意知,直线l 斜率存在,设直线l 的方程为:y kx b =+将y kx b =+与24x y =联立得2440x kx b --=,由韦达定理得12124,4x x k x x b +==-,由()0,2M 到直线l 的距离为12d ==得:2244b b k -=,又||AB ==点O 到直线l 的距离为2d =所以2|ABC S b b ∆=== 15.已知曲线C 上的任意一点到直线l :x=-12的距离与到点F (102,)的距离相等. (1)求曲线C 的方程; (2)若过P (1,0)的直线与曲线C 相交于A ,B 两点,Q (-1,0)为定点,设直线AQ 的斜率为k 1,直线BQ 的斜率为k 2,直线AB 的斜率为k ,证明:22212112k k k+-为定值.【答案】(1)y 2=2x ;(2)见解析【解析】(1)由条件可知,此曲线是焦点为F 的抛物线,p122=,p=1.∴抛物线的方程为y 2=2x ;(2)根据已知,设直线AB 的方程为y=k (x -1)(k ≠0), 由()2y k x 1y 2x ⎧=-⎨=⎩,可得ky 2-2y -2k=0.设A (211y y 2,),B (222y y 2,),则122y y k +=,y 1y 2=-2. ∵1112211y2y k y y 212==++,2222222y 2y k y y 212==++. ∴22221222221212(y 2)(y 2)11k k 4y 4y +++=+=22222212212212(y 2)y (y 2)y 4y y +++ =()42422222122112122212y y y y 8y y 4y y 4y y ++++=()2221212128y y 32(y y )2y y 4162+++-+= =22482k 42k +=+.∴222121124k k k +-=.。
(北京卷)十年真题(2010_2019)高考数学真题分类汇编专题04导数及其应用文(含解析)
专题04导数及其应用历年考题细目表题型年份考点试题位置解答题2019 导数综合问题2019年北京文科20解答题2018 导数综合问题2018年北京文科19解答题2017 导数综合问题2017年北京文科20解答题2016 导数综合问题2016年北京文科20解答题2015 导数综合问题2015年北京文科19解答题2014 导数综合问题2014年北京文科20解答题2012 导数综合问题2012年北京文科18解答题2011 导数综合问题2011年北京文科18解答题2010 导数综合问题2010年北京文科18历年高考真题汇编1.【2019年北京文科20】已知函数f(x)x3﹣x2+x.(Ⅰ)求曲线y=f(x)的斜率为l的切线方程;(Ⅱ)当x∈[﹣2,4]时,求证:x﹣6≤f(x)≤x;(Ⅲ)设F(x)=|f(x)﹣(x+a)|(a∈R),记F(x)在区间[﹣2,4]上的最大值为M(a).当M(a)最小时,求a的值.【解答】解:(Ⅰ)f′(x),由f′(x)=1得x(x)=0,得.又f(0)=0,f(),∴y=x和,即y=x和y=x;(Ⅱ)证明:欲证x﹣6≤f(x)≤x,只需证﹣6≤f(x)﹣x≤0,令g(x)=f(x)﹣x,x∈[﹣2,4],则g′(x),可知g′(x)在[﹣2,0]为正,在(0,)为负,在[]为正,∴g(x)在[﹣2,0]递增,在[0,]递减,在[]递增,又g(﹣2)=﹣6,g(0)=0,g()6,g(4)=0,∴﹣6≤g(x)≤0,∴x﹣6≤f(x)≤x;(Ⅲ)由(Ⅱ)可得,F(x)=|f(x)﹣(x+a)|=|f(x)﹣x﹣a|=|g(x)﹣a|∵在[﹣2,4]上,﹣6≤g(x)≤0,令t=g(x),h(t)=|t﹣a|,则问题转化为当t∈[﹣6,0]时,h(t)的最大值M(a)的问题了,①当a≤﹣3时,M(a)=h(0)=|a|=﹣a,此时﹣a≥3,当a=﹣3时,M(a)取得最小值3;②当a≥﹣3时,M(a)=h(﹣6)=|﹣6﹣a|=|6+a|,∵6+a≥3,∴M(a)=6+a,也是a=﹣3时,M(a)最小为3.综上,当M(a)取最小值时a的值为﹣3.2.【2018年北京文科19】设函数f(x)=[ax2﹣(3a+1)x+3a+2]e x.(Ⅰ)若曲线y=f(x)在点(2,f(2))处的切线斜率为0,求a;(Ⅱ)若f(x)在x=1处取得极小值,求a的取值范围.【解答】解:(Ⅰ)函数f(x)=[ax2﹣(3a+1)x+3a+2]e x的导数为f′(x)=[ax2﹣(a+1)x+1]e x.曲线y=f(x)在点(2,f(2))处的切线斜率为0,可得(4a﹣2a﹣2+1)e2=0,解得a;(Ⅱ)f(x)的导数为f′(x)=[ax2﹣(a+1)x+1]e x=(x﹣1)(ax﹣1)e x,若a=0则x<1时,f′(x)>0,f(x)递增;x>1,f′(x)<0,f(x)递减.x=1处f(x)取得极大值,不符题意;若a>0,且a=1,则f′(x)=(x﹣1)2e x≥0,f(x)递增,无极值;若a>1,则1,f(x)在(,1)递减;在(1,+∞),(﹣∞,)递增,可得f(x)在x=1处取得极小值;若0<a<1,则1,f(x)在(1,)递减;在(,+∞),(﹣∞,1)递增,可得f(x)在x=1处取得极大值,不符题意;若a<0,则1,f(x)在(,1)递增;在(1,+∞),(﹣∞,)递减,可得f(x)在x=1处取得极大值,不符题意.综上可得,a的范围是(1,+∞).3.【2017年北京文科20】已知函数f(x)=e x cos x﹣x.(1)求曲线y=f(x)在点(0,f(0))处的切线方程;(2)求函数f(x)在区间[0,]上的最大值和最小值.【解答】解:(1)函数f(x)=e x cos x﹣x的导数为f′(x)=e x(cos x﹣sin x)﹣1,可得曲线y=f(x)在点(0,f(0))处的切线斜率为k=e0(cos0﹣sin0)﹣1=0,切点为(0,e0cos0﹣0),即为(0,1),曲线y=f(x)在点(0,f(0))处的切线方程为y=1;(2)函数f(x)=e x cos x﹣x的导数为f′(x)=e x(cos x﹣sin x)﹣1,令g(x)=e x(cos x﹣sin x)﹣1,则g(x)的导数为g′(x)=e x(cos x﹣sin x﹣sin x﹣cos x)=﹣2e x•sin x,当x∈[0,],可得g′(x)=﹣2e x•sin x≤0,即有g(x)在[0,]递减,可得g(x)≤g(0)=0,则f(x)在[0,]递减,即有函数f(x)在区间[0,]上的最大值为f(0)=e0cos0﹣0=1;最小值为f()cos.4.【2016年北京文科20】设函数f(x)=x3+ax2+bx+c.(1)求曲线y=f(x)在点(0,f(0))处的切线方程;(2)设a=b=4,若函数f(x)有三个不同零点,求c的取值范围;(3)求证:a2﹣3b>0是f(x)有三个不同零点的必要而不充分条件.【解答】解:(1)函数f(x)=x3+ax2+bx+c的导数为f′(x)=3x2+2ax+b,可得y=f(x)在点(0,f(0))处的切线斜率为k=f′(0)=b,切点为(0,c),可得切线的方程为y=bx+c;(2)设a=b=4,即有f(x)=x3+4x2+4x+c,由f(x)=0,可得﹣c=x3+4x2+4x,由g(x)=x3+4x2+4x的导数g′(x)=3x2+8x+4=(x+2)(3x+2),当x或x<﹣2时,g′(x)>0,g(x)递增;当﹣2<x时,g′(x)<0,g(x)递减.即有g(x)在x=﹣2处取得极大值,且为0;g(x)在x处取得极小值,且为.由函数f(x)有三个不同零点,可得c<0,解得0<c,则c的取值范围是(0,);(3)证明:若f(x)有三个不同零点,令f(x)=0,可得f(x)的图象与x轴有三个不同的交点.即有f(x)有3个单调区间,即为导数f′(x)=3x2+2ax+b的图象与x轴有两个交点,可得△>0,即4a2﹣12b>0,即为a2﹣3b>0;若a2﹣3b>0,即有导数f′(x)=3x2+2ax+b的图象与x轴有两个交点,当c=0,a=b=4时,满足a2﹣3b>0,即有f(x)=x(x+2)2,图象与x轴交于(0,0),(﹣2,0),则f(x)的零点为2个.故a2﹣3b>0是f(x)有三个不同零点的必要而不充分条件.5.【2015年北京文科19】设函数f(x)klnx,k>0.(1)求f(x)的单调区间和极值;(2)证明:若f(x)存在零点,则f(x)在区间(1,]上仅有一个零点.【解答】解:(1)由f(x)f'(x)=x由f'(x)=0解得xf(x)与f'(x)在区间(0,+∞)上的情况如下:X(0,)()f'(x)﹣ 0 +f(x)↓↑所以,f(x)的单调递增区间为(),单调递减区间为(0,);f(x)在x处的极小值为f(),无极大值.(2)证明:由(1)知,f(x)在区间(0,+∞)上的最小值为f().因为f(x)存在零点,所以,从而k≥e当k=e时,f(x)在区间(1,)上单调递减,且f()=0所以x是f(x)在区间(1,)上唯一零点.当k>e时,f(x)在区间(0,)上单调递减,且,所以f(x)在区间(1,)上仅有一个零点.综上所述,若f(x)存在零点,则f(x)在区间(1,]上仅有一个零点.6.【2014年北京文科20】已知函数f(x)=2x3﹣3x.(Ⅰ)求f(x)在区间[﹣2,1]上的最大值;(Ⅱ)若过点P(1,t)存在3条直线与曲线y=f(x)相切,求t的取值范围;(Ⅲ)问过点A(﹣1,2),B(2,10),C(0,2)分别存在几条直线与曲线y=f(x)相切?(只需写出结论)【解答】解:(Ⅰ)由f(x)=2x3﹣3x得f′(x)=6x2﹣3,令f′(x)=0得,x或x,∵f(﹣2)=﹣10,f(),f(),f(1)=﹣1,∴f(x)在区间[﹣2,1]上的最大值为.(Ⅱ)设过点P(1,t)的直线与曲线y=f(x)相切于点(x0,y0),则y0=23x0,且切线斜率为k=63,∴切线方程为y﹣y0=(63)(x﹣x0),∴t﹣y0=(63)(1﹣x0),即46t+3=0,设g(x)=4x3﹣6x2+t+3,则“过点P(1,t)存在3条直线与曲线y=f(x)相切”,等价于“g(x)有3个不同的零点”.∵g′(x)=12x2﹣12x=12x(x﹣1),∴g(x)与g′(x)变化情况如下:x(﹣∞,0) 0 (0,1) 1 (1,+∞)g′(x)+ 0 ﹣ 0 +g(x)↗t+3 ↘t+1 ↗∴g(0)=t+3是g(x)的极大值,g(1)=t+1是g(x)的极小值.当g(0)=t+3≤0,即t≤﹣3时,g(x)在区间(﹣∞,1]和(1,+∞)上分别至多有一个零点,故g(x)至多有2个零点.当g(1)=t+1≥0,即t≥﹣1时,g(x)在区间(﹣∞,0]和(0,+∞)上分别至多有一个零点,故g(x)至多有2个零点.当g(0)>0且g(1)<0,即﹣3<t<﹣1时,∵g(﹣1)=t﹣7<0,g(2)=t+11>0,∴g(x)分别在区间[﹣1,0),[0,1)和[1,2)上恰有1个零点,由于g(x)在区间(﹣∞,0)和[1,+∞)上单调,故g(x)分别在区间(﹣∞,0)和[1,+∞)上恰有1个零点.综上所述,当过点过点P(1,t)存在3条直线与曲线y=f(x)相切时,t的取值范围是(﹣3,﹣1).(Ⅲ)过点A(﹣1,2)存在3条直线与曲线y=f(x)相切;过点B(2,10)存在2条直线与曲线y=f(x)相切;过点C(0,2)存在1条直线与曲线y=f(x)相切.7.【2012年北京文科18】已知函数f(x)=ax2+1(a>0),g(x)=x3+bx.(1)若曲线y=f(x)与曲线y=g(x)在它们的交点(1,c)处有公共切线,求a,b的值;(2)当a=3,b=﹣9时,函数f(x)+g(x)在区间[k,2]上的最大值为28,求k的取值范围.【解答】解:(1)f(x)=ax2+1(a>0),则f′(x)=2ax,k1=2a,g(x)=x3+bx,则g′(x)=3x2+b,k2=3+b,由(1,c)为公共切点,可得:2a=3+b①又f(1)=a+1,g(1)=1+b,∴a+1=1+b,即a=b,代入①式,可得:a=3,b=3.(2)当a=3,b=﹣9时,设h(x)=f(x)+g(x)=x3+3x2﹣9x+1则h′(x)=3x2+6x﹣9,令h'(x)=0,解得:x1=﹣3,x2=1;∴k≤﹣3时,函数h(x)在(﹣∞,﹣3)上单调增,在(﹣3,1]上单调减,(1,2)上单调增,所以在区间[k,2]上的最大值为h(﹣3)=28﹣3<k<2时,函数h(x)在区间[k,2]上的最大值小于28所以k的取值范围是(﹣∞,﹣3]8.【2011年北京文科18】已知函数f(x)=(x﹣k)e x.(Ⅰ)求f(x)的单调区间;(Ⅱ)求f(x)在区间[0,1]上的最小值.【解答】解:(Ⅰ)f′(x)=(x﹣k+1)e x,令f′(x)=0,得x=k﹣1,f′(x)f(x)随x的变化情况如下:x(﹣∞,k﹣1)k﹣1 (k﹣1,+∞)f′(x)﹣0 +f(x)↓﹣e k﹣1↑∴f(x)的单调递减区间是(﹣∞,k﹣1),f(x)的单调递增区间(k﹣1,+∞);(Ⅱ)当k﹣1≤0,即k≤1时,函数f(x)在区间[0,1]上单调递增,∴f(x)在区间[0,1]上的最小值为f(0)=﹣k;当0<k﹣1<1,即1<k<2时,由(I)知,f(x)在区间[0,k﹣1]上单调递减,f(x)在区间(k﹣1,1]上单调递增,∴f(x)在区间[0,1]上的最小值为f(k﹣1)=﹣e k﹣1;当k﹣1≥1,即k≥2时,函数f(x)在区间[0,1]上单调递减,∴f(x)在区间[0,1]上的最小值为f(1)=(1﹣k)e;综上所述f(x)min.9.【2010年北京文科18】设定函数f(x)x3+bx2+cx+d(a>0),且方程f′(x)﹣9x=0的两个根分别为1,4.(Ⅰ)当a=3且曲线y=f(x)过原点时,求f(x)的解析式;(Ⅱ)若f(x)在(﹣∞,+∞)无极值点,求a的取值范围.【解答】解:由得f′(x)=ax2+2bx+c因为f′(x)﹣9x=ax2+2bx+c﹣9x=0的两个根分别为1,4,所以(*)(Ⅰ)当a=3时,又由(*)式得解得b=﹣3,c=12又因为曲线y=f(x)过原点,所以d=0,故f(x)=x3﹣3x2+12x.(Ⅱ)由于a>0,所以“在(﹣∞,+∞)内无极值点”等价于“f′(x)=ax2+2bx+c ≥0在(﹣∞,+∞)内恒成立”.由(*)式得2b=9﹣5a,c=4a.又△=(2b)2﹣4ac=9(a﹣1)(a﹣9)解得a∈[1,9]即a的取值范围[1,9]考题分析与复习建议本专题考查的知识点为:导数的概念及运算,导数与函数的单调性、极值、最值,导数与函数的综合问题.历年考题主要以解答题题型出现,重点考查的知识点为:导数的运算,导数与函数的单调性、极值、最值,导数与函数的综合问题,预测明年本考点题目会比较稳定.备考方向以知识点导数的运算,导数与函数的单调性、极值、最值,导数与函数的综合问题为重点较佳.最新高考模拟试题1.已知函数,若有3个零点,则k 的取值范围为( )A .(21e-,0) B .(12e-,0) C .(0,12e) D .(0,21e) 【答案】C 【解析】由题意,函数,要使得函数在R 上有3个零点,当0x >时,令,可得2ln xk x =, 要使得()0F x =有两个实数解,即y k =和()2ln xg x x=有两个交点,又由,令,可得x e =,当(0,)x e ∈时,()0g x '>,则()g x 单调递增; 当时,()0g x '<,则()g x 单调递减,所以当x e =时,,若直线y k =和()2ln x g x x=有两个交点,则1(0,)2k e ∈, 当0x <时,y k =和()1g x x=有一个交点,则0k >,综上可得,实数k 的取值范围是1(0,)2e,故选C.2.已知,,则下列不等式一定成立的是( )A .2παβ+<B .2παβ+=C .αβ<D .αβ>【答案】C 【解析】由题意,,,设,,设,,()g x ∴在0,2π⎛⎫⎪⎝⎭单调递减,且,()'0f x ∴<,所以()sin x f x x =在0,2π⎛⎫⎪⎝⎭递减,αβ∴<,故选C.3.已知函数(a 为大于1的整数),若()y f x =与的值域相同,则a 的最小值是( )(参考数据:,,)A .5B .6C .7D .8【答案】A 【解析】,当x a >时,'()0f x <,函数()f x 单调递减,当0x a <<时,'()0f x >,函数()f x 单调递增,故,又当,所以函数()f x 的值域为,令因此()t a 是单调递增函数,因此当2,a a Z ≥∈时, ,令由上可知:,,由上可知函数(n)f 在0x a <<时,单调递增,在x a >时,单调递减,要想的值域为,只需,即,设,2,a a Z ≥∈,,所以当3,a a Z ≥∈时,函数()g a 单调递增,,,所以a 的最小值是5,故本题选A.4.已知实数a ,b ,c ,d 满足,则的最小值为( )A .8B .4C .2D .2【答案】D 【解析】Q,∴可以看成()ln f x x =和()1g x x =+之间的最小值'1()f x x=Q ∴当时,即点()1,0到直线()1g x x =+的距离最小∴5.若函数在区间()1,+∞上存在零点,则实数a 的取值范围为( )A .10,2⎛⎫ ⎪⎝⎭B .1,2e ⎛⎫⎪⎝⎭C .()0,∞+D .1,2⎛⎫+∞⎪⎝⎭【答案】D 【解析】因为函数,所以令,因为,当(1,)x ∈+∞ 时,,所以()0g x '>所以()g x 在(1,)+∞上为增函数,则,当120a -≥时,()0g x >,所以()0f x '>,所以()f x 在(1,)+∞上为增函数, 则,所以()f x 在(1,)+∞上没有零点.当120a -<时,即12a >,因为()g x 在(1,)+∞上为增函数,则存在唯一的0(1,)x ∈+∞,使得0()0g x =,且当0(1,)x x ∈时,()0g x <,当0(,)x x ∈+∞时,()0g x >;所以当0(1,)x x ∈时,()0f x '<,()f x 为减函数,当0(,)x x ∈+∞时,()0f x '>,()f x 为增函数,当0x x =时,,因为,当x 趋于+∞时,()f x 趋于+∞,所以在0(,)x x ∈+∞内,()f x 一定存在一个零点. 所以1(,)2a ∈+∞, 故答案选D. 6.已知函数,若对任意(0,)x ∈+∞,都有成立,则实数a 的取值范围是( ) A .3,2e ⎛⎤-∞- ⎥⎝⎦B .(,2e -? C .3,2e 轹÷-+?ê÷ê滕 D .)2,e é-+?êë【答案】D 【解析】令,则,因为对任意(0,)x ∈+∞,都有成立,所以在(0,)x ∈+∞上恒成立; 即在(0,)x ∈+∞上恒成立;即在(0,)x ∈+∞上恒成立;令,(0,)x ∈+∞,则,由()0h x '=得,解得1x =-(舍)或12x =, 所以,当102x <<时,,单调递减;当12x >时,,单调递增;所以,因为在(0,)x ∈+∞上恒成立,所以只需24a e -≤,解得2a e ≥-. 故选D7.已知奇函数()f x 是定义在R 上的可导函数,其导函数为()f x ',当0x >时,有,则不等式的解集为( ) A .B .C .(),2018-∞-D .()2016,0-【答案】A【解析】 设,因为()f x 为R 上奇函数, 所以,即()g x 为R 上奇函数 对()g x 求导,得, 而当0x >时,有故0x >时,()0g x '>,即()g x 单调递增, 所以()g x 在R 上单调递增 不等式,即所以,解得2016x <-故选A 项. 8.已知函数,则使不等式(1)0f x ->成立的x 的最小整数为( ) A .-3 B .-2C .-1D .0【答案】D 【解析】 根据题意,函数,其导数,0x ≠时,()f x '可以看成是1为首项,2x -为公比的等比数列,则有,函数()f x 在R 上为增函数, 又由,,则函数()f x 在(2,1)--上存在唯一的零点,设其零点为t ,,又由21t -<<-,则,故不等式(1)0f x ->成立的x 的最小整数为0; 故选:D .9.直线y ax =是曲线1ln y x =+的切线,则实数a =____. 【答案】1 【解析】解:∵1ln y x =+,∴1y x'=设切点为(,1ln )m m +,得切线的斜率为1m, 所以曲线在点(),1ln m m +处的切线方程为:.即:它过原点,∴ln 0m -=,∴1m =, ∴11a m==. 故答案为:1. 10.函数与的图象上存在关于x 轴的对称点,则实数a 的取值范围为_________. 【答案】1a …关于x 轴对称的函数为,因为函数与的图象上存在关于x 轴的对称点, 所以与的图象有交点,方程有解,即1x ae x =+有解,0a =时符合题意, 0a ≠时转化为有解, 即的图象有交点,是过定点()1,0-的直线,其斜率为1a, 设相切时,切点的坐标为(),mm e,则111m m e m ae a ⎧=⎪⎪+⎨⎪=⎪⎩,解得1a =,切线斜率为11a =,由图可知,当11a≥,即1a ≤且0a ≠时,的图象有交点,此时,与的图象有交点,函数与的图象上存在关于x 轴的对称点,综上可得,实数a 的取值范围为1a ≤,故答案为1a ≤. 11.已知函数,若存在实数,()a b a b <使得,则2+a b 的最大值为________.【答案】32ln27作出函数图像如下:由题意,令,a b 为方程()f x m =的两个根,由图像易得01m <<; 由1xe m -=得1x e m =±,解得或,因为a b <,所以,,因此,令,01m <<, 则,因为01m <<,所以由()0g m '>得103m <<;由()0g m '<得113m <<,即函数()g m 在10,3⎛⎫⎪⎝⎭上单调递增;在1,13⎛⎫ ⎪⎝⎭上单调递减;所以,因此2+a b 的最大值为32ln 27. 故答案为32ln2712.已知实数a ,b ,c 满足(e 为自然对数的底数),则22a b +的最小值是_______.【答案】15【解析】 设,则,所以函数u(x)的增区间为(0,+∞),减区间为(-∞,0),所以,即e 1x x ≥+;可知,当且仅当时取等; 因为 所以,.所以,解得,当且仅当15c =时,取等号. 故答案为:1513.已知直线x t =与曲线分别交于,M N 两点,则MN 的最小值为________【答案】1. 【解析】 令,,显然为增函数,且'(0)0h =所以当(1,0)t ∈-时,单调递减; 当(1,)t ∈+∞时,单调递增.所以.故答案为1.14.曲线cos y a x =在6x π=处的切线l 的斜率为12,则切线l 的方程为_____. 【答案】【解析】解:曲线cos y a x =,可得,曲线cos y a x =在6x π=处的切线l 的斜率为12,可得,所以1a =-.所以切点坐标为:3(,)62π-, 则切线l 的方程为:.即:.故答案为:.15.已知函数若方程2[()]f x a =恰有两个不同的实数根12,x x ,则12x x +的最大值是______.【答案】3ln 22- 【解析】作出()f x 的函数图象如图所示, 由,可得, 即1a >,不妨设12x x < ,则,令,则,,令,则,∴当 18t <<时,()'0g t >,()g t 在()1,8上递增;当8t >时,()'0g t <,()g t 在()8,+∞上递减;∴当8t =时,()g t 取得最大值,故答案为3ln 22-. 16.已知函数的图象恰好经过三个象限,则实数a 的取值范围______.【答案】0a <或2a > 【解析】(1)当0a <时,()f x 在(,0]-∞上单调递减,又(0)1f =-,所以函数()f x 的图象经过第二、三象限, 当0x >时,,所以,①若1a -…时,()0f x '>恒成立,又当0x +→时,()2f x →,所以函数()f x 图象在0x >时,经过第一象限,符合题意;②若10a -<<时,()0f x '>在[2,)+∞上恒成立,当02x <<时,令()0f x '=,解,所以()f x 在10,3a ⎛⎫+ ⎪ ⎪⎝⎭上单调递减,在1,23a ⎛⎫+ ⎪ ⎪⎝⎭上单调递增, 又所以函数()f x 图象在0x >时,经过第一象限,符合题意;(2)当0a =时,()f x 的图象在(,0)-∞上,只经过第三象限,()0f x '>在(0,)+∞上恒成立,所以()f x 的图象在(0,)+∞上,只经过第一象限,故不符合题意;(3)当0a >时,()f x 在(,0)-∞上单调递增,故()f x 的图象在(,0)-∞上只经过第三象限,所以()f x 在(0,)+∞上的最小值min ()0f x <,当02x <<时,令()0f x '=,解得13a x +=若123a +<时,即11a <时,()f x 在(0,)+∞上的最小值为 ,令.