矿井涌水量预测计算程序
大井法矿井涌水量计算公式
大井法矿井涌水量计算公式一、大井的涌水概念及衡量标准1.涌水:指采矿过程中,由于施工、稳定设施地压或水压作用,煤层及其他岩层通过矿口涌出来的水流。
2.水压:指不考虑排水量因素影响,在煤层及其他岩层中所带来的涌水水压。
3.涌水量:指大井产生的涌水量。
二、大井法涌水量计算公式1. 低压涌水量计算公式涌水量(m3/h)= 矿膛面积(m2)*地压(MPa)*岩节理渗透系数(m3/MPa)/小时2. 高压涌水量计算公式涌水量(m3/h)= 矿膛面积(m2)*(地压-水压)(MPa)*岩节理渗透系数(m3/MPa)/小时三、大井法涌水量评价标准1.水力学特性:涌水量以小于0.5 m3/ h 为合理范围。
2.压力传递特性:建议将涌水量保持在1.5 ~ 2.5 m3/ h 之间,使得压力分布更均匀。
3.体积变化特性:涌水量的大小是可以调节的,可取得矿井等体积变化更为稳定的效果。
四、大井法涌水量计算实例在以下实例中,假设大井膛面积等于10 m2,地压为0.5 MPa,岩节理渗透系数等于20 m3/ MPa 就可以计算出低压下的涌水量:低压涌水量按照低压涌水量计算公式=(10 m2) × (0.5MPa) × (20m3/MPa)/小时=100 m3/h假设水压为0.2MPa,则高压涌水量按照高压涌水量公式=(10 m2)×(0.5MPa-0.2MPa)×(20m3/MPa)/小时=80 m3/h。
五、结论根据以上的公式和分析,可以得出大井法涌水量可以按照低压涌水量计算公式和高压涌水量计算公式,评价标准为涌水量以小于0.5 m3/h 为合理范围,建议大井法涌水量控制在1.5~2.5m3/h之间,可以达到稳定的效果。
矿坑涌水量预测计算规程
矿坑涌水量预测计算规程矿井的涌水问题是矿业生产中重要的安全生产问题,涌水量的预测是矿井开发的必要工作之一。
为了保证矿井生产活动的安全和稳定,必须对矿井的涌水量进行准确的预测和控制。
矿坑涌水量预测计算规程是依据岩层、水文、水文地质和矿坑开采等多种因素进行分析,预测矿井涌水量的工作规程。
下面,我们将对矿坑涌水量预测计算规程进行详细的解析。
1.矿井地质条件分析在矿坑涌水量预测计算中,首先要对矿井地质条件进行分析。
具体方法是通过矿井的工作面进尺变化情况及勘查资料、地质钻孔数据和地下水位等资料进行综合分析,了解矿坑的岩性、构造、放矿厚度、断层构造等地质条件。
通过对矿井地质条件的分析,可以初步判断矿坑内部会涌水的位置和可能发生涌水的规模。
2.矿坑水文地质条件分析在矿坑涌水量预测计算中,水文地质条件分析是非常重要的。
具体方法是通过分析矿坑水文地质条件,了解矿坑的地下水流动规律、水位、水压变化规律等信息。
此外,还需要排查可能对矿井地下水情况产生影响的因素,比如降雨、相邻井下采掘工作、井下矿山排水系统运行情况等。
通过对矿坑水文地质条件的综合分析,可以更加准确地预测矿井的涌水量。
3.矿坑开采影响分析在矿坑涌水量预测计算中,矿坑的开采影响分析也是必不可少的。
具体方法是通过分析矿坑的采掘方法、采煤面的进退情况、采空区的变化情况等信息,了解矿坑的开采情况对矿井涌水量的影响。
对于正在开采的矿坑,还需要对开采过程中引起的变形、破坏等进行监测,避免因矿坑开采导致的意外事故发生。
4.涌水预测计算与分析在矿坑涌水量预测计算中,通过以上分析,可以对矿井的涌水量进行预测计算。
具体方法是根据矿井的地质、水文地质和开采情况,综合使用数学统计方法和经验公式,预测矿井的涌水量。
预测涌水量时要考虑到不同时间段内的降雨情况、上一阶段矿井涌水的情况,矿井开采的进展情况等因素,提高预测结果的准确性。
5.涌水量控制方案制定通过对矿坑涌水量的预测计算,可以制定出涌水量控制方案,包括采取何种措施阻止涌水、如何进行矿井排水等。
矿井(坑)涌水量计算
(D.6)
式中:
——新矿井(坑)预计涌水量,单位为立方米每年(m3/a);
、 ——影响矿井(坑)涌水量的二个因素变量;
、 ——对 、 的回归系数,在多元回归中, 对某一自变量的回归系数表示当其它自变量都固定时,该自变量变化一个单位时 平均改变的数值;
——生产矿井年产煤量,单位为吨每年(t/a)
矿井单位涌水量比拟法
当矿井(坑)涌水量增长幅度与开采面积、水位降低呈直线比例的情况下:
(D.3)
式中:
——生产矿井(坑)单位涌水量,单位为立方米每吨平方米(m3/tm2);
——生产矿井(坑)总涌水量,单位为立方米每 年(m3/a);
——生产矿井开采面积,单位为平方米(m2);
矿井充水含水层的收入项一般由下面几部分组成:
