基于快速排序法的MMC电容电压均衡控制策略

基于快速排序法的MMC电容电压均衡控制策略
基于快速排序法的MMC电容电压均衡控制策略

Smart Grid 智能电网, 2017, 7(2), 97-104

Published Online April 2017 in Hans. https://www.360docs.net/doc/791279574.html,/journal/sg https://https://www.360docs.net/doc/791279574.html,/10.12677/sg.2017.72011

文章引用: 唐茂林, 肖超, 欧阳金鑫, 余锐, 张茜, 熊小伏. 基于快速排序法的MMC 电容电压均衡控制策略[J]. 智能

Capacitance-Voltage Balancing Control Method for the Submodule of Modular Multilevel Converter Based on the Rapid Sequencing Method

Maolin Tang 1, Chao Xiao 2, Jinxin Ouyang 2, Rui Yu 1, Xi Zhang 1, Xiaofu Xiong 2

1State Grid Southwest Division, Chengdu Sichuan

2

State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing

Received: Apr. 13th , 2017; accepted: Apr. 27th , 2017; published: Apr. 30th

, 2017

Abstract

With the improvement of the engineering capacity and the DC voltage level of FACTS based on modular multilevel converter (MMC), it is putting forward higher requirement for capacitor bal-ance control issue of MMC sub-modules (SMs). In order to reduce the computational complexity of voltage balancing sorting of SMs and switching dissipation of MMC, a new voltage balancing con-trol improved algorithm based on Quick Sort method and divided conquer was presented in this paper: dividing into groups twice according to the switching control instruction as well as charg-ing and discharging active status of bridge arms in each control cycle; then choosing the SMs which have large difference with rated voltage within the minimum range on the basis of specific switching number; avoiding the prophecy of collating all SMs repeatedly. A MMC model has been set up on the PSCAD. Finally, the effectiveness of the design control method was verified. The re-sults show that this voltage balancing method can be realized effectively under low switching dis-sipation and low ranking calculation.

Keywords

Modular Multilevel Converter (MMC), Sub-Module, Capacitance-Voltage Balancing Control, The Rapid Sequencing Method, Switching Frequency

基于快速排序法的MMC 电容电压均衡控制策略

唐茂林1,肖 超2,欧阳金鑫2,余 锐1,张 茜1,熊小伏2

1

国家电网公司西南分部,四川 成都

唐茂林 等

2

重庆大学输配电装备及系统安全与新技术国家重点实验室(重庆大学),重庆

收稿日期:2017年4月13日;录用日期:2017年4月27日;发布日期:2017年4月30日

摘 要

随着基于模块化多电平换流器的柔性直流输电工程容量和直流侧电压等级的提高,对子模块电容平衡控制提出了更高的要求。为降低众多子模块均压排序的计算量及MMC 开关损耗,提出一种基于分治思想和快速排序算法的改进子模块电容电压均衡控制策略。根据每个控制周期的投切控制指令和桥臂充放电状态,将待投切子模块电容电压值进行两轮分组,然后根据具体投切数量在最小范围内选取与额定电容电压差值较大的子模块进行投切操作,从而避免对所有子模块进行重复排序。最后,通过在PSCAD/EMTDC 中搭建MMC 模型对本文方法进行了验证,结果表明该策略可以有效减小排序计算量并降低MMC 开关损耗。

关键词

模块化多电平换流器,子模块,电容电压均衡控制策略,快速排序法,开关频率

Copyright ? 2017 by authors and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY). https://www.360docs.net/doc/791279574.html,/licenses/by/4.0/

1. 引言

MMC-HVDC 采用子模块级联型拓扑,具有模块化结构易于扩展、低次谐波含量低、损耗小的优点[1] [2],使得基于模块化多电平换流器的柔性直流输电得到广泛的应用。

模块化多电平换流器直流侧储能由多个子模块直流电容电压串联维持,直流侧电压的控制不仅需要控制总直流电压,而且还需要对各个子模块电容电压进行均衡控制。目前,传统基于排序的传统子模块电容电压平衡控制算法会产生较大的计算量和较高的开关频率[3]。

为提高优化子模块电压均压策略,国内外学者在均压控制策略方面也有一定的研究工作。文献[4]提出了适用于载波相移-正弦脉宽调制策略的MMC 电容电压优化平衡控制方法,但不适应于最近电平逼近的调制策略。文献[5]通过改进传统均压控制法降低开关频率,但增加了控制器计算量;文献[6]根据电流方向触发导通的传统均压法分别引入双保持因子与能量均衡因子,使子模块间的能量保持相对平衡;文献[7]采用质因子分解法提出一种优化的混合排序法,通过引入希尔排序算法大幅降低了排序次数。文献[8] [9]基于冒泡法分别得到投入、退出状态的电压最值子模块,可在较少计算量下实现电容电压的均衡控制,但排序算法的复杂度仍有降低的空间。

针对现有排序方法普遍存在的排序算法效率和开关频率损耗不容易同时满足的问题,本文基于快速排序法,根据导通子模块中桥臂电流方向及子模块电容电压大小,对三相6个桥臂均先选合适的分界元素将子模块电容电压值分为独立的两组值,然后采用分治策略思想对MMC 子模块电容电压进行选择排序,不对每一桥臂所有子模块进行完全排序,降低传统排序计算时间,能更有效地提升MMC 桥臂子模块电容均压算法的计算速度。

Open Access

唐茂林等2. MMC直流输电基本结构

如图1所示,a) 为MMC型直流输电拓扑一端的系统结构,其中每个桥臂由n个子模块和一个电抗

器L串联构成,上下两个桥臂构成一个相单元。b) 为半桥结构的柔性直流输电MMC子模块[4]。u C为子

模块电容电压瞬时值,在稳态下的直流分量为U C。u SM、i SM分别为子模块的输出电压和电流的瞬时值。

反并联二极管时,规定S i1 = 1,S i2 = 0,子模块为“投入”状态,此时子模块电容C在i SM的作用下充电或放电,u SM = u C;反之,i SM流过下侧的IGBT或反并联二极管时,规定S i1 = 0,S i2 = 1,称该子模块为“切除”状态;理论上不允许上下IGBT都流过电流的情况发生,若S i1 = 0,S i2 = 0则子模块闭锁。

3. 基于快速排序法的电容电压均衡控制策略

3.1. 总体控制流程

图2为基于快速排序法的MMC子模块电容电压平衡控制算法控制方法流程图。本文所述方法在已

知某次需要投入子模块个数时,根据模块充放电状态,自定义电压基准值对待投切子模块电容电压进行

多轮筛选以确定进行快速排序的最小子模块电压范围,避免对每个桥臂所有子模块电容电压进行排序,

可在桥臂子模块数量较多时,在较低开关频率下实现电压的均衡控制,相比于直接基于电容电压排序的

均衡控制策略减小子模块电容电压总排序计算次数,计算量较小。具体实现步骤如下:

①定义两个数组A[x n ?1]、B[y m ?1]分别存放桥臂中未投入的N个以及处于投入状态的M个子模块电容电压值。

②根据换流站控制层给出的下一个控制周期需投入或切除的子模块个数,判断以子模块电压额定值U N为分界元素进行第一轮初步排序的数组元素来源于已投数组还是待投数组。

需投ΔN个子模块时,根据桥臂电流充放电状态,选取进行第二轮排序的分界元素以及A[x n ? 1]中需进行第二轮排序的元素;此后,比较A[x n ? 1]低-低压值类子模块个数或是A[x n ? 1]高-高压值类子模块个数

