骨骼肌细胞的收缩机制

合集下载

骨骼肌收缩机制

骨骼肌收缩机制

肌节长度 2-2.2 μm
5
粗肌丝(thick filament)的组成
粗肌丝由肌球蛋白 (myosin)分子组成:包含 两条重链(heavy chain)、 两条碱性轻链(alkali light chain) 和 两 条 调 节 轻 链 (regulatory light chain)
尾部
横桥 铰链部 6
的横桥结合位点 横桥与结合位点结合,将水解
ATP产生的势能转换为动能
横桥向M线方向摆动
牵拉细肌丝朝肌节中央滑行
肌节缩短=肌细胞收缩
16
肌肉收缩:水解ATP释放的化学能 机械能 横桥周期(cross-bridge cycling)
指横桥与肌动蛋白结合、扭动、解离、复位与再结合的过 程。周期的长短决定肌肉的缩短速度
13
两类肌管的膜各自具有不同的功能蛋白分子
T管膜上除了有同肌膜一样的电压门控Na+、K+两种离子 通道外,还有一种特殊的电压门控L型钙通道(DHP受体) SR终池膜上则有另外一种钙通道(RyR),其参与SR内Ca2+ 向胞质内释放;SR膜还有存在许多钙泵,消耗能量的情况 下,可逆浓度梯度将胞质内的Ca2+主动转运到SR中储存
钙触发钙释放 21
骨骼肌的兴奋-收缩耦联
22
收缩、舒张均耗能!!!
骨骼肌舒张机制
兴奋-收缩耦联后
肌膜电位复极化
终池膜对Ca2+通透性↓ SR膜Ca2+泵激活
胞质[Ca2+]↓
Ca2+与肌钙蛋白解离
原肌球蛋白复位覆盖 横桥结合位点 骨骼肌舒张
23
思考题:试述神经兴奋引起骨骼肌细胞收缩 的全过程
24
骨骼肌-RyR1 心肌-RyR2 机制不同

骨骼肌细胞的收缩机制

骨骼肌细胞的收缩机制

骨骼肌细胞的收缩机制
骨骼肌细胞的收缩机制
骨骼肌细胞的收缩机制-------------滑行学说
(丽水学院生物,科学师范12,29)
【摘要】:Huxley等人哎20世纪50年代初提出了用肌小结中粗、细肌丝的相互滑行来解释肌肉收缩的机制。

这一理论就是滑行理论(sliding theory)。

【关键词】:肌丝滑行神经细胞【肌丝滑行理论
】:是肌肉收缩机制的一种理论。

主要指:横纹肌收缩时在形态上的表现为整个肌肉
和肌纤维的缩短,但在肌细胞内并无肌丝或它们所含的分子结构的缩短,而只是在每一个
肌小节内发生了细肌丝向粗肌丝之间的滑行。

结果使肌小节长度变短,造成整个肌原纤维、肌细胞和整条肌肉的缩短。

其证据是:肌肉收缩时,肌细胞的暗带长度不变,明带长度变短,而肌球蛋白(粗肌丝)在暗带,肌动蛋白(细肌丝)在明带。

【神经细胞作用原理】:当一个神经冲动传递到突触小体,引起去极化使得Ca2+进入细胞膜,使突触小泡向前移动并释放出乙酰胆碱(ACH),乙酰胆碱(ACH)与后膜上的受体结合,引起终板电位并向两侧扩布到两侧的肌细胞膜形成动作电位,并沿细胞膜传递到肌细
胞的横管系统使两侧终池释放出Ca2+,Ca2+与肌钙蛋白结合使原肌球蛋白发生变化,暴露出肌动蛋白于横桥结合的位点,接着横桥和肌动蛋白相结合后横桥分解ATP获得能量使横
桥循环把细肌丝不断地向肌节中心M线拉,最终达到肌肉收缩。