——大气降水渗入补给含水层的水量,单位为立方米每天(m3/d);
——从其它地区同一含水层中流入矿区含水层的水量,单位为立方米每天(m3/d);
——从矿区内其它含水层流入充水含水层的水量,单位为立方米每天(m3/d);
——水位降深,单位为米m);
——影响半径,单位为米(m);
——承压水含水层厚度,单位为米(m);
——动水位至底板隔水层水柱高度,单位为米(m);
A.4
水均衡法是在查明矿床开采条件的情况下,利用直接充水含水层的补给水量和支出水量之间的关系,根据水均衡原理,获得开采地段涌水量的方法。
在直接充水含水层的补给条件和补给量易于查清的情况下,均衡法往往可以获得满意的计算结果。
、 、 用最小二乘法确定。 用公式D.7确定。
(D.7)
式中:
矿井涌水量预测
2)采矿场周围降落漏斗范 围内的静储量的消耗量
h——含水层平均厚度; R——疏干时的影响半径
μ——给水度或裂隙度
L——疏干地段的周长
总静储量
水均衡法(续)
动储量:
3)直接降落在露天采场内 的大气降水q3
4)采矿场外围降水渗 入的水量q4
A——
F1
F1——露天采矿场面积;
解:据题意,细砂含水层为承压水层,厚度M=6.5m 降深s=6-2=4m
抽水影响半径: R 1 . 9 S M 5 1 . 9 K 4 5 6 . 5 6 4 . 7 m 8 1
基坑假想半径:
r
F
ቤተ መጻሕፍቲ ባይዱ
4 422 1.5 7m 6 3.14
根据承压完整井涌水量计算公式:
Q 2 . 7K 3 M 2 . 7 3 S 6 6 . 5 4 9 . 1 6 m 3 / 5 d 1 lR g lr g l4 g . 7 8 l1 g . 5 7 6
潜水井的Dupuit公式
有一个观测孔时
有两个观测孔时
Dupuit公式的应用(用途)
(1)确定水文地质参数 确定岩土的渗透系数K、导水系数T、影响半径R等。
(2)预报流量或降深
根据Dupuit公式,在已知含水层厚度和参数的情况下 ,只要给出设计的合理降深,既可预报井的开采量;也可 按需要的流量,预报开采后的可能降深值。
地下水在多孔介质中的运动,称为渗流。发生渗流的区域称 为渗流场。
乙河 乙河
甲河 甲河
2、地下水运动—假想渗流
渗流是一种假想水流。假想:
(1)假想水流的性质(如密度、粘滞性等)和真 实地下水相同;
(2)假想水流充满含水层的整个空间;
矿坑涌水量的常用预测方法
吉林大学精品课>>专门水文地质学>>教材>>专门水文地质学§10.4矿坑涌水量预测一、矿坑涌水量预测的内容、方法、步骤与特点(一)矿井涌水量预测的内容及要求矿坑涌水量预测是一项重要而复杂的工作,是矿床水文地质勘探的重要组成部分。
矿坑涌水量是指矿山开拓与开采过程中,单位时间内涌入矿坑(包括井、巷和开采系统)的水量。
通常以m 3/h 表示。
它是确定矿床水文地质条件复杂程度的重要指标之一,关系到矿山的生产条件与成本,对矿床的经济技术评价有很大的影响。
并且也是设计与开采部门选择开采方案、开采方法,制定防治水疏干措施,设计水仓、排水系统与设备的主要依据。
因此,在矿床水文地质调查中,要求正确评价未来矿山开发各个阶段的涌水量。
其内容与要求包括可概括为以下四个方面:(1)矿坑正常涌水量:指开采系统达到某一标高(水平或中段)时,正常状态下保持相对稳定的总涌水量,通常是指平水年的涌水量。
(2)矿坑最大涌水量:是指正常状态下开采系统在丰水年雨季时的最大涌水量。
对某些受暴雨强度直接控制的裸露型、暗河型岩溶充水矿床来说,常常还应依据矿山的服务年限与当地气象变化周期,按当地气象站所记录的最大暴雨强度,预测数十年一遇特大暴雨强度产生时,可能出现暂短的特大矿坑涌水量,作为制订各种应变措施的依据。
(3)开拓井巷涌水量:指包括井筒(立井、斜井)和巷道(平、平巷、斜巷、石门)在开拓过程中的涌水量。
(4)疏干工程的排水量:是指在规定的疏于时间内,将一定范围内的水位降到某一规定标高时,所需的疏干排水强度。
对于地质勘探阶段来说,主要是进行评价性的计算,以预测正常状态下矿坑涌水量及最大涌水量为主。
至于开拓井巷的涌水量预测和专门性疏干工程的排水量的计算,由于与矿山的生产条件密切相关,一般均由矿山基建部门或生产部门承担。
(二)矿坑涌水量预测的方法根据当前矿床水文地质计算中常用的各种数学模型的地质背景特征极其对水文地质模型概化的要求,可作如下类型的划分:⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧⎩⎨⎧-混合型模型水均衡法有限差法有限元法数值解非稳定井流公式稳定井流公式—井流方程—解析解确定模型回归方程曲线方程非确定性统计模型数学模型分类s Q(三)矿坑涌水量预测的步骤矿坑涌水量预测是在查明矿床的充水因素及水文地质条件的基础上进行的。