若时,则()f x 在02x <<时,单调递减,当2x ≥时,令()0f x '=,解得13a x -=, 若,()f x 在(2,)+∞上单调递增,故()f x 在(0,)+∞上的最小值为,令,所以1113a ≤<; 若,()f x 在12,3a ⎛⎫- ⎪ ⎪⎝⎭上单调递减,在上单调递增,故()f x 在(0,)+∞上的最小值为,显然,故13a ≥;结上所述:0a <或2a >. 17.已知函数.(Ⅰ)讨论()f x 的单调性; (Ⅱ)比较与的大小(n N +∈且)2n >,并证明你的结论.【答案】(I )见解析;(II )见解析 【解析】(Ⅰ)函数()f x 可化为,当0x a <<时,,从而()f x 在(0,)a 上总是递减的,当x a ≥时,,此时要考虑a 与1的大小.若1a ≥,则()0f x '≥,故()f x 在[,)a +∞上递增,若01a <<,则当1a x ≤<时,()0f x '<,当1x >时,()0f x '>,故()f x 在[,1)a 上递减, 在(1,)+∞上递增,而()f x 在x a =处连续,所以 当1a ≥时,()f x 在(0,)a 上递减,在[,)a +∞上递增; 当01a <<时,()f x 在(0,1)上递减,在[1,)+∞上递增. (Ⅱ)由(Ⅰ)可知当1a =,1x >时,,即ln 1x x >-,所以ln 11x x x<-.所以.18.已知函数.(1)讨论()f x 的单调性;(2)若12,x x 为()f x 的两个极值点,证明:.【答案】(1)当2a <-时,()f x 在为增函数,减函数,为增函数;当2a ≥-时,()f x 在()0,∞+为增函数.(2)证明见解析.【解析】(1)()f x 的定义域为()0,∞+,,对于函数,①当时,即22a -≤≤时,在0x >恒成立.在()0,∞+恒成立,()f x ∴在()0,∞+为增函数;②当∆>0,即2a <-或2a >时, 当2a <-时,由()0f x '>,得或,,()f x ∴在为增函数,减函数,为增函数,当2a >时,由在()0,∞+恒成立,()f x ∴在()0,∞+为增函数.综上,当2a <-时,()f x 在为增函数,减函数,为增函数;当2a ≥-时,()f x 在()0,∞+为增函数. (2)由(1)知2a <-,且,故故只需证明,令2at =-,故1t >, 原不等式等价于ln 1t t <-对1t >成立, 令,所以单调递减,有得证. 19.已知函数.(Ⅰ)当1a =时,求()f x 的最大值; (Ⅱ)若1()ef x e+…对恒成立,求实数a 的取值范围.【答案】(Ⅰ)1;(Ⅱ)[1,e] 【解析】 (Ⅰ)当1a =时,,定义域为(1,)-+∞..令()0f x '=,得0x =.当(1,0)x ∈-时,()0f x '>,()f x 单调递增, 当(0,)x ∈+∞时,()0f x '<,()f x 单调递减. 所以.(Ⅱ),1x a >-.令()0f x '=,得1a x a-=. 当时,()0f x '>,()f x 单调递增;当时,()0f x '<,()f x 单调递减,所以.依题意有,设,则,所以()g a 在[1,)a ∈+∞上单调递增.又,故1e a ⇒剟,即实数a 的取值范围为[1,e].20.对于函数()y f x =的定义域D ,如果存在区间[],m n D ⊆,同时满足下列条件:①()f x 在上是单调函数;②当[],x m n ∈时,()f x 的值域为[]2,2m n ,则称区间是函数()f x 的“单调倍区间”.已知函数(1)若2a =,求()f x 在点()(),e f e 处的切线方程;(2)若函数()f x 存在“单调倍区间”,求a 的取值范围.【答案】(1);(2)【解析】 (1)当2a =时,∴当0x >时,,则:,又()f x ∴在()(),e f e 处的切线方程为:即:(2)列表如下:x(),0-∞0,2a ⎛⎫⎪⎝⎭ 2a ,2a ⎛⎫+∞ ⎪⎝⎭()f x '-+ 0-()f x]Z极大值]设函数()f x 存在“单调倍区间”是①当0m n <≤时,由()f x 在(),0-∞上单调递减,则有两式相减得:即,代入得:要使此关于,m n 的方程组在0m n <≤时有解,则使得2y a =与的图象有两个公共点当14x =时,min 38y =,当0x =时,12y =结合两函数图象,则31282a <≤,即:31164a <≤ 即此时满足()f x 存在“单调倍区间”的a 的取值范围是31,164⎛⎤⎥⎝⎦②当时,由()f x 在0,2a ⎛⎫ ⎪⎝⎭上单调递增,则有即:1ln 41ln 4m a mn a n⎧=⎪⎪⎨⎪=⎪⎩设()ln 4xg x x=,则当()0,x e ∈时,()0g x '>,()g x 为增函数 当(),x e ∈+∞时,()0g x '<,()g x 为减函数要使方程1ln 4x a x =有两解,则1y a =与()ln 4x g x x =的图象在0,2a ⎛⎤ ⎥⎝⎦有两个交点结合两函数图象,则,即:2ln 122114a e a a a a e ⎧>⎪⎪⎪⎪≤⎨⎪⎪<⎪⎪⎩解得:即此时满足()f x 存在“在单调倍区间”的a 的取值范围是(24,2e e ⎤⎦③当2a m n <<时,由()f x 在,2a ⎛⎫+∞ ⎪⎝⎭上单调递减,则有两式相减得:,此式不成立,即此时()f x 不存在“单调倍区间”综上,函数()f x 存在“单调倍区间”的a 的取值范围是21.已知函数.(1)讨论函数()f x 的单调性; (2)当[0,1)b ∈时,设函数有最小值()h b ,求()h b 的值域.【答案】(1)见解析;(2)【解析】解:(1)()f x 定义域为,.令,①,1︒当04a ≤≤时,0∆≤,,即'()0f x ≥且不恒为零,故()f x 单调递增区间为(,4)-∞-,(4,)-+∞,2︒当4a >时,∆>0,方程①两根为,,由于,.故124x x <-<,因此当1(,)x x ∈-∞时,'()0f x >,()f x 单调递增,1(,4)x x ∈-,'()0f x <,()f x 单调递减, 2(4,)x x ∈-,'()0f x <,()f x 单调递减, 2(,)x x ∈+∞,'()0f x >,()f x 单调递增,综上,当04a ≤≤时,()f x 在(,4)-∞-单调递增,(4,)-+∞单调递增, 当4a >时,()f x 在单调递增,,单调递减;在单调递增.(2),设,由(1)知,0a =时,在(2,)-+∞单调递增,由于(0)0k b =≥,,故在(2,0]-存在唯一0x ,使0()0k x =,,又当0(2,)x x ∈-,()0k x <,即'()0g x <,()g x 单调递减,0(,)x x ∈+∞,()0k x >,即'()0g x >,()g x 单调递增,故时,0204x e x +=+,0(2,0]x ∈-. 又设,(2,0]x ∈-,,故()m x 单调递增,故,即,即.22.已知函数(无理数 2.718e =…).(1)若()f x 在(1,)+∞单调递增,求实数a 的取值范围: (2)当0a =时,设,证明:当0x >时,.【答案】(1)2]-∞(,; (2)见解析.【解析】(1)解:由题意可得在1(,)+∞上恒成立. ∴, 令,则, ∴函数在1(,)+∞上单调递增. ∴12a h ≤=(). ∴实数a 的取值范围是2]-∞(,. (2)证明:当0a =时,. ,令, 则,可得2x ln =时,函数u x ()取得极小值,. ∵00g '=(),又. ∴存在,使得.由单调性可得:0x x =时,函数()g x 取得极小值,即最小值, ∴. 由,可得函数0y g x =()单调递减,故.∴当0x >时,.。
(北京卷)十年真题(2010_2019)高考数学真题分类汇编专题02复数文(含解析)
专题02复数历年考题细目表题型年份考点试题位置单选题2019 复数的四则运算2019年北京文科02 单选题2018 复数的四则运算2018年北京文科02 单选题2017 复数的四则运算2017年北京文科02 单选题2016 复数的四则运算2016年北京文科02 单选题2013 复数的四则运算2013年北京文科04 单选题2012 复数的四则运算2012年北京文科02 单选题2011 复数的四则运算2011年北京文科02单选题2010 数系的扩充与复数的定义2010年北京文科02填空题2015 复数的四则运算2015年北京文科09填空题2014 数系的扩充与复数的定义2014年北京文科09历年高考真题汇编1.【2019年北京文科02】已知复数z=2+i,则z•()A.B.C.3 D.5【解答】解:∵z=2+i,∴z•.故选:D.2.【2018年北京文科02】在复平面内,复数的共轭复数对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:复数,共轭复数对应点的坐标(,)在第四象限.故选:D.3.【2017年北京文科02】若复数(1﹣i)(a+i)在复平面内对应的点在第二象限,则实数a的取值范围是()A.(﹣∞,1)B.(﹣∞,﹣1)C.(1,+∞)D.(﹣1,+∞)【解答】解:复数(1﹣i)(a+i)=a+1+(1﹣a)i在复平面内对应的点在第二象限,∴,解得a<﹣1.则实数a的取值范围是(﹣∞,﹣1).故选:B.4.【2016年北京文科02】复数()A.i B.1+i C.﹣i D.1﹣i【解答】解:i,故选:A.5.【2013年北京文科04】在复平面内,复数i(2﹣i)对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:∵复数z=i(2﹣i)=﹣i2+2i=1+2i∴复数对应的点的坐标是(1,2)这个点在第一象限,故选:A.6.【2012年北京文科02】在复平面内,复数对应的点的坐标为()A.(1,3)B.(3,1)C.(﹣1,3)D.(3,﹣1)【解答】解:∵1+3i,∴在复平面内,复数对应的点的坐标为(1,3),故选:A.7.【2011年北京文科02】复数()A.i B.﹣i C.D.【解答】解:i故选:A.8.【2010年北京文科02】在复平面内,复数6+5i,﹣2+3i对应的点分别为A,B.若C为线段AB的中点,则点C对应的复数是()A.4+8i B.8+2i C.2+4i D.4+i【解答】解:两个复数对应的点的坐标分别为A(6,5),B(﹣2,3),则其中点的坐标为C(2,4),故其对应的复数为2+4i.故选:C.9.【2015年北京文科09】复数i(1+i)的实部为.【解答】解:复数i(1+i)=﹣1+i,所求复数的实部为:﹣1.故答案为:﹣1.10.【2014年北京文科09】若(x+i)i=﹣1+2i(x∈R),则x=.【解答】解:∵(x+i)i=﹣1+2i,∴﹣1+xi=﹣1+2i,由复数相等可得x=2故答案为:2考题分析与复习建议本专题考查的知识点为:复数的基本概念(复数的实部、虚部、共轭复数、复数的模等),复数相等的充要条件,考查复数的代数形式的四则运算,重点考查复数的除法运算,与向量结合考查复数及其加法、减法的几何意义等,历年考题主要以选择填空题题型出现,重点考查的知识点为复数的基本概念(复数的实部、虚部、共轭复数、复数的模等),复数相等的充要条件,考查复数的代数形式的四则运算,重点考查复数的除法运算等,预测明年本考点题目会比较稳定,备考方向以知识点复数的基本概念(复数的实部、虚部、共轭复数、复数的模等),复数相等的充要条件,考查复数的代数形式的四则运算为重点较佳.最新高考模拟试题1.复数52iz =-在复平面上的对应点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】A 【解析】()()()52i 52i 2i 2i 2i z +===+--+,在复平面上的对应点为()2,1,位于第一象限. 故选A. 2.设i z a b =+(a ,b ∈R ,i 是虚数单位),且22i z =-,则有( ) A .1a b +=- B .1a b -=- C .0a b -= D .0a b +=【答案】D 【解析】因为2222()()22z a bi a b abi i =+=-+=-,所以220a b -=,22ab =-,解得11a b =⎧⎨=-⎩或11a b =-⎧⎨=⎩,所以0a b +=,故选D.3.若复数1i1ia z +=+为纯虚数,则实数a 的值为( ) A .1 B .1-C .0D .2【答案】B 【解析】()()()()()11111i 1i 112ai i a a ia z i i +-++-+===++- 故10,10a a +=-≠ ,解1a =- 故选:B4.复数i (1+i )的虚部为( )A B .1 C .0 D .1-【答案】B 【解析】∵i (1+i )=-1+i , ∴i (1+i )的虚部为1.5.已知复数11z i =-+,复数2z 满足122z z =-,则2z = ( )A .2 BCD .10【答案】B 【解析】 由题得222(1)2(1)11(1)(1)2i i z i i i i -------====+-+-+--,所以2z 故选:B6.已知复数312i z i=+,则复数z 的实部为( )A .25-B .25i -C .15-D .15i -【答案】A 【解析】解:∵3(12)2112(12)(12)55i i i z i i i i --===--++-, ∴复数z 的实部为25-. 故选A . 7.复数122ii-=+( ) A .1i - B .i -C .iD .1i +【答案】B 【解析】12(12)(2)2422(2)(2)5i i i i i i i i i ------===-++-. 故选B8.已知i 为虚数单位,复数z 满足:()z 12i i +=-,则在复平面上复数z 对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限【解析】因为2(2)(1)131312222i i i i z i i ----====-+, 所以复平面上复数z 对应的点为13(,)22-,位于第四象限,故选D .9.设复数z a i =+,z 是其共轭复数,若3455z i z =+,则实数a =( ) A .4 B .3C .2D .1【答案】C 【解析】 解: z a i =+Qz a i ∴=- 343443++2555555z a a i a i i a z ⎛⎫∴=+⇒+=-⇒= ⎪⎝⎭10.已知i 是虚数单位,复数z 满足2(1)1i i z-=+,则z =( )A B .2 C .1D 【答案】A 【解析】22(1)(1)22(1)1(1)111(1)(1)i i i i i i z i i i z i i i i ----⋅-=+⇒====--=--+++⋅-,所以1z i =--==A.11.复数()()21z i i =+-,其中i 为虚数单位,则z 的实部是( ) A .-1 B .1 C .2 D .3【答案】D 【解析】解:∴()()212213z i i i i i =+-=-++=-, ∴z 的实部是312.已知复数(1)1z i i -=+,则复数z =( ) A .2i + B .2i -C .iD .i -【答案】C 【解析】由题意,复数(1)1z i i -=+,则()()()()11121112i i i iz i i i i +++====--+,故选C. 13.已知i 为虚数单位,若1(,)1a bi a b R i=+∈-,则b a =( ) A .1 BCD .2【答案】C 【解析】 i 为虚数单位,若1(,)1a bi a b R i =+∈-,1112i a bi i +==+- 根据复数相等得到1212a b ⎧=⎪⎪⎨⎪=⎪⎩.121()22b a ==故答案为:C.14.已知复数z 满足2(1i)(3i)z +=+,则||z =( ) ABC.D .8【答案】C 【解析】∵2(1)(3)z i i +=+,∴2(3)86(86)(1)(43)(1)711(1)(1)i i i i z i i i i i i i +++-====+-=-+++-,∴||z === 故选C .15.已知i 是虚数单位,则复数11i i -+在复平面上所对应的点的坐标为( ) A .()0,1 B .()1,0-C .()1,0D .()0,1-【答案】A 【解析】 ∵()()()()111111i i i i i i i ---==++-,∴该复数在复平面上对应的点的坐标为()0,1. 故选A.16.若复数z 满足(1i)|1|z +=+,则在复平面内z 的共轭复数对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限【答案】A 【解析】 由题得22(1)1(1)(1)(1i)i z i i i -===-++-, 所以1z i =+,所以在复平面内z 的共轭复数对应的点为(1,1),在第一象限. 故选:A17.已知复数z 满足12iz i =+,则z 的虚部是( ) A .1- B .i -C .2D .2i【答案】A 【解析】 因为12iz i =+所以221222i i i z i i i++===-所以虚部为1- 所以选A 18.已知31iz i-=-(其中i 为虚数单位),则z 的虚部为( ) A .i -B .1-C .1D .2【答案】B 【解析】 因为3(3)(1)4221(1)(1)2i i i iz i i i i --++====+--+, 所以2z i =-,故z 的虚部为1-,故选B.19.复数2(1)41i z i -+=+的虚部为( )A .1-B .3-C .1D .2【答案】B 【解析】()()2421(1)44213112i i i i z i i i ---+-====-++ 所以z 的虚部为3- 故选B 项.20.已知复数()11z ai a R =+∈,212z i =+(i 为虚数单位),若12z z 为纯虚数,则a =( ) A .2- B .2C .12-D .12【答案】C 【解析】∵()12112z ai a R z i =+∈=+,,∴121(1)(12)12212(12)(12)55z ai ai i a a i z i i i ++-+-===+++-, ∵12z z 为纯虚数, ∴12020a a +=⎧⎨-≠⎩,解得12a =-.故选:C . 21.设复数z 满足2ii z+=,则z =( )A .1BC .3D .5【答案】B 【解析】2ii z+=Q, 221i z i i +∴==+22112ii i=+=-,z ∴== B.22.已知复数1i z i=-,则z 在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】A 【解析】∵ ()()()11111122i i i z i i i i +===-+--+,∴ 12z i =+,∴2z +在复平面内对应的点的坐标为12⎫⎪⎪⎝⎭,位于第一象限. 故选:A .23.复数z 满足(1)2z i i -=,则复数z =( ) A .1i - B .12i +C .1i +D .1i --【答案】D 【解析】 由题意得:()()()2121111i i iz i i i i +===-+--+ 1z i ∴=-- 本题正确选项:D24.若复数2(1)z m m m i =+++是纯虚数,其中m 是实数,则1z=( ) A .i B .i - C .2iD .2i -【答案】B 【解析】复数z =m (m +1)+(m +1)i 是纯虚数,故m (m +1)=0且(m +1)≠0,解得m =0,故z =i ,故111iz i i i ⋅===-⋅i .故选:B .25.设i 为虚数单位,则复数22iz i -=+的共扼复数z =( )A .3455i + B .3455i -C .3455i -+ D .3455i --【答案】A【解析】 解:22i (2i)34i 2i (2i)(2i)55z --===-++-Q ,3455z i ∴=+故选:A .26.已知复数1z 、2z在复平面内对应的点关于虚轴对称,11z =,则12z z =( )A .2 BCD .1【答案】D【解析】由题意,复数1z 、2z在复平面内对应的点关于虚轴对称,11z =,则21z =-,所以12212z z ====,故选D.27.已知复数z 1=1+2i ,z 2=l ﹣i ,则12z z =( )A .13i 22-- B .13i 22-+ C .13i 22- D .13i 22+【答案】B【解析】∵1212,1z i z i =+=-,∴1212(12)(1)131(1)(1)22z i i i i z i i i +++===-+--+. 故选:B .28.在复平面内,复数(2i)z -对应的点位于第二象限,则复数z 可取( )A .2B .-1C .iD .2i + 【答案】B【解析】不妨设(),z a bi a b R =+∈,则()()()()()2222i z i a bi a b b a i -=-+=++-,结合题意可知:20,20a b b a +<->,逐一考查所给的选项:对于选项A :24,22a b b a +=-=-,不合题意;对于选项B :22,21a b b a +=--=,符合题意;对于选项C :21,22a b b a +=-=,不合题意;对于选项D :25,20a b b a +=-=,不合题意;故选:B .29.已知i 为虚数单位,则复数3(1)i z i i +=-的虚部为( ) A .1B .2C .1-D .2- 【答案】C【解析】 因为3(3)(1)122(1)2i i i i i i i i i++++===--,所以z 的虚部为1-. 30.已知复数(i)(1i)z a =+-(i 为虚数单位)在复平面内对应的点在直线2y x =上,则实数a 的值为( )A .0B .1-C .1D .13- 【答案】D【解析】因为(i)(1i)1(1)z a a a i =+-=++-,对应的点为(1,1)a a +-,因为点在直线2y x =上,所以12(1)a a -=+,解得13a =-. 故选D.。
十年真题(2010-2019)高考数学真题分类汇编专题09立体几何文(含解析)