横桥周期的长短决定着肌
肉的缩短速度,肌浆中Ca2+浓度升高是引起肌肉收缩的触发原因。

【参考文献】:河南职工医学院院报2021年16卷4期。

骨骼肌收缩舒张原理

骨骼肌收缩舒张原理

骨骼肌收缩舒张原理
骨骼肌的收缩和舒张是基于肌肉纤维内部的运动蛋白和神经信号的相互作用而发生的生理过程。

这个过程通常被称为肌肉收缩-舒张机制,其基本原理包括:
1.神经冲动传导:当大脑或脊髓产生神经冲动时,通过神经元传递到神经肌接头,释放乙酰胆碱等神经递质。

这些神经递质刺激肌肉纤维膜上的受体,引发动作电位的产生。

2.横纹肌纤维收缩:动作电位沿着肌肉纤维的膜表面传播,进入肌肉纤维的深处。

在肌肉纤维内部,动作电位激活钙离子的释放,使得肌肉细胞内的钙离子浓度升高。

3.肌钙蛋白复合物解离:在钙离子浓度升高的情况下,肌肉纤维中的肌钙蛋白复合物解离,使得肌动蛋白上的活性位点暴露出来。

4.肌肉收缩:肌动蛋白的活性位点暴露后,肌球蛋白头部的活化能与肌动蛋白结合,形成肌动蛋白-肌球蛋白复合物。

接着,肌动蛋白上的肌小球蛋白头部释放ADP和Pi,导致肌小球蛋白头部发生构象变化,从而产生力学工作,使肌肉纤维产生收缩。

5.肌肉舒张:当神经冲动停止时,肌肉纤维内的钙离子被肌钙蛋白复合物重新吸收,肌动蛋白的活性位点被覆盖,肌动蛋白-肌球蛋白复合物解离,肌肉纤维恢复至松弛状态,完成舒张过程。