(a) (b)

Figure 1. The topology of modular multilevel converter

图1. MMC的拓扑结构

唐茂林等

Figure 2. Arithmetic flow chart of voltage balancing control

图2. 电压均衡控制算法流程图

与ΔN的大小,选取后续快速排序的数组元素。需切ΔN个子模块时,不论桥臂电流方向,均以1.05U N 为分界元素对B[y m ?1]高压值类数组中的子模块电容电压值进行初步排序,并根据B[y m-1]高-高压值类子模块个数与ΔN的差值,确定进行完整快速排序法以及需投入的的数组元素。

③最后,等待下一个控制周期,重复步骤1-步骤4。

3.2. 需投入子模块情况均压控制策略

在原有电容电压控制策略基础上,本文基于快速排序法思想,在读取某时换流站控制层实测电压值后,将已投的M个子模块电容电压存入数组B[y m ? 1]中,y m代表投入子模块序号,同理设定数组A[x n ? 1]用于存放控制层实时测量的待投入子模块电容电压值,根据ΔN的正负,判断是进行一轮排序的元素来源于数组A[x n ? 1]或是B[y m ? 1],具体算法如下所示,图3~图5旨在根据换流站控制层投切指令和桥臂电流方向,确定最小的子模块排序范围,避免针对所有子模块进行排序增加计算量。

如图3,当桥臂电流I arm为充电方向时,以U N为分界元素进行快速排序法的第一个步骤后将数组分为电容电压大于U N和小于U N的独立两组,A[x0]~A[x N1 ? 1]及A[x N1]~A[x N ? 1]内部的子模块电压大小顺序仍然是乱序。选择N1个元素A[x0]~A[x N1 ? 1],以0.95U N为第二个分界元素对其进行初步排序,得到低于

0.95U N的a1个元素A[x0]~A[x a1 ? 1]和高于0.95U N的a2个元素A[x a1]~A[x N1 ? 1],两组元素内部的子模块电

压大小顺序仍是乱序。

若a1 < ΔN,则对A[x N ? 1]低-高压值类数组进行快速排序,并选取其中电压最小的ΔN-a1个电压所对应子模块和A[x N-1]低-低压值类数组中所对应的全部子模块投入;如果a1 > ΔN,则对A[x N-1]低-低压值类数组进行快速排序,并选取其中电压最小的ΔN个电压所对应子模块投入。

唐茂林等

Figure 3. Arithmetic flow chart of voltage balancing control

when arm-current is charging

图3. 桥臂电流充电时均压控制算法流程图

Figure 4. Arithmetic flow chart of voltage balancing control

when arm-current is discharging

图4. 桥臂电流放电时均压控制算法流程图

Figure 5. Arithmetic flow chart of voltage balancing control

when ΔN < 0

图5. ΔN < 0时均压控制策略流程图

如图4所示,当桥臂电流I arm为放电方向时,选择N2个元素A[x N1]~A[x N ? 1],以1.05U N为分界元素对其进

唐茂林 等

行初步排序,得到低于1.05U N 的a 3个元素A[x N1]~A[x N1 + a3 ? 1]以及高于1.05U N 的a 4个元素A[x N1 + a3]~A[x N ? 1]。

若ΔN < a 1,则对A[x N1+a3]~A[x N ? 1]中元素进行快速排序,选出需投的电容电压较高的ΔN 个子模块投入;若a 4 < ΔN ,则对A[x N1]~A[x N1+a3 ? 1]使用快速排序法,选择电容电压最高的ΔN-a 4个对应的子模块和A[x N1 + a3]~A[x N ? 1]对应的子模块投入。

选取合适的组别进行完整的快速排序法运算选出需投子模块,执行完后跳至步骤5。

3.3. 需切除子模块情况均压控制策略

如图5所示,需切子模块在初步排序后,分为低于U N 的N 3个元素B[y 0]~B[y N3-1]以及高于U N 的N 4

个元素B[y N3]~B[y M-1] (N 3 + N 4 = M)之后,选择B[y N3]~B[y M-1],以1.05U N 为基准对B[y N3]~B[y M ? 1]进行快速排序法的第一个步骤,得到低于1.05U N 的b 1个元素B[y N3]~B[y N3 + b1 ? 1]以及高于1.05U N 的b 2个元素B[y N3 + b1]~B[y M ? 1]。若M-ΔN < b 2,则对B[y N3 + b1]~B[y M ? 1]进行快速排序法,选出需切除的电容电压最高的ΔN 个子模块;若b 2 < ΔN ,则对B[y N3]~B[y N3 + b1 ? 1]进行快速排序法,选出其中电容电压最高的△N-b 2个子模块与b 2个元素B[y N3+b1]~B[y M-1]对应的子模块切除。

在桥臂子模块与投切个数较多的情况下采用本文基于快速排序的控制方法,更多得依赖于程序对数据的处理而不是过多开关各个子模块,相对于具有很高开关频率的传统均压控制方法,本方法具有比较低的开关频率,与高操作性与高效性。

4. 仿真结果分析

为验证本文所提电压均衡控制策略对计算量的优化效果,在PSCAD/EMTDC 仿真平台上分别搭建了41、201以及401电平MMC-HVDC 输电系统,如图6所示,对本文提出的基于快速排序原理的均压控制策略有效性进行验证。其中,仿真步长为20 μs ,交流系统的额定电压均为220 kV ,直流线路电压为±200kV ,传送容量为600 MW 。子模块电容值为3000 mF ,环流电抗器电感值为0.04 H 。

以整流换流站a 相上桥臂子模块为研究对象,图7和图8分别为采用基于冒泡算法和本文所提算法

Figure 6. System construction drawing of MMC-HVDC

图6. MMC-HVDC 系统结构图

Figure 7. Switching frequency of submodules based on bubble sort algorithm

图7. 基于冒泡算法的子模块开关频率

t/s

子模块工作状态:

0 切出;1 投入00.20.40.60.81

唐茂林 等

Figure 8. Switching frequency of submodules based on sort algorithm in this article

图8. 基于本文算法的子模块开关频率

Table 1. Calculation contrast in normal conditions 表1. 正常情况计算量对比

电平数

本文所提电压均衡策略

基于冒泡法的均压控制策略

较好情况

较坏情况 41 231 820 399.75~820 201 1526 5151 9999.75~20100 401

5551

20301

39999.75~80200

得到触发信号波形。在采用基于快速排序算法的均压策略下,子模块IGBT 的开关次数明显得到减低。

对于桥臂子模块总数为n 的MMC ,每次冒泡计算量为n ? 1,算法需要执行n/2(n/2-1)~n(n-1)/2次比较指令[10],本文所述的基于快速排序法的计算量与采用冒泡算法的计算量对比如表1所示。由表1可得,随着电平数的增加,本文采用的快速排序方法具有更加明显的优势。

5. 结论

本文提出一种基于快速排序法的改进MMC 子模块电压均衡控制方法,以期用较小的计算量来实现子模块电容电压均衡控制。与基于冒泡法的传统排序方法相比较,本文算法针对子模块数量较多的情况,明显减小了开关频率损耗。在PSCAD/EMTDC 仿真软件上搭建了MMC-HVDC 仿真模型,对本文所提排序算法进行验证,结果表明本文方法可以实现较小开关频率的同时,明显减小排序计算量。

基金项目

国家电网公司科技项目资助(XNFB-201605-FW-07);国家重点研发计划智能电网技术与装备重点专项(2016YFB0900600)。

参考文献 (References)