专题09立体几何历年考题细目表质17解答题2013垂直关系的判定与性质2013年北京文科17解答题2012垂直关系的判定与性质2012年北京文科16解答题2011空间角与空间距离2011年北京文科17解答题2010垂直关系的判定与性质2010年北京文科17历年高考真题汇编1.【2018年北京文科06】某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为( )A.1 B.2 C.3 D.4【解答】解:四棱锥的三视图对应的直观图为:PA⊥底面ABCD,AC,CD,PC=3,PD=2,可得三角形PCD不是直角三角形.所以侧面中有3个直角三角形,分别为:△PAB,△PBC,△PAD.故选:C.2.【2017年北京文科06】某三棱锥的三视图如图所示,则该三棱锥的体积为()A.60 B.30 C.20 D.10【解答】解:由三视图可知:该几何体为三棱锥,该三棱锥的体积10.故选:D.3.【2015年北京文科07】某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为()A.1 B.C.D.2【解答】解:由三视图知:几何体是四棱锥,且四棱锥的一条侧棱与底面垂直,底面为正方形如图:其中PB⊥平面ABCD,底面ABCD为正方形∴PB=1,AB=1,AD=1,∴BD,PD.PC═该几何体最长棱的棱长为:故选:C.4.【2013年北京文科08】如图,在正方体ABCD﹣A1B1C1D1中,P为对角线BD1的三等分点,P到各顶点的距离的不同取值有()A.3个B.4个C.5个D.6个【解答】解:建立如图所示的空间直角坐标系,不妨设正方体的棱长|AB|=3,则A(3,0,0),B(3,3,0),C(0,3,0),D(0,0,0),A1(3,0,3),B1(3,3,3),C1(0,3,3),D1(0,0,3),∴(﹣3,﹣3,3),设P(x,y,z),∵(﹣1,﹣1,1),∴(2,2,1).∴|PA|=|PC|=|PB1|,|PD|=|PA1|=|PC1|,|PB|,|PD1|.故P到各顶点的距离的不同取值有,3,,共4个.故选:B.5.【2012年北京文科07】某三棱锥的三视图如图所示,该三棱锥的表面积是()A.28+6B.30+6C.56+12D.60+12【解答】解:三视图复原的几何体是底面为直角边长为4和5的三角形,一个侧面垂直底面的等腰三角形,高为4,底边长为5,如图,所以S底10,S后,S右10,S左6.几何体的表面积为:S=S底+S后+S右+S左=30+6.故选:B.6.【2011年北京文科05】某四棱锥的三视图如图所示,该四棱锥的表面积是()A.16B.16+16C.32D.16+32【解答】解:由已知中的三视力可得该几何体是一个四棱锥,棱锥的底面边长为4,故底面面积为16,棱锥的高为2,故侧面的高为:2,则每个侧面的面积为:4,故棱锥的表面积为:16+16,故选:B.7.【2010年北京文科05】一个长方体去掉一个小长方体,所得几何体的正视图与侧(左)视图分别如图所,则该几何体的俯视图为( )A.B.C.D.【解答】解:由正视图可知去掉的长方体在正视线的方向,从侧视图可以看出去掉的长方体在原长方体的左侧,由以上各视图的描述可知其俯视图符合C选项.故选:C.8.【2010年北京文科08】如图,正方体ABCD﹣A1B1C1D1的棱长为2,动点E、F在棱A1B1上.点Q是CD的中点,动点P在棱AD上,若EF=1,DP=x,A1E=y(x,y大于零),则三棱锥P﹣EFQ的体积()A.与x,y都有关B.与x,y都无关C.与x有关,与y无关D.与y有关,与x无关【解答】解:三棱锥P﹣EFQ的体积与点P到平面EFQ的距离和三角形EFQ的面积有关,由图形可知,平面EFQ与平面CDA1B1是同一平面,故点P到平面EFQ的距离是P到平面CDA1B1的距离,且该距离就是P到线段A1D 的距离,此距离只与x有关,因为EF=1,点Q到EF的距离为线段B1C的长度,为定值,综上可知所求三棱锥的体积只与x有关,与y无关.故选:C.9.【2019年北京文科12】某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为l,那么该几何体的体积为.【解答】解:由三视图还原原几何体如图,该几何体是把棱长为4的正方体去掉一个四棱柱,则该几何体的体积V.故答案为:40.10.【2019年北京文科13】已知l,m是平面α外的两条不同直线.给出下列三个论断:①l⊥m;②m∥α;③l⊥α.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:.【解答】解:由l,m是平面α外的两条不同直线,知:由线面平行的判定定理得:若l⊥α,l⊥m,则m∥α.故答案为:若l⊥α,l⊥m,则m∥α.11.【2016年北京文科11】某四棱柱的三视图如图所示,则该四棱柱的体积为.【解答】解:由已知中的三视图可得:该几何体上部是一个以俯视图为底面四棱柱,棱柱的底面面积S(1+2)×1,棱柱的高为1,故棱柱的体积V,故答案为:12.【2014年北京文科11】某三棱锥的三视图如图所示,则该三棱锥最长棱的棱长为.【解答】解:由主视图知CD⊥平面ABC,设AC中点为E,则BE ⊥AC,且AE=CE=1;由主视图知CD=2,由左视图知BE=1,在Rt△BCE中,BC,在Rt△BCD中,BD,在Rt△ACD中,AD=2.则三棱锥中最长棱的长为2.故答案为:2.13.【2013年北京文科10】某四棱锥的三视图如图所示,该四棱锥的体积为.【解答】解:几何体为底面边长为3的正方形,高为1的四棱锥,所以体积.故答案为:3.14.【2019年北京文科18】如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD为菱形,E为CD的中点.(Ⅰ)求证:BD⊥平面PAC;(Ⅱ)若∠ABC=60°,求证:平面PAB⊥平面PAE;(Ⅲ)棱PB上是否存在点F,使得CF∥平面PAE?说明理由.【解答】证明:(Ⅰ)∵四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD为菱形,∴BD⊥PA,BD⊥AC,∵PA∩AC=A,∴BD⊥平面PAC.(Ⅱ)∵在四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD为菱形,E为CD的中点,∠ABC=60°,∴AB⊥AE,PA⊥AE,∵PA∩AB=A,∴AE⊥平面PAB,∵AE⊂平面PAE,∴平面PAB⊥平面PAE.解:(Ⅲ)棱PB上是存在中点F,使得CF∥平面PAE.理由如下:取AB中点G,连结GF,CG,∵在四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD为菱形,E为CD的中点,∴CG∥AE,FG∥PA,∵CG∩FG=G,AE∩PA=A,∴平面CFG∥平面PAE,∵CF⊂平面CFG,∴CF∥平面PAE.15.【2018年北京文科18】如图,在四棱锥P﹣ABCD中,底面ABCD 为矩形,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,E,F分别为AD,PB的中点.(Ⅰ)求证:PE⊥BC;(Ⅱ)求证:平面PAB⊥平面PCD;(Ⅲ)求证:EF∥平面PCD.【解答】证明:(Ⅰ)PA=PD,E为AD的中点,可得PE⊥AD,底面ABCD为矩形,可得BC∥AD,则PE⊥BC;(Ⅱ)由于平面PAB和平面PCD有一个公共点P,且AB∥CD,在平面PAB内过P作直线PG∥AB,可得PG∥CD,即有平面PAB∩平面PCD=PG,由平面PAD⊥平面ABCD,又AB⊥AD,可得AB⊥平面PAD,即有AB⊥PA,PA⊥PG;同理可得CD⊥PD,即有PD⊥PG,可得∠APD为平面PAB和平面PCD的平面角,由PA⊥PD,可得平面PAB⊥平面PCD;(Ⅲ)取PC的中点H,连接DH,FH,在三角形PCD中,FH为中位线,可得FH∥BC,FH BC,由DE∥BC,DE BC,可得DE=FH,DE∥FH,四边形EFHD为平行四边形,EF⊄平面PCD,DH⊂平面PCD,即有EF∥平面PCD.16.【2017年北京文科18】如图,在三棱锥P﹣ABC中,PA⊥AB,PA⊥BC,AB⊥BC,PA=AB=BC=2,D为线段AC的中点,E为线段PC上一点.(1)求证:PA⊥BD;(2)求证:平面BDE⊥平面PAC;(3)当PA∥平面BDE时,求三棱锥E﹣BCD的体积.【解答】解:(1)证明:由PA⊥AB,PA⊥BC,AB⊂平面ABC,BC⊂平面ABC,且AB∩BC=B,可得PA⊥平面ABC,由BD⊂平面ABC,可得PA⊥BD;(2)证明:由AB=BC,D为线段AC的中点,由PA⊥平面ABC,PA⊂平面PAC,可得平面PAC⊥平面ABC,又平面PAC∩平面ABC=AC,BD⊂平面ABC,且BD⊥AC,即有BD⊥平面PAC,BD⊂平面BDE,可得平面BDE⊥平面PAC;(3)PA∥平面BDE,PA⊂平面PAC,且平面PAC∩平面BDE=DE,可得PA∥DE,又D为AC的中点,可得E为PC的中点,且DE PA=1,由PA⊥平面ABC,可得DE⊥平面ABC,可得S△BDC S△ABC2×2=1,则三棱锥E﹣BCD的体积为DE•S△BDC1×1.17.【2016年北京文科18】如图,在四棱锥P﹣ABCD中,PC⊥平面ABCD,AB∥DC,DC⊥AC.(1)求证:DC⊥平面PAC;(2)求证:平面PAB⊥平面PAC;(3)设点E为AB的中点,在棱PB上是否存在点F,使得PA∥平面CEF?说明理由.【解答】(1)证明:∵PC⊥平面ABCD,DC⊂平面ABCD,∴PC⊥DC,∵DC⊥AC,PC∩AC=C,∴DC⊥平面PAC;(2)证明:∵AB∥DC,DC⊥AC,∴AB⊥AC,∵PC⊥平面ABCD,AB⊂平面ABCD,∴PC⊥AB,∵PC∩AC=C,∴AB⊥平面PAC,∵AB⊂平面PAB,∴平面PAB⊥平面PAC;(3)解:在棱PB上存在中点F,使得PA∥平面CEF.∵点E为AB的中点,∴EF∥PA,∵PA⊄平面CEF,EF⊂平面CEF,∴PA∥平面CEF.18.【2015年北京文科18】如图,在三棱锥V﹣ABC中,平面VAB⊥平面ABC,△VAB为等边三角形,AC⊥BC且AC=BC,O,M分别为AB,VA的中点.(1)求证:VB∥平面MOC;(2)求证:平面MOC⊥平面VAB(3)求三棱锥V﹣ABC的体积.【解答】(1)证明:∵O,M分别为AB,VA的中点,∴OM∥VB,∵VB⊄平面MOC,OM⊂平面MOC,∴VB∥平面MOC;(2)∵AC=BC,O为AB的中点,∴OC⊥AB,∵平面VAB⊥平面ABC,OC⊂平面ABC,∴OC⊥平面VAB,∵OC⊂平面MOC,∴平面MOC⊥平面VAB(3)在等腰直角三角形ACB中,AC=BC,∴AB=2,OC=1,∴S△VAB,∵OC⊥平面VAB,∴V C﹣VAB•S△VAB,∴V V﹣ABC=V C﹣VAB.19.【2014年北京文科17】如图,在三棱柱ABC﹣A1B1C1中,侧棱垂直于底面,AB⊥BC,AA1=AC=2,BC=1,E、F分别为A1C1、BC 的中点.(1)求证:平面ABE⊥平面B1BCC1;(2)求证:C1F∥平面ABE;(3)求三棱锥E﹣ABC的体积.【解答】解:(1)证明:∵三棱柱ABC﹣A1B1C1中,侧棱垂直于底面,∴BB1⊥AB,∵AB⊥BC,BB1∩BC=B,BB1,BC⊂平面B1BCC1,∴AB⊥平面B1BCC1,∵AB⊂平面ABE,∴平面ABE⊥平面B1BCC1;(Ⅱ)证明:取AB中点G,连接EG,FG,则∵F是BC的中点,∴FG∥AC,FG AC,∵E是A1C1的中点,∴FG∥EC1,FG=EC1,∴四边形FGEC1为平行四边形,∴C1F∥EG,∵C1F⊄平面ABE,EG⊂平面ABE,∴C1F∥平面ABE;(3)解:∵AA1=AC=2,BC=1,AB⊥BC,∴AB,∴V E﹣ABC S△ABC•AA1(1)×2.20.【2013年北京文科17】如图,在四棱锥P﹣ABCD中,AB∥CD,AB⊥AD,CD=2AB,平面PAD⊥底面ABCD,PA⊥AD.E和F 分别是CD和PC的中点,求证:(Ⅰ)PA⊥底面ABCD;(Ⅱ)BE∥平面PAD;(Ⅲ)平面BEF⊥平面PCD.【解答】解:(Ⅰ)∵PA⊥AD,平面PAD⊥平面ABCD,平面PAD ∩平面ABCD=AD,由平面和平面垂直的性质定理可得PA⊥平面ABCD.(Ⅱ)∵AB∥CD,AB⊥AD,CD=2AB,E和F分别是CD和PC 的中点,故四边形ABED为平行四边形,故有BE∥AD.又AD⊂平面PAD,BE不在平面PAD内,故有BE∥平面PAD.(Ⅲ)平行四边形ABED中,由AB⊥AD可得,ABED为矩形,故有BE⊥CD①.由PA⊥平面ABCD,可得PA⊥AB,再由AB⊥AD可得AB⊥平面PAD,∴CD⊥平面PAD,故有CD⊥PD.再由E、F分别为CD和PC的中点,可得EF∥PD,∴CD⊥EF②.而EF和BE是平面BEF内的两条相交直线,故有CD⊥平面BEF.由于CD⊂平面PCD,∴平面BEF⊥平面PCD.21.【2012年北京文科16】如图1,在Rt△ABC中,∠C=90°,D,E分别为AC,AB的中点,点F为线段CD上的一点,将△ADE沿DE折起到△A1DE的位置,使A1F⊥CD,如图2.(1)求证:DE∥平面A1CB;(2)求证:A1F⊥BE;(3)线段A1B上是否存在点Q,使A1C⊥平面DEQ?说明理由.【解答】解:(1)∵D,E分别为AC,AB的中点,∴DE∥BC,又DE⊄平面A1CB,∴DE∥平面A1CB.(2)由已知得AC⊥BC且DE∥BC,∴DE⊥AC,∴DE⊥A1D,又DE⊥CD,∴DE⊥平面A1DC,而A1F⊂平面A1DC,∴DE⊥A1F,又A1F⊥CD,∴A1F⊥平面BCDE,∴A1F⊥BE.(3)线段A1B上存在点Q,使A1C⊥平面DEQ.理由如下:如图,分别取A1C,A1B的中点P,Q,则PQ∥BC.∵DE∥BC,∴DE∥PQ.∴平面DEQ即为平面DEP.由(Ⅱ)知DE⊥平面A1DC,∴DE⊥A1C,又∵P是等腰三角形DA1C底边A1C的中点,∴A1C⊥DP,∴A1C⊥平面DEP,从而A1C⊥平面DEQ,故线段A1B上存在点Q,使A1C⊥平面DEQ.22.【2011年北京文科17】如图,在四面体PABC中,PC⊥AB,PA⊥BC,点D,E,F,G分别是棱AP,AC,BC,PB的中点.(Ⅰ)求证:DE∥平面BCP;(Ⅱ)求证:四边形DEFG为矩形;(Ⅲ)是否存在点Q,到四面体PABC六条棱的中点的距离相等?说明理由.【解答】证明:(Ⅰ)∵D,E分别为AP,AC的中点,∴DE∥PC,∵DE⊄平面BCP,∴DE∥平面BCP.(Ⅱ)∵D,E,F,G分别为AP,AC,BC,PB的中点,∴DE∥PC∥FG,DG∥AB∥EF∴四边形DEFG为平行四边形,∵PC⊥AB,∴DE⊥DG,∴四边形DEFG为矩形.(Ⅲ)存在点Q满足条件,理由如下:连接DF,EG,设Q为EG的中点,由(Ⅱ)知DF∩EG=Q,且QD=QE=QF=QG EG,分别取PC,AB的中点M,N,连接ME,EN,NG,MG,MN,与(Ⅱ)同理,可证四边形MENG为矩形,其对角线交点为EG的中点Q,且QM=QN EG,∴Q为满足条件的点.23.【2010年北京文科17】如图,正方形ABCD和四边形ACEF所在的平面互相垂直.EF∥AC,AB,CE=EF=1.(Ⅰ)求证:AF∥平面BDE;(Ⅱ)求证:CF⊥平面BDE.【解答】证明:(Ⅰ)设AC于BD交于点G.因为EF∥AG,且EF=1,AG AC=1,所以四边形AGEF为平行四边形,所以AF∥EG,因为EG⊂平面BDE,AF⊄平面BDE,所以AF∥平面BDE.(Ⅱ)连接FG.因为EF∥CG,EF=CG=1,且CE=1,所以平行四边形CEFG为菱形.所以CF⊥EG.因为四边形ABCD为正方形,所以BD⊥AC.又因为平面ACEF⊥平面ABCD,且平面ACEF∩平面ABCD=AC,所以BD⊥平面ACEF.所以CF⊥BD.又BD∩EG=G,所以CF⊥平面BDE.考题分析与复习建议本专题考查的知识点为:空间几何体的结构、三视图和直观图,空间几何体的表面积与体积,空间点、直线、平面之间的位置关系,直线、平面平行、垂直的判定与性质,空间向量及其运算,立体几何中的向量方法(证明平行与垂直、求空间角和距离)等.历年考题主要以选择填空或解答题题型出现,重点考查的知识点为:三视图和直观图,空间几何体的表面积与体积,直线、平面平行、垂直的判定与性质,立体几何中的向量方法(证明平行与垂直、求空间角和距离)等.预测明年本考点题目会比较稳定,备考方向以知识点三视图和直观图,空间几何体的表面积与体积,直线、平面平行、垂直的判定与性质,立体几何中的向量方法(证明平行与垂直、求空间角和距离)等为重点较佳.最新高考模拟试题1.在正方体中, 1AD与BD所成的角为( )A.45?B.90C.60D.120【答案】C【解析】如图,连结BC1、BD和DC1,在正方体ABCD-A1B1C1D1中,由AB=D1C1,AB∥D1C1,可知AD1∥BC1,所以∠DBC1就是异面直线AD1与BD所成角,在正方体ABCD—A1B1C1D1中,BC1、BD和DC1是其三个面上的对角线,它们相等.所以△DBC1是正三角形,∠DBC1=60°故异面直线AD1与BD所成角的大小为60°.故选:C.2.在正方体中,用空间中与该正方体所有棱成角都相等的平面 去截正方体,在截面边数最多时的所有多边形中,多边形截面的面积为S,周长为l,则( )A.S为定值,l不为定值B.S不为定值,l为定值C.S与l均为定值D.S与l均不为定值【答案】C【解析】正方体的所有棱中,实际上是3组平行的棱,每条棱所在直线与平面α所成的角都相等,如图:与面1A BD平行的面且截面是六边形时满足条件,不失一般性设正方体边长为1,即六边形EFGHMN,其中分别为其所在棱的中点,由正方体的性质可得2EF=,2∴六边形的周长l为定值32.∴六边形的面积为,由正方体的对称性可得其余位置时也为正六边形,周长与面积不变,故S与l均为定值,故选C.3.在四面体P ABC-中,ABCPA=,4∆为等边三角形,边长为3,3PC=,PB=,5则四面体P ABC-的体积为()A.3B.23C.11D.10【答案】C【解析】如图,延长CA至D,使得3AD=,连接,DB PD,因为,故ADB∆为等腰三角形,又,故,所以即,故CB DB⊥,因为,所以,所以CB PB⊥,因,DB⊂平面PBD,PB⊂平面PBD,所以CB⊥平面PBD,所以,因A为DC的中点,所以,因为,故PDC∆为直角三角形,所以,又,而4∆为直角三角形,PB=,故即PBD所以,所以,故选C。
(北京卷)十年真题(2010_2019)高考数学真题分类汇编专题09立体几何文(含解析)
专题09立体几何历年考题细目表题型年份考点试题位置单选题2018三视图与直观图2018年北京文科06单选题2017三视图与直观图2017年北京文科06单选题2015三视图与直观图2015年北京文科07单选题2013空间角与空间距离2013年北京文科08单选题2012三视图与直观图2012年北京文科07单选题2011三视图与直观图2011年北京文科05单选题2010三视图与直观图2010年北京文科05单选题2010表面积与体积2010年北京文科08填空题2019三视图与直观图2019年北京文科12点线面的位置关系与立体几何基本定填空题2019理2019年北京文科13填空题2016三视图与直观图2016年北京文科11填空题2014三视图与直观图2014年北京文科11填空题2013三视图与直观图2013年北京文科10解答题2019平行关系的判定与性质2019年北京文科18解答题2018平行关系的判定与性质2018年北京文科18解答题2017空间角与空间距离2017年北京文科18解答题2016空间向量在立体几何中的应用2016年北京文科18解答题2015表面积与体积2015年北京文科18解答题2014垂直关系的判定与性质2014年北京文科17解答题2013垂直关系的判定与性质2013年北京文科17解答题2012垂直关系的判定与性质2012年北京文科16解答题2011空间角与空间距离2011年北京文科17解答题2010垂直关系的判定与性质2010年北京文科17历年高考真题汇编【2018年北京文科06】某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为()1.A.1B.2C.3D.4【解答】解:四棱锥的三视图对应的直观图为:PA⊥底面ABCD,AC,CD,PC=3,PD=2,可得三角形PCD不是直角三角形.所以侧面中有3个直角三角形,分别为:△PAB,△PBC,△PAD.故选:C.2.【2017年北京文科06】某三棱锥的三视图如图所示,则该三棱锥的体积为()A .60B .30C .20D .10【解答】解:由三视图可知:该几何体为三棱锥,该三棱锥的体积10.故选:D .3.【2015年北京文科07】某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为(A .1B .C .D .2【解答】解:由三视图知:几何体是四棱锥,且四棱锥的一条侧棱与底面垂直,)底面为正方形如图:其中PB ⊥平面ABCD ,底面ABCD 为正方形∴PB =1,AB =1,AD =1,∴BD,PD.PC ═该几何体最长棱的棱长为:故选:C .4.【2013年北京文科08】如图,在正方体ABCD ﹣A 1B 1C 1D 1中,P 为对角线BD 1的三等分点,P 到各顶点的距离的不同取值有()A .3个B .4个C .5个D .6个【解答】解:建立如图所示的空间直角坐标系,不妨设正方体的棱长|AB |=3,则A (3,0,0),B (3,3,0),C (0,3,0),D (0,0,0),A 1(3,0,3),B 1(3,3,3),C 1(0,3,3),D 1(0,0,3),∴(﹣3,﹣3,3),设P (x ,y ,z ),∵(﹣1,﹣1,1),∴(2,2,1).∴|PA |=|PC |=|PB 1|,|PD |=|PA 1|=|PC 1|,|PB |,|PD 1|.故P 到各顶点的距离的不同取值有,3,,共4个.故选:B .5.【2012年北京文科07】某三棱锥的三视图如图所示,该三棱锥的表面积是(A .28+6B .30+6C .56+12D .60+12【解答】解:三视图复原的几何体是底面为直角边长为4和5的三角形,一个侧面垂直底面的等腰三角形,高为4,底边长为5,如图,所以S 底10,S 后,)S 右10,S 左6..几何体的表面积为:S =S 底+S 后+S 右+S 左=30+6故选:B .6.【2011年北京文科05】某四棱锥的三视图如图所示,该四棱锥的表面积是()A .16B .16+16C .32D .16+32【解答】解:由已知中的三视力可得该几何体是一个四棱锥,棱锥的底面边长为4,故底面面积为16,棱锥的高为2,故侧面的高为:2,则每个侧面的面积为:故棱锥的表面积为:16+16故选:B .,4,7.【2010年北京文科05】一个长方体去掉一个小长方体,所得几何体的正视图与侧(左)视图分别如图所,则该几何体的俯视图为()A .B .C .D .【解答】解:由正视图可知去掉的长方体在正视线的方向,从侧视图可以看出去掉的长方体在原长方体的左侧,由以上各视图的描述可知其俯视图符合C 选项.故选:C .8.【2010年北京文科08】如图,正方体ABCD ﹣A 1B 1C 1D 1的棱长为2,动点E 、F 在棱A 1B 1上.点Q 是CD 的中点,动点P 在棱AD 上,若EF =1,DP =x ,A 1E =y (x ,y 大于零),则三棱锥P ﹣EFQ 的体积()A .与x ,y 都有关C .与x 有关,与y 无关B .与x ,y 都无关D .与y 有关,与x 无关【解答】解:三棱锥P ﹣EFQ 的体积与点P 到平面EFQ 的距离和三角形EFQ 的面积有关,由图形可知,平面EFQ 与平面CDA 1B 1是同一平面,故点P 到平面EFQ 的距离是P 到平面CDA 1B 1的距离,且该距离就是P 到线段A 1D 的距离,此距离只与x 有关,因为EF =1,点Q 到EF 的距离为线段B 1C 的长度,为定值,综上可知所求三棱锥的体积只与x 有关,与y 无关.故选:C .9.【2019年北京文科12】某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为l ,那么该几何体的体积为.【解答】解:由三视图还原原几何体如图,该几何体是把棱长为4的正方体去掉一个四棱柱,则该几何体的体积V 故答案为:40..10.【2019年北京文科13】已知l ,m 是平面α外的两条不同直线.给出下列三个论断:①l ⊥m ;②m ∥α;③l ⊥α.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:.【解答】解:由l ,m 是平面α外的两条不同直线,知:由线面平行的判定定理得:若l ⊥α,l ⊥m ,则m ∥α.故答案为:若l ⊥α,l ⊥m ,则m ∥α.11.【2016年北京文科11】某四棱柱的三视图如图所示,则该四棱柱的体积为.【解答】解:由已知中的三视图可得:该几何体上部是一个以俯视图为底面四棱柱,棱柱的底面面积S 棱柱的高为1,故棱柱的体积V 故答案为:12.【2014年北京文科11】某三棱锥的三视图如图所示,则该三棱锥最长棱的棱长为.,(1+2)×1,【解答】解:由主视图知CD ⊥平面ABC ,设AC 中点为E ,则BE ⊥AC ,且AE =CE =1;由主视图知CD =2,由左视图知BE =1,在Rt △BCE 中,BC,在Rt △BCD 中,BD 在Rt △ACD 中,AD =2,..则三棱锥中最长棱的长为2故答案为:2.13.【2013年北京文科10】某四棱锥的三视图如图所示,该四棱锥的体积为.【解答】解:几何体为底面边长为3的正方形,高为1的四棱锥,所以体积故答案为:3..14.【2019年北京文科18】如图,在四棱锥P ﹣ABCD 中,PA ⊥平面ABCD ,底面ABCD 为菱形,E 为CD 的中点.(Ⅰ)求证:BD ⊥平面PAC ;(Ⅱ)若∠ABC =60°,求证:平面PAB ⊥平面PAE ;(Ⅲ)棱PB 上是否存在点F ,使得CF ∥平面PAE ?说明理由.【解答】证明:(Ⅰ)∵四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD为菱形,∴BD⊥PA,BD⊥AC,∵PA∩AC=A,∴BD⊥平面PAC.(Ⅱ)∵在四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD为菱形,E为CD的中点,∠ABC=60°,∴AB⊥AE,PA⊥AE,∵PA∩AB=A,∴AE⊥平面PAB,∵AE⊂平面PAE,∴平面PAB⊥平面PAE.解:(Ⅲ)棱PB上是存在中点F,使得CF∥平面PAE.理由如下:取AB中点G,连结GF,CG,∵在四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD为菱形,E为CD的中点,∴CG∥AE,FG∥PA,∵CG∩FG=G,AE∩PA=A,∴平面CFG∥平面PAE,∵CF⊂平面CFG,∴CF∥平面PAE.15.【2018年北京文科18】如图,在四棱锥P﹣ABCD中,底面ABCD为矩形,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,E,F分别为AD,PB的中点.(Ⅰ)求证:PE⊥BC;(Ⅱ)求证:平面PAB⊥平面PCD;(Ⅲ)求证:EF∥平面PCD.