总的来说,骨骼肌的收缩和舒张是通过神经冲动引发肌肉纤维内部的化学反应和蛋白质结构的变化而实现的。

这一过程是高度有序和协调的,以确保肌肉的正常运动和功能。

1 / 1。

骨骼肌的收缩机制

骨骼肌的收缩机制

骨骼肌的收缩机制
骨骼肌的收缩机制
骨骼肌的收缩机制是一个重要的生物学过程,它为肌肉控制运动和保持身体姿势提供了基础。

骨骼肌的收缩机制是一个复杂的过程,它可以分为三个步骤:神经传导,肌肉收缩和断开传导。

首先,神经传导是通过神经冲动来触发肌肉收缩的过程。

具体来说,神经冲动由中枢神经系统发出,经过脊髓再经过肌肉组织的神经束,到达最终的肌肉细胞。

神经冲动刺激肌肉细胞内的特定结构,从而改变它们的电荷平衡,从而释放肌肉细胞内的能量以触发收缩。

其次,肌肉收缩是肌肉对神经冲动的反应过程。

在这个步骤中,肌肉细胞内释放的能量会拉动肌肉细胞间的连接,从而形成一个肌肉收缩的链式反应。

收缩过程中会产生热量,这可以维持肌肉的持续收缩,直到神经冲动消失。

最后,断开传导是肌肉收缩结束时的过程。

神经冲动消失之后,肌肉细胞内的电荷平衡回复正常,肌肉细胞的收缩也停止,这时的断开传导完成了。

总的来说,骨骼肌的收缩机制是一个复杂的过程,它由神经传导、肌肉收缩和断开传导三个过程组成。

不同的肌肉运动特性是由不同的神经冲动和肌肉细胞收缩反应引起的,所以正确控制骨骼肌的收缩机制对于保持健康身体极为重要。

- 1 -。

骨骼肌收缩机制

骨骼肌收缩机制

骨骼肌收缩机制骨骼肌收缩机制,是指骨骼肌在运动时产生的收缩和放松过程。

这个过程涉及了许多生物学的原理和机制,例如神经递质、肌纤维、钙离子等等。

以下是一个简要的介绍。

一、神经递质神经递质是指神经元与骨骼肌之间传递信息的化学物质。

神经元通过神经末梢释放神经递质,使其与肌细胞表面的受体结合,进而引发肌细胞内的反应。

最重要的神经递质是乙酰胆碱,它通过神经肌接头(这是神经元与肌细胞之间的窄缝)释放到肌细胞表面,与肌细胞上的乙酰胆碱受体结合,引发肌细胞内钙离子的释放。

二、肌纤维肌纤维是组成肌肉的最基本单元,也是肌收缩机制中最重要的组成部分。

每个肌纤维由许多肌节组成,每个肌节中都包含了许多肌纤维束。

肌纤维由许多肌纤维小结构组成,这些小结构被称为肌肉蛋白。

肌肉蛋白包括肌动蛋白和肌球蛋白,它们在肌纤维中形成了许多重复单元,称为肌节。

肌纤维在收缩时,肌动蛋白和肌球蛋白之间的相互作用是收缩的关键。

三、钙离子钙离子是肌收缩机制中的另一个关键组成部分。

当乙酰胆碱结合到肌细胞表面的乙酰胆碱受体时,它会引发肌细胞内的电信号。

这个信号会让肌细胞内的储存钙离子的钙离子库向肌节中释放钙离子。

一旦肌节中的钙离子释放,它们就与肌动蛋白和肌球蛋白相互作用,引发肌节的收缩。

当肌节中的钙离子减少时,肌节放松。

总结综上所述,骨骼肌收缩机制是通过神经递质、肌纤维和钙离子等生物学原理和机制完成的。

当神经元释放乙酰胆碱时,乙酰胆碱结合到肌细胞表面的乙酰胆碱受体,引发肌细胞内储存钙离子的钙离子库向肌节中释放钙离子。

一旦肌节中的钙离子释放,肌动蛋白和肌球蛋白相互作用,引发肌节的收缩。

当肌节中的钙离子减少时,肌节放松。

这个过程在肌肉运动中起着至关重要的作用。

简述骨骼肌纤维的收缩原理

简述骨骼肌纤维的收缩原理

简述骨骼肌纤维的收缩原理
骨骼肌纤维的收缩原理可以通过以下步骤进行描述:
1. 肌肉兴奋:当神经冲动通过神经元传导到骨骼肌纤维时,肌肉收到兴奋信号。

神经冲动释放的神经递质乙酰胆碱使得肌动蛋白与肌钙蛋白分离,从而暴露出胞浆中的钙离子。

2. 钙离子释放:胞浆中的钙离子是缓存在肌浆网内的。

当钙离子被释放出来后,它结合到肌钙蛋白上,形成复合物。

3. 肌肉收缩:与肌钙蛋白相互作用的钙离子-肌钙蛋白复合物通过一系列反应导致肌农蛋白与肌钙蛋白结合,从而启动肌肉收缩机制。

这一过程中,肌农蛋白会与肌球蛋白结合,形成交联桥。

交联桥的形成会使骨骼肌纤维变短,从而引发肌肉的收缩。

4. 肌肉松弛:当肌肉不再接收到神经冲动时,钙离子会被再次存储回肌浆网,从而终止肌肉收缩。

肌农蛋白和肌球蛋白不再结合,交联桥解离,骨骼肌纤维恢复原状。

总结:骨骼肌纤维的收缩原理是通过神经冲动使肌肉兴奋,并释放钙离子。

钙离子结合到肌钙蛋白上,导致肌农蛋白和肌球蛋白结合形成交联桥,引发肌肉收缩。

当肌肉不再接受神经冲动时,钙离子被收回,交联桥解离,肌肉松弛。

生理学——骨骼肌的收缩功能ppt课件

生理学——骨骼肌的收缩功能ppt课件
化学接收
电刺激神经纤维达阈值 神经纤维兴奋,产生动作电位 动作电位以局部电流形式传到神经末梢 Ca²+进入轴突末梢 轴突末梢量子式释放递质ACh 递质经过接头间隙与终板膜上N2受体结合
兴奋 收缩 耦联
收缩 过程
终板膜对Na+(还有K+)通透性增高而产生终 板电位
ACh被胆碱酯酶破坏 邻近肌膜去极化达阈电位而产生肌膜动作电位 肌膜动作电位沿横管传到细胞内部 肌质网终末池释放Ca²+入肌浆 Ca²+与肌钙蛋白结合,暴露肌纤蛋白上与粗肌 丝结合的位点 粗、细肌丝间形成横桥连接,细肌丝沿粗肌丝 向M线滑行,使肌小节缩短
2、肌管系统 (sarcotubular system)
横管系统(transverse tubule)
{ 纵管系统(longitudinal tubule) 肌质网 (sarcoplasmic reticulum)
三联管结构:由每一横管与来自两侧的纵管的 终末池组成的结构。其作用是把横管传来的电 信号与终末池Ca2+释放两个过程联系起来。完 成横管向肌浆网的信息传递。
舒张 过程
没有动作电位传来时 Ca²+被泵回肌质网
Ca²+脱离肌钙蛋白
粗、细肌丝间的相互作用停止, 细肌丝弹性回位
二、骨骼肌收缩的外部表现和力学分析 (一)骨骼肌的收缩形式
1、等长收缩(isometric contraction) 等张收缩( isotonic contraction)
2、单收缩和复合收缩
终板电位引 发动作电位
电压依从性 Na+通道开放
阈电位
Na+
3、神经-肌肉接头兴奋传递的特征
(1)单向性传递 (2)1对1传递 (3)兴奋传递有一定的时间延搁。 (4)易受药物和其他环境因素的影响