13矿井涌水量预测
巷、斜巷、石门)在开拓过程中的涌水量。
疏干工程的排水量:指在规定的疏干时间内,将水位降到某
一规定标高时所需的疏干排水强度(疏干流量) 意义:它是对煤田进行技术经济评价、合理开发的重要指标, 也是设计和生产部门制订采掘方案,确定排水能力和防治措 施的重要依据。在矿区勘探和矿井建生产中有重大意义。
1 a
1 b
二、涌水量-降深曲线法(Q-S曲线法)
原理:根据稳定井流抽水试验资料建立涌水量与降深的
关系方程,根据勘探试验阶段与未来开采阶段水文地质 条件的相似性,外推预测未来矿井的涌水量。
优点:避开求取各种水文地质参数,计算简便
应用条件:避开了求取各种水文地质参数,计算简便,
适用于水文地质条件复杂且难于取得有关参数的矿井及 矿区。
n=2 抛物线 n>2 对数曲线
下一页
图解法
1.作图法 观测历年最大涌水量和最大水位降深, 得(Qi,si)(i= 1,2,…,n),在Q─s坐标系上投点,称散点图(或相关 图),用直尺凭视觉画大致平分散点的直线,量斜率和截距, 写方程。此方程因人而异,不唯一,误差大。
2.近似图作法 在散点图上平行于纵轴作直线e 左右平分所有散点,再e1平分右 边散点、e2平分左边;同理,以 平分散点为前提作平行横轴的直线 h、h1、h2。设h1、h2与e1、 e2的交点为A、B、C、D,按 散点展布趋势连B、D(或A、C) 点,求出直线的斜率及截距,即可 图7-1 回归直线散点图 得回归方程Q=f(s)。
Q0 Fs Q F0 s0
优点:简单、应用方便。
有时涌水量随开采面积(或巷道长度)、水位降深的增加不具
有线性关系,但能用幂函数关系来比拟。
煤矿涌水量预测
1、渗透系数值的确定 ①加权平均法 分以下三种情况: b)沿水平各向岩石透水性有变化时,渗透系数值可由下 式求得:
式中: Li——不同方向渗透段的长度,m
1、渗透系数值的确定 ①加权平均法 分以下三种情况: c)对平面非均质情况,即含水层在水平方向上渗透性有 变化时,应作渗透系数分布图,采用下式计算渗透系数:
5、给水度、储水系数和导水系数的确定 储水系数、导水系数利用非稳定流抽水试验,通过图解法就 可以获得,这里只强调一下给水度。 给水度的确定一般有以下3种方法: 1)对于裂隙、岩溶化含水层,可以近似用裂隙率、岩溶率 代替。 2)根据抽(放)水试验资料获得 式中: 稳定流抽水时: V——疏干漏斗体积,可以通过绘制等降深 图求
参数的选用直接影响煤矿涌水量预测的精度。为此,必须 根据公式要求,结合矿区的水文地质条件及未来的开拓方 案,合理地确定各项参数。
1、渗透系数值的确定 渗透系数K由抽水试验获得。在实际应用中,因为含水层 的非均质性和抽水试验人为的误差,往往使求得的K值在 同一含水层的不同地段差异很大,同一抽水孔中用不同方 法和不同深度所获得的K值也不相同。
② 伸直法
Q-s曲线法 计算方法: (2)判别曲线类型,选择计算公式
② 差分法
一阶差分误差的大 小,可用曲线拟合 误差c来表示:
C越小,拟合的越 好。
Q-s曲线法 计算方法: (2)判别曲线类型,选择计算公式
② 曲度法
判别式: 当n=1时,为直线; 1<n<2时,为幂函数曲线; 当n=2时,为抛物线; 当n>2时,为对数曲线; 如果n<1,则抽水资料可能有误。
1、渗透系数值的确定 一般地,在抽水试验的渗流场中,都可以找到一个裘布依 公式的适用区。 裘布衣公式的适用区:16M≤r≤0.178R
采区涌水量预算(设计)
第四节采区涌水量预算
采区内和邻区无专门水文地质钻孔,水文地质参数难以掌握。
采区涌水量估算,故采用富水系数比拟法。
利用产能在30万t的矿井涌水量,预算了矿井年生产量达到60万t时的矿井涌水量。
公式:Q=Kp×P=Q0×P/P0(K P=Q0/P0)
上式中:
Q——设计矿坑涌水量(m3/d)
Q0——煤矿现采矿井实际排水了量(m3/d)
P0——煤矿实际开采量(万t/a)
P——设计矿井生产能力(万t/a)
9号、11号煤层采区涌水量计算
根据调查资料,开采9号煤层,生产能力达30万t/a时,采区正常涌水量为700 m3/d,最大涌水量900 m3/d。
采用富水系数比拟法估算。
当生产能力达60万t/a,其采区正常涌水量1400 m3/d,最大涌水量为1800 m3/d。
第五节采空区积水估算