【解答】证明:(Ⅰ)PA=PD,E为AD的中点,可得PE⊥AD,底面ABCD为矩形,可得BC∥AD,则PE⊥BC;(Ⅱ)由于平面PAB和平面PCD有一个公共点P,且AB∥CD,在平面PAB内过P作直线PG∥AB,可得PG∥CD,即有平面PAB∩平面PCD=PG,由平面PAD⊥平面ABCD,又AB⊥AD,可得AB⊥平面PAD,即有AB⊥PA,PA⊥PG;同理可得CD⊥PD,即有PD⊥PG,可得∠APD为平面PAB和平面PCD的平面角,由PA⊥PD,可得平面PAB⊥平面PCD;(Ⅲ)取PC的中点H,连接DH,FH,在三角形PCD中,FH为中位线,可得FH∥BC,FH BC,由DE∥BC,DE BC,可得DE=FH,DE∥FH,四边形EFHD为平行四边形,可得EF∥DH,EF平面PCD,DH⊂平面PCD,即有EF∥平面PCD.16.【2017年北京文科18】如图,在三棱锥P﹣ABC中,PA⊥AB,PA⊥BC,AB⊥BC,PA=AB=BC=2,D为线段AC的中点,E为线段PC上一点.(1)求证:PA⊥BD;(2)求证:平面BDE⊥平面PAC;(3)当PA∥平面BDE时,求三棱锥E﹣BCD的体积.【解答】解:(1)证明:由PA⊥AB,PA⊥BC,AB⊂平面ABC,BC⊂平面ABC,且AB∩BC=B,可得PA⊥平面ABC,由BD⊂平面ABC,可得PA⊥BD;(2)证明:由AB=BC,D为线段AC的中点,可得BD⊥AC,由PA⊥平面ABC,PA⊂平面PAC,可得平面PAC⊥平面ABC,又平面PAC∩平面ABC=AC,BD ⊂平面ABC ,且BD ⊥AC ,即有BD ⊥平面PAC ,BD ⊂平面BDE ,可得平面BDE ⊥平面PAC ;(3)PA ∥平面BDE ,PA ⊂平面PAC ,且平面PAC ∩平面BDE =DE ,可得PA ∥DE ,又D 为AC 的中点,可得E 为PC 的中点,且DE由PA ⊥平面ABC ,可得DE ⊥平面ABC ,可得S △BDC PA =1,S △ABC 2×2=1,则三棱锥E ﹣BCD 的体积为DE •S △BDC 1×1.17.【2016年北京文科18】如图,在四棱锥P ﹣ABCD 中,PC ⊥平面ABCD ,AB ∥DC ,DC ⊥AC .(1)求证:DC ⊥平面PAC ;(2)求证:平面PAB ⊥平面PAC ;(3)设点E 为AB 的中点,在棱PB 上是否存在点F ,使得PA ∥平面CEF ?说明理由.【解答】(1)证明:∵PC ⊥平面ABCD ,DC ⊂平面ABCD ,∴PC⊥DC,∵DC⊥AC,PC∩AC=C,∴DC⊥平面PAC;(2)证明:∵AB∥DC,DC⊥AC,∴AB⊥AC,∵PC⊥平面ABCD,AB⊂平面ABCD,∴PC⊥AB,∵PC∩AC=C,∴AB⊥平面PAC,∵AB⊂平面PAB,∴平面PAB⊥平面PAC;(3)解:在棱PB上存在中点F,使得PA∥平面CEF.∵点E为AB的中点,∴EF∥PA,∵PA⊄平面CEF,EF⊂平面CEF,∴PA∥平面CEF.18.【2015年北京文科18】如图,在三棱锥V﹣ABC中,平面VAB⊥平面ABC,△VAB为等边三角形,AC⊥BC 且AC=BC,O,M分别为AB,VA的中点.(1)求证:VB∥平面MOC;(2)求证:平面MOC⊥平面VAB(3)求三棱锥V﹣ABC的体积.【解答】(1)证明:∵O,M分别为AB,VA的中点,∴OM∥VB,∵VB⊄平面MOC,OM⊂平面MOC,∴VB ∥平面MOC ;(2)∵AC =BC ,O 为AB 的中点,∴OC ⊥AB ,∵平面VAB ⊥平面ABC ,OC ⊂平面ABC ,∴OC ⊥平面VAB ,∵OC ⊂平面MOC ,∴平面MOC ⊥平面VAB(3)在等腰直角三角形ACB 中,AC =BC ∴S △VAB ,,∴AB =2,OC =1,∵OC ⊥平面VAB ,∴V C ﹣VAB •S △VAB ,∴V V ﹣ABC =V C ﹣VAB .19.【2014年北京文科17】如图,在三棱柱ABC ﹣A 1B 1C 1中,侧棱垂直于底面,AB ⊥BC ,AA 1=AC =2,BC =1,E 、F 分别为A 1C 1、BC 的中点.(1)求证:平面ABE ⊥平面B 1BCC 1;(2)求证:C 1F ∥平面ABE ;(3)求三棱锥E ﹣ABC 的体积.【解答】解:(1)证明:∵三棱柱ABC ﹣A 1B 1C 1中,侧棱垂直于底面,∴BB 1⊥AB ,∵AB ⊥BC ,BB 1∩BC =B ,BB 1,BC ⊂平面B 1BCC 1,∴AB ⊥平面B 1BCC 1,∵AB ⊂平面ABE ,∴平面ABE ⊥平面B 1BCC 1;(Ⅱ)证明:取AB 中点G ,连接EG ,FG ,则∵F 是BC 的中点,∴FG ∥AC ,FG AC ,∵E 是A 1C 1的中点,∴FG ∥EC 1,FG =EC 1,∴四边形FGEC 1为平行四边形,∴C 1F ∥EG ,∵C 1F 平面ABE ,EG 平面ABE ,∴C 1F ∥平面ABE ;(3)解:∵AA 1=AC =2,BC =1,AB ⊥BC ,∴AB ∴V E ﹣ABC ,S △ABC •AA 1(1)×2.20.【2013年北京文科17】如图,在四棱锥P ﹣ABCD 中,AB ∥CD ,AB ⊥AD ,CD =2AB ,平面PAD ⊥底面ABCD ,PA ⊥AD .E 和F 分别是CD 和PC 的中点,求证:(Ⅰ)PA ⊥底面ABCD ;(Ⅱ)BE ∥平面PAD ;(Ⅲ)平面BEF ⊥平面PCD .【解答】解:(Ⅰ)∵PA⊥AD,平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,由平面和平面垂直的性质定理可得PA⊥平面ABCD.(Ⅱ)∵AB∥CD,AB⊥AD,CD=2AB,E和F分别是CD和PC的中点,故四边形ABED为平行四边形,故有BE∥AD.又AD⊂平面PAD,BE不在平面PAD内,故有BE∥平面PAD.(Ⅲ)平行四边形ABED中,由AB⊥AD可得,ABED为矩形,故有BE⊥CD①.由PA⊥平面ABCD,可得PA⊥AB,再由AB⊥AD可得AB⊥平面PAD,∴CD⊥平面PAD,故有CD⊥PD.再由E、F分别为CD和PC的中点,可得EF∥PD,∴CD⊥EF②.而EF和BE是平面BEF内的两条相交直线,故有CD⊥平面BEF.由于CD⊂平面PCD,∴平面BEF⊥平面PCD.21.【2012年北京文科16】如图1,在Rt△ABC中,∠C=90°,D,E分别为AC,AB的中点,点F为线段CD上的一点,将△ADE沿DE折起到△A1DE的位置,使A1F⊥CD,如图2.(1)求证:DE∥平面A1CB;(2)求证:A1F⊥BE;(3)线段A1B上是否存在点Q,使A1C⊥平面DEQ?说明理由.【解答】解:(1)∵D ,E 分别为AC ,AB 的中点,∴DE ∥BC ,又DE 平面A 1CB ,∴DE ∥平面A 1CB .(2)由已知得AC ⊥BC 且DE ∥BC ,∴DE ⊥AC ,∴DE ⊥A 1D ,又DE ⊥CD ,∴DE ⊥平面A 1DC ,而A 1F 平面A 1DC ,∴DE ⊥A 1F ,又A 1F ⊥CD ,∴A 1F ⊥平面BCDE ,∴A 1F ⊥BE .(3)线段A 1B 上存在点Q ,使A 1C ⊥平面DEQ .理由如下:如图,分别取A 1C ,A 1B 的中点P ,Q ,则PQ ∥BC .∵DE ∥BC ,∴DE ∥PQ .∴平面DEQ 即为平面DEP .由(Ⅱ)知DE ⊥平面A 1DC ,∴DE ⊥A 1C ,又∵P 是等腰三角形DA 1C 底边A 1C 的中点,∴A 1C ⊥DP ,∴A 1C ⊥平面DEP ,从而A 1C ⊥平面DEQ ,故线段A 1B 上存在点Q ,使A 1C ⊥平面DEQ .22.【2011年北京文科17】如图,在四面体PABC 中,PC ⊥AB ,PA ⊥BC ,点D ,E ,F ,G 分别是棱AP ,AC ,BC ,PB 的中点.(Ⅰ)求证:DE ∥平面BCP ;(Ⅱ)求证:四边形DEFG 为矩形;(Ⅲ)是否存在点Q,到四面体PABC六条棱的中点的距离相等?说明理由.【解答】证明:(Ⅰ)∵D,E分别为AP,AC的中点,∴DE∥PC,∵DE平面BCP,∴DE∥平面BCP.(Ⅱ)∵D,E,F,G分别为AP,AC,BC,PB的中点,∴DE∥PC∥FG,DG∥AB∥EF∴四边形DEFG为平行四边形,∵PC⊥AB,∴DE⊥DG,∴四边形DEFG为矩形.(Ⅲ)存在点Q满足条件,理由如下:连接DF,EG,设Q为EG的中点,由(Ⅱ)知DF∩EG=Q,且QD=QE=QF=QG EG,分别取PC,AB的中点M,N,连接ME,EN,NG,MG,MN,与(Ⅱ)同理,可证四边形MENG为矩形,其对角线交点为EG的中点Q,且QM=QN EG,∴Q为满足条件的点.23.【2010年北京文科17】如图,正方形ABCD 和四边形ACEF 所在的平面互相垂直.EF ∥AC ,AB =EF =1.(Ⅰ)求证:AF ∥平面BDE ;(Ⅱ)求证:CF ⊥平面BDE .,CE【解答】证明:(Ⅰ)设AC 于BD 交于点G .因为EF ∥AG ,且EF =1,AGAC =1,所以四边形AGEF 为平行四边形,所以AF ∥EG ,因为EG 平面BDE ,AF 平面BDE ,所以AF ∥平面BDE .(Ⅱ)连接FG .因为EF ∥CG ,EF =CG =1,且CE =1,所以平行四边形CEFG 为菱形.所以CF ⊥EG .因为四边形ABCD 为正方形,所以BD ⊥AC .又因为平面ACEF ⊥平面ABCD ,且平面ACEF ∩平面ABCD =AC ,所以BD ⊥平面ACEF .所以CF ⊥BD .又BD ∩EG =G ,所以CF ⊥平面BDE .考题分析与复习建议本专题考查的知识点为:空间几何体的结构、三视图和直观图,空间几何体的表面积与体积,空间点、直线、平面之间的位置关系,直线、平面平行、垂直的判定与性质,空间向量及其运算,立体几何中的向量方法(证明平行与垂直、求空间角和距离)等.历年考题主要以选择填空或解答题题型出现,重点考查的知识点为:三视图和直观图,空间几何体的表面积与体积,直线、平面平行、垂直的判定与性质,立体几何中的向量方法(证明平行与垂直、求空间角和距离)等.预测明年本考点题目会比较稳定,备考方向以知识点三视图和直观图,空间几何体的表面积与体积,直线、平面平行、垂直的判定与性质,立体几何中的向量方法(证明平行与垂直、求空间角和距离)等为重点较佳.最新高考模拟试题1.在正方体A .45?【答案】C 【解析】B .90中,AD 1与BD 所成的角为()C .60D .120如图,连结BC 1、BD 和DC 1,在正方体ABCD-A 1B 1C 1D 1中,由AB=D 1C 1,AB ∥D 1C 1,可知AD 1∥BC 1,所以∠DBC 1就是异面直线AD 1与BD 所成角,在正方体ABCD-A 1B 1C 1D 1中,BC 1、BD 和DC 1是其三个面上的对角线,它们相等.所以△DBC 1是正三角形,∠DBC 1=60°故异面直线AD 1与BD 所成角的大小为60°.故选:C .2.在正方体中,用空间中与该正方体所有棱成角都相等的平面α去截正方体,在截面边数最多时的所有多边形中,多边形截面的面积为S ,周长为l ,则( )A .S 为定值,l 不为定值C .S 与l 均为定值【答案】C 【解析】正方体的所有棱中,实际上是3组平行的棱,每条棱所在直线与平面α所成的角都相等,如图:与面A 1BD 平行的面且截面是六边形时满足条件,不失一般性设正方体边长为1,B .S 不为定值,l 为定值D .S 与l 均不为定值即六边形EFGHMN ,其中由正方体的性质可得EF =2,2分别为其所在棱的中点,∴六边形的周长l 为定值32.∴六边形的面积为,由正方体的对称性可得其余位置时也为正六边形,周长与面积不变,故S 与l 均为定值,故选C.3.在四面体P -ABC 中,边长为3,PA =3,PB =4,PC =5,则四面体P -ABC∆ABC 为等边三角形,的体积为()A .3【答案】C 【解析】B .23C .11D .10如图,延长CA 至D ,使得AD =3,连接DB ,PD ,因为又所以因为因即,所以,故∆ADB 为等腰三角形,,故,故CB ⊥DB ,,所以CB ⊥PB ,,,DB ⊂平面PBD ,PB ⊂平面PBD ,所以CB ⊥平面PBD ,所以因A 为DC 的中点,所以因为所以又所以,而PB =4,故,所以,故∆PDC 为直角三角形,,即∆PBD 为直角三角形,,故选C.,,4.若a ,b 是不同的直线,α,β是不同的平面,则下列命题中正确的是()A .若,则α⊥βB .若C .若D .若【答案】C 【解析】‖β,则α‖β,则α‖β,则αA 中,若B 中,若,平面α,β可能垂直也可能平行或斜交,不正确;,平面α,β可能平行也可能相交,不正确;‖β,正确;C 中,若a ⊥α,b ⊥β,则a ,b 分别是平面α,β的法线,a ‖b 必有αD 中,若,平面α,β可能平行也可能相交,不正确.故选C.5.某几何体的三视图如图所示,则该几何体的外接球的体积是()A .2π33π2B .C .3πD .43π【答案】B 【解析】解:根据几何体的三视图,该几何体是由一个正方体切去一个正方体的一角得到的.故:该几何体的外接球为正方体的外接球,所以:球的半径,则:故选:B .6.如图,正方体.中,E 为棱BB 1的中点,用过点A 、E 、C 1的平面截去该正方体的下半部分,则剩余几何体的正视图(也称主视图)是()A .B .C .D .【答案】A 【解析】解:正方体中,过点A ,E ,C 1的平面截去该正方体的上半部分后,剩余部分的直观图如图:则该几何体的正视图为图中粗线部分.故选:A.7.下列说法错误的是()A.垂直于同一个平面的两条直线平行B.若两个平面垂直,则其中一个平面内垂直于这两个平面交线的直线与另一个平面垂直C.一个平面内的两条相交直线均与另一个平面平行,则这两个平面平行D.一条直线与一个平面内的无数条直线垂直,则这条直线和这个平面垂直【答案】D【解析】由线面垂直的性质定理知,垂直于同一个平面的两条直线平行,A正确;由面面垂直的性质定理知,若两个平面垂直,则其中一个平面内垂直于这两个平面交线的直线与另一个平面垂直,B正确;由面面平行的判定定理知,一个平面内的两条相交直线均与另一个平面平行,则这两个平面平行,C正确;当一条直线与平面内无数条相互平行的直线垂直时,该直线与平面不一定垂直,D错误,故选D.8.《九章算术》中,将四个面都为直角三角形的四面体称之为“鳖臑”.在如图所示的四棱锥P-ABCD中,PD⊥平面ABCD,底面ABCD是正方形,且PD=CD,点E,F分别为PC,PD的中点,则图中的鳖臑有()A.2个B.3个C.4个D.5个【答案】C【解析】由题意,因为PD⊥底面ABCD,所以PD^DC,PD⊥BC,又四边形ABCD为正方形,所以BC⊥CD,所以BC⊥平面PCD,BC⊥PC,所以四面体PDBC是一个鳖臑,因为DE⊂平面PCD,所以BC⊥DE,因为PD=CD,点E是PC的中点,所以DE⊥PC,因为,所以DE⊥平面PBC,可知四面体EBCD的四个面都是直角三角形,即四面体EBCD是一个鳖臑,同理可得,四面体PABD和FABD都是鳖臑,故选C.9.在三棱锥P-ABC中,平面PAB⊥平面ABC,△ABC是边长为6的等边三角形,△PAB是以AB为斜边的等腰直角三角形,则该三棱锥外接球的表面积为_______.【答案】48π【解析】如图,在等边三角形ABC中,取AB的中点F,设其中心为O,由AB=6,得,∆PAB是以AB为斜边的等腰角三角形,∴PF⊥AB,又因为平面PAB⊥平面ABC,∴PF⊥平面ABC,∴PF⊥OF,,则O为棱锥P-ABC的外接球球心,外接球半径,∴该三棱锥外接球的表面积为故答案为48π.,10.若将一个圆锥的侧面沿一条母线剪开,其展开图是半径为3,圆心角为_______.【答案】2π的扇形,则该圆锥的体积为322π3【解析】因为展开图是半径为3,圆心角为2π的扇形,所以圆锥的母线l =3,圆锥的底面的周长为3,,因此底面的半径r =1,根据勾股定理,可知圆锥的高所以圆锥的体积为.11.设m ,n 是两条不同的直线,α,β是两个不同的平面,下列正确命题序号是_____.(1)若m α,n ∥α,则m ∥n (2)若m ⊥α,m ⊥n 则n ∥α(3)若m ⊥α,n ⊥β且m ⊥n ,则α⊥β;(4)若m ⊂β,α【答案】(3)(4)【解析】若若若若,则m 与n 可能平行,相交或异面,故(1)错误;则n ∥α或n ⊂α,故(2)错误;且m ⊥n ,则α⊥β,故(3)正确;,由面面平行的性质可得m α,故(4)正确;β,则m α故答案为:(3)(4)12.长方体的底面ABCD 是边长为1的正方形,若在侧棱AA 1上存在点E ,使得,则侧棱AA 1的长的最小值为_______.【答案】2【解析】设侧棱AA 1的长为x ,A 1E =t ,则AE =x ﹣t ,∵长方体ABCD ﹣A 1B 1C 1D 1的底面是边长为1的正方形,∠C 1EB =90°,∴22,2∴2+t +1+(x ﹣t )=1+x ,整理,得:t ﹣xt+1=0,∵在侧棱AA 1上至少存在一点E ,使得∠C 1EB =90°,∴△=(﹣x )2﹣4≥0,解得x≥2.∴侧棱AA 1的长的最小值为2.故答案为2.213.如图,在Rt ∆ABC 中,AB =BC =1,D 和E 分别是边BC 和AC 上一点,DE ⊥BC ,将∆C D E 沿DE 折起到点P 位置,则该四棱锥P -ABDE 体积的最大值为_______.【答案】327【解析】在Rt ∆ABC 中,由已知,AB =BC =1,DE ⊥BC ,所以设四边形ABDE的面积为,,当∆CDE ⊥平面ABDE 时,四棱锥P -ABDE 体积最大,此时,且,,故四棱锥P -ABDE 体积为,⎛3⎫x ∈ 0, 3⎪⎪时,V '>0;⎝⎭所以,当x =时,V '<0,33时,V max =.327故答案为32714.三棱锥P -ABC 的4个顶点在半径为2的球面上,PA ⊥平面ABC ,V ABC 是边长为3的正三角形,则点A 到平面PBC 的距离为______.【答案】65【解析】a=2,即r =1.sin60︒h∵PA ⊥平面ABC ,PA =h ,球心到底面的距离d 等于三棱锥的高PA 的一半即,2△ABC 是边长为3的正三角形,可得外接圆的半径2r =那么球的半径R2,解得h=2,又由知,得d ='66故点A 到平面PBC 的距离为55故答案为6.515.如图,该几何体由底面半径相同的圆柱与圆锥两部分组成,且圆柱的高与底面半径相等.若圆柱与圆锥的侧面积相等,则圆锥与圆柱的高之比为_______.【答案】3【解析】设圆柱和圆锥的底面半径为R ,则圆柱的高h 1=R ,圆锥的母线长为L ,因为圆柱与圆锥的侧面积相等,所以,,解得:L =2R ,得圆锥的高为h 2=3R ,所以,圆锥与圆柱的高之比为3R=3.R故答案为:316.直三棱柱中,,设其外接球的球心为O ,已知三棱锥O -ABC 的体积为1,则球O 表面积的最小值为__________.【答案】16π.【解析】如图,在Rt ∆ABC 中,设,则.分别取AC ,A 1C 1的中点O 1,O 2,则O 1,O 2分别为Rt ∆A 1B 1C 1和Rt ∆ABC 外接圆的圆心,连O 1,O 2,取O 1O 2的中点O ,则O 为三棱柱外接球的球心.连OA ,则OA 为外接球的半径,设半径为R .∵三棱锥O -ABC 的体积为1,即∴ac =6.在Rt ∆OO 2C 中,可得,,∴∴O 球表面积的最小值为16π.故答案为:16π.,当且仅当a =c 时等号成立,17.在三棱锥P -ABC 中,∆ABC 是边长为4的等边三角形,,PC =25.(1)求证:平面PAB ⊥平面ABC ;(2)若点M ,N 分别为棱BC ,PC 的中点,求三棱锥N -AMC 的体积V .【答案】(1)见证明;(2)V =【解析】(1)取AB 中点H ,连结PH ,HC .263∵,AB =4,∴PH ⊥AB ,PH =22.∵等边∆ABC 的边长为4∴HC =23,又PC =25∴∴∠PHC =90,即PH ⊥HC 又∵,AB平面ABC ,CH ⊂平面ABC∴PH ⊥平面ABC ,又PH ⊂平面PAB ∴平面PAB ⊥平面ABC(2)∵点M ,N 分别为棱BC ,PC 的中点∴点N 到平面ABC 的距离为且∴三棱锥N -AMC 的体积18.如图所示,三棱柱1PH =22中,∠BCA =90°,AC 1⊥平面A 1BC .(1)证明:平面ABC ⊥平面ACC 1A 1;(2)若,A 1A =A 1C ,求点B 1到平面A 1BC 的距离.【答案】(1)见解析;(2)3【解析】(1)证明:AC 1⊥平面A 1BC ,,.,∴BC ⊥平面ACC 1A 1.又BC ⊂平面ABC ,∴平面ABC ⊥平面ACC 1A 1.(2)解:取AC 的中点D ,连接A 1D .,.又平面ABC ⊥平面ACC 1A 1,且交线为AC ,则A 1D ⊥平面ABC .AC 1⊥平面A 1BC ,,∴四边形ACC 1A 1为菱形,.又A 1A =A 1C ,∴A 1AC 是边长为2正三角形,∴A 1D =3.面BB 1C 1C ,BB 1⊂面BB 1C 1C∴AA 1面BB 1C 1C 设点B 1到平面A 1BC 的距离为h .则.,,∴h =3.所以点B 1到平面A 1BC 的距离为3.19.在边长为3的正方形ABCD 中,点E ,F 分别在边AB ,BC 上(如左图),且BE =BF ,将AED ,.DCF 分别沿DE ,DF 折起,使A ,C 两点重合于点A ¢(如右图)(1)求证:A 'D ⊥EF ;(2)当BF =1BC 时,求点A ¢到平面DEF 的距离.3375【答案】(1)见解析;(2)【解析】(1)由ABCD 是正方形及折叠方式,得:A 'E ⊥A 'D ,A 'F ⊥A 'D ,,∴A 'D ⊥平面A 'EF ,平面A 'EF ,.(2),,设点A ¢到平面DEF 的距离为d ,,∴S DEF =52,,解得d =37.5∴点A 到平面DEF 的距离为37.520.如图,四棱锥S -ABCD 中,SD ⊥平面ABCD ,AB //CD ,AD ⊥CD ,SD =CD ,AB =AD ,CD =2AD ,M 是BC 中点,N 是SA 上的点.(1)求证:MN //平面SDC ;(2)求A 点到平面MDN 的距离.【答案】(1)见证明;(2)d =【解析】(1)取AD 中点为E ,连结ME ,NE ,则ME //DC ,因为ME ⊄平面SDC ,所以ME //平面SDC ,同理NE //平面SDC .所以平面MNE //平面SDC ,从而因此MN //平面SDC .127(2)因为CD ⊥AD ,所以ME ⊥AD .因为SD ⊥平面ABCD ,所以SD ⊥CD ,ME ⊥SD .所以ME ⊥平面SAD .设DA =2,则ME =3,NE =2,,MD =10,ND =5.在∆MDN 中,由余弦定理,从而,所以∆MDN 面积为7.2又∆ADM 面积为1⨯2⨯3=3.2得设A 点到平面MDN 的距离为d ,由因为NE =2,所以A 点到平面MDN 的距离d =7d =3NE ,212.7AB //CD ,AB ⊥AD ,3,,21.如图,在四棱锥P -ABCD 中,PA ⊥平面ABCD ,PA =AB =2,E 为侧棱PA 上一点.(Ⅰ)若PE =1PA ,求证:PC //平面EBD ;3(Ⅱ)求证:平面EBC ⊥平面PAC ;(Ⅲ)在侧棱PD 上是否存在点F ,使得AF ⊥平面PCD ?若存在,求出线段PF 的长;若不存在,请说明理由.【答案】(Ⅰ)详见解析;(Ⅱ)详见解析;(Ⅲ)存在,线段PF 长【解析】(Ⅰ)设,连结EG ,3.2由已知AB//CD ,DC =1,AB =2,得.1AEPA ,得=2.3EPAE AG=在ΔPAC 中,由,得EG //PC .EP GC由PE =因为EG ⊂平面EBD ,PC ⊄平面EBD ,所以PC //平面EBD .(Ⅱ)因为PA ⊥平面ABCD ,BC ⊂平面ABCD ,所以BC ⊥PA .由已知得AC =所以所以BC ⊥AC .又,所以BC ⊥平面PAC .2,BC =2,AB =2,.因为BC ⊂平面EBC ,所以平面EBC ⊥平面PAC .(Ⅲ)在平面PAD 内作AF ⊥PD 于点F ,由DC ⊥PA ,DC ⊥AD ,得DC ⊥平面PAD .因为AF ⊂平面PAD ,所以CD ⊥AF .又,所以AF ⊥平面PCD .,由PA =3,AD =1,PA ⊥AD ,得PF =3.2的底面ABC 是等边三角形,侧面AA 'C 'C ⊥底面ABC ,D 是棱BB '的中22.已知三棱柱点.(1)求证:平面DA 'C ⊥平面ACC 'A ';(2)求平面DA 'C 将该三棱柱分成上下两部分的体积比.【答案】(1)见证明;(2)1:1【解析】(1)取AC ,A 'C '的中点O ,F ,连接OF 与A 'C 交于点E ,连接DE ,OB ,B 'F ,则E 为OF 的中点,且,所以BB 'FO 是平行四边形.,又D 是棱BB '的中点,所以DE P OB .41。
2010年-2019年全国硕士研究生入学统一考试数学(三)真题及答案解析
1 0
01,可知(r E J ) 2.