简述骨骼肌收缩原理

简述骨骼肌收缩原理

骨骼肌收缩是一个复杂的生理过程,涉及多个步骤和分子机制。

首先,当神经冲动到达骨骼肌时,会释放一种叫做乙酰胆碱的化学物质。

乙酰胆碱会与骨骼肌细胞膜上的受体结合,导致细胞膜上的离子通道打开,使钠离子和钾离子等离子能够进入和离开细胞。

接着,钠离子进入细胞会导致细胞膜去极化,即膜电位由负转正。

这会触发一系列的分子事件,包括肌浆网释放钙离子、钙离子与肌动蛋白结合、肌动蛋白与肌球蛋白相互作用等,最终导致肌肉收缩。

最后,当神经冲动停止时,乙酰胆碱的释放也会停止,细胞膜上的离子通道关闭,使钠离子和钾离子等离子无法进入和离开细胞。

这会导致细胞膜复极化,即膜电位由正转负。

这会触发一系列的分子事件,包括肌浆网重新吸收钙离子、钙离子与肌动蛋白分离、肌动蛋白与肌球蛋白相互分离等,最终导致肌肉松弛。

骨骼肌收缩的原理是通过神经冲动触发一系列的分子事件,使肌肉收缩和松弛。

骨骼肌收缩机制

骨骼肌收缩机制

骨骼肌缩短体制肌细胞的喜悦表现为细胞膜上出现可传导的动作电位(AP) ,而肌细胞的缩短则是细胞内部肌丝滑行的结果。

肌细胞的喜悦不可以直接惹起肌肉缩短,两者之间存在一个耦联过程。

将肌细胞的电喜悦和机械缩短联系起来的一系列过程,称为喜悦 -缩短耦联 (excitation-contraction coupling) 。

实现横纹肌喜悦 -缩短耦联的组织构造是肌管系统,起重点作用的物质是 Ca2+。

而横纹肌细胞缩短和舒张的基本单位是肌节 (sarcomere) 。

接下来将介绍骨骼肌缩短体制的三个重要方面:1)骨骼肌细胞的微细构造; 2)骨骼肌缩短分子体制; 3)骨骼肌的喜悦 -缩短耦联。

骨骼肌细胞的微细构造肌原纤维 (myofibril)横纹肌细胞的胞质内含有大批的肌原纤维(myofibril) ,平行摆列,直径在 1~2 m之间,纵贯肌细胞全长。

肌细胞的缩短成份就存在于肌原纤维上。

肌原纤维沿长轴体现齐整交替的明、暗摆列,被称为明带(light band) 和暗带 (dark band)。

在肌肉处于舒张状态时,暗带中央有一段相对较亮的地区,称为H 带, H带的中央有一条横线,称为M 线(M line) 。

明带中央也有一条线,称为Z 线 (Z line) 。

肌节是横纹肌细胞缩短和舒张的基本功能单位。

肌小节= 1/2明带+暗带+1/2明带 = 2条 Z 线间的地区。

肌原纤维体现明带和暗带相间是因为肌原纤维由两套粗细不一样的肌丝:粗肌丝和细肌丝构成,以及它们之间又存在不一样程度的重叠。

明带只有细肌丝(thin filament) ,直径约 5 nm ,长度约 1 m,一端固定于 Z 线,另一端游离形式插入暗带的粗肌丝之间。

暗带主假如粗肌丝(thick filament) ,直径约 10 nm ,长度约1.6 m,两头游离,中间固定于M 线。

在寂静状况下, M 线双侧没有细肌丝的插入,形成较为光亮的 H 带, H 带两次则是粗、细肌丝重叠区。

医学生理学——骨骼肌收缩

医学生理学——骨骼肌收缩
骨骼肌的收缩是一个复杂的生理过程,首先,神经冲动到达神经末梢,引发轴突膜电压门控Ca2+通道开放,Ca2+内流,促使囊ቤተ መጻሕፍቲ ባይዱ释放ACh。ACh与终板膜上的化学门控通道结合,导致Na+内流和K+外流,产生终板电位,进而引发肌纤维兴奋和收缩。骨骼肌细胞具有精细的结构,包括肌原纤维和肌节。肌原纤维由粗肌丝和细肌丝组成,粗肌丝主要由肌球蛋白构成,细肌丝则包含肌动蛋白、原肌球蛋白和肌钙蛋白。在收缩过程中,肌浆中的Ca2+浓度升高,与肌钙蛋白结合,导致原肌球蛋白构象改变,暴露出肌纤蛋白的横桥结合位点。横桥与肌纤蛋白结合,通过扭动、脱离、再结合的过程,使细肌丝向M线方向移动,从而实现肌肉收缩。ATP在这一过程中提供能量,使横桥能够脱离。此外,骨骼肌细胞的兴奋与收缩之间通过兴奋-收缩偶联机制紧密相连,确保肌肉能够快速、准确地响应神经冲动。

