微生物的营养
微生物的营养代谢PPT课件
例如:牛肉膏蛋白胨培养基(细菌)
牛肉膏 蛋白胨 NaCl 琼脂 水 PH
3g 10g 5g 18--20g 1000ml 7.0----7.2
培养基
(2)加富培养基(enrichment medium)
又叫营养培养基
定义:在基础培养基中加入某些特殊营养物 质制成的营养丰富的培养基。
[CH2O] + O2 ↑
如以还:绿 原硫 态细 无菌 机、硫紫化硫物细作菌氢或还电原子C供O体2 时。,
光能
CO2 + 2H2S 细→菌 [CH2O] + H2O + 2S
叶绿素
微生物的营养类型
(2)光能有机营养型(photorganotroph)
又叫异养微生物。又称光能异养型微生物。 红螺菌属.
脂肪酶
脂肪
甘油 +O2 CO2+H2O
脂肪酸 -O2 简单酸+CO2+CH4
应用:屠宰场;生活污水。
3 果胶物质的分解
原果胶酶
原果胶+H2O
可溶性果胶+多缩戊糖
可溶性果胶+H2O 果胶甲基酯酶 果胶酸+甲醇
果胶酸+H2O 多缩半乳糖酶 半乳糖醛酸
应用:麻类物质的脱胶处理
水浸——厌氧性细菌 露浸——好氧性细菌、放线菌、真菌
定义:以小分子有机物为最终电子受体的生物 氧化过程。有机物为呼吸基质的中间产物。
最终电子受体——有机物 参与的微生物——厌氧菌和兼性厌氧菌。 不经过电子传递体。 常见的发酵有
§乙醇发酵 §乳酸发酵
§丁酸发酵
乙醇发酵(生产酒精)
葡萄糖
3-磷酸甘油醛
2NAD
乙醇
1,3-二磷酸甘油酸
2NADH2
4 微生物的营养
基团移位 有 快 由稀至浓
内部浓度高
运送速度
溶质运送方向
平衡时内外浓度
相等
无特异性 不需要
相等
特异性 不需要
运送分子 能量消耗
运送前后溶质分子
特异性 需要
特异性 需要
不变
无 无竞争性 无
不变
有 有竞争性 有
不变
有 有竞争性 有
改变
有 有竞争性 有
载体饱和性 与溶质类似物 运送抑制剂
•单纯扩散:溶质分子通过细胞膜上的小孔由高浓度 向低浓度扩散。 •促进扩散:物质在膜渗透酶帮助下顺浓度梯度快速 扩散运送。
第六章 微生物的营养
一、微生物的营养
• 营养(nutrition):指生物体从外部环境摄取
其生命活动所必需的能量和物质,以满足其
生长和繁殖需要的一种生理功能。
• 营养物(nutrient):指具有营养功能的物质, 在微生物学中,常常还包括光能这种非物质形
式的能源在内。微生物的营养物可为它们正常
生命活动提供结构物质、能量、代谢调节物质
微生物的营养类型
营养类型
光能自养型 (光能无机营养型) 光能异养型 (光能有机营养型) 化能自养型 (化能无机营养型) 化能异养型 (化能有机营养型)
能源
光 光 无机物* (还原态) 有机物
氢供体
无机物 有机物 无机物 有机物
基本碳源
CO2 CO2及简单 有机物 CO2 有机物
实例
蓝细菌 藻类 红螺菌科 铁细菌 氢细菌
6、水
• 微生物细胞的重要组成成分,其含量可达70~
95%(细菌~80%,酵母~75%,霉菌~ 85%)。 • 水的类型:自由水、结合水。 • 水的功能:优良的溶剂;细胞内进行各种生化 反应的媒介;维持生物大分子结构的稳定,参 与某些重要的生物化学反应。
微生物六大营养要素及功能
微生物六大营养要素及功能
微生物的六大营养要素及功能如下:
1. 碳源:能满足微生物生长繁殖所需碳元素的营养物。
2. 氮源:能提供微生物生长繁殖所需氮元素的营养源。
少数能提供能源,只有少数自养微生物如硝化细菌能利用铵盐、硝酸盐产生能量。
3. 能源:能为微生物生命活动提供最初能量来源的营养物或辐射能。
4. 生长因子:是一类调节微生物正常代谢所必需,但不能用简单的碳、氮源自行合成的有机物。