0 0 0
1 1 1
A选项,令A=
0 0
1 0
1 1
,则由 E A
1 1 0 1
00
1
1 1 3 0 解得===1. 12 3
1
此时当=1时,E A= 00
(C) f x cos x
(D) f x cos x
【答案】(D)
【解析】根据导数的定义:
lim x sin x lim x x 0, 可导
(A) x0 x
x0
x
lim x sin x lim x x 0, 可导
(B) x0
x
x0
x
lim cos x 1
1 lim 2
0
202
2
0 2!
2
2 0 2!
2
由于f (x) 0 1 f ()(x 1 )2 dx 0,所以,f (1 ) 0.应选D.
0 2!
2
2
(3) 设 M
2
1
x2
dx,
N
2 1 x dx, K
2
1 cos x
dx, 则( )
1 x2 2
随机事件A, B,C相互独立, 且P A P B P C 1 则P AC A
B B
1 0
1 1
0 2. 1
1
【答案】
3
2,
.
【解析】 P AC A
P(A B) (AC)
B
P( AC ABC)
(北京卷)十年真题(2010-2019)高考数学真题分类汇编 专题13 算法 文(含解析)
专题13算法历年考题细目表题型年份考点试题位置单选题2019 程序框图2019年北京文科04 单选题2018 程序框图2018年北京文科03 单选题2017 程序框图2017年北京文科03 单选题2016 程序框图2016年北京文科03 单选题2015 程序框图2015年北京文科05 单选题2014 程序框图2014年北京文科04 单选题2013 程序框图2013年北京文科06 单选题2012 程序框图2012年北京文科04 单选题2011 程序框图2011年北京文科06历年高考真题汇编1.【2019年北京文科04】执行如图所示的程序框图,输出的s值为()A.1 B.2 C.3 D.4 【解答】解:模拟程序的运行,可得k=1,s=1s=2不满足条件k≥3,执行循环体,k=2,s=2不满足条件k≥3,执行循环体,k=3,s=2此时,满足条件k≥3,退出循环,输出s的值为2.故选:B.2.【2018年北京文科03】执行如图所示的程序框图,输出的s值为()A.B.C.D.【解答】解:执行循环前:k=1,S=1.在执行第一次循环时,S=1.由于k=2≤3,所以执行下一次循环.S,k=3,直接输出S,故选:B.3.【2017年北京文科03】执行如图所示的程序框图,输出的S值为()A.2 B.C.D.【解答】解:当k=0时,满足进行循环的条件,执行完循环体后,k=1,S=2,当k=1时,满足进行循环的条件,执行完循环体后,k=2,S,当k=2时,满足进行循环的条件,执行完循环体后,k=3,S,当k=3时,不满足进行循环的条件,故输出结果为:,故选:C.4.【2016年北京文科03】执行如图所示的程序框图,输出s的值为()A.8 B.9 C.27 D.36 【解答】解:当k=0时,满足进行循环的条件,故S=0,k=1,当k=1时,满足进行循环的条件,故S=1,k=2,当k=2时,满足进行循环的条件,故S=9,k=3,当k=3时,不满足进行循环的条件,故输出的S值为9,故选:B.5.【2015年北京文科05】执行如图所示的程序框图,输出的k值为()A.3 B.4 C.5 D.6【解答】解:模拟执行程序框图,可得k=1,s=1,s=s+(k﹣1)2=1,不满足条件s>15,k=2,s=s+(k﹣1)2=2,不满足条件s>15,k=3,s=s+(k﹣1)2=6,不满足条件s>15,k=4,s=s+(k﹣1)2=15,不满足条件s>15,k=5,s=s+(k﹣1)2>15,输出k=5.故选:C.6.【2014年北京文科04】执行如图所示的程序框图,输出的S值为()A.1 B.3 C.7 D.15 【解答】解:由程序框图知:算法的功能是求S=1+21+22+…+2k的值,∵跳出循环的k值为3,∴输出S=1+2+4=7.故选:C.7.【2013年北京文科06】执行如图所示的程序框图,输出的S值为()A.1 B.C.D.【解答】解:框图首先给变量i和S赋值0和1.执行,i=0+1=1;判断1≥2不成立,执行,i=1+1=2;判断2≥2成立,算法结束,跳出循环,输出S的值为.故选:C.8.【2012年北京文科04】执行如图所示的程序框图,输出的S值为()A.2 B.4 C.8 D.16【解答】解:第1次判断后S=1,k=1,第2次判断后S=2,k=2,第3次判断后S=8,k=3,第4次判断后3<3,不满足判断框的条件,结束循环,输出结果:8.故选:C.9.【2011年北京文科06】执行如图所示的程序框图,若输入A的值为2,则输入的P值为()A.2 B.3 C.4 D.5【解答】解:S=1,满足条件S≤2,则P=2,S=1满足条件S≤2,则P=3,S=1满足条件S≤2,则P=4,S=1不满足条件S≤2,退出循环体,此时P=4故选:C.考题分析与复习建议本专题考查的知识点为:算法的逻辑结构,顺序结构、条件结构、循环结构,程序框图和算法思想,求程序框图中的执行结果和确定控制条件.历年考题主要以选择题型出现,重点考查的知识点为:算法的循环结构,程序框图和算法思想.预测明年本考点题目会比较稳定,备考方向以算法的循环结构,程序框图和算法思想为重点较佳.最新高考模拟试题1.我国古代数学专著《九章算术》中有一个“两鼠穿墙题”,其内容为:“今有垣厚五尺,两鼠对穿,大鼠日一尺,小鼠也日一尺,大鼠日自倍,小鼠日自半.问何日相逢?各穿几何?”如图的程序框图源于这个题目,执行该程序框图,若输入x=20,则输出的结果为()A.3 B.4 C.5 D.6【答案】C【解析】第1步:T=2,S=2,S<20成立,a=2,b=,n=2,第2步:T=,S=,S<20成立,a=4,b=,n=3,第3步:T=,S=,S<20成立,a=8,b=,n=4,第4步:T=,S=,S<20成立,a=16,b=,n=5,第5步:T=,S=,S<20不成立,退出循环,输出n=5,故选C.2.如图所示的程序框图,若x=5,则运算多少次停止( )A.2 B.3 C.4 D.5【答案】C【解析】x=,输入5x=⨯-=<,进入循环;第一步:35213200x=⨯-=<,进入循环;第二步:313237200第三步:3372109200x =⨯-=<,进入循环;第四步:31092325200x =⨯-=>,结束循环,输出结果;共运行4次.故选C3.正整数n 除以m 后的余数为r ,记为r n MOD m =,如4195MOD =.执行如图的程序框图,则输出的数n 是( )A .19B .22C .27D .47【答案】C【解析】 依题意,n 进入内循环时为10,出内循环时被4除余数是3,即此时11n =,外循环当n 除以5余数是2时结束循环,综合两个循环,输出的n 比11大,且被4除余3,被5除余2,所以该数4352n p q =+=+,所以415,p q q N ++=∈,所以1,6,11,,51,p k k N +=+∈L ,所以当6p =时符合条件,即46327n =⨯+=,故选C.4.执行如图所示的程序框图,输出n 的值为( )A .6B .7C .8D .9【答案】C【解析】由程序框图可知:2222221231231log log log log log log 234123411n n S n n n ⎛⎫=+++⋅⋅⋅+=⋅⋅⋅⋅⋅= ⎪+++⎝⎭ 若21log 31n =-+,即1118n =+,解得:7n =即当7n =时,21log 31S n ==-+此时输出:718n =+=本题正确选项:C5.为了计算11111123420192020S =-+-++-L ,设计如图所示的程序框图,则在空白框中应填入( )A .1i i =+B .2i i =+C .3i i =+D .4i i =+ 【答案】B【解析】 由11111123420192020S =-+-++-L 1111111352019242020N S ⎛⎫=++++-+++=- ⎪⎝⎭L L , 即1111352019N =++++L ,111242020S =+++L . 则每次循环,i 增加2个数,即2i i =+.故选:B .6.如图程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a ,b 分别为16,20,则输出的a =( )A .14B .4C .2D .0【答案】B【解析】 解:初始值:16a =,b 20=,第1次循环:满足a b ≠,不满足a b >,b 20164=-=,第2次循环:满足a b ≠,满足a b >,16412a =-=,第3次循环:满足a b ≠,满足a b >,1248a =-=,第4次循环:满足a b ≠,满足a b >,844a =-=,不满足a b ≠,输出4a =,故选:B .7.执行如图所示的程序框图,则输出的S 值为( )A .4B .5C .8D .9【答案】D【解析】 第1步:a =7-2n =5,a >0成立,S =S +a =5,n =2;第2步:a =7-2n =3,a >0成立,S =S +a =8,n =3;第3步:a =7-2n =1,a >0成立,S =S +a =9,n =4;第4步:a =7-2n =-1,a >0不成立,退出循环,输出S =9。
(北京卷)十年真题(2010-2019)高考数学真题分类汇编 专题11 平面解析几何解答题 文(含解析)
专题11平面解析几何解答题历年考题细目表题型年份考点试题位置解答题2019 椭圆2019年北京文科19解答题2018 椭圆2018年北京文科20解答题2017 椭圆2017年北京文科19解答题2016 椭圆2016年北京文科19解答题2015 椭圆2015年北京文科20解答题2014 椭圆2014年北京文科19解答题2013 椭圆2013年北京文科19解答题2012 椭圆2012年北京文科19解答题2011 椭圆2011年北京文科19解答题2010 椭圆2010年北京文科19历年高考真题汇编1.【2019年北京文科19】已知椭圆C:1的右焦点为(1,0),且经过点A(0,1).(Ⅰ)求椭圆C的方程;(Ⅱ)设O为原点,直线l:y=kx+t(t≠±1)与椭圆C交于两个不同点P、Q,直线AP与x轴交于点M,直线AQ与x轴交于点N.若|OM|•|ON|=2,求证:直线l经过定点.【解答】解:(Ⅰ)椭圆C:1的右焦点为(1,0),且经过点A(0,1).可得b=c=1,a,则椭圆方程为y2=1;(Ⅱ)证明:y=kx+t与椭圆方程x2+2y2=2联立,可得(1+2k2)x2+4ktx+2t2﹣2=0,设P(x1,y1),Q(x2,y2),△=16k2t2﹣4(1+2k2)(2t2﹣2)>0,x1+x2,x1x2,AP的方程为y x+1,令y=0,可得y,即M(,0);AQ的方程为y x+1,令y=0,可得y.即N(,0).(1﹣y1)(1﹣y2)=1+y1y2﹣(y1+y2)=1+(kx1+t)(kx2+t)﹣(kx1+kx2+2t)=(1+t2﹣2t)+k2•(kt﹣k)•(),|OM|•|ON|=2,即为|•|=2,即有|t2﹣1|=(t﹣1)2,由t≠±1,解得t=0,满足△>0,即有直线l方程为y=kx,恒过原点(0,0).2.【2018年北京文科20】已知椭圆M:1(a>b>0)的离心率为,焦距为2.斜率为k的直线l与椭圆M有两个不同的交点A,B.(Ⅰ)求椭圆M的方程;(Ⅱ)若k=1,求|AB|的最大值;(Ⅲ)设P(﹣2,0),直线PA与椭圆M的另一个交点为C,直线PB与椭圆M的另一个交点为D.若C,D 和点Q(,)共线,求k.【解答】解:(Ⅰ)由题意可知:2c=2,则c,椭圆的离心率e,则a,b2=a2﹣c2=1,∴椭圆的标准方程:;(Ⅱ)设直线AB的方程为:y=x+m,A(x1,y1),B(x2,y2),联立,整理得:4x2+6mx+3m2﹣3=0,△=(6m)2﹣4×4×3(m2﹣1)>0,整理得:m2<4,x1+x2,x1x2,∴|AB|,∴当m=0时,|AB|取最大值,最大值为;(Ⅲ)设直线PA的斜率k PA,直线PA的方程为:y(x+2),联立,消去y整理得:(x12+4x1+4+3y12)x2+12y12x+(12y12﹣3x12﹣12x1﹣12)=0,由代入上式得,整理得:(4x1+7)x2+(12﹣4x12)x﹣(7x12+12x1)=0,x1•x C,x C,则y C(2),则C(,),同理可得:D(,),由Q(,),则(,),(,),由与共线,则,整理得:y2﹣x2=y1﹣x1,则直线AB的斜率k1,∴k的值为1.3.【2017年北京文科19】已知椭圆C的两个顶点分别为A(﹣2,0),B(2,0),焦点在x轴上,离心率为.(Ⅰ)求椭圆C的方程;(Ⅱ)点D为x轴上一点,过D作x轴的垂线交椭圆C于不同的两点M,N,过D作AM的垂线交BN于点E.求证:△BDE与△BDN的面积之比为4:5.【解答】解:(Ⅰ)由椭圆的焦点在x轴上,设椭圆方程:(a>b>0),则a=2,e,则c,b2=a2﹣c2=1,∴椭圆C的方程;(Ⅱ)证明:设D(x0,0),(﹣2<x0<2),M(x0,y0),N(x0,﹣y0),y0>0,则直线AM的斜率k AM,直线DE的斜率k DE,直线DE的方程:y(x﹣x0),直线BN的斜率k BN,直线BN的方程y(x﹣2),,解得:,过E做EH⊥x轴,△BHE∽△BDN,则|EH|,则,∴:△BDE与△BDN的面积之比为4:5.4.【2016年北京文科19】已知椭圆C:1过点A(2,0),B(0,1)两点.(1)求椭圆C的方程及离心率;(2)设P为第三象限内一点且在椭圆C上,直线PA与y轴交于点M,直线PB与x轴交于点N,求证:四边形ABNM的面积为定值.【解答】(1)解:∵椭圆C:1过点A(2,0),B(0,1)两点,∴a=2,b=1,则,∴椭圆C的方程为,离心率为e;(2)证明:如图,设P(x0,y0),则,PA所在直线方程为y,取x=0,得;,PB所在直线方程为,取y=0,得.∴|AN|,|BM|=1.∴.∴四边形ABNM的面积为定值2.5.【2015年北京文科20】已知椭圆C:x2+3y2=3,过点D(1,0)且不过点E(2,1)的直线与椭圆C交于A,B两点,直线AE与直线x=3交于点M.(1)求椭圆C的离心率;(2)若AB垂直于x轴,求直线BM的斜率;(3)试判断直线BM与直线DE的位置关系,并说明理由.【解答】解:(1)∵椭圆C:x2+3y2=3,∴椭圆C的标准方程为:y2=1,∴a,b=1,c,∴椭圆C的离心率e;(2)∵AB过点D(1,0)且垂直于x轴,∴可设A(1,y1),B(1,﹣y1),∵E(2,1),∴直线AE的方程为:y﹣1=(1﹣y1)(x﹣2),令x=3,得M(3,2﹣y1),∴直线BM的斜率k BM1;(3)结论:直线BM与直线DE平行.证明如下:当直线AB的斜率不存在时,由(2)知k BM=1,又∵直线DE的斜率k DE1,∴BM∥DE;当直线AB的斜率存在时,设其方程为y=k(x﹣1)(k≠1),设A(x1,y1),B(x2,y2),则直线AE的方程为y﹣1(x﹣2),令x=3,则点M(3,),∴直线BM的斜率k BM,联立,得(1+3k2)x2﹣6k2x+3k2﹣3=0,由韦达定理,得x1+x2,x1x2,∵k BM﹣1=0,∴k BM=1=k DE,即BM∥DE;综上所述,直线BM与直线DE平行.6.【2014年北京文科19】已知椭圆C:x2+2y2=4.(Ⅰ)求椭圆C的离心率;(Ⅱ)设O为原点,若点A在直线y=2上,点B在椭圆C上,且OA⊥OB,求线段AB长度的最小值.【解答】解:(Ⅰ)椭圆C:x2+2y2=4化为标准方程为,∴a=2,b,c,∴椭圆C的离心率e;(Ⅱ)设A(t,2),B(x0,y0),x0≠0,则∵OA⊥OB,∴0,∴tx0+2y0=0,∴t,∵,∴|AB|2=(x0﹣t)2+(y0﹣2)2=(x0)2+(y0﹣2)2=x02+y024=x0244(0<x02≤4),因为4(0<x02≤4),当且仅当,即x02=4时等号成立,所以|AB|2≥8.∴线段AB长度的最小值为2.7.【2013年北京文科19】直线y=kx+m(m≠0)与椭圆相交于A,C两点,O是坐标原点.(Ⅰ)当点B的坐标为(0,1),且四边形OABC为菱形时,求AC的长;(Ⅱ)当点B在W上且不是W的顶点时,证明:四边形OABC不可能为菱形.【解答】解:(I)∵点B的坐标为(0,1),当四边形OABC为菱形时,AC⊥OB,而B(0,1),O(0,0),∴线段OB的垂直平分线为y,将y代入椭圆方程得x=±,因此A、C的坐标为(,),如图,于是AC=2.(II)欲证明四边形OABC不可能为菱形,利用反证法,假设四边形OABC为菱形,则有OA=OC,设OA=OC=r,则A、C为圆x2+y2=r2与椭圆的交点,故,x2(r2﹣1),则A、C两点的横坐标相等或互为相反数.从而得到点B是W的顶点.这与题设矛盾.于是结论得证.8.【2012年北京文科19】已知椭圆C:1(a>b>0)的一个长轴顶点为A(2,0),离心率为,直线y=k(x﹣1)与椭圆C交于不同的两点M,N,(Ⅰ)求椭圆C的方程;(Ⅱ)当△AMN的面积为时,求k的值.【解答】解:(Ⅰ)∵椭圆一个顶点为A(2,0),离心率为,∴∴b∴椭圆C的方程为;(Ⅱ)直线y=k(x﹣1)与椭圆C联立,消元可得(1+2k2)x2﹣4k2x+2k2﹣4=0设M(x1,y1),N(x2,y2),则x1+x2,∴|MN|∵A(2,0)到直线y=k(x﹣1)的距离为∴△AMN的面积S∵△AMN的面积为,∴∴k=±1.9.【2011年北京文科19】已知椭圆G:1(a>b>0)的离心率为,右焦点为(2,0),斜率为1的直线l与椭圆G交与A、B两点,以AB为底边作等腰三角形,顶点为P(﹣3,2).(Ⅰ)求椭圆G的方程;(Ⅱ)求△PAB的面积.【解答】解:(Ⅰ)由已知得,c,,解得a,又b2=a2﹣c2=4,所以椭圆G的方程为.(Ⅱ)设直线l的方程为y=x+m,由得4x2+6mx+3m2﹣12=0.①设A,B的坐标分别为(x1,y1),(x2,y2)(x1<x2),AB的中点为E(x0,y0),则x0,y0=x0+m,因为AB是等腰△PAB的底边,所以PE⊥AB,所以PE的斜率k,解得m=2.此时方程①为4x2+12x=0.解得x1=﹣3,x2=0,所以y1=﹣1,y2=2,所以|AB|=3,此时,点P(﹣3,2).到直线AB:y=x+2距离d,所以△PAB的面积s|AB|d.10.【2010年北京文科19】已知椭圆C的左、右焦点坐标分别是,,离心率是,直线y =t椭圆C交与不同的两点M,N,以线段为直径作圆P,圆心为P.(Ⅰ)求椭圆C的方程;(Ⅱ)若圆P与x轴相切,求圆心P的坐标;(Ⅲ)设Q(x,y)是圆P上的动点,当t变化时,求y的最大值.【解答】解:(Ⅰ)因为,且,所以所以椭圆C的方程为(Ⅱ)由题意知p(0,t)(﹣1<t<1)由得所以圆P的半径为,则有t2=3(1﹣t2),解得所以点P的坐标是(0,)(Ⅲ)由(Ⅱ)知,圆P的方程x2+(y﹣t)2=3(1﹣t2).因为点Q(x,y)在圆P上.所以设t=cosθ,θ∈(0,π),则当,即,且x=0,y取最大值2.考题分析与复习建议本专题考查的知识点为:直线方程、圆的方程,直线与圆、圆与圆的位置关系,椭圆、双曲线、抛物线及其性质,直线与圆锥曲线,曲线与方程等.历年考题主要以解答题题型出现,重点考查的知识点为:直线与圆、圆与圆的位置关系,椭圆、双曲线、抛物线及其性质,直线与圆锥曲线等,预测明年本考点题目会比较稳定,备考方向以知识点直线与圆、圆与圆的位置关系,椭圆、双曲线、抛物线及其性质,直线与圆锥曲线等为重点较佳.最新高考模拟试题1.已知椭圆22122:1(0)x y C a b a b +=>>的离心率为3,椭圆22222:1(0)33x y C a b a b +=>>经过点⎝⎭. (1)求椭圆1C 的标准方程;(2)设点M 是椭圆1C 上的任意一点,射线MO 与椭圆2C 交于点N ,过点M 的直线l 与椭圆1C 有且只有一个公共点,直线l 与椭圆2C 交于,A B 两个相异点,证明:NAB △面积为定值.【答案】(1)22113y x +=; (2)见解析. 【解析】(1)解:因为1C, 所以22619b a=-,解得223a b =.①将点⎝⎭代入2222133x y a b +=,整理得2211144a b +=.② 联立①②,得21a =,213b =,故椭圆1C 的标准方程为22113y x +=. (2)证明:①当直线l 的斜率不存在时,点M 为()1,0或()1,0-,由对称性不妨取()1,0M ,由(1)知椭圆2C 的方程为2213x y +=,所以有()N .将1x =代入椭圆2C的方程得y =,所以11122NAB S MN AB ∆=⋅==. ②当直线l 的斜率存在时,设其方程为y kx m =+, 将y kx m =+代入椭圆1C 的方程 得()222136310kxkmx m +++-=,由题意得()()()2226413310km k m∆=-+-=,整理得22313m k =+.将y kx m =+代入椭圆2C 的方程, 得()222136330kxkmx m +++-=.设()11,A x y ,()22,B x y ,则122613km x x k +=-+,21223313m x x k-=+, 所以AB ===. 设()00,M x y ,()33,N x y ,ON MO λ=u u u vu u u u v,则可得30x x λ=-,30y y λ=-.因为220022333113x y x y ⎧+=⎪⎨+=⎪⎩,所以2200222003113x y x y λ⎧+=⎪⎛⎫⎨+= ⎪⎪⎝⎭⎩,解得3λ=(3λ=-舍去), 所以3ON MO =u u uvu u u u v,从而()31NM OM =+.又因为点O 到直线l 的距离为21m d k=+,所以点N 到直线l 的距离为()(231311m d k+⋅+=+,所以()()221126131312231NABmk S d AB m k∆+=+⋅=+⋅⋅+ 62=+,综上,NAB ∆的面积为定值62+. 2.如图,在平面直角坐标系xOy 中,椭圆C :22221x y a b+=(a >b >0)经过点(0,3-),点F 是椭圆的右焦点,点F 到左顶点的距离和到右准线的距离相等.过点F 的直线l 交椭圆于M ,N 两点.(1)求椭圆C 的标准方程;(2)当MF =2FN 时,求直线l 的方程;(3)若直线l 上存在点P 满足PM·PN=PF 2,且点P 在椭圆外,证明:点P 在定直线上.【答案】(1)22143x y +=;(25250x y ±=;(3)见解析. 【解析】(1)设椭圆的截距为2c ,由题意,b 3,由点F 到左顶点的距离和到右准线的距离相等,得a+c =2a c c-,又a 2=b 2+c 2,联立解得a =2,c =1.∴椭圆C 的标准方程为22143x y +=;(2)当直线l 与x 轴重合时,M (﹣2,0),N (2,0),此时MF =3NF ,不合题意; 当直线l 与x 轴不重合时,设直线l 的方程为x =my+1,M (x 1,y 1),N (x 2,y 2),联立22my 1x y 143x =+⎧⎪⎨+=⎪⎩,得(3m 2+4)y 2+6my ﹣9=0.△=36m 2+36(m 2+4)>0.122634m y y m +=-+ ①,1229y y 3m 4=-+②,由MF =2FN ,得y 1=﹣2y 2③, 联立①③得,1222126,3434m my y m m =-=++, 代入②得,()22227293434m m m-=-++,解得m =20y ±=;(3)当直线l 的斜率为0时,则M (2,0),N (﹣2,0),设P (x 0,y 0), 则PM•PN=|(x 0﹣2)(x 0+2)|,∵点P 在椭圆外,∴x 0﹣2,x 0+2同号, 又()()()()2220000PF x 1,x 2x 2x 1=-∴-+=-,解得052x =. 当直线l 的斜率不为0时,由(2)知,1212226m 9y y ,y y 3m 43m 4+=-=-++,10200PM y ,PN y ,PF =-=-=.∵点P 在椭圆外,∴y 1﹣y 0,y 2﹣y 0同号,∴PM•PN=(1+m 2)(y 1﹣y 0)(y 2﹣y 0)=()()221201201my yy y y y ⎡⎤+-++⎣⎦()()2222002269113434m m y m y m m ⎛⎫=++-=+ ⎪++⎝⎭,整理得032y m =,代入直线方程得052x =.∴点P 在定直线52x =上. 3.已知抛物线C :24y x =的焦点为F ,直线l 与抛物线C 交于A ,B 两点,O 是坐标原点. (1)若直线l 过点F 且8AB =,求直线l 的方程;(2)已知点(2,0)E -,若直线l 不与坐标轴垂直,且AEO BEO ∠=∠,证明:直线l 过定点. 【答案】(1)1y x =-或1y x =-+;(2)(2,0). 【解析】解:(1)法一:焦点(1,0)F ,当直线l 斜率不存在时,方程为1x =,与抛物线的交点坐标分别为(1,2),(1,2)-, 此时4AB =,不符合题意,故直线的斜率存在.设直线l 方程为(1)=-y k x 与24y x =联立得()2222220k x k x k -+-=,当0k =时,方程只有一根,不符合题意,故0k ≠.()212222k x x k++=,抛物线的准线方程为1x =-,由抛物线的定义得()()12||||||11AB AF BF x x =+=+++()222228k k+=+=,解得1k =±,所以l 方程为1y x =-或1y x =-+.法二:焦点(1,0)F ,显然直线l 不垂直于x 轴,设直线l 方程为1x my =+,与24y x =联立得2440y my --=,设11(,)A x y ,22(,)B x y ,124y y m +=,124y y =.||AB ==()241m ==+,由8AB =,解得1m =±, 所以l 方程为1y x =-或1y x =-+. (2)设11(,)A x y ,22(,)B x y ,设直线l 方程为(0)x my b m =+≠与24y x =联立得:2440y my b --=,可得124y y m +=,124y y b =-. 由AEO BEO ∠=∠得EA EB k k =,即121222y yx x =-++. 