骨骼肌收缩的机制和过程

骨骼肌收缩的机制和过程

骨骼肌收缩的机制和过程
骨骼肌的收缩机制和过程可以简要描述为下述步骤:
1. 饥渴感觉:当人体感觉到需要进行运动时,大脑的神经元开始向骨骼肌发送信号。

2. 神经冲动传导:这些信号以神经冲动的形式通过运动神经元传导到骨骼肌。

3. 神经肌肉接头:神经冲动到达骨骼肌时,它们通过神经肌肉接头(神经肌接头)与骨骼肌纤维连接。

4. 神经肌肉兴奋:当神经冲动到达肌肉纤维时,它引起肌肉的兴奋。

5. 钙离子释放:兴奋的肌肉纤维内的肌浆网释放储存在其中的钙离子。

6. 肌纤维收缩:释放的钙离子结合在肌纤维上的肌球蛋白上,进而触发肌球蛋白与肌原纤维相互滑动,使肌纤维收缩。

7. 肌纤维放松:当神经冲动停止时,肌浆网重新吸收钙离子,肌球蛋白与肌原纤维之间的连接断开,肌纤维恢复松弛状态。

这些步骤构成了骨骼肌收缩的基本机制和过程。

根据大脑的指令,神经冲动通过神经肌肉接头到达肌肉纤维,从而引发肌纤维的收缩。

一旦神经冲动停止,肌纤维则会放松恢复松弛状态。

骨骼肌的收缩和放松过程协调地进行,使得人体能够进行各种运动。

骨骼肌的结构与收缩机制

骨骼肌的结构与收缩机制

骨骼肌的结构与收缩机制骨骼肌是人体最常见的肌肉类型,也是我们日常活动中的主要肌肉之一。

了解骨骼肌的结构和收缩机制,不仅能够帮助我们更好地理解肌肉的功能和运动原理,还能够在体育锻炼和健身训练中发挥重要的指导作用。

一、骨骼肌的结构骨骼肌是由肌肉纤维组织组成的,每个肌纤维都是由许多肌原纤维排列而成。

肌原纤维具有明显的纵向纹理,由许多肌节组成。

每个肌节由数以百计的肌小节构成,每个肌小节中都有一个细胞质内用于储存能量的特殊结构 - 肌小节溶酶体。

肌原纤维内的基本单位是肌节,肌节也是由许多肌小节构成的。

肌小节内部含有大量的肌原丝蛋白纤维,这些纤维以高度有序的方式排列,形成肌小节的基本结构。

肌原丝蛋白纤维由两种蛋白质组成:肌动蛋白和肌球蛋白。

肌动蛋白是一种长链状的蛋白质,可以与肌球蛋白相互作用,从而引发骨骼肌的收缩。

二、骨骼肌的收缩机制骨骼肌的收缩是由神经冲动引起的。

当神经冲动到达骨骼肌纤维时,会引发肌纤维内部的一系列生化反应。

首先,神经冲动会导致肌原纤维中的细胞质释放出储存在肌小节溶酶体中的能量物质 - 肌原磷酸肌酸。

肌原磷酸肌酸会与肌小节中的肌球蛋白结合,从而改变肌纤维内肌球蛋白与肌原丝蛋白之间的相互作用。

接下来,肌动蛋白与肌球蛋白之间的相互作用会引发一系列的化学反应,形成肌原纤维内大量的交叉桥结构。

这些交叉桥结构能够通过与肌原丝蛋白的结合和解离,引发肌纤维的收缩和松弛。

当交叉桥结构通过与肌原丝蛋白的结合发生变化时,肌原纤维会缩短,并通过肌节和肌纤维之间的连接,将力量传递给肌腱,从而实现身体的运动。

总结:骨骼肌的结构和收缩机制是人体肌肉运动的重要基础。

了解骨骼肌的结构组织和收缩机制,有助于我们理解肌肉的功能和运动原理。

在体育锻炼和健身训练中,根据骨骼肌的结构和收缩机制制定合理的训练计划,能够更加高效地进行肌肉锻炼,提高运动表现和身体素质。

同时,骨骼肌的结构和收缩机制也为相关疾病的预防和治疗提供了理论依据,对于维护身体健康具有重要意义。

简述骨骼肌的收缩原理及过程

简述骨骼肌的收缩原理及过程

简述骨骼肌的收缩原理及过程骨骼肌是人体中最多的肌肉类型,也是人体运动的主要肌肉。

骨骼肌的收缩原理及过程是指骨骼肌在接受刺激后发生收缩的机理和过程。