其作为酶的辅基或辅酶参与新陈代谢,补充微生物所需的氨基酸,利用嘌呤、嘧啶来合成核苷酸,再合成核酸。
5. 无机盐:可为微生物提供除碳、氮源以外的各种重要元素,作为酶活性中心的组成部分,维持生物大分子和细胞结构的稳定性,调节并维持细胞的渗透压平衡,控制细胞的氧化还原电位。
6. 水:是一切生命活动的必须条件,是微生物生长必不可少的物质。
这些营养要素是微生物生长和繁殖所必需的,对于维持微生物的生命活动具有重要作用。
知识点1微生物的6类营养要素
知识点1微生物的6类营养要素微生物是指在人类肉眼无法观测到的微小生物体,广泛分布于自然界中各种环境中,扮演着重要的角色。
微生物需要营养来生长和繁殖。
微生物的营养物质分为6类,具体如下:1. 碳素源碳素是微生物最重要的营养物质之一,用于构建细胞体和保持生长所需的能量供给。
微生物利用多种碳素源,如葡萄糖、乳糖、蔗糖、木糖等单糖,以及淀粉、纤维素等复糖类,通过代谢,将碳素转化为生物体所需的化学物质。
2. 氮源氮元素是构成细胞中蛋白质和核酸的主要元素,因此微生物需要适量的氮素来满足其生理需求,以保证生长和繁殖。
微生物利用多种氮源,如氨、硝酸盐、亚硝酸盐、尿素等代谢产物,以及氨基酸和蛋白质等有机氮。
3. 磷源磷是细胞核酸、脂质和ATP等物质的构成成分之一,对于微生物而言,磷源是必要的营养物质。
微生物利用多种磷源,如磷酸盐、脱氧核糖核酸及其盐酸盐、亚磷酸盐等。
4. 硫源硫元素是组成微生物体内许多重要化合物的主要成分之一,如蛋白质、细胞壁、ATP 等。
微生物利用多种硫源,如硫酸盐、硫醇、硫氰酸,以及来自其他微生物死亡的硫。
5. 微量元素微生物需要大量的微量元素来支持其生长和代谢活动,如镁、钙、钠、铁、锌、铜、锰等。
这些微量元素在微生物的代谢过程中发挥着各自的作用,没有这些微量元素,微生物的生长和代谢活动会受到严重影响。
6. 氧氧是微生物代谢运作所必需的,可以作为电子受体,促进ATP的生成。
微生物的氧需求程度不同,分为好氧菌和厌氧菌。
好氧菌需要氧气来供给细胞呼吸作用,进行代谢产生能量,而厌氧菌则不需要氧气或是在无氧条件下进行呼吸和能量代谢。
总之,微生物需要碳素、氮源、磷源、硫源、微量元素和氧等多种营养物质来生长和繁殖。
影响微生物生长的因素很多,如适宜的温度、酸碱度、盐度、营养物质质量比、气体含量等等。
只有在各种生态因素协同作用下,微生物才能健康地生长和发育,发挥其在自然界中的重要作用。
简述微生物的4种基本营养类型
简述微生物的4种基本营养类型微生物是一类微小的生物体,包括细菌、真菌、病毒等。
它们在自然界中具有重要的生态作用,并且具有多样的营养类型。
下面将简述微生物的四种基本营养类型。
第一种基本营养类型是光合营养。
光合营养是指通过光合作用将光能转化为化学能,以此合成有机物的一种营养方式。
光合微生物主要包括一些细菌和藻类。
它们利用细胞中的光合色素吸收光能,并利用光合作用中的电子传递链和ATP合成途径,将二氧化碳和水合成为有机物,同时释放出氧气。
第二种基本营养类型是化学营养。
化学营养是指微生物通过化学反应来获取能量和原料,并合成有机物质的一种营养方式。
这类微生物被称为化能微生物。
化学营养微生物可以利用无机化合物、有机化合物或气体等作为能量和原料来源。
其中,一些细菌可以利用无机化合物如氨、硫化氢等进行氧化反应,从而释放出能量。
另一些细菌则可以通过对有机物质进行降解分解,从中获取能量和碳源。
第三种基本营养类型是腐生营养。
腐生营养是指微生物以死亡有机物为食,进行降解分解并吸收有机物质的一种营养方式。
腐生微生物主要包括一些真菌和一些细菌。
它们通过分泌各种腐解酶,将死亡有机物分解为简单的小分子化合物,进而进行吸收和利用。
第四种基本营养类型是寄生营养。
寄生营养是指微生物借助寄主的营养和生理代谢,从中获取所需的营养物质的一种营养方式。