整理得121122220y x y x y y +++=,即121122()2()20y my b y my b y y +++++=, 整理得12122(2)()0my y b y y +++=, 即84(2)0bm b m -++=,即2b =. 故直线l 方程为2x my =+过定点(2,0).4.已知椭圆22221(0)x y a b a b+=>>,()2,0A 是长轴的一个端点,弦BC 过椭圆的中心O ,点C 在第一象限,且0AC BC ⋅=u u u r u u u r ,||2||OC OB AB BC -=+u u u r u u u r u u u r u u u r. (1)求椭圆的标准方程;(2)设P 、Q 为椭圆上不重合的两点且异于A 、B ,若PCQ ∠的平分线总是垂直于x 轴,问是否存在实数λ,使得PQ AB =λu u u r u u u r?若不存在,请说明理由;若存在,求λ取得最大值时的PQ 的长.【答案】(1) 223144x y += (2)3【解析】(1)∵0AC BC ⋅=u u u r u u u r,∴90ACB ∠=︒,∵||2||OC OB AB BC -=+u u u r u u u r u u u r u u u r.即||2||BC AC =u u u r u u u r ,∴AOC △是等腰直角三角形, ∵()2,0A ,∴()1,1C , 而点C 在椭圆上,∴22111a b +=,2a =,∴243b =, ∴所求椭圆方程为223144x y +=.(2)对于椭圆上两点P ,Q , ∵PCQ ∠的平分线总是垂直于x 轴, ∴PC 与CQ 所在直线关于1x =对称,PC k k =,则CQ k k =-,∵()1,1C ,∴PC 的直线方程为()11y k x =-+,①QC 的直线方程为()11y k x =--+,②将①代入223144x y +=,得()()22213613610k x k k x k k +--+--=,③∵()1,1C 在椭圆上,∴1x =是方程③的一个根,∴2236113P k k x k--=+, 以k -替换k ,得到2236131Q k k x k +-=+. ∴()213P Q PQ P Qk x x kk x x +-==-, ∵90ACB ∠=o ,()2,0A ,()1,1C ,弦BC 过椭圆的中心O , ∴()2,0A ,()1,1B --,∴13AB k =, ∴PQ AB k k =,∴PQ AB ∥,∴存在实数λ,使得PQ AB =λu u u r u u u r,||PQ =u u ur 3=≤, 当2219k k =时,即k =时取等号,max ||3PQ =u u u r ,又||AB =u u u r,maxλ==,∴λ取得最大值时的PQ的长为3. 5.已知抛物线216y x =,过抛物线焦点F 的直线l 分别交抛物线与圆22(4)16x y -+=于,,,A C D B (自上而下顺次)四点.(1)求证:||||AC BD ⋅为定值; (2)求||||AB AF ⋅的最小值. 【答案】(1)见证明;(2)108 【解析】(1)有题意可知,(4,0)F可设直线l 的方程为4x my =+,1122(,),(,)A x y B x y联立直线和抛物线方程2164y x x my ⎧=⎨=+⎩,消x 可得216640y my --=,所以1216y y m +=,1264y y =-, 由抛物线的定义可知,112||4,||42pAF x x BF x =+=+=+, 又||||4,||||4AC AF BD BF =-=-,所以2221212264||||(||4)(||4)16161616y y AC BD AF BF x x ⋅=--==⋅==,所以||||AC BD ⋅为定值16.(2)由(1)可知,12||||||8AB AF BF x x =+=++,1||4AF x =+,212111212||||(8)(4)12432AB AF x x x x x x x x ⋅=+++=++++,由1216x x =,可得2116x x =, 所以211164||||1248AB AF x x x ⋅=+++(其中1>0x ), 令264()1248f x x x x =+++,222642(2)(4)()212x x f x x x x -+'=+-=, 当(0,2)x ∈时,()0f x '<,函数单调递减,当(2,)x ∈+∞时,()0f x '>,函数单调递增, 所以()(2)108f x f ≥=. 所以||||AB AF ⋅的最小值为108.6.已知O 为坐标原点,点()()2,02,0A B -,,()01AC AD CB CD λλ===<<u u u r u u u r,过点B 作AC的平行线交AD 于点E .设点E 的轨迹为τ. (Ⅰ)求曲线τ的方程;(Ⅱ)已知直线l 与圆22:1O x y +=相切于点M ,且与曲线τ相交于P ,Q 两点,PQ 的中点为N ,求三角形MON 面积的最大值.【答案】(Ⅰ)()22105x y y +=≠;.【解析】(Ⅰ)因为,AD AC EB AC =∥, 故EBD ACD ADC ∠=∠=∠, 所以EB ED =,故EA EB EA ED AD +=+==由题设得()()2,02,04A B AB -=,,,由椭圆定义可得点E 的轨迹方程为:()22105x y y +=≠.(Ⅱ)由题意,直线l 的斜率存在且不为0, 设直线l 的方程为y kx m =+, 因为直线l 与圆O 相切,1=,∴221m k =+,由221,5,x y y kx m ⎧+=⎪⎨⎪=+⎩消去y 得()2221510550k x kmx m +++-=. 设()()1122,,,P x y Q x y ,由韦达定理知:()1212122210221515km mx x y y k x x m k k +=-+=++=++,. 所以PQ 中点N 的坐标为225,1515kmm k k ⎛⎫- ⎪++⎝⎭, 所以弦PQ 的垂直平分线方程为22151515m km y x k k k ⎛⎫-=-+ ⎪++⎝⎭,即 24015kmx ky k++=+.所以MN =.将m =MN =得2441155||||kMNk kk====++…(当且仅当k=,即m=取等号).所以三角形MON的面积为11122S OM MN=⨯⨯⨯≤,综上所述,三角形MON.7.已知椭圆2222:1(0)x yC a ba b+=>>的离心率为2,F是椭圆C的一个焦点.点(02)M,,直线MF的.(1)求椭圆C的方程;(2)若过点M的直线l与椭圆C交于A B,两点,线段AB的中点为N,且AB MN=.求l的方程.【答案】(1)22182x y+=;(2)2y x=+【解析】(1)由题意,可得23cac⎧=⎪⎪⎨⎪=⎪⎩,解得ac⎧=⎪⎨=⎪⎩,则222=2b a c=-,故椭圆C的方程为22182x y+=.(2)当l 的斜率不存在时,=2AB MN AB MN≠=,,,不合题意,故l的斜率存在.设l的方程为2y kx=+,联立221822x yy kx⎧+=⎪⎨⎪=+⎩,得22(14)1680k x kx+++=,设1122(()A x yB x y,),,,则12122216k8,14k14kx x x x+=-=++,()222(16)3214128320k k k∆=-+=->即214k>,设00()N x y ,,则12028214x x kx k+==-+,120||||,0AB MN x =-=-Q0x =,即28||14k k =+整理得21124k =>.故k =,l 的方程为2y x =+.8.已知椭圆2222:1(0)x y C a b a b+=>>过点(,右焦点F 是抛物线28y x =的焦点.(1)求椭圆C 的方程;(2)已知动直线l 过右焦点F ,且与椭圆C 分别交于M ,N 两点.试问x 轴上是否存在定点Q ,使得13516QM QN ⋅=-u u u u r u u u r 恒成立?若存在求出点Q 的坐标:若不存在,说明理由.【答案】(1) 2211612x y += (2)见解析【解析】(1)因为椭圆C 过点,所以221231a b +=, 又抛物线的焦点为()2,0,所以2c =. 所以2212314a a +=-,解得23a =(舍去)或216a =. 所以椭圆C 的方程为2211612x y +=.(2)假设在x 轴上存在定点(,0)Q m ,使得13516QM QN ⋅=-u u u u r u u u r .①当直线l 的斜率不存在时,则(2,3)M ,(2,3)N -,(2,3)QM m =-u u u u r ,(2,3)QN m =--u u u r, 由2135(2)916QM QN m ⋅=--=-u u u u r u u u r ,解得54m =或114m =;②当直线l 的斜率为0时,则(4,0)M -,(4,0)N ,(4,0)QM m =--u u u u r ,(4,0)QN m =-u u u r, 由21351616QM QN m ⋅=-=-u u u u r u u u r ,解得114m =-或114m =.由①②可得114m =,即点Q 的坐标为11,04⎛⎫ ⎪⎝⎭. 下面证明当114m =时,13516QM QN ⋅=-u u u u r u u u r 恒成立.当直线l 的斜率不存在或斜率为0时,由①②知结论成立.当直线l 的斜率存在且不为0时,设其方程为(2)(0)y k x k =-≠,()11,M x y ,()22,N x y .直线与椭圆联立得()()222234161630kxk x k +-+-=,直线经过椭圆内一点,一定与椭圆有两个交点,且21221643k x x k +=+,()212216343k x x k -=+. ()()()222121212122224y y k x k x k x x k x x k =-•-=-++,所以()1122121212111111121,,44416QM QN x y x y x x x x y y ⎛⎫⎛⎫•=-•-=-+++ ⎪ ⎪⎝⎭⎝⎭u u u u r u u u r ()()()()222222221212221631112111161211241244164344316k k k x x k x x k k k k k k -⎛⎫⎛⎫=+-++++=+-+++= ⎪ ⎪++⎝⎭⎝⎭13516-恒成立 综上所述,在x 轴上存在点11,04Q ⎛⎫ ⎪⎝⎭,使得13516QM QN ⋅=-u u u u r u u u r 恒成立.9.关于椭圆的切线由下列结论:若11(,)P x y 是椭圆22221(0)x y a b a b+=>>上的一点,则过点P 的椭圆的切线方程为11221x x y y a b +=.已知椭圆22:143x y C +=.(1)利用上述结论,求过椭圆C 上的点(1,)(0)P n n >的切线方程;(2)若M 是直线4x =上任一点,过点M 作椭圆C 的两条切线MA ,MB (A ,B 为切点),设椭圆的右焦点为F ,求证:MF AB ⊥.【答案】(1)240x y +-=(2)见证明 【解析】(1)由题意,将1x =代入椭圆方程22:143x y C +=,得32y =,所以3(1,)2P ,所以过椭圆C 上的点3(1,)2P 的切线方程为32143yx +=,即240x y +-=.(2)设(4,)M t ,11(,)A x y ,22(,)B x y ,则过A ,B 两点的椭圆C 的切线MA ,MB 的方程分别为11143x x y y +=,22143x x y y+=, 因为(4,)M t 在两条切线上,114143x y t ⨯∴+=,224143x y t⨯+=, 所以A ,B 两点均在直线4143x yt +=上,即直线AB 的方程为13tyx +=, 当0t ≠时,3AB k t=-,又(1,0)F ,0413MF t t k -==-,313AB MF tk k t ⋅=-⨯=-,所以MF AB ⊥, 若0t =,点(4,0)M 在x 轴上,A ,B 两点关于x 轴对称,显然MF AB ⊥.10.已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为12F F ,,离心率为12,P 为椭圆上一动点(异于左右顶点),若12AF F △. (1)求椭圆C 的方程;(2)若直线l 过点1F 交椭圆C 于,A B 两点,问在x 轴上是否存在一点Q ,使得QA QB ⋅u u u r u u u r为定值?若存在,求点Q 的坐标;若不存在,请说明理由.【答案】(1)22143x y +=(2)见解析【解析】(1)由题意,当P 在上或下顶点时,12PF F ∆的面积取值最大值,即最大值为bc = 又12c a =,且222a c b =+,解得24a =,23b =, 故椭圆C 的方程为22143x y +=.(2)易知()11,0F -,设直线l 的方程为1x my =-,()()()11220,,,,,0A x y B x y Q x ,联立方程组221431x y x my ⎧+=⎪⎨⎪=-⎩,整理得22(34)690m y my +--=, 则122634my y m +=+,122934y y m =-+, ()()()()10120200212,,y QA QB x x y x x y x x x x y y ⋅=-⋅-=--+u u u r u u u r()212001212x x x x x x y y =+-++,∵111x my =-,221x my =-,∴()()()2212121212215111134m x x my my m y y m y y m =--=+-+=-+, ()()()212122226112234m x x my my m y y m +=-+-=+-=-+, ∴222000222156912343434m m QA QB x x x m m m ⋅=-+-+-+++u u u r u u u r 2202281253434m x x m m +=+-++()222000231248534x m x x m -++-=+, 要使QA QB ⋅u u u r u u u r 为定值,则2200031248534x x x -+-=,解得0118x =-, 所以在x 轴上存在点11,08Q ⎛⎫-⎪⎝⎭,使得QA QB ⋅u u u r u u u r 为定值. 11.已知点()1,0F ,直线:1l x =-,P 为平面上的动点,过点P 作直线的垂线,垂足为Q ,且QP QF FP FQ ⋅=⋅u u u r u u u r u u u r u u u r .(1)求动点P 的轨迹C 的方程;(2)设直线y kx b =+与轨迹C 交于两点,()11,A x y 、()22,B x y ,且12y y a -= (0a >,且a 为常数),过弦AB 的中点M 作平行于x 轴的直线交轨迹C 于点D ,连接AD 、BD .试判断ABD ∆的面积是否为定值,若是,求出该定值,若不是,请说明理由 【答案】(1) 24y x = (2)见解析 【解析】(1)设(,)P x y ,则(1,)Q y -,QP QF FP FQ •=•u u u r u u u r u u u r u u u r Q ,(1,0)(2,)(1,)(2,)x y x y y ∴+•-=-•-,即22(1)2(1)x x y +=--+,即24y x =, 所以动点P 的轨迹的方程24y x =.(2)联立方程组2,4,y kx b y x =+⎧⎨=⎩消去x ,得2440ky y b -+=, 依题意,0k ≠,且124y y k+=,124b y y k =,由12y y a -=得()2212124y y y y a +-=, 即221616ba k k-=, 整理得:221616kb a k -=,所以2216(1)a k kb =-,① 因为AB 的中点222,bk M k k -⎛⎫⎪⎝⎭,所以点212,D k k ⎛⎫⎪⎝⎭,依题意, 122111||22BD bkS DM y y a k∆∆-=-=, 由方程2440ky y b -+=中的判别式16160kb ∆=->,得10kb ->,所以2112ABD bkS a k∆-=••, 由①知22116a k kb -=,所以23121632MBDa a S a ∆=••=,又a 为常数,故ABD S ∆的面积为定值. 12.已知点P 在抛物线()220C x py p =:>上,且点P 的横坐标为2,以P 为圆心,PO 为半径的圆(O 为原点),与抛物线C 的准线交于M ,N 两点,且2MN =. (1)求抛物线C 的方程;(2)若抛物线的准线与y 轴的交点为H .过抛物线焦点F 的直线l 与抛物线C 交于A ,B ,且AB HB ⊥,求AF BF -的值.【答案】(1) 24x y = (2)4 【解析】(1)将点P 横坐标2P x =代入22x py =中,求得2P y p=, ∴P (2,2p),2244OP p =+,点P 到准线的距离为22p d p =+, ∴222||||2MN OP d ⎛⎫=+ ⎪⎝⎭, ∴22222212p p p ⎛⎫⎛⎫+=++ ⎪ ⎪⎝⎭⎝⎭,解得24p =,∴2p =,∴抛物线C 的方程为:24x y =;(2)抛物线24x y =的焦点为F (0,1),准线方程为1y =-,()01H -,; 设()()1122A x y B x y ,,,, 直线AB 的方程为1y kx =+,代入抛物线方程可得2440x kx --=,∴121244x x k x x +==-,,…① 由AB HB ⊥,可得1AB HB k k ⋅=-, 又111AB AF y k k x -==,221HB y k x +=, ∴1212111y y x x -+⋅=-, ∴()()1212110y y x x -++=,即2212121111044x x x x ⎛⎫⎛⎫-++=⎪⎪⎝⎭⎝⎭,∴()22221212121110164x x x x x x +--+=,…② 把①代入②得,221216x x -=,则()22121211||||1116444AF BF y y x x -=+--=-=⨯=. 13.已知抛物线方程24y x =,F 为焦点,P 为抛物线准线上一点,Q 为线段PF 与抛物线的交点,定义:()PFd P FQ=. (1)当8(1)3P --,时,求()d P ; (2)证明:存在常数a ,使得2()d P PF a =+.(3)123,,P P P 为抛物线准线上三点,且1223PP P P =,判断13()()d P d P +与22()d P 的关系. 【答案】(1)83;(2)证明见解析;(3)()()()1322d P d P d P +>. 【解析】 (1)因为8443(1)233PFk y x ==⇒=-. 联立方程24(1)1344Qy x x y x ⎧=-⎪⇒=⎨⎪=⎩, 则1083()534PF d P QF ⎧=⎪⎪⇒=⎨⎪=⎪⎩. (2)当()1,0P -,易得2()2a d P PF =-=, 不妨设()1,P P y -,0P y >, 直线:1PF x my =+,则2P my =-,联立214x my y x=+⎧⎨=⎩,2440y my --=,2Q y m ==+()222212()||212221P P Q y m d P PF m y y m m m +-=-+=+++ 2212122m m m m m+-+=-+=.(3)设()()()1122331,,1,,1,P y P y P y ---,则()()()13224d P d P d P +-⎡⎤⎣⎦1322PF P F P F =+-2221324424y y y =+++222131344242y y y y +⎛⎫=+++ ⎪⎝⎭()22213134416y y y y =++++因为()222213134416y y y y ⎡⎤++-++⎣⎦22131224428y y y y =++-,又因()()()()2222213131313444480y y y y y y y y ++-+=+->,所以()()()1322d P d P d P +>.14.已知抛物线2:2(0)C x py p =>的焦点F 到准线距离为2. (1)若点(1,1)E ,且点P 在抛物线C 上,求||||PE PF +的最小值;(2)若过点(0,)N b 的直线l 与圆22:(2)4M x y +-=相切,且与抛物线C 有两个不同交点,A B ,求AOB ∆的面积.【答案】(1)2(2) 2ABC S b ∆=【解析】解:(1)根据题意可知2p =所以抛物线方程为24x y =则抛物线C 焦点为(0,1)F ,准线为1y =-;记点,P E 到抛物线C 准线的距离分别为12,d d ,故12||||||2PE PF PE d d +=+≥=,等号成立当且仅当PE 垂直于准线,故||||PE PF +的最小值为2(2)设()11,A x y ,()22,B x y由题意知,直线l 斜率存在,设直线l 的方程为:y kx b =+将y kx b =+与24x y =联立得2440x kx b --=,由韦达定理得12124,4x x k x x b +==-,由()0,2M 到直线l 的距离为12d ==得:2244b b k -=,又||AB ==点O 到直线l 的距离为2d =所以2|ABC S b b ∆=== 15.已知曲线C 上的任意一点到直线l :x=-12的距离与到点F (102,)的距离相等. (1)求曲线C 的方程; (2)若过P (1,0)的直线与曲线C 相交于A ,B 两点,Q (-1,0)为定点,设直线AQ 的斜率为k 1,直线BQ 的斜率为k 2,直线AB 的斜率为k ,证明:22212112k k k +-为定值. 【答案】(1)y 2=2x ;(2)见解析【解析】 (1)由条件可知,此曲线是焦点为F 的抛物线,p 122=,p=1. ∴抛物线的方程为y 2=2x ; (2)根据已知,设直线AB 的方程为y=k (x -1)(k ≠0), 由()2y k x 1y 2x ⎧=-⎨=⎩,可得ky 2-2y -2k=0.设A (211y y 2,),B (222y y 2,),则122y y k +=,y 1y 2=-2. ∵1112211y 2y k y y 212==++,2222222y 2y k y y 212==++. ∴22221222221212(y 2)(y 2)11k k 4y 4y +++=+=22222212212212(y 2)y (y 2)y 4y y +++ =()42422222122112122212y y y y 8y y 4y y 4y y ++++=()2221212128y y 32(y y )2y y 4162+++-+= =22482k 42k +=+.∴222121124k k k +-=.。
2010-2019年十年高考数学真题分类汇编.docx
A.1
B.2
C.3
D.4
31(. 2017Ⅲ理 1)已知集合 A = (x, y) x2 + y2 = 1 ,B = (x, y) y = x ,则 A I B 中元素的个数为( )
A.3
B.2
C.1
D.0
32.(2018Ⅰ文 1)已知集合 A = 0,2 , B = -2,-1,0,1,2 ,则 A I B = ( )
A.(-14,16)
B.(-14,20)
C.(-12,18)
D.(-12,20)
x-3 2.(2010Ⅱ文 2)不等式 0 的解集为( )
x+2
A.{x|-2< x<3} B.{ x|x<-2}
C.{ x|x<-2,或 x>3} D.{ x∣x>3}
x -1
3.(2010Ⅱ文
5
理
3)若变量
x,y
1.集合
1.(2010Ⅰ文理 1)已知集合 A = x | x 2,x R,B = x | x 4,x Z ,则 A I B =( )
A.(0,2)
B.[0,2]
C.{0,2}
D.{0,1,2}
2.(2010Ⅱ文 1)设全集 U= x N * | x 6 ,集合 A={1,3},B={3,5},则 CU A U B =( )
A.{-1,0}
B.{0,1}
C.{-1,0,1}
D.{0,1,2}
20.(2016Ⅰ文 1)设集合 A={1,3,5,7},B={x| 2 x 5},则 A∩B=( )
A.{1,3}
B.{3,5}
C.{5,7}
D.{1,7}
21.(2016Ⅰ理 1)设集合 A={x|x2-4x+3<0},B={x|2x-3>0},则 A I B = ( )
考研数学历年真题(1987-2010)数(无水印)1
(D) a
六、 (本题满分 10 分) (D) f ( x) 的 求幂级数
∑ ng2n x n−1 的收敛域,并求其和函数.
n =1
∞
1
∫
s t 0
f (tx)dx, 其中 t > 0, s > 0,
(B)依赖于 s 、 (D) 依赖于 s ,
七、 (本题满分 10 分) 求曲面积分
t和 x
(C)依赖于 t 、 x ,不依赖于 s 不依赖于 t (3)设常数 k > 0, 则级数 (A)发散 (C)条件收敛
2
(C)
zdv = 4∫∫∫ zdv ∫∫∫ Ω Ω
1
x y 设 u = yf ( ) + xg ( ), 其中函数 f 、 g 具有二阶连续导数 , 求 y x ∂ 2u ∂ 2u x 2+y . ∂x∂y ∂x
五、(本题满分 8 分) 设函数 y = y( x) 满足微分方程 y ′ − 3 y′ + 2 y = 2 e , 其图形在点
(2)设 f ( x) 连续且
. .
∫
x3 −1 0
f (t )dt = x, 则 f (7) =
(3) 设周期为 2 的周期函数 , 它在区间 (−1,1] 上定义为 f ( x) =
(2) 设 y = f ( x) 是 方 程 y ′ − 2 y′ + 4 y = 0 的 一 个 解 且
f ( x0 ) > 0, f ′( x0 ) = 0, 则函数 f ( x) 在点 x0 处
所作的功. 七、 (本题满分 6 分)
y = f (ξ ), x = a 所围平面图形面积 S1 是曲线 y = f ( x) 与两直线 y = f (ξ ), x = b 所围平面图形面积 S 2 的 3 倍.