参照《煤矿安全手册》中采(老)空区给水量估算公式进行了采(老)空区给水量的估算:
估算公式:Q积=K×M×F/cosα
式中:Q积——相互连通的各积水区总积水量(m3)
M——煤层厚度(m)
F——采空区积水区水平投影面积(m2)
α——煤层倾角
K——充水系数。
矿井涌水量计算公式
矿井涌水量计算公式矿井涌水量的计算可是个相当重要的事儿呢!这就好比我们过日子得清楚每个月的开销有多少,矿井开采也得搞明白会有多少水涌进来,才能做好应对措施,保证生产安全。
要计算矿井涌水量,首先得搞清楚几个关键的概念。
比如说,“静储量”和“动储量”。
静储量就像是一个水库里原本就有的水,不怎么会变;而动储量呢,就像是河流里流动的水,一直在变化。
常见的矿井涌水量计算公式有好几种。
比如说“大井法”,这名字听起来有点怪,但其实就是把矿井想象成一个大井,然后通过一些复杂的计算来估算涌水量。
还有“水文地质比拟法”,简单说就是找一个跟要计算的矿井情况差不多的,已经有了涌水量数据的矿井来做参考,然后根据两者的差异进行调整。
我记得有一次去一个煤矿实地考察,那场面可真是让我印象深刻。
我们一群人穿着厚厚的工作服,戴着安全帽,深入到矿井里面。
当时,负责计算涌水量的工程师拿着本子和笔,一边查看各种仪器的数据,一边嘴里念念有词地计算着。
周围的矿工们也都一脸紧张地看着,因为涌水量的多少直接关系到他们的工作安全和进度。
矿井里潮湿闷热,灯光也不是特别亮,大家的脸上都挂着汗珠。
工程师告诉我们,哪怕一个小小的数据误差,都可能导致计算结果出现很大的偏差,所以每一个数字都得仔细核对。
在计算矿井涌水量的时候,还得考虑很多因素。
像是含水层的类型和厚度、地下水的水位和水压、矿井的开采深度和面积等等。
这就像是做菜,各种调料的比例都要恰到好处,才能做出美味的菜肴。
如果忽略了某个重要因素,那计算出来的涌水量可能就会差之千里。
而且,随着开采的进行,矿井的情况也会不断变化。
今天算出来的涌水量,可能过一段时间就不准确了。
所以,得经常进行监测和重新计算,就像我们要经常看看自己的钱包,看看是不是超支了一样。
另外,不同地区的矿井,地质条件差别很大。
有的地方含水层丰富,涌水量大得吓人;有的地方则相对较少。
所以在计算的时候,不能生搬硬套公式,得结合实际情况灵活运用。
涌水量计算
(1)解析法根据井田水文地质条件和矿井主要充水因素,利用解析法进行矿坑涌水量预测时,直接充水含水层太原组灰岩岩溶水。
1)太原组灰岩岩溶水预测20(2)5-1S M M h Q B K R--= ()105-2R S K = () 式中:Q ——预测矿坑涌水量,m 3/h ;B (m) K (m/d) M (m) S (m) R (m) Q (m 3/h) 32000.44279.51691124.45163.82S ——水位降低值,m ; KK——渗透系数,m/d ;M ——含水层厚度,m ; B ——进水廊道长度,m ; R ——影响半径,m ;K 取抽水实验资料0.44272、10+11号煤层矿井涌水量预算(大井法)开采10+11号煤层布置一个工作面,工作面宽180 m ,推进长度1200m ,因此,将矩形工作面(长a=1200m,宽b=180m )看做一个大井,使用大井法预算矿井涌水量:计算公式为:(2)1.366H M M Q K LgR Lgr-=-式中:Q%~矿井涌水量(m 3/d) K%~渗透系数(m/d) H%~水头高度(m) M%~含水层厚度(m)r%~大井半径(m),r=η4a b+R 0%~引用半径(m),R 0=10S K (S=H) R%~影响半径(m),R=R 0+ r 0根据ZK504号孔资料,太原组含水层水位标高1120.58m ,渗透系数(K )0.4427m/d,含水层厚度(M )约9.5m,先期开采地段10+11号煤层底板标高最低为884m,由此确定水头高度:(H=S )=1120.58-884=236.58(m)r=η4a b +=379.5mR 0=10S K =1574.1m R = R 0+ r 0=1953.6m将上述参数代入上述公式得开采10+11号煤层矿井正常涌水量Q=3743m 3/d (156m 3/h )最大涌水量Qmax=δQ 正,δ: 季节影响比值系数 开采2号煤层时,季节影响比值系数δ=1.2故最大涌水量Qmax=3743×1.2=4492 m 3/d (187.2m 3/h ) 2号煤层与10+11号煤层联合开采,矿井正常涌水量为上述涌水量之和,即矿井正常涌水量:Q 正=355+3743=4098 m 3/d(170.75 m 3/h)最大涌水量Qmax=425+4492 =4917 m 3/d(204.88m 3/h)3 狭长水平坑道法 采用承压——无压公式:(2-)5-5S M M Q BKL= ()式中:Q ——为预测的矿坑涌水量(m 3/d );K ——为渗透系数(m/d ); S ——为最大水位降深(m ); M ——为含水层厚度(m );L——为水平坑道影响宽度(m ),采用奚哈尔德公式10R =; B ——进水廊道长度,主采煤层工作面年推进度,即B =2500m 。