寄生微生物包括一些细菌、真菌和寄生虫。
它们通过侵入和寄生于寄主的身体,利用寄主的营养物质和组织来维持自身的生长和繁殖。
综上所述,微生物具有四种基本的营养类型:光合营养、化学营养、腐生营养和寄生营养。
微生物以其多样的营养方式,为生态系统的循环和平衡提供了重要的贡献。
《微生物学》微生物的营养
图6-1 单纯扩散
(二)促进扩散
图6-2 促进扩散
促进扩散(facilitated diffusion) 指溶质必须在细胞膜上的底物特异 载体蛋白的协助下,不消耗能量的 扩散运输方式,多见于真核生物, 原核生物中少见(图6-2)。促进扩 散与单纯扩散同属于被动扩散,是 不耗能的跨膜运输方式,所以也不 能进行逆浓度运输,但扩散效率较 快,其原因则是有特异载体蛋白的 参与。
(2) 合成培养基 合成培养基(synthetic medium),也称为化学限定培养基(chemically defined medium),是营养成分 背景完全清晰的培养基,由高纯化学试剂配制而成。 (3) 半合成培养基 半合成培养基(semisynthetic medium)是由部分天然材料和部分化学试剂配制的培养基,如马铃薯蔗 糖培养基(干净削皮的马铃薯200g,蔗糖20g)。
(二)微生物的营养物质及生理功能
4.无机盐
无机盐(mineral salt)或矿质元素主要可为微生物的生长提供除碳源和氮源外的各种重要 元素,是微生物生命活动不可缺少的物质。
在配制微生物培养基时,对大量元素来说,首选无机盐是K2HPO4和MgSO4,可同时提供 多种需要量大的元素。同时,许多微量元素是重金属,不能过量,否则可能产生毒害作用, 但是在部分生物中,特别是真菌,会对某些重金属元素富集,这在重金属污染处理中具有重 要意义。
氧化还原电位(redox potential)又称氧化还原势,是衡量某氧化还原系统中氧化剂接受电子或还原剂释放电子趋势 的一种指标。 6. 原料易得
从经济角度考虑,在配制培养基时应尽量利用廉价且来源方便的原料。
(三)培养基设计的方法
1. 查阅文献,借鉴经验 设计培养基时,首先应该根据实验目的查阅文献,收集已发表的培养基配方,根据实验要求进行筛 选。 2. 生态模拟 凡有某种微生物大量生长繁殖的环境,一定存在着该微生物所必要的营养及赖以生存的其他条件。 3. 营养需求,科学组合 根据微生物的营养需求,通过不同因素实验考察的优化方法确定最优配方。 4. 试验比较,优化配方 初步设计的适合某种微生物生长的培养基配方,还必须经具体试验和比较后才能最后确定符合实 际要求的培养基。
微生物的营养
一、微生物细胞的化学组成
(一) 细胞化学元素组成:整个生物界大体相同,主要 是C、H、O、N(占干重90-97%),C占约50%, C/N一般是5:1。
主要元素:碳、氢、氧、氮、磷、硫、钾、镁、钙、 铁等;
微量元素:锌、锰、钠、氯、钼、硒、钴、铜、钨、 镍、硼等。
微生物细胞中几种主要元素的含量 (干重的%)
➢ 有些微生物需要从外界吸收现成的氨基酸作为 氮源才能生长,这类微生物叫做氨基酸异养型 生物,也叫营养缺陷型。
3、能源
➢ 定义:能为微生物的生命活动提供最初能量来源的营养物 或辐射能。
➢ 种类: (1)化学物质: 有机物——化能异养微生物的能源(同碳源); 无机物——化能自养微生物的能源(不同于碳源),如
类 元素水平 型
化合物水平
培养基原料水平
C·H·O·N·X 复杂蛋白质、核酸等 牛肉膏、蛋白胨、花生饼
有
粉等
机 C·H·O·N 多数氨基酸、简单蛋白 一般氨基酸、明胶等
碳
质等
C·H·O
糖、有机酸、醇、脂类 葡萄糖、蔗糖、各种淀粉、
等
糖蜜等
C·H
烃类
天然气、石油及其不同馏 份、石蜡油等
无 C(?)