[1] 杨晓峰, 林智钦, 郑琼林, 等. 模块组合多电平变换器的研究综述[J]. 中国电机工程学报, 2013, 33(6): 1-15. [2] 韦延方, 卫志农, 孙国强, 等. 一种新型的高压直流输电技术—MMC-HVDC[J]. 电力自动化设备, 2012, 32(7):

1-9. [3] 刘钟淇, 宋强, 刘文华. 基于模块化多电平变流器的轻型直流输电系统[J]. 电力系统自动化, 2010, 34(2): 53-58. [4] 许建中, 赵成勇. 模块化多电平换流器电容电压优化平衡控制算法[J]. 电网技术, 2012, 36(6): 256-261. [5] 屠卿瑞, 徐政, 等. 一种优化的模块化多电平换流器电压均衡控制方法[J]. 电工技术学报, 2011, 26(5): 15-20.

t/s

2.0

2.05

2.10

2.15

2.20 2.25 2.3

子模块工作状态:

0 切出;1 投入00.20.40.60.8

1

唐茂林等

[6]陆翌, 王朝亮, 等. 一种模块化多电平换流器的子模块优化均压方法[J]. 电力系统自动化, 2014, 38(3): 52-58.

[7]何智鹏, 许建中, 苑宾, 等. 采用质因子分解法与希尔排序算法的MMC电容均压策略[J]. 中国电机工程学报,

2015, 35(12): 2980-2988.

[8]Wang, L., Wang, P., Li, Z.X., et al. (2013) A Novel Capacitor Voltage Balancing Control Strategy for Modular Multi-

level Converters (MMC). IEEE International Conference on Electrical Machines and Systems, 1804-1807.

[9]喻锋, 王西田. 基于冒泡原理的模块化多电平换流器快速电压均衡控制策略[J]. 电力自动化设备, 2015, 35(9):

81-86.

[10]陆翌, 王朝亮, 彭茂兰, 等. 一种模块化多电平换流器的子模块优化均压方法[J]. 电力系统自动化, 2014, 38(3):

52-58.

期刊投稿者将享受如下服务:

1. 投稿前咨询服务(QQ、微信、邮箱皆可)

2. 为您匹配最合适的期刊

3. 24小时以内解答您的所有疑问

4. 友好的在线投稿界面

5. 专业的同行评审

6. 知网检索

7. 全网络覆盖式推广您的研究

投稿请点击:https://www.360docs.net/doc/791279574.html,/Submission.aspx

期刊邮箱:sg@https://www.360docs.net/doc/791279574.html,

电压自动控制系统

自动电压控制系统 姓名:张晓玲学号:1020111139班级:电力1103班 摘要:介绍了变电站电压和无功控制的方法和调控原则,以及电压无功自动控制装置(VQC)的原理以及应用。 引言: 随着对供电质量和可靠性要求的提高,电压成为衡量电能质量的一个重要指标,电压质量对电网稳定及电力设备安全运行具有重大影响。无功是影响电压质量的一个重要因素,保证电压质量的重要条件是保持无功功率的平衡,即要求系统中无功电源所供应的无功功率等于系统中无功负荷与无功损耗之和,也就是使电力系统在任一时间和任一负荷时的无功总出力(含无功补偿)与无功总负荷(含无功总损耗)保持平衡,以满足电压质量要求。 1概述 变电站调节电压和无功的主要手段是调节主变的分接头和投切电容器组。通过合理调节变压器分接头和投切电容器组,能够在很大程度上改善变电站的电压质量,实现无功潮流合理平衡。调节分接头和投切电容器对电压和无功的影响为:上调分接头电压上升、无功上升,下调分接头电压下降、无功下降(对升档升压方式而言,对升档降压方式则相反);投入电容器无功下降、电压上升,切除电容器无功上升、电压下降。 2 VQC的基本原理 简单系统接线图如图2.1所示,Us为系统电压;U1、U2为变电站主变高低压侧电压,U L为负荷电压,P L,Q L分别为负荷有功和无功功率,K T为变压器变比,Qc为补偿无功功率,Rs,Xs,R L,X L分别为线路阻抗参数,R T,X T为变压器阻抗参数。

图2.1 变电站等值电路图 (1) 调节有载调压器的变比 由于12T U U K =为可控变量,当负荷增大,降低K T 以提高U 2,从而以提高U 2 来补偿线路上的电压损耗,反正亦然。 (2) 改变电容组的数目 当投入电容量Q c 后,有: 2222()()()S T C S T S P R R Q Q X X U U U ++-+=- (2.1) 比较以上两式可见Qc 的改变会影响系统中各点电压值和无功的重新分配,当负荷增大,通过降低从系统到进站线路上的电压降△U S 以亦可增大U T2,以抵消△U L 的增大。 投入Qc 后网损为: 222222222222() ()()()C C S T S T P Q Q P Q Q S R R j X X U U +-+-?=+++ (2.2) 可见网损随222()C Q Q Q =-,即主变低压侧无功功率的平方而变化,在输送 功率一定的情况下,Q 2越小,网损越小。理论上,当Q 2=0时功率损耗最小,因此,对于简单的辐射形网络,提高功率因数是降低网损的有效措施。 3 VQC 的控制目标 (1) 保证电压合格 主变低压母线电压以必须满足:U L ≤U 2≤U H (U H 、U L 既是规定的母线电压上

电力电容器保护原理解释

常见电力电容器保护类型: 电容器保护 1 保护熔丝 现代电容器组的每台电容器上都装有单独的熔丝保护,这种熔丝结构简单,安装方便,只要配合得当,就能够迅速将故障电容器切除,避免电容器的油箱发生爆炸,使附近的电容器免遭波及损坏。此外,保护熔丝还有明显的标志,动作以后很容易发现,运行人员根据标志便可容易地查出故障的电容器,以便更换。 2 过电流保护(电流取自线路TA) 过电流保护的任务,主要是保护电容器引线上的相间短路故障或在电容器组过负荷运行时使开关跳闸。电容器过负荷的原因,一是运行电压高于电容器的额定电压,另一种情况是谐波引起的过电流。 为避免合闸涌流引起保护的误动作,过电流保护应有一定的时限,一般将时限整定到0.5s以上就可躲过涌流的影响。 3 不平衡电压保护(电压取自放电TV二次侧所构成的开口三角型) 电容器发生故障后,将引起电容器组三相电容不平衡。电容器组的各种主保护方式都是从这个基本点出发来确定的。 根据这个原理,国内外采用的继电保护方式很多,大致可以分为不平衡电压和不平衡电流保护两种。这两种保护,都是利用故障电容器被切除后,因电容值不平衡而产生的电压和电流不平衡来启动继电器。这些保护方式各有优缺点,我们可以根据需要选择。 单星形接线的电容器组目前国内广泛采用开口三角电压保护。 对于没有放电电阻的电容器,将放电线圈的一次侧与电容器并联,二次侧接成开口三角形,在开口处连接一只低整定值的电压继电器,在正常运行时,三相电压平衡,开口处电压为零,当电容器因故障被切除后,即出现差电压U0,保护采集到差电压后即动作掉闸。 4 不平衡电流保护 这种保护方式是利用故障相容抗变化后,电流变化与正常相电流间形成差电流,来启动过电流继电器,以达到保护电容器组的目的。常见的不平衡电流保护的方式有以下两种: 4.1 双星形中性点间不平衡电流保护 保护所用的低变比TA串接于双星型接线的两组电流器的中性线上,在正常情况下,三相阻抗平衡,中性点间电压差为零,没有电流流过中性线。如果某一台或几台电容器发生故障,故障相的电压下降,中性点出现电压,中性线有不平衡电流I0流过,保护采集到不平衡电流后即动作掉闸。