(北京卷)十年真题(2010-2019)高考数学真题分类汇编 专题07 数列 文(含解析)
专题07数列历年考题细目表历年高考真题汇编1.【2018年北京文科04】设a,b,c,d是非零实数,则“ad=bc”是“a,b,c,d成等比数列”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【解答】解:若a,b,c,d成等比数列,则ad=bc,反之数列﹣1,﹣1,1,1.满足﹣1×1=﹣1×1,但数列﹣1,﹣1,1,1不是等比数列,即“ad=bc”是“a,b,c,d成等比数列”的必要不充分条件.故选:B.2.【2012年北京文科06】已知{a n}为等比数列,下面结论中正确的是()A.a1+a3≥2a2B.a12+a32≥2a22C.若a1=a3,则a1=a2D.若a3>a1,则a4>a2【解答】解:设等比数列的公比为q,则a1+a3,当且仅当a2,q同为正时,a1+a3≥2a2成立,故A 不正确;,∴,故B正确;若a1=a3,则a1=a1q2,∴q2=1,∴q=±1,∴a1=a2或a1=﹣a2,故C不正确;若a3>a1,则a1q2>a1,∴a4﹣a2=a1q(q2﹣1),其正负由q的符号确定,故D不正确故选:B.3.【2013年北京文科11】若等比数列{a n}满足a2+a4=20,a3+a5=40,则公比q=;前n项和S n =.【解答】解:设等比数列{a n}的公比为q,∵a2+a4=a2(1+q2)=20①a3+a5=a3(1+q2)=40②∴①②两个式子相除,可得到 2即等比数列的公比q=2,将q=2带入①中可求出a2=4则a1 2∴数列{a n}时首项为2,公比为2的等比数列.∴数列{a n}的前n项和为:S n2n+1﹣2.故答案为:2,2n+1﹣2.4.【2012年北京文科10】已知{a n}为等差数列,S n为其前n项和,若a1,S2=a3,则a2=,S n =.【解答】解:根据{a n}为等差数列,S2=a1+a2=a3a2;∴d=a3﹣a2∴a2 1S n故答案为:1,5.【2011年北京文科12】在等比数列{a n}中,a1,a4=﹣4,则公比q=;a1+a2+…+a n=.【解答】解:q38∴q=﹣2;由a1,q=﹣2,得到:等比数列的前n项和S n=a1+a2+…+a n.故答案为:﹣2;6.【2019年北京文科16】设{a n}是等差数列,a1=﹣10,且a2+10,a3+8,a4+6成等比数列.(Ⅰ)求{a n}的通项公式;(Ⅱ)记{a n}的前n项和为S n,求S n的最小值.【解答】解:(Ⅰ)∵{a n}是等差数列,a1=﹣10,且a2+10,a3+8,a4+6成等比数列.∴(a3+8)2=(a2+10)(a4+6),∴(﹣2+2d)2=d(﹣4+3d),解得d=2,∴a n=a1+(n﹣1)d=﹣10+2n﹣2=2n﹣12.(Ⅱ)由a1=﹣10,d=2,得:S n=﹣10n n2﹣11n=(n)2,∴n=5或n=6时,S n取最小值﹣30.7.【2018年北京文科15】设{a n}是等差数列,且a1=ln2,a2+a3=5ln2.(Ⅰ)求{a n}的通项公式;(Ⅱ)求.【解答】解:(Ⅰ){a n}是等差数列,且a1=ln2,a2+a3=5ln2.可得:2a1+3d=5ln2,可得d=ln2,{a n}的通项公式;a n=a1+(n﹣1)d=nln2,(Ⅱ)2n,∴21+22+23+…+2n2n+1﹣2.8.【2017年北京文科15】已知等差数列{a n}和等比数列{b n}满足a1=b1=1,a2+a4=10,b2b4=a5.(Ⅰ)求{a n}的通项公式;(Ⅱ)求和:b1+b3+b5+…+b2n﹣1.【解答】解:(Ⅰ)等差数列{a n},a1=1,a2+a4=10,可得:1+d+1+3d=10,解得d=2,所以{a n}的通项公式:a n=1+(n﹣1)×2=2n﹣1.(Ⅱ)由(Ⅰ)可得a5=a1+4d=9,等比数列{b n}满足b1=1,b2b4=9.可得b3=3,或﹣3(舍去)(等比数列奇数项符号相同).∴q2=3,{b2n﹣1}是等比数列,公比为3,首项为1.b1+b3+b5+…+b2n﹣1.9.【2016年北京文科15】已知{a n}是等差数列,{b n}是等比数列,且b2=3,b3=9,a1=b1,a14=b4.(1)求{a n}的通项公式;(2)设c n=a n+b n,求数列{c n}的前n项和.【解答】解:(1)设{a n}是公差为d的等差数列,{b n}是公比为q的等比数列,由b2=3,b3=9,可得q3,b n=b2q n﹣2=3•3n﹣2=3n﹣1;即有a1=b1=1,a14=b4=27,则d2,则a n=a1+(n﹣1)d=1+2(n﹣1)=2n﹣1;(2)c n=a n+b n=2n﹣1+3n﹣1,则数列{c n}的前n项和为(1+3+…+(2n﹣1))+(1+3+9+…+3n﹣1)n•2n=n2.10.【2015年北京文科16】已知等差数列{a n}满足a1+a2=10,a4﹣a3=2(1)求{a n}的通项公式;(2)设等比数列{b n}满足b2=a3,b3=a7,问:b6与数列{a n}的第几项相等?【解答】解:(I)设等差数列{a n}的公差为d.∵a4﹣a3=2,所以d=2∵a1+a2=10,所以2a1+d=10∴a1=4,∴a n=4+2(n﹣1)=2n+2(n=1,2,…)(II)设等比数列{b n}的公比为q,∵b2=a3=8,b3=a7=16,∴∴q=2,b1=4∴128,而128=2n+2∴n=63∴b6与数列{a n}中的第63项相等11.【2014年北京文科15】已知{a n}是等差数列,满足a1=3,a4=12,数列{b n}满足b1=4,b4=20,且{b n ﹣a n}为等比数列.(1)求数列{a n}和{b n}的通项公式;(2)求数列{b n}的前n项和.【解答】解:(1)∵{a n}是等差数列,满足a1=3,a4=12,∴3+3d=12,解得d=3,∴a n=3+(n﹣1)×3=3n.设等比数列{b n﹣a n}的公比为q,则q38,∴q=2,∴b n﹣a n=(b1﹣a1)q n﹣1=2n﹣1,∴b n=3n+2n﹣1(n=1,2,…).(2)由(1)知b n=3n+2n﹣1(n=1,2,…).∵数列{a n}的前n项和为n(n+1),数列{2n﹣1}的前n项和为12n﹣1,∴数列{b n}的前n项和为n(n+1)+2n﹣1.12.【2013年北京文科20】给定数列a1,a2,…,a n.对i=1,2,…,n﹣1,该数列前i项的最大值记为A i,后n﹣i项a i+1,a i+2,…,a n的最小值记为B i,d i=A i﹣B i.(Ⅰ)设数列{a n}为3,4,7,1,写出d1,d2,d3的值;(Ⅱ)设a1,a2,…,a n﹣1(n≥4)是公比大于1的等比数列,且a1>0.证明:d1,d2,…,d n﹣1是等比数列;(Ⅲ)设d1,d2,…,d n﹣1是公差大于0的等差数列,且d1>0.证明:a1,a2,…,a n﹣1是等差数列.【解答】解:(Ⅰ)当i=1时,A1=3,B1=1,故d1=A1﹣B1=2,同理可求d2=3,d3=6;(Ⅱ)由a1,a2,…,a n﹣1(n≥4)是公比q大于1的等比数列,且a1>0,则{a n}的通项为:a n=a1q n﹣1,且为单调递增的数列.于是当k=1,2,…n﹣1时,d k=A k﹣B k=a k﹣a k+1,进而当k=2,3,…n﹣1时, q为定值.∴d1,d2,…,d n﹣1是等比数列;(Ⅲ)设d为d1,d2,…,d n﹣1的公差,对1≤i≤n﹣2,因为B i≤B i+1,d>0,所以A i+1=B i+1+d i+1≥B i+d i+d>B i+d i=A i,又因为A i+1=max{A i,a i+1},所以a i+1=A i+1>A i≥a i.从而a1,a2,…,a n﹣1为递增数列.因为A i=a i(i=1,2,…n﹣1),又因为B1=A1﹣d1=a1﹣d1<a1,所以B1<a1<a2<…<a n﹣1,因此a n=B1.所以B1=B2=…=B n﹣1=a n.所以a i=A i=B i+d i=a n+d i,因此对i=1,2,…,n﹣2都有a i+1﹣a i=d i+1﹣d i=d,即a1,a2,…,a n﹣1是等差数列.13.【2011年北京文科20】若数列A n:a1,a2,…,a n(n≥2)满足|a k+1﹣a k|=1(k=1,2,…,n﹣1),则称A n为E数列,记S(A n)=a1+a2+…+a n.(Ⅰ)写出一个E数列A5满足a1=a3=0;(Ⅱ)若a1=12,n=2000,证明:E数列A n是递增数列的充要条件是a n=2011;(Ⅲ)在a1=4的E数列A n中,求使得S(A n)=0成立得n的最小值.【解答】解:(Ⅰ)0,1,0,1,0是一个满足条件的E数列A5(答案不唯一,0,﹣1,0,﹣1,0或0,±1,0,1,2或0,±1,0,﹣1,﹣2或0,±1,0,﹣1,0都满足条件的E数列A5)(Ⅱ)必要性:因为E数列A n是递增数列所以a k+1﹣a k=1(k=1,2, (1999)所以A n是首项为12,公差为1的等差数列.所以a2000=12+(2000﹣1)×1=2011充分性:由于a2000﹣a1999≤1a1999﹣a1998≤1…a2﹣a1≤1,所以a2000﹣a1≤1999,即a2000≤a1+1999又因为a1=12,a2000=2011所以a2000≤a1+1999故a k+1﹣a k=1>0(k=1,2,…,1999),即A n是递增数列.综上所述,结论成立.(Ⅲ)对首项为4的E数列A n,由于a2≥a1﹣1=3a3≥a2﹣1≥2…a8≥a7﹣1≥﹣3…所以a 1+a 2+…+a k >0(k =2,3,…,8),所以对任意的首项为4的E 数列A n ,若S (A n )=0,则必有n ≥9,又a 1=4的E 数列A 9:4,3,2,1,0,﹣1,﹣2,﹣3,﹣4满足S (A 9)=0, 所以n 的最小值是9.14.【2010年北京文科16】已知{a n }为等差数列,且a 3=﹣6,a 6=0. (Ⅰ)求{a n }的通项公式;(Ⅱ)若等比数列{b n }满足b 1=﹣8,b 2=a 1+a 2+a 3,求数列{b n }的前n 项和公式. 【解答】解:(Ⅰ)设等差数列{a n }的公差d . 因为a 3=﹣6,a 6=0所以解得a 1=﹣10,d =2所以a n =﹣10+(n ﹣1)•2=2n ﹣12 (Ⅱ)设等比数列{b n }的公比为q 因为b 2=a 1+a 2+a 3=﹣24,b 1=﹣8, 所以﹣8q =﹣24,即q =3,所以{b n }的前n 项和公式为考题分析与复习建议本专题考查的知识点为:数列的概念与简单表示法,等差数列及其前n 项和,等比数列及其前n 项和,数列求和,数列求通项等.历年考题主要以选择填空或解答题题型出现.重点考查的知识点为:等差数列及其前n 项和,等比数列及其前n 项和,数列求和,数列求通项等.预测明年本考点题目会比较稳定,备考方向以知识点等差数列及其前n 项和,等比数列及其前n 项和,数列求和,数列求通项为重点较佳.最新高考模拟试题1.等差数列{}n a ,等比数列{}n b ,满足111a b ==,53a b =,则9a 能取到的最小整数是( ) A .1-B .0C .2D .3【答案】B 【解析】等差数列{}n a 的公差设为d ,等比数列{}n b 的公比设为q ,0q ≠,由111a b ==,53a b =,可得214d q +=,则,可得9a 能取到的最小整数是0. 故选:B .2.中国古代数学名著《九章算术》中有这样一个问題:今有牛、马、羊食人苗,苗主责之粟五斗,羊主曰:“我羊食半马、“马主曰:“我马食半牛,”今欲衰偿之,问各出几何?此问题的译文是:今有牛、马、羊吃了别人的禾苗,禾苗主人要求赔偿5斗粟、羊主人说:“我羊所吃的禾苗只有马的一半,”马主人说:“我马所吃的禾苗只有牛的一半,“打算按此比例偿还,他们各应偿还多少?该问题中,1斗为10升,则马主人应偿还( )升粟? A .253B .503C .507D .1007【答案】D 【解析】因为5斗=50升,设羊、马、牛的主人应偿还的量分别为123,,a a a , 由题意可知其构成了公比为2的等比数列,且350S =则,解得1507a =, 所以马主人要偿还的量为:,故选D.3.我国古代的《洛书》中记载着世界上最古老的一个幻方:如图,将1,2,…,9填入33⨯的方格内,使三行,三列和两条对角线上的三个数字之和都等于15.一般地,将连续的正整数21,2,3,,n L 填入n n ⨯个方格中,使得每行,每列和两条对角线上的数字之和都相等,这个正方形叫做n 阶幻方.记n 阶幻方的对角线上的数字之和为n N ,如图三阶幻方的315N =,那么 9N 的值为( )A .41B .45C .369D .321【答案】C 【解析】根据题意可知,幻方对角线上的数成等差数列,,,,….故.故选:C4.设数列{}n a 的前n 项和为n S ,且11a =,则数列13n S n ⎧⎫⎨⎬+⎩⎭的前10项的和是( ) A .290 B .920C .511D .1011【答案】C 【解析】 由得,当2n ≥时,,整理得,所以{}n a 是公差为4的等差数列,又11a =,所以,从而,所以,数列13nS n⎧⎫⎨⎬+⎩⎭的前10项的和.故选C.5.意大利数学家列昂那多·斐波那契以兔子繁殖为例,引入“兔子数列”:,即,此数列在现代物理“准晶体结构”、化学等都有着广泛的应用.若此数列被2整除后的余数构成一个新数列{}n a,则数列{}n a的前2019项的和为()A.672 B.673 C.1346 D.2019【答案】C【解析】由数列各项除以2的余数,可得{}n a为,所以{}n a是周期为3的周期数列,一个周期中三项和为1102++=,因为,所以数列{}n a的前2019项的和为,故选C.6.已知数列{}n a是等比数列,数列{}n b是等差数列,若,,则的值是()A.1 B.2C.22-D.3-【答案】D 【解析】{}n a Q 是等比数列 63a ∴= {}n b Q 是等差数列673b π∴=本题正确选项:D 7.已知数列{}n a 满足,设数列{}n b 满足:121n n n n b a a ++=,数列{}n b 的前n 项和为nT,若恒成立,则实数λ的取值范围为( )A .1[,)4+∞B .1(,)4+∞C .3[,)8+∞D .3(,)8+∞【答案】D 【解析】 解:数列{}n a 满足,①当2n ≥时,,②①﹣②得:12n a n n=, 故:22n a n =,数列{}n b 满足:,则:,由于恒成立,故:,整理得:244n n λ+>+,因为在*n N ∈上单调递减,故当1n =时,所以38λ>. 故选:D .8.已知函数()y f x =的定义域为R ,当0x <时()1f x >,且对任意的实数,x y R ∈,等式成立,若数列{}n a 满足,且()10a f =,则下列结论成立的是( ) A . B . C .D .【答案】A 【解析】 由,令0x =,1y =-,则0x <Q 时,()1f x > ()11f ∴-> ()01f ∴= 11a ∴=当0x >时,令y x =-,则,即又()1f x -> ∴当0x >时,令21x x >,则21>0-x x,即()f x ∴在R 上单调递减又令1n =,212a =-;令2n =,32a =-;令3n =,41a = ∴数列{}n a 是以3为周期的周期数列,,,,()f x Q 在R 上单调递减,,,本题正确选项:A 9.在数列{}n a 中,,则2019a 的值为______.【答案】1 【解析】 因为所以,...,,各式相加,可得,,所以,20191a =,故答案为1. 10.已知正项等比数列{}n a 满足,若存在两项m a ,n a ,使得,则91m n+的最小值为__________. 【答案】2 【解析】Q 正项等比数列{}n a 满足,,整理,得210+2q q -=,又0q >,解得,12q =, Q 存在两项m a ,n a 使得18m n a a a =g ,,整理,得8m n +=,∴,则91m n+的最小值为2. 当且仅当9m n n m=取等号,但此时m ,*n N ∉.又8m n +=, 所以只有当6m =,2n =时,取得最小值是2. 故答案为:211.已知数列{}n a 满足对,都有成立,72a π=,函数()f x =,记()n n y f a =,则数列{}n y 的前13项和为______. 【答案】26 【解析】 解:对,都有成立,可令1m =即有,为常数,可得数列{}n a 为等差数列, 函数,由,可得()f x 的图象关于点,22π⎛⎫⎪⎝⎭对称, Q,∴,∴可得数列{}n y 的前13项和为.故答案为:26.12.已知数列{}n a 的前n 项和为n S ,满足,则n a =_____.【答案】122n +- 【解析】由题意,数列{}n a 满足,则,两式相减可得,即整理得,即,即,当1n =时,1122S a =+,即1122a a =+,解得12a =-, 所以数列{}2n a -表示首项为124a -=-,公比为2的等比数列, 所以,所以122n n a +=-.13.等差数列{}n a 中,410a =且3a ,6a ,10a 成等比数列,数列{}n a 前20项的和20S =____ 【答案】200或330 【解析】设数列{}n a 的公差为d ,则, ,由3610,,a a a 成等比数列,得23106a a a =,即,整理得,解得0d =或1d =,当0d =时,;当1d =时,,于是,故答案为200或330.14.已知正项等比数列{}n a 的前n 项和为n S .若,则631S S +取得最小值时,9S 的值为_______. 【答案】73【解析】 由,得:q≠1,所以,化简得:,即,即,得32q =,化简得631S S +==,当11311a q q a -=-,即13a =时,631S S +取得最小值, 所以=733故答案为:73315.设数列{}n a 的前n 项和为n S ,且满足,则5S =____.【答案】3116【解析】 解:,可得1n =时,11a = ,2n ≥时,,又,两式相减可得121n n a -=,即112n n a -⎛⎫= ⎪⎝⎭,上式对1n =也成立,可得数列{}n a 是首项为1,公比为12的等比数列, 可得.故答案为:3116.16.已知数列{}n a 满足,则数列的前n 项和为___________.【答案】2222n n +-+【解析】 由,得,所以数列n a n ⎧⎫⎨⎬⎩⎭是以1141a a ==为首项,2为公比的等比数列,于是,所以12n n a n +=⋅,因为,所以的前n 项和2222n n +=-+. 17.定义:从数列{}n a 中抽取项按其在{}n a 中的次序排列形成一个新数列{}n b ,则称{}n b 为{}n a 的子数列;若{}n b 成等差(或等比),则称{}n b 为{}n a 的等差(或等比)子数列. (1)记数列{}n a 的前n 项和为n S ,已知21n n S =-. ①求数列{}n a 的通项公式;②数列{}n a 是否存在等差子数列,若存在,求出等差子数列;若不存在,请说明理由. (2)已知数列{}n a 的通项公式为,证明:{}n a 存在等比子数列.【答案】(1)①12n n a -=;②见解析;(2)见证明【解析】解:(1)①因为21n n S =-,所以当1n =时,,当2n ≥时,,所以.综上可知:12n n a -=.②假设从数列{}n a 中抽3项成等差,则,即,化简得:.因为k l m <<,所以0l k ->,0m k ->,且l k -,m k -都是整数, 所以22l k -⨯为偶数,12m k -+为奇数,所以不成立.因此,数列{}n a 不存在三项等差子数列.若从数列{}n a 中抽项,其前三项必成等差数列,不成立.综上可知,数列{}n a 不存在等差子数列.(2)假设数列{}n a 中存在3项0n a +,0n a k ++,成等比.设0n a b +=,则b Q +∈,故可设qb p=(p 与q 是互质的正整数). 则需满足,即需满足,则需满足.取k q =,则2l k pq =+.此时,.故此时成立.因此数列{}n a 中存在3项0n a +,0n a k ++,成等比,所以数列{}n a 存在等比子数列.18.在等差数列{}n a 中,已知公差2d =,2a 是1a 与4a 的等比中项 (1)求数列{}n a 的通项公式; (2)若数列{}n b 满足,求数列{}n b 的通项公式;(3)令,数列{}n c 的前n 项和为n T .【答案】(1)2n a n =;(2);(3).【解析】(1)因为2a 是1a 与4a 的等比中项,所以,∴数列{}n a 的通项公式为2n a n =. (2)∵① ∴②②-①得:,,故。
(北京卷)十年真题(2010_2019)高考数学真题分类汇编专题01集合文(含解析)
专题01集合历年考题细目表题型年份考点试题位置单选题2019 交并补运算2019年北京文科01单选题2018 交并补运算2018年北京文科01单选题2018 交并补运算2018年北京文科08单选题2017 交并补运算2017年北京文科01单选题2016 交并补运算2016年北京文科01单选题2015 交并补运算2015年北京文科01单选题2014 交并补运算2014年北京文科01单选题2013 交并补运算2013年北京文科01单选题2012 交并补运算2012年北京文科01单选题2011 交并补运算2011年北京文科01单选题2010 交并补运算2010年北京文科01解答题2012 集合综合问题2012年北京文科20解答题2010 集合综合问题2010年北京文科20历年高考真题汇编1.【2019年北京文科01】已知集合A={x|﹣1<x<2},B={x|x>1},则A∪B=()A.(﹣1,1)B.(1,2)C.(﹣1,+∞)D.(1,+∞)【解答】解:∵A={x|﹣1<x<2},B={x|x>1},∴A∪B={x|﹣1<x<2}∪{x|x>1}=(﹣1,+∞).故选:C.2.【2018年北京文科01】已知集合A={x||x|<2},B={﹣2,0,1,2},则A∩B=()A.{0,1} B.{﹣1,0,1} C.{﹣2,0,1,2} D.{﹣1,0,1,2}【解答】解:A={x||x|<2}={x|﹣2<x<2},B={﹣2,0,1,2},则A∩B={0,1},故选:A.3.【2018年北京文科08】设集合A={(x,y)|x﹣y≥1,ax+y>4,x﹣ay≤2},则()A.对任意实数a,(2,1)∈AB.对任意实数a,(2,1)∉AC.当且仅当a<0时,(2,1)∉AD.当且仅当a时,(2,1)∉A【解答】解:当a=﹣1时,集合A={(x,y)|x﹣y≥1,ax+y>4,x﹣ay≤2}={(x,y)|x﹣y≥1,﹣x+y>4,x+y≤2},显然(2,1)不满足,﹣x+y>4,x+y≤2,所以A不正确;当a=4,集合A={(x,y)|x﹣y≥1,ax+y>4,x﹣ay≤2}={(x,y)|x﹣y≥1,4x+y>4,x﹣4y≤2},显然(2,1)在可行域内,满足不等式,所以B不正确;当a=1,集合A={(x,y)|x﹣y≥1,ax+y>4,x﹣ay≤2}={(x,y)|x﹣y≥1,x+y>4,x﹣y≤2},显然(2,1)∉A,所以当且仅当a<0错误,所以C不正确;故选:D.4.【2017年北京文科01】已知全集U=R,集合A={x|x<﹣2或x>2},则∁U A=()A.(﹣2,2)B.(﹣∞,﹣2)∪(2,+∞)C.[﹣2,2] D.(﹣∞,﹣2]∪[2,+∞)【解答】解:∵集合A={x|x<﹣2或x>2}=(﹣∞,﹣2)∪(2,+∞),全集U=R,∴∁U A=[﹣2,2],故选:C.5.【2016年北京文科01】已知集合A={x|2<x<4},B={x|x<3或x>5},则A∩B=()A.{x|2<x<5} B.{x|x<4或x>5} C.{x|2<x<3} D.{x|x<2或x>5}【解答】解:∵集合A={x|2<x<4},B={x|x<3或x>5},∴A∩B={x|2<x<3}.故选:C.6.【2015年北京文科01】若集合A={x|﹣5<x<2},B={x|﹣3<x<3},则A∩B=()A.{x|﹣3<x<2} B.{x|﹣5<x<2} C.{x|﹣3<x<3} D.{x|﹣5<x<3}【解答】解:集合A={x|﹣5<x<2},B={x|﹣3<x<3},则A∩B={x|﹣3<x<2}.故选:A.7.【2014年北京文科01】若集合A={0,1,2,4},B={1,2,3},则A∩B=()A.{0,1,2,3,4} B.{0,4} C.{1,2} D.{3}【解答】解:∵A={0,1,2,4},B={1,2,3},∴A∩B={0,1,2,4}∩{1,2,3}={1,2}.故选:C.8.【2013年北京文科01】已知集合A={﹣1,0,1},B={x|﹣1≤x<1},则A∩B=()A.{0} B.{﹣1,0} C.{0,1} D.{﹣1,0,1}【解答】解:∵A={﹣1,0,1},B={x|﹣1≤x<1},∴A∩B={﹣1,0}.故选:B.9.【2012年北京文科01】已知集合A={x∈R|3x+2>0},B={x∈R|(x+1)(x﹣3)>0},则A∩B=()A.(﹣∞,﹣1)B.(﹣1,)C.(,3)D.(3,+∞)【解答】解:因为B={x∈R|(x+1)(x﹣3)>0}={x|x<﹣1或x>3},又集合A={x∈R|3x+2>0}={x|x},所以A∩B={x|x}∩{x|x<﹣1或x>3}={x|x>3},故选:D.10.