矿井涌水量监测与预测
(二)矿井涌水量的测定
1.容积法 2.浮标法 3.堰测法 4.流速仪法 5.水仓水位法
(一)容积法
(适用于涌水量较小时) 涌水量计算公式为:
QV t
式中 Q—矿井涌水量,m3/min;
V—容器容积,m3; t—水充满容器的时间,min。
(二)浮标法
• 涌水量计算公式为:
•
Q 0.8F L
•
3、观测资料的整理:
表 1-3-2 涌水量随时间和空间变化特征台帐
涌水量
(m3/h)
月份
1
2
3
4
5
6
7
8
9
10
11
12
巷道
名称
155 水平回风巷 东
55 水平大巷 翼
55 水平石门
155 水平回风巷
西翼 55 水平大巷
55 水平石门
主井井筒
副井井筒
井底车场
斜井井筒
全矿汇总
位置
155 东翼 155 西翼 55 东翼 55 西翼 全矿井
1、涌水量观测站点的布置:
固定站点:长期突水点、水文地质复杂的开采区、 排水井的下游、疏干石门水沟的出口、大巷水沟 入水仓处、 临时站点:一般出水点、采掘工作面的探放 水钻孔、井筒新揭露的含水层
2、涌水量观测要求:
按时间: 一般每旬观测一次 初揭露的涌水量未稳定之前,每天测量一次 突然涌水,每隔1-2h观测一次 按突水点: 回采工作面通过重要含水结构时,每天或每班测定一次 疏干钻孔或老窑防水钻孔,每隔3-5天测定一次 竖井每延伸10m、斜井每延伸20m测量一次
Q0,P0 — —老矿井涌水量、开采量
(2)水文地质条件比拟法:
2、相关分析法
矿坑涌水量预测——水文地质比拟法
任务十六矿坑(井)涌水量预测二、水文地质比拟法(-)原理和应用条件水文地质比拟法:就是利用地质和水文地质条件相似、开采方法基本相同的开采矿区或生产矿井的排水资料,来预计勘探区、新建矿井或在生产矿井延伸开采的涌水量。
适用条件:有实测涌水量可以类比的新、旧矿井。
根据生产矿井的涌水量,预测新建水文地质条件类似、开采方式相同的新建矿井的涌水量;根据生产矿井上水平的涌水量预测延伸水平的涌水量。
(二)计算方法、步骤1、富水系数比拟法:富水系数是指一定时期内从矿井排出的总水量Q。
与同期内的矿石开采量Po之比,以Kp表示。
Kp= Q o∕ Po如:新建矿井与在生产矿井水文地质条件类似,开采方式方法相同,则新建矿井的涌水量Q: Q = Kp. P采矿区面积富水系K L Qo∕ Fo,采掘长度富水系数K1= Qo∕ Lo。
一般以上述各富水系数的综合平均值为比拟依据。
2、单位涌水量比拟法:单位涌水量q。
是指单位水位降深和单位开采面积的平均涌水量。
可根据相似生产矿井的资料求出,其计算公式如下:层流:q 0= Q o ∕ (F 0. S o )紊流:qθ= Q o ∕(Fo. So"?)勘探矿区或新建矿井涌水量Q 的比拟计算公式如下:层流:Q =q0*F*S =Q 0 ——........ 紊流:Q =qo*F*S = Q o - βΓS () 片)Y %在许多情况下,矿井涌水量与开采面积和水位降深之间不呈线性关系,也不符合 紊流关系,则比拟计算公式为:Q =q0*F*S =Q 0 — ..........K S°m 、n 为待定系数,可根据经验通过计算或曲线拟合确定,或用最小二乘法求得。
(三)水文地质比拟法算例例:梗杉煤矿未来矿井涌水量计算①计算方法采用比拟法,即采用根杉坡井已有资料比拟其未来矿井涌水量,分别采用长度比 拟法和面积比拟法,然后采用综合结果。
②计算公式及计算参数:试中:Q —未来矿井涌水量(∏)3∕h )Qo 一老井涌水量(m 3∕h ),正常涌水量取20—30 m 3∕h oL 一未来矿井0^100田之间的南北向巷道总长度。
矿坑涌水量预测——大井法
任务十六矿坑(井)涌水量预测五、矿坑涌水量预测——大井法(一)大井法的原理和适用条件大井法是矿坑涌水量预测解析法的一种,是矿坑涌水量预测最常用的方法。
大井法:将坑道系统看成一个面积与之相等、半径为r的等效的理想“大井”,整个坑道系统的涌水量,就相当于大井的涌水量,即可采用井流公式预测矿坑涌水量。