骨骼肌的收缩原理基于肌肉纤维的结构和肌肉细胞内的细胞内钙离子浓度变化,分为横纹收缩机制和肌原纤维收缩机制。

横纹收缩机制是骨骼肌的基本收缩原理。

骨骼肌由许多并排排列的肌原纤维组成,每个肌原纤维又由许多并排排列的肌节组成。

每个肌原纤维由横纹组成,称为肌纤维横纹。

当肌纤维受到神经冲动刺激时,肌纤维内的肌节开始收缩。

肌节内,肌细胞收缩时,其中的肌原丝(包含肌球蛋白和肌原蛋白)相互滑动,导致肌节的长度缩短。

这种肌细胞内肌原丝滑动的过程是骨骼肌收缩的基本机制,被称为横纹收缩机制。

肌原纤维收缩机制是横纹收缩机制的详细过程。

肌原纤维中的肌节由许多肌原丝组成,其中包括肌原蛋白和肌球蛋白。

肌球蛋白由肌原蛋白组成的球状结构,可以结合肌丝上的ATP (三磷酸腺苷)和钙离子。

当肌纤维受到神经冲动刺激时,神经末梢释放乙酰胆碱刺激肌原纤维,促使胞浆内的钙离子释放到肌原纤维内。

钙离子结合到肌球蛋白上,改变肌球蛋白的构象,使其与肌原丝上的肌原蛋白形成跨桥。

当肌纤维受到刺激后,肌原纤维内的肌丝开始滑动,即横纹收缩。

肌原纤维的收缩通过许多肌纤维同时收缩,形成骨骼肌的整体收缩。

肌纤维收缩的过程中,ATP起着重要的作用。

当肌纤维收缩时,肌原纤维内的ATP被水解成ADP(二磷酸腺苷)和磷酸,释放出能量。

这种能量驱动肌原丝的滑动,促使肌纤维收缩。

当肌原纤维收缩结束时,肌原丝上的ADP和磷酸被重新合成成ATP,以供下一次肌纤维收缩时使用。

这个能量的合成过程称为肌原丝复位过程。

总结起来,骨骼肌的收缩原理与横纹收缩机制和肌原纤维收缩机制密切相关。

横纹收缩机制是肌细胞内肌原纤维横纹相互滑动的基本机制,而肌原纤维收缩机制详细阐述了肌原纤维内肌球蛋白和肌原蛋白的结合及肌丝的滑动过程。

这些过程受到神经冲动和钙离子的调节,以及ATP的供给,实现了骨骼肌的收缩和运动。

骨骼肌收缩的分子机制课件

骨骼肌收缩的分子机制课件
神经递质
神经递质在神经和肌肉之间传递 信息,如乙酰胆碱,可以触发肌 肉收缩。
内分泌调节
激素调节
激素通过血液循环作用于骨骼肌,影 响肌肉的收缩状态,如睾酮和皮质醇 。
自分泌调节
肌肉本身产生的激素或代谢产物,如 乳酸,可以影响肌肉的收缩。
自身调节
肌肉内代谢
肌肉内的代谢过程,如能量物质(ATP) 的生成和消耗,直接影响肌肉的收缩。
重时可能导致瘫痪。
治疗肌肉萎缩症的方法包括药 物治疗、物理治疗、康复训练 等,但目前尚无根治方法。
肌肉强直症
肌肉强直症是一种肌肉疾病,其特征 是肌肉持续性的僵硬和强直。
肌肉强直症的症状包括肌肉僵硬、疼 痛、活动受限等,严重时可能导致畸 形。
肌肉强直症的病因可能与遗传、神经 、免疫等多种因素有关。
治疗肌肉强直症的方法包括药物治疗 、物理治疗、康复训练等,但目前尚 无根治方法。
骨骼肌收缩机制的基因组学研究
基因组学研究为骨骼肌收缩机制提供 了更广阔的视角。通过研究基因组中 与肌肉收缩相关的基因及其变异等位 基因,可以深入了解肌肉收缩的遗传 基础。
VS
基因组学研究主要关注与肌肉收缩相 关的基因,如钙离子通道基因、肌球 蛋白基因等,以及它们在不同个体和 环境中的表达和调控。这些基因的表 达和变异情况,可以影响肌肉收缩的 特性和表现。感知肌肉的长度 和张力变化,进而调节肌肉的收缩。
04
骨骼肌疾病与骨骼肌收缩机制
肌肉萎缩症
01
02
03
04
肌肉萎缩症是一种肌肉疾病, 其特征是肌肉体积缩小和力量
减弱。
肌肉萎缩症的病因有多种,包 括遗传、神经、免疫和代谢等
多种因素。
肌肉萎缩症的症状包括肌肉无 力、易疲劳、肌肉疼痛等,严