—
—
➢ 实验室常用的氮源
碳酸铵、硝酸盐、硫酸铵、胰酪蛋白、尿素、蛋白胨、 牛肉膏、酵母膏等。
➢ 生产上常用的氮源
硝酸盐、铵盐、尿素、氨以及蛋白含量较高的鱼粉、 蚕蛹粉、黄豆饼粉、花生饼份、玉米浆、麸皮等。
➢ 不需要利用氨基酸作为氮源,能利用尿素、铵 盐、硝酸盐甚至氮气等简单氮源自行合成所需 要的一切氨基酸,这种微生物称为氨基酸自养 型生物。
NH4+,NO2-,S,H2S,H2和Fe2+等,这类微生物主要有 硫化细菌、硝化细菌、氢细菌与铁细菌,在自然界物质转 换过程中起着重要的作用。
微生物的五大营养要素及其生理功能
微生物的五大营养要素及其生理功能微生物是一类极为微小的生物体,包括细菌、真菌和病毒等。
它们以各种不同的方式获取营养,以维持其正常的生物学功能。
微生物的五大营养要素是碳、氮、磷、硫和微量元素。
下面将逐个介绍这些营养要素及其生理功能。
1.碳(C):碳是微生物体内最重要的元素之一,它是构成有机物的基础。
微生物利用碳来合成细胞组成部分,如蛋白质、核酸、脂质和多糖。
碳还用于能量代谢过程中的有机物氧化,从而获取生命活动所需的能量。
微生物可以从有机和无机源中获取碳。
典型的有机源包括葡萄糖、果糖和乳糖等,而无机源主要是二氧化碳。
2.氮(N):氮是微生物体内蛋白质和核酸的重要组成元素。
微生物通过氮的转化过程将氨、硝酸盐或有机氮转化为氨基酸,然后合成蛋白质。
微生物还能从一些无机氮化合物中获取能量,如硝酸盐的还原过程能产生反应所需的能量。
3.磷(P):磷在微生物体内存在于DNA、RNA、ATP(三磷酸腺苷)和磷脂等有机物中。
微生物利用磷合成核酸和能量储存分子ATP,在细胞代谢和生长中起着重要作用。
磷还是微生物体内多元酸和磷脂酰胆碱等重要分子的组成元素。
4.硫(S):硫在微生物体内存在于蛋白质和核酸的硫氨基酸(如蛋氨酸和半胱氨酸)中。
硫原子具有特定的化学性质,在蛋白质的折叠和稳定性中起着重要作用。
硫还参与微生物体内的代谢反应,如硫酸盐的还原和硫酸胺基酸的反应。
5.微量元素:微生物还需要一些微量元素来完成其生物学功能。
常见的微量元素包括铁(Fe)、锰(Mn)、镁(Mg)、锌(Zn)、铜(Cu)、钴(Co)和钼(Mo)等。
这些微量元素在微生物体内作为辅酶或酶的一部分,参与细胞的代谢过程。
总体而言,微生物的五大营养要素对其生物学功能起着至关重要的作用。
这些要素不仅是构成微生物体结构的基本组成成分,还是微生物体内许多重要化学反应的催化剂。
通过碳、氮、磷、硫和微量元素的摄取和转化,微生物能够完成其代谢过程、细胞增殖、免疫反应和生物修复等生理功能。
6.5第五章微生物的营养和代谢
二、微生物的营养类型
形态结构 微生物的多样性
营养类型
营养物质
需要什么?