电容器的接线方式

电容器的接线方式 (2011-07-29 17:08:10) 容量相同的三相电容器,当为星型接法和角型接法时,其额定电流是不相同的,容量的不同存在外形差异。当三相电容器的额定电压与电网额定电压相同时,三相电容器应采用角形连接,因为若采用星形连接,每相电压为线电压的1/1.732,电容器的输出容量将减少。当单相电容器的额定电压低于电网额定电压时,应采用星形连接,或几个电容器串联后,使每相电容器组的额定电压高于或等于电网的额定电压,再接成角形。 近期遇到一个用户补偿要求,其内容为“低压380V系统,要求并联电容器为三相、星型接法、中性点不引出”。可见这种补偿是可以的。其目的可能是线路补偿,工厂里可能用于短路容量较大的地方等。 容量(Q)和电容值(C)是两个概念。电容值是制造概念,当电容器制造出来后,除非损坏,C是不变的。容量是使用概念,是当电容器使用在某电压和频率下所能输出的无功 (Q=ωCU2)。所以,容量相同,电压相同,频率相同的三相电容器,无论是接星还是接角,电流都是一样的(Q=√3UI)。体积是和设计和工艺有关的,例如,我国目前1000v一下并联电容器均采用金属化电容器,由于基膜和镀膜工艺的关系,很少厂家使用4.8um的基膜,所以,690v(一般接星)产品和400v(一般接角)产品体积相差不大,而400v产品和230v (一般接角)产品体积相差较大。“低压380V系统,要求并联电容器为三相、星型接法、中性点不引出”。一般单纯补偿不采用如此接法。如果是系统电压高,可用440v甚至525v 产品,如果是分相补偿,“中性点”要引出。可能是用于滤波吧。如果用于滤波,建议采用滤波电容器,虽然贵点,毕竟谐波不是降低并联电容器使用电压就能解决的 一、当单台电容器为三相时,其标注的额定电压如6.6KV/√3和6.6KV。这两种标注方式主要区别在于说明此三相电容内部接线方式分为星型Y和三角型Δ两种。而加在三相电容器三个接线端电压均为线电压6.6KV。计算其额定电流时和标注中6.6KV/√3分母上的√3无关,不管是Y接法Δ接法,U均为6.6KV。而不是6.6KV/√3。根据三相电功率P=√3IU 得出I=P/√3U(不论星型Y和三角型Δ接法。不考虑COSΦ。)。P为电容器额定容量Karv ,U为电网线电压。 二、当单台电容器为单相时,其标注的额定电压如6.6KV/√3和6.6KV,这两种标注方式主要区别在于说明: 1、标称6.6KV /√3的单台电容当组成电容器组接在三相电网时只能接成Y,电网线电压为6.6KV时,此时电容两个接线柱实际电压为6.6KV/√3即3.8KV。否则当接成Δ时电容器就会过电压,当单只电容接电源时只能接在3.8KV电网中而不是6.6KV电网。这时计算单台电容器电流时I=P/U, P为电容器额定容量Karv ,U为6.6KV/√3即3.8KV也就是电网电压的相电压而不是线电压6.6KV。 2、标称6.6KV的单台电容当组成电容器组接在三相电网时只能接成Δ,如果接成Y时,由于电容器两端实际电压降成相电压6.6KV/√3即3.8KV,他就达不到它的标称Karv 值。

电力系统无功功率平衡与电压调整

电力系统无功功率平衡与电压调整 由于电力系统中节点很多,网络结构复杂,负荷分布不均匀,各节点的负荷变动时,会引起各节点电压的波动。要使各节点电压维持在额定值是不可能的。所以,电力系统调压的任务,就是在满足各负荷正常需求的条件下,使各节点的电压偏移在允许范围之内。 由综合负荷的无功功率一电压静态特性分析可知,负荷的无功功率是随电压的降低而减少的,要想保持负荷端电压水平,就得向负荷供应所需要的无功功率。所以,电力系统的无功功率必须保持平衡,即无功功率电源发出的无功功率要与无功功率负荷和无功功率损耗平衡。这是维持电力系统电压水平的必要条件。 一、无功功率负荷和无功功率损耗 1.无功功率负荷 无功功率负荷是以滞后功率因数运行的用电设备(主要是异步电动机)所吸收的无功功率。一般综合负荷的功率因数为0.6~O.9,其中,较大的数值对应于采用大容量同步电动机的场合。 2.电力系统中的无功损耗 (1)变压器的无功损耗。变压器的无功损耗包括两部分。一部分为励磁损耗,这种无功损耗占额定容量的百分数,基本上等于空载电流百分数0I %,约为1%~2%。因此励 磁损耗为 0/100Ty TN Q I S V (Mvar)(5-1-1)

另一部分为绕组中的无功损耗。在变压器满载时,基本上等于短路电压k U 的百分值,约 为10%这损耗可用式(6-2)求得 2(%)()100k TN TL Tz TN U S S Q S V (Mvar)(5-1-2) 式中,TN S 为变压器的额定容量(MVA);TL S 为变压器的负荷功率(MVA)。 由发电厂到用户,中间要经过多级变压,虽然每台变压器的无功损耗只占每台变压器容量的百分之十几,但多级变压器无功损耗的总和可达用户无功负荷的75%~100%左右。 (2)电力线路的无功损耗。电力线路上的无功功率损耗也分为两部分,即并联电纳和串联电抗中的无功功率损耗。并联电纳中的无功损耗又称充电功率,与电力线路电压的平方成正比,呈容性。串联电抗中的无功损耗与负荷电流的平方成正比,呈感性。因此电力线路作为电力系统的一个元件,究竟是消耗容性还是感性无功功率,根据长线路运行分析理论,可作一个大致估计。对线路不长,长度不超过100km ,电压等级为220kV 电力线路,线路将消耗感性无功功率。对线路较长,其长度为300km 左右时,对220kV 电力线路,线路基本上既不消耗感性无功功率也不消耗容性无功功率,呈电阻性。大于300km 时,线路为电容性的。 二、系统综合负荷的电压静态特性 电力系统中某额定功率的用电设备实际吸收的有功功率和无功功率的大小是随电力网的电压变化而变的,尤其是无功功率受电压的影响很大。电力系统综合负荷的电压静态