骨骼肌收缩的基本原理

骨骼肌收缩的基本原理

骨骼肌收缩的基本原理
人体肌肉是人体的一个重要组成部分,其收缩机制非常复杂。

骨骼肌
是人体中最重要的肌肉类型,主要用于控制骨骼的运动和姿势改变。

本文围绕骨骼肌收缩的基本原理,分步骤进行阐述。

第一步:神经冲动的传导。

骨骼肌的收缩是由神经系统直接控制的。

当身体需要进行某种运动时,大脑会向相应的神经元发出指令。

这些神经元将其传递给骨骼肌的神
经末梢,促使肌肉细胞释放出钙离子。

第二步:肌肉钙离子释放。

一旦神经元将信号传递到肌肉上,钙离子就会进入肌肉细胞。

这些钙
离子结合在细胞中的肌球蛋白上,从而导致了一个叫做“肌横纹周期”的事件序列,这意味着由肌球蛋白直接发出力量,蛋白离子通过横向
移动的方式来引发肌肉的收缩。

第三步:肌肉收缩。

一旦钙离子与肌球蛋白结合,肌肉细胞会开始收缩,通过蛋白离子、
肌球蛋白”相互滑动“的方式来实现肌肉收缩,肌细胞向着肌腱均匀
的收缩,造成整个肌肉的缩短,从而产生力量和运动。

第四步:反应和松弛。

神经元传递信号结束后,肌肉也会快速松弛。

这是因为肌肉细胞中的
钙离子被再次储存到内膜网(肌细胞内的一种亲水膜系统),并放弃
肌球蛋白,肌肉细胞再次陷入松弛状态。

总之,人体肌肉的收缩非常复杂,但它所依赖的机制可以归结为四个
重要步骤:神经冲动传导、肌肉钙离子释放、肌肉收缩和反应及松弛。

通过理解这些机制,人们能够更好地了解肌肉的本质和如何激发肌肉
的力量。

骨骼肌细胞的收缩

骨骼肌细胞的收缩

骨骼肌细胞的收缩(1)神经-骨骼肌接头处兴奋的传递过程:运动神经末梢与肌细胞特殊分化的终板膜构成神经-肌接头。

它主要是Ca2+ 内流触发突触小泡的出胞机制;终板膜主要对Na+通透性增高,Na+内流,使终板膜去极化产生终板电位。

终板电位是局部电位,可通过电紧张活动使邻近肌细胞膜去极化,达阈电位而暴发动作电位,表现为肌细胞的兴奋。

(2)骨骼肌收缩的机制:胞质内Ca2+浓度升高促使细肌丝上肌钙蛋白与Ca2+结合,使原肌凝蛋白发生构型变化,暴露出细肌丝肌动蛋白与横桥结合活化位点,肌动蛋白与粗肌丝肌球蛋白的横桥头部结合,造成横桥头部构象的改变,通过横桥的摆动,拖动细肌丝向肌小节中间滑行,肌节缩短,肌肉收缩。

横桥ATP酶分解ATP,为肌肉收缩做功提供能量;胞质内Ca2+浓度升高激活肌质网膜上的钙泵,钙泵将Ca2 +回收入肌质网,使胞质中钙浓度降低,肌肉舒张。

(3)兴奋―收缩耦联基本过程:将肌细胞膜上的电兴奋与胞内机械性收缩过程联系起来的中介机制,称为兴奋-收缩耦联。

其过程是肌细胞膜动作电位通过横管系统传向肌细胞深处,激活横管膜上的L型Ca2+通道,激活连接肌浆网膜上的Ca2+释放通道,释放Ca2+入胞质;胞质内Ca2+浓度升高促使细肌丝上肌钙蛋白与Ca2+结合,使原肌凝蛋白发生构型变化,暴露出细肌丝肌动蛋白与横桥结合活化位点,肌动蛋白与粗肌丝肌球蛋白的横桥头部结合,引起肌肉收缩。