营养类型
怎么消耗?
能能营养型
碳源不同
自养型:CO2 异养型:有机物
光能自养型(光能无机营养型)
营 养
光能异养型(光能有机营养型)
类 型 化能自养型(化能无机营养型)
第一节 微生物的营养物质和营养类型
一、微生物的营养
1、微生物营养的概念 微生物营养(nutrition):微生物从环境中摄取生命活动所必需的 能量和物质以满足其生长繁殖需要的一种生理过程,是一切生命 活动的基础。
2、微生物的营养物质及其功能 微生物营养物质:能被微生物吸收利用的物质
水
微生物生长所需的重要成分,在细胞的化学成分中含量最多。 含量(因种类、生活条件和发育时期不同有差异)
半合成培养基:部分天然材料,部分纯化学试剂 优点:配制方便,微生物生长良好 常用:马铃薯蔗糖培养基
根据物理状态不同 固体培养基 凝固体培养基:在液体培养基中,加入凝固剂 琼脂,明胶等 天然固体培养基:固体营养物,如麸皮,米糠等
用途:菌种分离、鉴定、选种、育种、菌种保存 半固体培养基
琼脂0.2%-0.5% 用途:细菌运动的观察,噬菌体效价测定,
选择培养基(selective medium) 定义:根据某种微生物生长的特殊要求或对某些化学、物理因素
的抗性而设计的培养基。 特点:在培养基中加入相应的特殊营养物质或化学物质以抑
制不需要的微生物的生长,利于所需要的微生物的生长。 目的:将某种或某类微生物从混杂的微生物群体中分离出来
的培养基。
例如:加青霉素、四环素、链霉素分离酵母菌和霉菌。
微生物的营养学习教案
定期观察
定期观察微生物的生长情 况,记录生长曲线和繁殖 数量,以便及时调整培养 条件。
防止突变
在培养过程中要防止微生 物发生突变,保持微生物 的遗传稳定性。
07 微生物营养在实 际应用中价值
在食品工业中应用
发酵食品制作
利用微生物的代谢作用,将食品原料转化为具有特殊风味和营养价 值的发酵食品,如面包、啤酒、酸奶等。
某些微生物不能合成全部所需氨基酸,需 从外界摄取,如谷氨酸、天冬氨酸等。
嘌呤和嘧啶类生长因子
生长因子对微生物生长的影响
对部分微生物的生长和核酸合成有重要作 用。
生长因子的种类和浓度对微生物的生长和代 谢也有重要影响,缺乏必要的生长因子会导 致微生物生长异常。
氮源与生长因子关系及影响
氮源和生长因子的相互关系
培养条件设置与优化方法
培养条件
包括温度、湿度、光照、pH值等,这些条件对微生物的生长和繁殖有重要影 响。
优化方法
通过单因素实验、正交实验等方法,对培养条件进行优化,提高微生物的生长 速度和繁殖效率。
培养过程中注意事项
01
02
03
无菌操作
在培养过程中要保持无菌 操作,避免杂菌污染,影 响实验结果。
案例分析:成功与失败经验分享
成功案例
总结成功的实验操作经验,如正确的无菌操作、准确的样 品处理、合理的实验设计等,以便他人借鉴和学习。
失败案例
分析实验失败的原因,如操作失误、样品污染、实验条件 控制不当等,并提出改进措施,避免类似错误再次发生。
经验分享
鼓励实验者分享自己的实验心得和体会,包括实验技巧、 注意事项、问题解决方法等,促进实验技能的提高和交流 。
转化
在微生物体内,碳源和能源可以相互转化。例如,葡萄糖既可以作为碳源提供碳骨架,又可以通过氧化释放能量 作为能源。另外,一些微生物还能够利用无机碳源(如二氧化碳)和能源(如氢气)合成有机物,实现碳源和能 源的转化。
简述微生物生长所需要的营养物质及其功能
简述微生物生长所需要的营养物质及其功能如下:
微生物生长所需要的营养物质主要有水、碳源、氮源、无机盐、生长因子和能源。
1.水:水是微生物的重要组成部分,在代谢中占有重要地位。