大井法适用于矿坑坑道系统近于等轴或长方形分布,充水含水层均质、各向同性、边界形状规则,含水层原始条件及水文地质参数数据查明的矿坑。
(二)计算方法、步骤1、确定大井半径r0(1)大井半径确定若矿井巷道系统及采区接近于等轴形,即采区长/宽≤2,则大井半径r0=(F/π)1/2 若矿井巷道系统及采区近于长条形,即采区长/宽>2,则大井半径r0=P/2πF——矿坑巷道系统分布范围面积P——矿坑矿坑巷道系统分布范围周长(2)引用半径确定引用半径R0:是大井中心到矿坑疏干排水降落漏斗边缘的距离。
1引用半径R0 =r0+RR——疏干影响半径(潜水含水层R=2S(HK)^1/2;承压含水层R=10SK^1/2)2、确定水文地质模型依据边界类型确定水文地质模型,模型类型有:无限含水层承压含水层稳定井流、无限含水层潜水含水层稳定井流;有界含水层承压含水层稳定井流、有界含水层潜水含水层稳定井流。
理想化边界类型条件系数如下图。
23、矿坑涌水量计算两种情况:一是潜水充水层矿坑涌水量计算;二是承压转无压矿坑涌水量计算。
(1)潜水充水层矿坑涌水量计算例1:某在建矿井,开采石炭系下统测水组C1c煤层,产状平缓,倾角8-12°。
设计开采最低标高至-50m,设计开采区(近似正方形)平面积31400m2。
据勘探资料,矿井充水水源为上覆测水组C1c和梓门桥组C1z岩溶裂隙潜水,含水层厚100m,渗透系数0.25m/d。
预测矿井涌水量。
(2)承压转无压矿坑涌水量计算3。
矿井涌水量预测及水泵选型计算
电机效率验算
P = ρ gQH/(3600η 1η 2) 51.32 1.1 9.8 85 135 0.72 0.93 68.42 1.1 9.8 85 180 0.72 0.93
管壁厚度计算
σ =(P×Dg)/(2×Rk-P)+a
0.26 12.5 800 8.17
0.30 12.5 800 12.84
13.65 11.77
最大涌水量时实际排水时间
16.64 14.35 电机容量验算
管路淤积时 55.99 1020 72.1 173.09 0.695 0.98 1.1 管路不淤积时 63.19 1020 83.6 173.09 0.714 0.98 1.1
1053.35 1044.54 8.81 1175.44 1184.53 9.09
821434.06
老系统空区面积 2071采面采空区 29780.88 26959.19
水泵选型参数
正常涌水量Q(m3/h) 排水能力要求 最大涌水量Qmax 排水能力要求
41.0 41.0 水泵额流量 85 水泵额流量 85
49.20
100.0
120.0
排水垂高 81.69 128.4
扬程 120.63 177.09
1Байду номын сангаас8.4
管路损
排水系统管道
正常涌水量
33.35 188.4 53.6 178 56.8 155.781
最大涌水量
电机容
电机容量Nd(kw) 矿井水比重γ (kg/m3) 水泵工况点流量(m3/h) 实际排水扬程(m) 水泵工况点效率η m 传动效率η c 电机备用系数K
老系统空区面积 2071采面采空区 采空区积水量 29780.88 26959.19
矿井涌水量预测方法
矿井涌水量预测方法引言:矿井涌水是指在矿井开采过程中,地下水源不受控制地进入矿井的现象。
涌水量的预测对矿井的安全开采至关重要。
本文将介绍一些常用的矿井涌水量预测方法,包括经验公式法、数学模型法和人工智能方法。
一、经验公式法经验公式法是根据历史数据和经验总结得出的一种预测方法。
根据矿井的地质条件、开采工艺和涌水历史数据等因素,通过经验公式计算出矿井涌水量的预测结果。
这种方法简单易行,但对于复杂的地质条件和变化的开采工艺可能存在一定的误差。
二、数学模型法数学模型法是通过建立数学模型,利用数学方法对矿井涌水量进行预测的方法。
常用的数学模型包括多元回归模型、神经网络模型和支持向量机模型等。
这些模型可以根据矿井的具体情况进行参数调整和优化,提高预测的准确性。
但建立数学模型需要大量的历史数据和专业知识,并且对于模型的选择和参数调整需要一定的经验。
三、人工智能方法人工智能方法是近年来发展起来的一种新型预测方法,其基本思想是模拟人类的智能思维过程,通过机器学习和数据挖掘等技术,自动学习和优化预测模型。
人工智能方法具有较强的适应性和灵活性,可以根据不同的矿井情况进行预测,并且可以自动调整模型参数以提高预测效果。
但人工智能方法需要大量的训练数据和计算资源,并且对于模型的解释性较弱。
四、综合方法在实际应用中,常常采用综合方法进行矿井涌水量的预测。