三相电压不平衡导致电容器组跳闸原因分析

三相电压不平衡导致电容器组跳闸原因分析 【摘要】本文通过对220kV某变电站10kV电容器由于三相电压不平衡导致跳闸原因分析,找出引起电压不平衡的因素,为以后查找电容器组故障原因积累经验。 【关键词】不平衡电压;绝缘电阻;直流电阻;电容量;电抗 前言 为了补偿系统无功,变电站基本上都会在10kV系统中装设电容器组。在设备运行过程中,经常会发生电容器组跳闸现象,引起电容器组跳闸的主要原因是由于电压不平衡造成保护动作,使断路器跳闸。通常我们都会认为电压不平衡是电容器组电容量三相不平衡引起的,但实际上断路器三相不同期、放电线圈绕组直流电阻三相不平衡、电抗器三相电抗值不平衡、绝缘老化都会引起三相电压不平衡,使电容器组跳闸。 一、现场试验情况 2014年7月9日,某变电站10kV电容器首次对跳闸,对其进行电容量测量,测量结果为A相173.1μF、B相173.4μF、C相173.3μF。从测试数据看电容值没有问题,就对紫1#电容器组进行投运,此时保护定值设为3V,投上后电容器组马上就跳掉了。随后又将保护定值改到5V,再次将电容器组投上后,过了几分钟电容器再次跳掉。我们初步认为导致电容器组跳闸的可能会是电容器单元其他设备,不是电容器本身。 2014年7月11日,再次对跳闸电容器单元进行全面试验,分别对电容器电容量、绝缘项目,开关特性、直阻、绝缘项目,电抗器电感、电抗、绝缘项目,电缆绝缘项目,测试结果都正常。在对放电线圈一次绕组直流电阻测试时,发现A相1216Ω、B相1413Ω、C相1411Ω。从测试数据上看,A、B、C三相绕组直阻不平衡率约为15%。对其绝缘电阻测试时,发现A相绝缘较低,约10.92 MΩ,B、C两相均在320 MΩ左右。通过对试验数据分析,我们就能确定由于放电线圈一次绕组存在匝间短路造成三相电压不平衡,从而引起紫1#电容器跳闸。 二、影响电压不平衡的因素 1、电容器三相电容值偏差较大引起电压不平衡 Q/GDW1168-2013《输变电设备状态检修试验规程》规定电容器组的电容量与额定值的相对偏差应符合此要求:3Mvar以下的电容器组:-5%~10%;3Mvar 到30Mvar电容器组:0%~10%;30Mvar以上电容器组:0%~5%;且任意两线端的最大电容量与最小电容量之比值,应不超过1.05。如果电容器中某相电容受潮或损坏,都会导致电容值减小,造成无功补偿不均衡,从而导致电压不平衡,

电容器参数大全

电容器 电容器通常简称其为电容,用字母C表示。电容是电子设备中大量使用的电子元件之一,广泛应用于隔直,耦合,旁路,滤波,调谐回路,能量转换,控制电路等方面。定义2:电容器,任何两个彼此绝缘且相隔很近的导体(包括导线)间都构成一个电容器。 相关公式 电容器的电势能计算公式:E=CU^2/2=QU/2 多电容器并联计算公式:C=C1+C2+C3+…+Cn 多电容器串联计算公式:1/C=1/C1+1/C2+…+1/Cn 三电容器串联 C=(C1*C2*C3)/(C1*C2+C2*C3+C1*C3) 标称电容量和允许偏差 标称电容量是标志在电容器上的电容量。在国际单位制里,电容的单位是法拉,简称法,符号是F,常用的电容单位有毫法(mF)、微法(μF)、纳法(nF)和皮法(pF)(皮法又称微微法)等,换算关系是:1法拉(F)= 1000毫法(mF)=1000000微法(μF) 1微法(μF)= 1000纳法(nF)= 1000000皮法(pF)。 容量大的电容其容量值在电容上直接标明,如10 μF/16V 容量小的电容其容量值在电容上用字母表示或数字表示 字母表示法:1m=1000 μF 1P2= 1n=1000PF 数字表示法:三位数字的表示法也称电容量的数码表示法。三位数字的前两位数字为标称容量的有效数宇,第三位数宇表示有效数字后面零的个数,它们的单位都是pF。如:102表示标称容量为1000pF。 221表示标称容量为220pF。 224表示标称容量为22x10(4)pF。 在这种表示法中有一个特殊情况,就是当第三位数字用"9"表示时,是用有效数宇乘上10的-1次方来表示容量大小。如:229表示标称容量为22x(10-1)pF=。 允许误差±1% ±2% ±5% ±10% ±15% ±20% 如:一瓷片电容为104J表示容量为μF、误差为±5%。 电容器实际电容量与标称电容量的偏差称误差,在允许的偏差范围称精度。常用的电容器其精度等级和电阻器的表示方法相同。用字母表示:D——005级——±%;F——01级——±1%;G——02级——±2%;J——I 级——±5%;K——II级——±10%;M——III级——±20%。 精度等级与允许误差对应关系:00(01)-±1%、0(02)-±2%、Ⅰ-±5%、Ⅱ-±10%、Ⅲ-±20%、Ⅳ-(+20%-10%)、Ⅴ-(+50%-20%)、Ⅵ-(+50%-30%) 一般电容器常用Ⅰ、Ⅱ、Ⅲ级,电解电容器用Ⅳ、Ⅴ、Ⅵ级,根据用途选取。 注:用表中数值再乘以10n来表示电容器标称电容量,n为正或负整数。 主要参数的意义:标称容量以及允许偏差:目前我国采用的固定式标称容量系列是:E24,E12,E6系列。他们分别使用的允许偏差是+-5% +-10% +-20%。 额定电压:在最低环境温度和额定环境温度下可连续加在电容器的最高直流电压有效值,一般直接标注在电容器外壳上,如果工作电压超过电容器的耐压,电容器击穿,造成不可修复的永久损坏。常见的电容额定电压与耐压测试仪测量值的关系( 600V的耐压测试仪测量电压为760V以上550V的耐压测试仪测量电压为715V以上; 500V的耐压测试仪测量电压为650V以上; 450V的耐压测试仪测量电压为585V以上; 400V的耐压测试仪测量电压为520V以上; 250V的耐压测试仪测量电压为325V以上; 200V的耐压测试仪测量电压为260V以上;

变电站无功电压控制

随着无人值班变电站的不断增加,变电站综合自动化系统也在不断完善,功能亦不断强大。在监控后台机上利用变电站综合自动化的监控系统,应用软件实现变电站的电压无功功率控制(VQC), 已经成为监控后台的强大功能之一。在监控后台利用软件进行VQC, 比起传统利用专门硬件进行电压无功控制,具有节省投资,编程灵活,升级方便等优点。下面简单介绍一下在监控后台进行VQC的原理及VQC的逻辑原理。 1. VQC在监控后台的实现。 在监控后台实现VQC, 如图1所示: 图1 监控后台实现VQC原理图 综合自动化测控系统将在变电站所采集到的一次设备的数据通过各种网络(如can网,以太网等)发到SCADA后台机上,然后后台监控机上的VQC软件从SCADA取得电压电流功率因数等数据,经过计算和逻辑分析,对测控系统作出调节指令,综自测控系统将接到的指令执行,控制相应的一次设备,如有载调压变压器分接头和电容器,将变电站的电压及无功功率控制在一个合格的范围内,从而达到电压无功控制的目的。 2. VQC逻辑原理。 变电站中一般有几台变压器,VQC根据主变的运行方式的不同选择不同调节方式。对于两绕组的变压器,取高压侧的无功功率作为无功调节的依据,取低压侧电压作为电压调节的依据。电压的调节主要靠调节主变的档位来实现,无功功率的调节主要靠无功设备的投切来实现。 2.1 9区图的定义 以U为纵坐标,无功功率Q为横坐标,组成U-Q坐标系,如图2所示,