兴奋-收缩耦联因子是C a2+。

【注意事项】大家在用药的时候,药物说明书里面有三种标识,一般要注意一下:1.第一种就是禁用,就是绝对禁止使用。

2.第二种就是慎用,就是药物可以使用,但是要密切关注患者口服药以后的情况,一旦有不良反应发生,需要马上停止使用。

3.第三种就是忌用,就是说明药物在此类人群中有明确的不良反应,应该是由医生根据病情给出用药建议。

如果一定需要这种药物,就可以联合其他的能减轻不良反应的药物一起服用。

大家以后在服用药物的时候,多留意说明书,留意注意事项,避免不良反应的发生。

《生理学》 细胞的基本功能——4肌细胞的收缩

《生理学》 细胞的基本功能——4肌细胞的收缩

张力 最大张力
初长度 最适初长
异长调节
最适初长度
最适初长度或最适前 负荷时, 负荷时 , 肌小节内的粗 细肌丝处于最理想的重 叠状态, 每一个横桥附 叠状态 , 近都有能与之起作用的 细肌丝存在, 细肌丝存在 , 可出现最 佳收缩效果。 佳收缩效果
2.后负荷对肌肉收缩的影响: 后负荷对肌肉收缩的影响:
二、骨骼肌收缩的分子机制
Relaxed state
Initiation of contration
肌凝蛋白 肌动蛋白 肌球蛋白 肌钙蛋白
收缩蛋白
调节蛋白
(一)肌丝滑行过程
肌浆中Ca 浓度↑→ ↑→Ca 与肌钙蛋白结合→ 肌浆中Ca2+浓度↑→Ca2+与肌钙蛋白结合→肌钙蛋白 构型变化→原肌凝蛋白构型变化→ 构型变化→原肌凝蛋白构型变化→肌纤蛋白上活性位点暴露 →横桥与肌纤蛋白结合→横桥ATP酶激活→分解ATP放出能量 横桥与肌纤蛋白结合→横桥ATP酶激活→分解ATP放出能量 ATP酶激活 ATP →横桥头部摆动并拖动细肌丝→肌丝滑行(肌肉收缩)。 横桥头部摆动并拖动细肌丝→肌丝滑行(肌肉收缩)
1. 粗肌丝 (thick filament)
肌凝蛋白(肌球蛋白,myosin)组成 肌凝蛋白(肌球蛋白,myosin)组成 bridge): 可逆性与细肌丝结合, 横桥 (cross bridge):1. 可逆性与细肌丝结合, 拖动细肌丝滑行;2.具有ATP酶活性。 拖动细肌丝滑行;2.具有ATP酶活性。 具有ATP酶活性
在一定范围内, 在一定范围内 , 随着前负 荷的增加, 荷的增加 , 肌肉收缩做等长收 缩时产生的张力也增加。 缩时产生的张力也增加 。 前负 荷过大, 荷过大 , 肌肉收缩时产生的张 力反而减小。 力反而减小。 肌肉收缩时产生最大张力 的前负荷或初长度称为最适前 的前负荷或初长度称为 最适前 负荷或最适初长度。 负荷或最适初长度。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

骨骼肌细胞的收缩机制-------------滑行学说
洪伟
(丽水学院生物,科学师范12,29)
【摘要】:Huxley等人哎20世纪50年代初提出了用肌小结中粗、细肌丝的相互滑行来解释肌肉收缩的机制。

这一理论就是滑行理论(sliding theory)。

【关键词】:肌丝滑行神经细胞
【肌丝滑行理论】:是肌肉收缩机制的一种理论。

主要指:横纹肌收缩时在形态上的表现为整个肌肉和肌纤维的缩短,但在肌细胞内并无肌丝或它们所含的分子结构的缩短,而只是在每一个肌小节内发生了细肌丝向粗肌丝之间的滑行。

结果使肌小节长度变短,造成整个肌原纤维、肌细胞和整条肌肉的缩短。

其证据是:肌肉收缩时,肌细胞的暗带长度不变,明带长度变短,而肌球蛋白(粗肌丝)在暗带,肌动蛋白(细肌丝)在明带。

【神经细胞作用原理】:当一个神经冲动传递到突触小体,引起去极化使得Ca2+进入细胞膜,使突触小泡向前移动并释放出乙酰胆碱(ACH),乙酰胆碱(ACH)与后膜上的受体结合,引起终板电位并向两侧扩布到两侧的肌细胞膜形成动作电位,并沿细胞膜传递到肌细胞的横管系统使两侧终池释放出Ca2+,Ca2+与肌钙蛋白结合使原肌球蛋白发生变化,暴露出肌动蛋白于横桥结合的位点,接着横桥和肌动蛋白相结合后横桥分解ATP获得能量使横桥循环把细肌丝不断地向肌节中心M线拉,最终达到肌肉收缩。

横桥周期的长短决定着肌肉的缩短速度,肌浆中Ca2+浓度升高是引起肌肉收缩的触发原因。

【参考文献】:河南职工医学院院报2004年16卷4期。

相关文档
最新文档