综合方法是将多种预测方法进行组合,通过权重调整和结果融合来得到最终的预测结果。
这样可以综合各种方法的优势,提高预测的准确性和稳定性。
综合方法的具体实施需要根据具体的矿井情况和数据特点进行调整,选择合适的权重和融合策略。
结论:矿井涌水量预测是矿井安全开采的重要环节,采用合适的预测方法可以提高矿井的安全性和经济效益。
经验公式法、数学模型法和人工智能方法是常用的预测方法,每种方法都有其适用的场景和优势。
在实际应用中,可以根据矿井的具体情况选择合适的方法,并进行综合预测。
这样可以提高预测的准确性,并为矿井的安全开采提供可靠的依据。
煤矿井下涌水量计算的几种观测方法
煤矿井下涌水量计算的几种观测方法1、水桶法水桶法指的是,将涌出的水导入一定容积的量水桶(圆形或方形),用秒表测流满该量水桶所需的时间,然后按下式计算涌水量:Q= V/t式中Q——涌水量,m3/h(m3/min)V——量水桶的体积,m3t——水流满量水桶的时间,h(min)2、水位标定法水位标定法指的是利用水泵将水窝(或水仓)中的水位降低,然后停泵,测量回升到原来位置所需要的时间,然后按下式计算涌水量:Q=FH/t式中Q——涌水量,m3/h(m3/min)F——水窝(或水仓)的断面积,m2H——水位回升的高度,mt——水流满凉水桶的时间,h(min)3、水泵能力法水位能力法指的是维持水位不变时增加水泵的排水能力,按下式计算涌水量:Q=KNW+SH/t式中Q——涌水量,m3/h(m3/min)K——水泵的排水系数,%(当新水泵排清水时K=1,旧水泵排清水时K=0.8,排混水时K=0.9,旧水泵排混水时K=0.7,双台旧水泵排水时K=0.6)N——增加的水泵台数,台W——水泵的铭牌排水量,m3/h(m3/min)S——水仓(或水窝)水平截面积,m2H——水位上升的高度,mT——水位上升所需的时间,h(min)当H=0时,即水位不上升,则Q=KNW4、浮标法浮标法指的是利用木屑或纸屑作为浮标,测量水沟中水的流速,根据水沟断面计算涌水量。
按下式计算涌水量:Q=KVF式中Q——涌水量,m3/h(m3/min)F——断面面积,m2V=L/tt——从断面1到断面2的水流时间,h(min)L——从断面1到断面2的水距离,mK——断面系数,与水沟粗糙度、风流方向和大小有关:在一般情况下,水沟水深大于1.0吗,当水沟粗糙时,K=0.75—0.85;在水沟水沟平滑时,K=0.80—0.90。
此计算方法可用于巷道排水沟中水的测量;当涌水较大,淹没巷道水沟时,也可用来测量巷道流水中水量。
5、堰测法堰测法指的是在井下排水沟中设置测水堰板,使水流通过一定形状的堰口水流高度,然后计算涌水量。
矿坑涌水量计算
矿坑涌水量计算矿坑涌水量计算矿坑涌水是煤矿地下深采过程中经常遇到的问题,对于矿井的安全生产以及煤矿的经济效益都有着重要的影响。
因此,对矿坑涌水量的计算是煤矿工人不可或缺的技能之一。
在这篇文章中,我们将会介绍如何计算矿坑涌水量以及计算过程需要注意的问题。
1、涌水量计算的方法为了计算矿坑涌水量,我们需要了解几个参数:矿井的水文地质情况、涌水管道的特性和涌水流量曲线。
具体来说,我们需要测定以下参数:1.涌出水口地下水位 (H)2.涌出水口流量 (Q)3.涌出水口的空气容积 (V)涌水量 = 涌出水口流量 Q(m/s)× 涌出水口空气容积V(m³) × 涌出水口地下水位 H(m)因此,计算涌水量的方法就是通过测量这三个参数,再将其带入上式计算。
通常我们会采用标准流量计、液位计以及液位高低差计算仪器等设备来测量这些数据。
2、其中的数值要点在上面,我们提到需要怎样计算涌水量。
实际测量过程中,应注意以下数值要点。
1.涌出水口地下水位(H)涌出水口地下水位是指矿坑里涌水的水位高度,通常它会随着时间而变化。
在实际操作中,我们需要在多个时间点测量该水位,然后取平均数作为涌出水口地下水位。
2.涌出水口流量(Q)涌出水口流量可以利用标准流量计进行测量。
为了比较精准地测量涌出水口流量,我们需要注意以下两点。
(1) 测量范围流量计的参数范围需要考虑到涌出水口的流量范围以及实际流量与流速差别(如小流量,应选取全开阀范围测量,确保数据精度)。
(2) 测量误差在实际测量中,我们需要注意流速、温度和压力等参数对流量计实际测量结果的影响。
并且,我们还需要对流量计进行定期校正,以确保其准确度和稳定性。
3.涌出水口的空气容积(V)涌出水口的空气容积是指涌出水口上,不被水淹没的管道内的气体容积。
测量方法是在下水井内利用液位计测量涌出水口到下井站的距离,并将其乘以涌出水口直径的平方除2再乘以3.14即为涌出水口的空气容积。