图2 VQC 9区图 在第一象限中,将区域分为9个,分别从1~9编上号。只有系统运行点, 即系统实时的电压和无功功率值,落在Umin

6kV电容器不平衡电压保护误动现象的分析 刘勇

6kV电容器不平衡电压保护误动现象的分析刘勇 发表时间:2018-05-30T10:02:58.647Z 来源:《电力设备》2018年第2期作者:刘勇 [导读] 摘要针对最近两年我厂35/6kV变电所电容器频繁出现不平衡电压跳闸现象,根据故障现象、SOE报文、故障录波等数据,对不平衡跳闸原因进行分析和探讨,得出由于放电线圈铁磁饱和所造成,并通过试验和测量给出了整改措施。 (大庆油田有限责任公司第二采油厂黑龙江大庆 163000) 摘要针对最近两年我厂35/6kV变电所电容器频繁出现不平衡电压跳闸现象,根据故障现象、SOE报文、故障录波等数据,对不平衡跳闸原因进行分析和探讨,得出由于放电线圈铁磁饱和所造成,并通过试验和测量给出了整改措施。 关键词:电容器;不平衡电压;放电线圈;铁磁饱和;分析 一、前言 因电网容量增加和老区改造的需要,我厂对17座35/6kV变电所的放电线圈进行了更换。但是,自更换以来,先后出现了19次电容器组不平衡电压跳闸的现象,我们对各变电所的电容器组进行了长期的跟踪分析后认为,电容器组差动保护用放电线圈的故障是引起电容器组不能正常投运的主要原因之一。 二、电容器组的不平衡电压保护 电容器发生故障后,由于熔断器熔断,将故障电容器切除,从而引起电容器组三相电容值不平衡而产生电压不平衡,经放电线圈变换后,放电线圈二次侧的开口三角产生不平衡电压信号,动作于开关跳闸。原理图如图1所示,放电线圈一次绕组与电容器并联作为放电线圈,二次线圈中的一组接成开口三角。在正常运行时,三相电压平衡,开口三角电压值为零,当某相电容器因故障切除后,三相容值不平衡导致电压不平衡,开口处出现电压差,利用这个电压差来启动保护装置,动作于开关跳闸。 图1电容器组的不平衡电压保护 三、频繁不平衡电压动作原因分析 我们对不能正常投运的电容器组进行故障分析统计。所有的不平衡电压跳闸中:电容器损坏引起的不平衡电压动作占10.5%;放电线圈内部有短路,一次侧直流电阻超差占21%,常规试验项目数据正常,但差动保护仍误动作68.5%。由此可见不明确故障率很高,由于差动保护直接接于放电线圈二次侧,因此我们把研究的重点放在放电线圈上。经过分析,原因有如下三点: 1、一、二次线圈间的电压比误差偏大 线圈L1、L2上的电压,在运行中一般是相等的。但如果两个线圈的一、二次侧的电压比出现了差异,相应会引起二次侧电压差值偏大。 2、铁芯在运行电压下饱和,引起线圈伏安特性的非线性化 设备在6kV电压下长期运行,有可能会给铁芯造成剩磁,使铁芯饱和,引起线圈伏安特性的非线性化,继而导致线圈一、二次侧感应电压的严重不相等,引起二次侧电压差值的增大。 3、放电线圈间的角差引起差动电压偏大 放电线圈二次侧电压的相角取决于一、二次线圈之间的耦合系数。在放电线圈的内部构造中,特别是有两个独立铁芯的,因为线圈位置的不同,线圈间的电磁耦合系数也各有不同。即使二次侧的感应电压在数值上完全相等,但它们的相角差却有可能不为零。二次侧电压角差引起的二次压差如图2所示。 图2二次电压角差引起的二次压差 这里,我们可以排除1、3原因,因为在68.5%不明原因跳闸的不平衡电压动作电容器中,再次合闸送电后80%可以继续投入运行,但是,过一段时间又会出现不平衡电压跳闸。如果是放电线圈存在一、二次线圈变比误差或角差,那么会在4.2S(不平衡定值时间)内跳

测量电容容值的方法之一

1.测量电容容值的方法之一。 实验开始,我想用电感电容串联的方式,通过改变输入正弦信号的频率,从而在形成谐振的时候得出容值,电路图如下: 已知输入信号幅值不变为5V,电感为x亨,调节输入信号的频率,至电阻两端电压为输出电压的有效值时,电路达到谐振,ω=1/√(LC),ω=2πf,从而求得L的电感值。但苦于实验室没能找到电感,这个方案告停。 其次我又想用一下电路进行测量。已知阻值为200Ω,电容的标称值为10微法,因此估计τ=2ms,输入方波周期应大于五倍的τ,信号发生器输出的方波周期为11.5ms,用示波器测量电容两短信号如下波形: 虽然得到波形,也从图中得知,电容充电时间(即上升时间)约为2ms,,但误差较大。 最终选用最直接的方法,电路依然由电阻和电串联而成,输入信号为正弦波。 输入信号频率为100Hz幅值为14.3V,电阻阻值为33欧姆,将电阻两端输出信号以及电容两端输出信号分别接至示波器,得到两个正弦波,且相位相差90度,分别测量两电压幅值电阻两端电压为9.1V,电容两端电压为5.1V。这样得到电容容值为10.7nF,与标称值10nf较为接近误差为百分之七。 2.射极电压跟随器的不同端的电压测量。 电路图如下所示 电阻阻值为15M欧,信号发生器的输出电压为正弦交流电,输入峰值为3.17V,当不加电阻时,U1为2.18V,U2=2.18V,当加入电阻时,测得U1为2.18V,U2=1.92V。 这种现象的出现验证了上课老师说的那种结果。由于信号发生器的内阻值很小,分压效果不明显,因此U1和U2数值相等,加入电阻后,由于电压阻值也在10M以上,因此分压效果比较明显,U1大于U2。 3.如何用二极管档或者电阻档测出三极管的三个管脚分别是什么? 首先,三极管由PN结构成,根据PN结的原理可知,PN结是正向导电的,反向时类似一个阻值很大的电阻,因此,可以用二极管档或者电阻档检验各两管脚阻值的大小。实验可知当红表笔接中间,黑表笔分别接两边时,电阻阻值有示数,而二极管亦发出蜂鸣声。说明中间管脚为B端。要想测得另外两个哪个是C哪个是E,则应该用三极管档,即万用表的八个插孔检测三极管管脚。当正确时,万用表会有示数,大约为205。由此可以得到三极管准确的管脚辨别。

AVC系统电压无功控制策略

第四部分AVC电压控制

概述: 电压控制策略目的是即时调节区域电网中低压侧电压以及控制区域整体电压水平,使得电压稳定在一定的区间内。针对AVC系统各个功能来说,电压控制是优先级最高,保证电压稳定在合格范围内也是AVC系统最重要的目标。AVC 系统的电压控制分为两部分即区域电压控制和单个变电站的电压校正。通过两部分调节即可以保证所有母线电压稳定在合格范围内,又有效的减少了设备控制震荡。 区域电压控制: 区域即电气分区,所谓区域控制就是整体调节每一个电气分区(以下称作区域)的电压水平,使之处在一个合理范围内。首先以AVC建模结果为基础,分别扫描每个区域中压侧母线电压水平,通过取当前母线电压和设定的母线电压上下限作比较,分别统计每个区域中压侧母线的电压合格率(s%)。然后用此合格率和设定的合格率限值(-d%)比较,如果s>=d,说明对应区域整体电压水平相对合理,不需要调整。如果s

无功功率平衡和的电压调整

电力系统的无功功率平衡和电压调整 1.输电线路传输无功功率的电压效应。负荷的无功功率――电压静特性。 2.电力系统的无功功率平衡 3. 电力系统的无功损耗。 4.电力系统的无功功率源。 5.电力系统调压方式有哪几种。 6.电力系统中无功功率分布对电压的影响。