【2011年北京文科01】已知全集U=R,集合P={x|x2≤1},那么∁U P=()A.(﹣∞,﹣1] B.[1,+∞)C.[﹣1,1] D.(﹣∞,﹣1)∪(1,+∞)【解答】解:由集合P中的不等式x2≤1,解得﹣1≤x≤1,所以集合P=[﹣1,1],由全集U=R,得到∁U P=(﹣∞,1)∪(1,+∞).故选:D.11.【2010年北京文科01】集合P={x∈Z|0≤x<3},M={x∈Z|x2<9},则P∩M=()A.{1,2} B.{0,1,2} C.{x|0≤x<3} D.{x|0≤x≤3}【解答】解:∵集合P={x∈Z|0≤x<3},∴P={0,1,2},∵M={x∈Z|x2<9},∴M={﹣2,﹣1,0,1,2},∴P∩M={0,1,2},故选:B.12.【2012年北京文科20】设A是如下形式的2行3列的数表,a b cd e f满足性质P:a,b,c,d,e,f∈[﹣1,1],且a+b+c+d+e+f=0.记r i(A)为A的第i行各数之和(i=1,2),∁j(A)为A的第j列各数之和(j=1,2,3);记k(A)为|r1(A)|,|r2(A)|,|c1(A)|,|c2(A)|,|c3(A)|中的最小值.(1)对如下数表A,求k(A)的值1 1 ﹣0.80.1 ﹣0.3 ﹣1(2)设数表A形如1 1 ﹣1﹣2dd d﹣1其中﹣1≤d≤0.求k(A)的最大值;(Ⅲ)对所有满足性质P的2行3列的数表A,求k(A)的最大值.【解答】解:(1)因为r1(A)=1.2,r2(A)=﹣1.2,c1(A)=1.1,c2(A)=0.7,c3(A)=﹣1.8,所以k(A)=0.7(2)r1(A)=1﹣2d,r2(A)=﹣1+2d,c1(A)=c2(A)=1+d,c3(A)=﹣2﹣2d因为﹣1≤d≤0,所以|r1(A)|=|r2(A)|≥1+d≥0,|c3(A)|≥1+d≥0所以k(A)=1+d≤1当d=0时,k(A)取得最大值1(III)任给满足性质P的数表A(如下所示)a b cd e f任意改变A三维行次序或列次序,或把A中的每个数换成它的相反数,所得数表A*仍满足性质P,并且k(A)=k(A*)因此,不防设r1(A)≥0,c1(A)≥0,c2(A)≥0,由k(A)的定义知,k(A)≤r1(A),k(A)≤c1(A),k(A)≤c2(A),从而3k(A)≤r1(A)+c1(A)+c2(A)=(a+b+c)+(a+d)+(b+e)=(a+b+c+d+e+f)+(a+b﹣f)=a+b﹣f≤3所以k(A)≤1由(2)可知,存在满足性质P的数表A使k(A)=1,故k(A)的最大值为1.13.【2010年北京文科20】已知集合S n={X|X=(x1,x2,…,x n),x i∈{0,1},i=1,2,…,n}(n≥2)对于A=(a1,a2,…a n,),B=(b1,b2,…b n,)∈S n,定义A与B的差为A﹣B=(|a1﹣b1|,|a2﹣b2|,…,|a n﹣b n|);A与B之间的距离为.(Ⅰ)当n=5时,设A=(0,1,0,0,1),B=(1,1,1,0,0),求d(A,B);(Ⅱ)证明:∀A,B,C∈S n,有A﹣B∈S n,且d(A﹣C,B﹣C)=d(A,B);(Ⅲ)证明:∀A,B,C∈S n,d(A,B),d(A,C),d(B,C)三个数中至少有一个是偶数.【解答】解:(Ⅰ)由题意得,A﹣B=(|0﹣1|,|1﹣1|,|0﹣1|,|0﹣0|,|1﹣0|)=(1,0,1,0,1),d(A,B)=|0﹣1|+|1﹣1|+|0﹣1|+|0﹣0|+|1﹣0|=3(Ⅱ)证明:设A=(a1,a2,…,a n),B=(b1,b2,…,b n),C=(c1,c2,…,c n)∈S n因为a i,b i∈{0,1},所以|a i﹣b i|∈{0,1}(i=1,2,n)从而A﹣B=(|a1﹣b1|,|a2﹣b2|,…,|a n﹣b n|)∈S n由题意知a i,b i,c i∈{0,1}(i=1,2,n)当c i=0时,||a i﹣c i|﹣|b i﹣c i||=|a i﹣b i|当c i=1时,||a i﹣c i|﹣|b i﹣c i||=|(1﹣a i)﹣(1﹣b i)|=|a i﹣b i|所以(Ⅲ)证明:设A=(a1,a2,…,a n),B=(b1,b2,…,b n),C=(c1,c2,…,c n)∈S n,d(A,B)=k,d(A,C)=l,d(B,C)=h,记0=(0,0,…,0)∈S n,由(Ⅱ)可知因为|a i ﹣b i |∈{0,1},k ,所以|b i ﹣a i |(i =1,2,n )中1的个数为k ,|c i ﹣a i |(i =1,2,n )中1的个数为l , 设t 是使|b i ﹣a i |=|c i ﹣a i |=1成立的i 的个数.则h =l +k ﹣2t , 由此可知,k ,l ,h 三个数不可能都是奇数,即d (A ,B ),d (A ,C ),d (B ,C )三个数中至少有一个是偶数.考题分析与复习建议本专题考查的知识点为:集合关系及其运算,历年考题主要以选择填空或解答题题型出现,重点考查的知识点为:交并补运算,集合综合问题,预测明年本考点题目会比较稳定,备考方向以知识点交并补运算为重点较佳.最新高考模拟试题1.若集合{}5|2A x x =-<<,{}|||3B x x =<,则A B =I ( ) A .{}|32x x -<< B .{}|52x x -<< C .{}|33x x -<< D .{}|53x x -<<【答案】A 【解析】解:{}{}333||B x x x x =<=-<<, 则{}|32A B x x ⋂=-<<, 故选:A .2.已知集合2{|560}A x x x =-+≤,{|15}B x Z x =∈<<,则A B =I ( )A .[2,3]B .(1,5)C .{}2,3D .{2,3,4}【答案】C【解析】2560(2)(3)023x x x x x -+≤⇒--≤⇒≤≤Q ,{}23A x x ∴=≤≤, 又{}{|15}2,3,4B x Z x =∈<<=,所以{}2,3A B ⋂=,故本题选C.3.已知集合{3,2,1,0,1,2,3}A =---,{}2|450B x x x =∈--≤R ,则A B =I ( ) A .{3,2,1,0}--- B .{}1,0,1,2,3- C .{}3,2-- D .{}3,2,1,0,1,2,3---【答案】B 【解析】因为{}2|450B x x x =∈--≤R {|15}x x =-≤≤,{3,2,1,0,1,2,3}A =---∴{}1,0,1,2,3A B ⋂=-. 故选B .4.已知全集U =R ,集合{}|24,{|(1)(3)0}xA xB x x x =>=--<,则()U A B =I ð( )A .(1,2)B .(]1,2 C .(1,3)D .(,2]-∞【答案】B 【解析】由24x >可得2x >, (1)(3)0x x --<可得13x <<,所以集合(2,),(1,3)A B =+∞=,(,2]U A =-∞ð,所以()U A B =I ð(]1,2,故选B. 5.已知集合{}(,)|1,A x y y x x R ==+∈,集合{}2(,)|,B x y y x x R ==∈,则集合A B ⋂的子集个数为( ) A .1 B .2 C .3 D .4【答案】D 【解析】由题意得,直线1y x =+与抛物线2y x =有2个交点,故A B ⋂的子集有4个. 6.已知集合{}2log (1)2M x x =+<,{1,0,1,2,3}N =-,则()R M N ⋂ð=( )A .{-1,0,1,2,3}B .{-1,0,1,2}C .{-1,0,1}D .{-1,3}【答案】D 【解析】由题意,集合{}2log (1)2{|13}M x x x x =+<=-<<,则{|1R M x x =≤-ð或3}x ≥ 又由{1,0,1,2,3}N =-,所以(){1,3}R M N ⋂=-ð,故选D.7.已知集合{}lg(1)A x y x ==-,{}1,0,1,2,3B =-,则()R A B I ð=( ) A .{}1,0- B .{}1,0,1-C .{}1,2,3D .{}2,3【答案】B 【解析】因为{}{}lg(1)1A x y x x x ==-=>,所以{}1R C A x x =≤, 又{}1,0,1,2,3B =-,所以{}()1,0,1R C A B =-I . 故选B8.已知R 是实数集,集合{}1,0,1A =-,{}210B x x =-≥,则()A B =R I ð( ) A .{}1,0- B .{}1 C .1,12⎡⎤⎢⎥⎣⎦D .1,2⎛⎫-∞ ⎪⎝⎭【答案】A 【解析】1|2B x x 禳镲=?睚镲铪Q1|2R C B x x 禳镲\=<睚镲铪即(){1,0}R A C B ?-故选A 。
(北京卷)十年真题(2010_2019)高考数学真题分类汇编专题06平面向量文(含解析)
专题06平面向量历年考题细目表历年高考真题汇编1.【2017年北京文科07】设,为非零向量,则“存在负数λ,使得λ”是“•0”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【解答】解:,为非零向量,存在负数λ,使得λ,则向量,共线且方向相反,可得•0.反之不成立,非零向量,的夹角为钝角,满足•0,而λ不成立.∴,为非零向量,则“存在负数λ,使得λ”是•0”的充分不必要条件.故选:A.2.【2015年北京文科06】设,是非零向量,“||||”是“”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【解答】解:(1);∴时,cos1;∴;∴∥;∴“”是“∥”的充分条件;(2)∥时,的夹角为0或π;∴,或;即∥得不到;∴“”不是“∥”的必要条件;∴总上可得“”是“∥”的充分不必要条件.故选:A.3.【2014年北京文科03】已知向量(2,4),(﹣1,1),则2()A.(5,7)B.(5,9)C.(3,7)D.(3,9)【解答】解:由(2,4),(﹣1,1),得:22(2,4)﹣(﹣1,1)=(4,8)﹣(﹣1,1)=(5,7).故选:A.4.【2010年北京文科04】若,是非零向量,且⊥,||≠||,则函数f(x)=(x)(x)是()A.一次函数且是奇函数B.一次函数但不是奇函数C.二次函数且是偶函数D.二次函数但不是偶函数【解答】解:∵⊥,∴•0∴f(x)=(x)(xb)=x x,∵||≠||,∴所以f(x)=()x所以函数f(x)是一次函数且是奇函数故选:A.5.【2019年北京文科09】已知向量(﹣4,3),(6,m),且⊥,则m=.【解答】解:由向量(﹣4,3),(6,m),且⊥,得,∴m=8.故答案为:8.6.【2018年北京文科09】设向量(1,0),(﹣1,m).若⊥(m),则m=.【解答】解:向量(1,0),(﹣1,m).m(m+1,﹣m).∵⊥(m),∴m+1=0,解得m=﹣1.故答案为:﹣1.7.【2017年北京文科12】已知点P在圆x2+y2=1上,点A的坐标为(﹣2,0),O为原点,则•的最大值为.【解答】解:设P(cosα,sinα).(2,0),(cosα+2,sinα).则•2(cosα+2)≤6,当且仅当cosα=1时取等号.故答案为:6.8.【2016年北京文科09】已知向量(1,),(,1),则与夹角的大小为.【解答】解:∵向量(1,),(,1),∴与夹角θ满足:cosθ,又∵θ∈[0,π],∴θ,故答案为:.9.【2013年北京文科14】已知点A(1,﹣1),B(3,0),C(2,1).若平面区域D由所有满足(1≤λ≤2,0≤μ≤1)的点P组成,则D的面积为.【解答】解:设P的坐标为(x,y),则(2,1),(1,2),(x﹣1,y+1),∵,∴,解之得∵1≤λ≤2,0≤μ≤1,∴点P坐标满足不等式组作出不等式组对应的平面区域,得到如图的平行四边形CDEF及其内部其中C(4,2),D(6,3),E(5,1),F(3,0)∵|CF|,点E(5,1)到直线CF:2x﹣y﹣6=0的距离为d∴平行四边形CDEF的面积为S=|CF|×d3,即动点P构成的平面区域D的面积为3 故答案为:310.【2012年北京文科13】已知正方形ABCD的边长为1,点E是AB边上的动点.则的值为.【解答】解:因为1.故答案为:111.【2011年北京文科11】已知向量(,1),(0,﹣1),(k,).若与共线,则k=.【解答】解:∵与共线,∴解得k=1.故答案为1.考题分析与复习建议本专题考查的知识点为:平面向量的线性运算,平面向量基本定理及坐标表示,平面向量的数量积,平面向量的综合应用等.历年考题主要以选择填空题型出现,重点考查的知识点为:平面向量的线性运算,平面向量基本定理及坐标表示,平面向量的数量积等,预测明年本考点题目会比较稳定,备考方向以知识点平面向量的线性运算,平面向量的数量积,平面向量的综合应用等为重点较佳.最新高考模拟试题1.在ABC ∆中,,,若,则( )A .3y x =B .3x y =C .3y x =-D .3x y =-【答案】D 【解析】 因为,所以点D 是BC 的中点,又因为,所以点E 是AD 的中点,所以有:,因此,故本题选D.2.已知非零向量a ,b 的夹角为60,且满足22a b -=,则a b ⋅的最大值为( ) A .12B .1C .2D .3【答案】B 【解析】因为非零向量a ,b 的夹角为60,且满足22a b -=, 所以, 即,即,又因为,当且仅当2a b =时,取等号;所以,即2a b ≤; 因此,.即a b ⋅的最大值为1. 故选B3.设a ,b 均为单位向量,则“a 与b 夹角为2π3”是“||3a b +=”的( ) A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】D 【解析】因为a ,b 均为单位向量, 若a 与b 夹角为2π3, 则;因此,由“a 与b 夹角为2π3”不能推出“||3a b +=”; 若||3a b +=,则,解得1cos ,2a b =,即a 与b 夹角为π3, 所以,由“||3a b +=”不能推出“a 与b 夹角为2π3” 因此,“a 与b 夹角为2π3”是“||3a b +=”的既不充分也不必要条件. 故选D4.在矩形ABCD 中,4AB =uu u r,2AD =.若点M ,N 分别是CD ,BC 的中点,则AM MN ⋅=( )A .4B .3C .2D .1【答案】C 【解析】由题意作出图形,如图所示:由图及题意,可得:,.∴.故选:C .5.已知P 为等边三角形ABC 所在平面内的一个动点,满足,若2AB =,则( )A .B .3C .6D .与λ有关的数值【答案】C 【解析】如图:以BC 中点为坐标原点O ,以BC 方向为x 轴正方向,OA 方向为y 轴正方向,建立平面直角坐标系,因为2AB =,则3AO =,因为P 为等边三角形ABC 所在平面内的一个动点,满足,所以点P 在直线BC ,所以AP uu u r在AO 方向上的投影为AO , 因此.故选C6.已知向量,且()a a b ⊥-,则m 的值为( )A .1B .3C .1或3D .4【答案】B 【解析】 因为,所以,因为()a a b ⊥-,则,解得3m =所以答案选B.7.已知向量a 、b 为单位向量,且a b +在a 1+,则向量a 与b 的夹角为( ) A .6π B .4π C .3π D .2π 【答案】A 【解析】设向量a 与b 的夹角为θ, 因为向量a 、b 为单位向量,且a b +在a 1+, 则有,变形可得:,即,又由0θπ≤≤,则6πθ=,故选A .8.在矩形ABCD 中,与BD 相交于点O ,过点A 作AE BD ⊥,垂足为E ,则AE EC ⋅=( )A .725B .14425C .125D .1225【答案】B 【解析】 如图:由3AB =,4=AD 得:,又AE BD ⊥又本题正确选项:B9.已知直线y=x+m 和圆x 2+y 2=1交于A 、B 两点,O 为坐标原点,若,则实数m=( )A .1±B .±C .2±D .12±【答案】C 【解析】 联立221y x m x y =+⎧⎨+=⎩ ,得2x 2+2mx+m 2-1=0, ∵直线y=x+m 和圆x 2+y 2=1交于A 、B 两点,O 为坐标原点,∴△=4m 2+8m 2-8=12m 2-8>0,解得m 或m <,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-m ,,y 1y 2=(x 1+m )(x 2+m )=x 1x 2+m (x 1+x 2)+m 2,AO =(-x 1,-y 1),AB =(x 2-x 1,y 2-y 1), ∵+y 12-y 1y 2=1+m 2-m 2=2-m 2=32,解得m=2±. 故选:C .10.已知菱形ABCD 的边长为2,,点E ,F 分别在边BC ,DC 上,3BC BE =,DC DF λ=,若1AE AF ⋅=,则λ的值为( )A .3B .2C .23D .52【答案】B 【解析】 由题意可得:,且:,故,解得:2λ=.故选:B .11.已知正ABC ∆的边长为4,点D 为边BC 的中点,点E 满足AE ED =,那么EB EC ⋅的值为( ) A .83- B .1-C .1D .3【答案】B 【解析】由已知可得:, 又所以所以故选:B .12.在ABC ∆中,3AC =,向量AB 在AC 上的投影的数量为,则BC =( )A .5B .C .29D .【答案】C 【解析】∵向量AB 在AC 上的投影的数量为2-, ∴.① ∵3ABC S ∆=, ∴,∴.②由①②得tan 1A =-, ∵A 为ABC ∆的内角, ∴34A π=, ∴.在ABC ∆中,由余弦定理得,∴BC =故选C .13.在△ABC 中,,则λμ+= ( )A.1-3B.13C.1-2D.12【答案】A【解析】因为所以P为ABC∆的重心,所以,所以,所以因为,所以故选:A14.在ABC∆中,,则()A.9:7:8B.C.6:8:7D.【答案】B【解析】设所以,所以,所以,得所以故选:B15.在平行四边形ABCD中,若则ADC∠=( )A.56πB.34πC.23πD.2π【答案】C【解析】如图所示,平行四边形ABCD中, ,,,,因为,所以, ,所以,故选C.16.已知△ABC中,.点P为BC边上的动点,则的最小值为()A.2 B.34-C.2-D.2512-【答案】D【解析】以BC的中点为坐标原点,建立如图的直角坐标系,可得,设,由,可得,即,则,当16a =时,的最小值为2512-. 故选:D .17.如图Rt ABC ∆中,2ABC π∠=,2AC AB =,BAC ∠平分线交△ABC 的外接圆于点D ,设AB a =,AC b =,则向量AD =( )A .a b +B .12a b +C .12a b +D .23a b +【答案】C 【解析】解:设圆的半径为r ,在Rt ABC ∆中,2ABC π∠=,2AC AB =, 所以3BAC π∠=,6ACB π∠=,BAC ∠平分线交ABC ∆的外接圆于点D ,所以, 则根据圆的性质,又因为在Rt ABC ∆中,,所以四边形ABDO 为菱形,所以.故选:C .18.在ABC ∆中,90A ∠=︒,1AB =,2AC =,设点D 、E 满足AD AB λ=, ()AC R λ∈,若5BE CD ⋅=,则λ=( ) A .13- B .2 C .95D .3【答案】D 【解析】因为90A ∠=︒,则,所以.由已知,345λ-=,则3λ=. 选D .19.已知点C 为扇形AOB 的弧AB 上任意一点,且,若,则λμ+的取值范围为( )A .[2,2]-B .C .D .[1,2]【答案】D 【解析】解:设半径为1,由已知可设OB 为x 轴的正半轴,O 为坐标原点,建立直角坐标系,其中A (12-,B (1,0),C (cos θ,sin θ)(其中∠BOC =θ有(λ,μ∈R )即:(cos θ,sin θ)=λ(12-+μ(1,0);整理得:12-λ+μ=cos θλ=sin θ,解得:λ=,μ=cosθ,则λ+μ=cos θsin θ+cos θ=2sin (θ6π+),其中;易知λ+μ=+cos θsin θ+cos θ=2sin (θ6π+),由图像易得其值域为[1,2] 故选:D .20.在同一平面内,已知A 为动点,B ,C 为定点,且∠BAC=3π,2ACB π∠≠,BC=1,P 为BC 中点.过点P 作PQ⊥BC 交AC 所在直线于Q ,则AQ 在BC 方向上投影的最大值是( )A .13B .12CD .23【答案】C 【解析】建立如图所示的平面直角坐标系,则B (-12,0),C (12,0),P (0,0), 由BAC 3π∠=可知,ABC 三点在一个定圆上,且弦BC 所对的圆周角为3π,所以圆心角为23π.圆心在BC 的中垂线即y 轴上,且圆心到直线BC的距离为126tan 3BCπ=即圆心为,半径为.所以点A 的轨迹方程为:,则213x ≤,则,由AQ 在BC 方向上投影的几何意义可得:AQ 在BC 方向上投影为|DP|=|x|,则AQ 在BC 方向上投影的最大值是 故选:C . 21.已知圆的弦AB 的中点为(1,1)-,直线AB 交x 轴于点P ,则PA PB ⋅的值为______. 【答案】5- 【解析】设(1,1)M -,圆心(2,0)C -, ∵,根据圆的性质可知,1AB k =-,∴AB 所在直线方程为,即22gR r,联立方程可得,,设11(,)A x y ,22(,)B x y ,则,令0y =可得(0,0)P ,,故答案为:-5. 22.已知向量,若,则λ=______.【答案】12【解析】 解:;;;;解得12λ=. 故答案为:12.23.向量()1,2a =-,()1,0b =-,若,则λ=_________.【答案】13【解析】向量()1,2a =-,()1,0b =-, 所以,又因为, 所以,即,解得13λ=,故答案为13. 24.设向量12,e e 的模分别为1,2,它们的夹角为3π,则向量21e e -与2e 的夹角为_____. 【答案】6π 【解析】又∴向量21e e -与2e 的夹角为:6π 本题正确结果:6π25.已知平面向量a ,m ,n ,满足4a =r,,则当m n -=_____,则m 与n 的夹角最大.【解析】设a ,m ,n 的起点均为O ,以O 为原点建立平面坐标系, 不妨设(4,0)a =,(,)m x y =,则,4a m x ⋅=, 由可得,即,∴m 的终点M 在以(2,0)同理n 的终点N 在以(2,0)显然当OM ,ON 为圆的两条切线时,MON ∠最大,即m ,n 的夹角最大.设圆心为A ,则AM =,,∴,设MN 与x 轴交于点B ,由对称性可知MN x ⊥轴,且2MN MB =, ∴.26.如图,已知P 是半径为2,圆心角为3π的一段圆弧AB 上一点,2A B B C =,则P C P A ⋅的最小值为_______.【答案】5﹣【解析】设圆心为O,AB 中点为D, 由题得.取AC 中点M ,由题得,两方程平方相减得,要使PC PA ⋅取最小值,就是PM 最小, 当圆弧AB 的圆心与点P 、M 共线时,PM 最小. 此时DM=,所以PM 有最小值为2,代入求得PC PA ⋅的最小值为5﹣故答案为:5﹣27.如图,在边长为2的正三角形ABC 中,D 、E 分别为边BC 、CA 上的动点,且满足CE mBD =(m 为定常数,且(0,1]m ∈),若AD DE ⋅的最大值为34-,则m =________.【答案】12【解析】以BC 中点为坐标原点O ,OC 方向为x 轴正方向,OA 方向为y 轴正方向,建立如图所示平面直角坐标系,因为正三角形ABC 边长为2,所以(1,0)B -,(1,0)C ,A ,则(2,0)BC =,,因为D 为边BC 上的动点,所以设BD tBC =,其中01t ≤≤, 则,所以(21,0)D t -;又,所以,因此,所以,,故,因为(0,1]m ∈,所以,又01t ≤≤,所以当且仅当324mt m -=+时,AD DE ⋅取得最大值,即,整理得,解得12m =或8m =(舍) 故答案为1228.在ABC ∆中,已知AB 边上的中线1CM =,且1tan A ,1tan C ,1tan B成等差数列,则AB 的长为________.【解析】 因为1tan A ,1tan C ,1tan B成等差数列, 所以,即,所以,由正弦定理可得,又由余弦定理可得,所以,故,又因为AB 边上的中线1CM =,所以1CM =,因为, 所以,即,解c =.即AB29.如图,在平面四边形ABCD 中,,30ACD ∠=︒,AB BC =,点E 为线段BC的中点.若(,R λμ∈),则λμ的值为_______.【解析】以A 为原点,建立如图所示的平面直角坐标系,不妨设AB =BC =2,则有A (0,0),B (2,0),C (2,2),E (2,1),AC =,AD =×tan30°=3,过D 作DF⊥x 轴于F ,∠DAF=180°-90°-45°=45°, DFsin45°=,所以D(3-,AC =(2,2),AD=(3-),AE =(2,1),因为,所以,(2,2)=λ()+μ(2,1),所以,,解得:43λμ⎧=⎪⎪⎨⎪=⎪⎩λμ30.在平面直角坐标系xOy 中,已知()11,A x y ,()22,B x y 为圆221x y +=上两点,且.若C 为圆上的任意一点,则CA CB 的最大值为______.【答案】32【解析】因为C 为圆x 2+y 2=1上一点,设C (sin θ,cos θ),则,∵()11,A x y ,()22,B x y 为圆221x y +=上两点,∴,又,。