矿井涌水量容积法计算公式
矿井涌水量容积法计算公式
矿井涌水是煤矿生产中常见的问题之一,特别是在深部煤矿开采中,涌水问题
更加突出。
因此,对矿井涌水量的准确计算和预测,对煤矿生产具有重要意义。
矿井涌水量的计算方法有很多种,其中容积法是一种常用的方法之一。
矿井涌水量容积法是通过测量矿井涌水的容积来计算涌水量的方法。
其计算公
式为:
涌水量 = 断面积×涌水速度。
其中,断面积是指矿井横截面的面积,通常用平方米(m^2)来表示;涌水速
度是指单位时间内涌水的体积,通常用立方米/小时(m^3/h)来表示。
在实际应用中,矿井涌水量的计算通常是根据矿井的实际情况来确定的。
首先
需要测量矿井的断面积,可以通过测量矿井的宽度和高度来计算得出;然后需要测量涌水速度,可以通过安装流量计或者测量涌水的时间和涌水量来计算得出。
通过容积法计算矿井涌水量的优点是简单易行,不需要复杂的仪器设备,只需
要测量矿井的断面积和涌水速度即可计算得出。
但是,容积法也存在一定的局限性,比如只适用于矿井涌水量较小的情况,对于涌水量较大的矿井,容积法可能会有一定的误差。
除了容积法之外,还有一些其他的方法可以用来计算矿井涌水量,比如压力法、泵入法、水位法等。
每种方法都有其适用的场合和局限性,需要根据实际情况选择合适的方法来进行计算。
在煤矿生产中,准确预测和计算矿井涌水量对保障矿井安全和提高生产效率具
有重要意义。
因此,矿井涌水量的计算方法和技术一直是煤矿工作者关注的焦点之一。
随着科学技术的不断发展,相信在未来会有更多更精确的方法和技术用于矿井涌水量的计算和预测,为煤矿生产提供更加可靠的技术支持。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
、降深涌水量换算
转换后涌水量 m3/d 5.40 9.57 备注 转换后 实际 涌水量 单位涌水量 涌水量 单位涌水量 q(L/S) (L/S*m) q(L/S) (L/S*m) 0.0625 0.0063 0.2696 0.0007 0.1107 0.0111 ຫໍສະໝຸດ .2920 0.0014大换小
转换后涌水量 3 m /d 2.23
备注
转换后 涌水量 单位涌水量 (L/S) (L/S*m) 0.0258 0.0026
实际 涌水量 单位涌水量 (L/S) (L/S*m) 0.2696 0.0009
小换大
涌水量计算
R0 2735.57 LNR0 7.91 LNr0 6.95 Q正常 4209.72 Q最大 6314.58
采区涌水量
可在表中直接修改要转换的口径和降深数值 红色数值 直接填写基本数据红色字体即可
不同孔径、降深涌水量换算
钻孔 编号 ZK2-2 ZK1-1 实际涌水量 换算口径 m m3/d 23.29 25.23 0.091 0.091 实际口径 m 0.135 0.135 转换涌水量 m3/d 18.76 20.32 转换降深 m 10 10 实际降深 m 34.71 21.24
基 本 数 据 填 写 区 基 本 钻 孔 数 据 填 写 区
钻孔 编号 ZK2-2 ZK1-1 注: 实际涌水量 实际口径 m m3/d 23.29 25.23 0.135 0.135 实际降深 m 34.71 21.24 孔深 m 758.1 605.81 静止水位 m 530.71 397.72 孔口标高 m 3269.163 3068.105
首采区涌水量
Q正常 1307.95 Q最大 1961.93
解 析 法
计算所得,可根据当地实际情况调整系数!
钻孔 编号 J36
实际涌水量 换算口径 3 m m /d 23.29 0.091
实际口径 m 0.275
转换涌水量 3 m /d 15.50
转换降深 m 5
实际降深 m 34.71
首采区涌水量计算
大井法预测首采区涌水量
F 钻孔编号 ZK2-2 3410000.00 π 3.14 r0 1041.84 K 0.0042 S 554.42 H 554.42
积水廊道发预测首采区涌水量
钻孔编号 ZK2-2 K 0.0042 S 554.42 含水层厚度 M(m) 554.42 B 2766 R 2735.57
注:最大涌水量与正常涌水量是按照当地正常降水与丰水期降水1.5倍的系数计算所得,可根据当地实际情况调整
填 写 区 首 采 区 数 据 填 写 区
首采区面积 m2 3410000 首采区 平均水位 渗透系数 最低标高 标高 m/d m m 2150 2704.419 0.0042 廊道 水平长度 m 2766