1.输电线路传输无功功率的电压效应。负荷的无功功率――电压静特性。 如图7-1所示的简单输电线路。图中R +jX 为线路集中阻抗,输电线的电容不考虑。当线路末端的功率为r r jQ P +,这一功率将在线路上引起电压降。在高压电网中系统节点电压幅值的变化仅与无功功率的变化有关,且一节点的无功功率变化对其本身的电压变化影响最大。 当传输的负荷功率r r jQ P +通过阻抗时要产生电压降,电压降纵分量U ?和 横分量U δ和电压相量s U ,均示于图7-1(b ),我们已知 图7-1 简单输电线路 (a)等值电路;(b)相量图 =+r r r r r r U R Q X P U U X Q R P U -=δ? 并可以近似地认为线路首端到末端的电压损耗为υ?。 从图7-1(b),当已知r U ,r P ,r Q ,始端电压s U 可由下式求得(r U 作为参考相量)。

r R r Q X r P j r X r Q R r P r j S r R r Q X r P j r X r Q R r P r j r S U U U )s i n (c o s U U U U U +++=+?+++=++υδδυυδυ? = 电压为110千伏以上的输电线路R<

三相不平衡电容器配置

附录1:外文资料翻译 A1.1 不平衡电力系统电容器设置 摘要—本文提出一个针对三相不平衡的电力系统采用的电容器设置方法。这种方法不仅使功率损失和电容器费用降到最小,而且使当前电力系统中谐波引起的畸变降到最小。提出的方法是在平衡的和不平衡的操作条件下都能实现这个目标。当不平衡的系统接近于由他们的正向序列单相等值时,本文的一个目标就是讲述在电容器设置研究结果上的一些重大区别。此外,还讲述了在电容器设置中考虑谐波畸变的作用。并且提供了配电测试电力系统的数字例子来说明此方法。 关键词:优化,电容器设置,损失最小化,谐波畸变,不平衡操作,配电系统。 1绪言 配电系统在各个地点都安装有电容器,为了获得期望的电压波形,合适的功率因素和减少馈线功率损失。当处理一个包含几条馈线和他们旁路的大规模配电系统时,决定这些电容器的最佳安装地点和安装容量成为一个复杂的优化问题。除此之外,还有其他问题需要说明,例如电容器大小、电压和馈线负载的运行限值。针对平衡的配电馈线的有效解决方法已经被开发了[1,2]。这些解决方法主要运用于公式化问题中的正向序列网络模型和连带的功率流动。因此,结果不能直接运用在包含缺相馈线的系统中,不对称负载的馈线或者单相或两相馈线的电容器组。三相不平衡的配电系统将在[3,4]中研究,其中模拟退火算法和遗传算法分别用于解决这个更加复杂的问题。在[5]中,一种被简化的公式和MINOS优化包裹用于解决同一个问题。最近,配电系统中存在由非线性负载和控制设备产生的不需要的谐波。对安装有电容器的配电网,谐波会导致过电压。在[6]中提出了这个问题,并且介绍了一种使谐波过电压最小化的方法[6]。一种避免汇合问题和合并电容器的分离属性以及安装电容器组电压畸变的实用方法,在[7]被开发并且被提出。这种方法针对三相平衡的操作条件并且仅能分析正向序列网络。 在本文,[7]中讲述的内容将延伸到更加普遍的三相不平衡的操作情况下。几条配电馈线分为几段,混有单相、两相和三相负载。这样的系统和那些含有三相不平衡负载的系统一样,可以用本文当前的方法研究。除损失和电容器设施之外的费用,还有就是谐波畸变引起的费用,将在[8-9]中讨论。因此,问题被公式化,在这种情况下网络损失和谐波还有电容器的设置费用一起减到最小。 本文首先提出问题说明。然后描述了三相功率流动和线性谐波分析模块的细节,这部分组成了主要算法。其次是采用开发的程序和测试系统得到的仿真结果。最后一部分提出了结论和对未来工作的展望。

关于有载调压变压器的无功电压控制策略研究

关于有载调压变压器的无功电压控制策略研究 摘要:在变电站的二次母线装设可投切的补偿电容器组和有载调压变压器相配合进行联合控制的连续模型的基础上,提出了双参数离散控制模型,该模型考虑了电容器组和分接头的非连续调节,利用该模型对一实际变电站无功电压控制进行计算,并与连续模型的计算结果进行了比较。 关键词:有载调压变压器;无功电压控制;最优控制; 前言 在无功、电压双参数需要调节时,靠人工控制往往难以做到准确判断调节决策和及时调节的目的。当前,由微机系统构成的无功电压智能控制装置己广泛采用。智能化无功电压控制装置接收从一次母线电压匀_感器送来的电压数据,经计算后,送出控制信号,去控制补偿电容器组及卞变分接头根据无功电压控制的数学模型来进行控制,是该装置软件系统的重要功能。从目前收集到的资料看,无功电压控制计算都采用连续模型,由于电容器组和主变分接头的设置均为非连续,应用连续模型必将造成控制误差。为此本文在连续模型的基础上考虑电容器组及主变分接头的非连续调节特性,建立了变电站无功电压双参数控制的离散优化模型,并对实例变电站进行了计算。 一、无功电压控制的数学模型分析 变电站无功电压控制,是在满足给定的变电站进线功率因数(cos )和二次母线电压(U2)的情况下,调节补偿电容器组的容量和有载调压变压器的分接头位置。 1、变电站进线的功率因数(co s ) 假设cos 的大小人为规定,本文按瞬时功率因数考虑。 2、变电站一次侧母线电压(U2 ) 要求用户端电压在((0.95~1.05)UN范围内,变压器的一次母线电压U2的计算,如图1所示。在多馈线的情况下,第i个用户端的母线电压在允许范围内,即:

无功功率与电压调整

第二节无功功率与电压调整 一、电压的作用 电压是衡量电能质量的一个重要标准,电压过高或过低都会对用户造成不良的影响。 比如:电压低的危害: 在电力系统中常见的用电设备为异步电动机,各种电热设备、照明以及家用电器。这些设备 与电压都保持着一定的关系,电动机的转矩是与其端电压的平方成正比,当电压下降时,转 矩也下降,如果电动机所拖的机械负荷的阻力矩(负荷)不变,随着电压的降低,电动机的转差增大,定子电流也随之增大,发热增加,绕组温度增高,加速绝缘老化。当电压再低时,电动机将停转。电压低了,照明灯发光不足,电炉冶炼时间长,降低效率。电压降低,会使网络中的功率损耗和能量损耗将加大,电压过低还可能危及电力系统运行稳定。 电压高的危害: 电压偏高,用电设备的使用寿命将缩短,电压高,加在设备上的电场变的强,使介质中的局 部产生放电,这是电老化。绝缘的老化分为电老化、热老化、环境老化。在超高压网络中还将增加电晕损耗等。 因此电力系统根据电压等级的不同,制定了各类用户的允许电压偏移。 1.35kV及以上用户供电电压正负偏差绝对值之和不超过额定电压的10% 2.10kV用户的电压允许偏差值,为系统额定电压的土7% 3.380V用户的电压允许偏差值,为系统额定电压的土7% 4.220V用户的电压允许偏差值,为系统额定电压的+5%- -10%。 事故后,考虑时间较短,事故又不经常发生,电压偏移容许比正常值再多5%。 二、系统中的无功功率的平衡 电力系统中,各种无功电源发出的无功功率应能满足系统负荷和电网损耗的需求。电力系统 对无功功率的要求是:系统中的无功电源可能发出的无功功率应该大于或至少等于所需要的无功功率和网络的无功损耗,为了保证安全,应有一定的储备。 Q GC-Q LD-Q L=Q res Q G C为系统的无功电源之和;Q L D为系统无功负荷之和;Q L为网络无功损耗之和,这个损耗包含线路电抗的无功损耗,为正,线路的充电功率,为负。一般在110KV 电压等级及以上才计算这部分功率。 三、无功功率的产生和电压的关系 电力系统负荷中,都属于电感性负荷,这不可避免的要消耗无功功率,现在以几个典型 的无功负荷研究无功功率与电压的关系。 1?异步电动机 异步电动机是电力系统中的主要无功负荷,占了比较大的比重。根据异步电动机的等值电路, 列出它所消耗的无功功率为: U 2 2 Q M二Q m I 2X - X m 从以上公式看出, Q m为励磁功率,根据公式看,它同电压平方成正比,但实际上,当电压较高时,由于饱和 影响,励磁电抗X m还将下降。所需的无功更多。Q二为漏抗所需的无功损耗,如果负载功 2R(^S)S二常数,当电压降低时,转差将增大,定子电流随之增大,相应地在漏抗中率不变,则P m = I 的无功损耗也要增大。综合这两部分无功功率的变化特点,可得异步电机的

10kV并联电容器组不平衡电压频繁动作故障排查与分析

10kV并联电容器组不平衡电压频繁动作故障排查与分析 发表时间:2018-11-16T20:17:00.137Z 来源:《基层建设》2018年第26期作者:张斌武 [导读] 摘要:本文通过对某地区10 kv电网并联电容器组的不平衡电压保护频繁动作原因的调查,对其不正确的保护动作的因素进行了详细的分析讨论,并提出了相应的预防措施,以避免或减少电容器的频繁保护动作造成的损害,影响电网运行的安全稳定性。 国网甘肃省电力公司武威供电公司甘肃武威 733000 摘要:本文通过对某地区10 kv电网并联电容器组的不平衡电压保护频繁动作原因的调查,对其不正确的保护动作的因素进行了详细的分析讨论,并提出了相应的预防措施,以避免或减少电容器的频繁保护动作造成的损害,影响电网运行的安全稳定性。 关键词:并联电容器组;集合式;不平衡电压;串联电抗器 1不平衡电压保护动作原因分析及探讨 1.1电容器组内部故障造成电容量不平衡 统计数据中电容器组保护正常动作的7次中有5次都属于电容器组电容量超标所致,三相电容量严重不平衡导致保护正常动作;另外2次是由于放电线圈故障或者电缆头制作工艺不良造成过流保护动作。电容量超标,究其原因大致有两类:第一类是由于电容器组本身制造工艺、产品质量以及长时间运行绝缘下降的原因导致电容量超标;第二类是由于电容器组单元内部的内熔丝熔断切断故障元件导致电容量不平衡。不管是集合式还是组架式结构,电容器单元里的单个元件都带有内熔丝,虽然单个元件故障时被隔离所引起电压、电流的变化很小,但造成其他运行元件承受的电压加大。当遇到电网波动或暂态不平衡时故障元件扩大,同时,故障元件被内熔丝不断隔离,电容量不平衡不断加大,最终超出定值。 1.2不平衡保护整定值偏低 一般情况下,电容器组零序电压保护动作原因有: 1)电容器一次接线错误,当系统电压出现波动和不平衡时,中性点电位偏移,而使零序电压增大; 2)电压定值选择不合理,定值整定太低,不能躲过正常运行的不平衡电压; 3)保护出口时间整定太短,躲不过电容器组投入时产生的不平衡电压时间。 根据DL/T584-1995《3~110kV电网继电保护装置运行整定规程》中的不平衡保护的计算公式,每相装设单台集合式电容器、电容器内部小元件按先并后串且有熔丝连接的电容器组,三相差压的计算按式(1)进行。 K=3nm(KV-1)/[KV(3n-2)](1) 式中,K为因故障切除的同一并联段中的电容器小元件数;m为单台集合式电容器内部各串联段并联的电容器小元件数;n为单台集合式电容器内部的串联段数;Uex为电容器组的额定相电压(一次值);KV为过压系数;Klm为灵敏系数;uch为开口三角零序电压(一次值);KPT为放电线圈的PT变比;udz为保护整定值。 由式(3)可以看出保护动作值的计算跟放电线圈PT变比相关,PT变比选小了,对设备的安全运行不利,选大了,保护容易误动。PT 选错也是影响定值低的原因之一。同时在规程范围内过压系数取值不同,灵敏系数的取值不同,会使得保护动作定值相差很大。以前,为了保证电容器的可靠运行,整定原则是:过压系数取下限,灵敏系数取上限。但这种整定原则容易使得不平衡电压保护,由于整定值偏低多次动作,且与电容器异常情况无关,最终影响了电网无功补偿。 1.3电压谐波畸变放大 基于串联电抗器的选择与谐波放大关系问题,通过建立带有谐波源的电容器装置简化电路模型,推导得出谐波电压放大率计算公式 式(4)中,s=XS/XC=QCN/Sd;K为电抗率(K=XL/XC);Sd为电容器装置接入处母线的短路容量;QCN为电容器装置容量;XL为串联电抗器基波电抗;XC为电容器组基波容抗。假设电容器装置与电网在第n次谐波发生串联谐振,可导出电容支路的串联谐振点公式(5) 按照系统和元件的参数(即系统短路容量为244.98MV A、电容器装置容量2400kvar、系统等值基波短路电抗0.45Ω、电容器基波容抗50.417Ω代入式(4)中,计算串联电抗器电抗率分别为1%、6%、12%情况下电容器组对1~9次谐波电压放大率FVN的结果见表1。 表12400kvar电容器组配置电抗率分别为1%、6%、12%的串联电抗器时电网1~9次谐波电压放大率 由表1计算结果看出,2400kvar电容器组配置电抗率为6%的串联电抗器,会造成3次谐波电压放大,超过公用电网谐波电压(相电压)3.2%的限值;电抗率为12%的串联电抗器则会抑制3次及以上谐波电压放大。如果在3次谐波含量比较大的电网中,配置电抗率为6%的串联电抗器则是非常不恰当的,加重了电网谐波污染。以此类推,当电抗器电抗率配置正确,而电容器组电容量选择不当时也会造成谐波电压放大。 该地区电网电容器组实际运行中,220kV变电站选用的电抗器电抗率均为12%,110kV变电站均采用串联电抗器电抗率为6%。如果

AVC系统电压无功控制策略

第四部分 AVC电压控制

概述: 电压控制策略目的是即时调节区域电网中低压侧电压以及控制区域整体电压水平,使得电压稳定在一定的区间内。针对AVC系统各个功能来说,电压控制是优先级最高,保证电压稳定在合格范围内也是AVC系统最重要的目标。AVC系统的电压控制分为两部分即区域电压控制和单个变电站的电压校正。通过两部分调节即可以保证所有母线电压稳定在合格范围内,又有效的减少了设备控制震荡。 区域电压控制: 区域即电气分区,所谓区域控制就是整体调节每一个电气分区(以下称作区域)的电压水平,使之处在一个合理范围内。首先以AVC建模结果为基础,分别扫描每个区域中压侧母线电压水平,通过取当前母线电压和设定的母线电压上下限作比较,分别统计每个区域中压侧母线的电压合格率(s%)。然后用此合格率和设定的合格率限值(-d%)比较,如果s>=d,说明对应区域整体电压水平相对合理,不需要调整。如果s

相关文档
最新文档