水
在细胞中有两种存在形式:结合水和游离水。
结合水与溶质或其他分子结合在一起,很难加以利用。
游离水(或称为非结合水)则可以被微生物利用。
2.碳源:凡是作为微生物细胞结构或代谢产物中碳架来源的营养
物质,称为碳源。
3.氮源:凡是可被微生物利用,为细胞代谢产物提供氮元素的营
养物质,称为氮源。
4.无机盐:许多无机元素构成酶的活性基因或酶的激活剂,并且
具有调节细胞渗透压、调节酸碱度和氧化还原电位以及能量的转移等作用。
5.生长因子:是某些微生物维持正常生命活动不可缺少的特殊有
机营养物质,这些物质在某些微生物自身不能合成,必须在培养基中加入,主要是指一些维生素、氨基酸、嘌呤、嘧啶等特殊有机营养物。
第四章_微生物营养
• 无机盐
• 生长因子
Mineral source
Growth source
• 水
Water
1. 碳源(carbon source)
碳源(carbon source)凡是提供微生物营养所需的 碳元素(碳架)的营养源,称为~。
第四章
微生物的营养
第一节 微生物的营养要求
1.1 微生物细胞的化学组成 1.2 营养物质及其生理功能 1.3 微生物的营养类型(nutritional types)
第二节 培养基
2.1 选用和设计培养基的原则和方法 2.2 培养基的类型及应用
第三节 营养物质如何进入细胞
3.1 扩散(diffusion) 3.2 促进扩散(facilitated diffusion) 3.3 主动运输(active transport) 3.4 膜泡运输(memberane vesicle transport)
真菌
48(45~55) 6(4~7) 32(25~40) 49(40~55) 8(5~10) 5(2~8) 6(4~10)
• *只有用快速增长的细胞进行分析才可获取这一高值
原核微生物细胞的化学成分
分子名称 所占干重 %
96 55 5 9.1 3.1 20.5 3.5 0.5 2 0.5 1
所含分子数/细胞
化能自养菌的能源(S、Fe 2+ 、NH 4+ 、 NO2- 等)
无氧呼吸的受体( NO2- 、SO4 2-等)
酶的激活剂(Cu 2+ 、Mn 2+ 、Zn 2+ ) 特殊分子结构成分(Co、Mo)
无机盐的提供方式
《微生物的营养要求》课件
生长因子
生长因子是微生物生长所必需 的,但它们在细胞内不能自行 合成,必须从外界获取。
生长因子的种类很多,如维生 素、氨基酸、嘌呤和嘧啶等, 它们参与细胞物质的合成和代 谢调节。
例如,维生素是许多酶的辅基 或激活剂,参与能量代谢和物 质合成;氨基酸则是蛋白质的 基本组成单位。
微生物的营养物质来源
环境因素对微生物营养需求的影响
环境因素如温度、pH值、渗透压、压力等都会影响微生物的营养需求。例如,在高温环境中,微生 物需要更多的蛋白质来维持其细胞结构的稳定性和酶的活性。而在低pH值环境中,微生物则需要更 多的糖类和氨基酸来维持其细胞膜的稳定性和渗透压。
环境因素的变化也会影响微生物对营养物质的吸收和利用。例如,在富氧环境中,微生物需要更多的 能量来维持其生命活动,因此需要更多的葡萄糖等能源物质。而在厌氧环境中,微生物则更多地依赖 有机物作为能源。
核酸代谢
核酸是微生物生长和繁殖所必 需的物质,通过核酸代谢,微 生物能够合成DNA和RNA等
核酸分子。
核酸代谢过程中需要摄取磷 酸、核糖等物质,同时还需 要多种维生素和矿物质的参
与。
不同微生物对核酸的需求和代 谢方式也有所不同,有些微生 物能够利用DNA或RNA作为
能源物质进行生长繁殖。
微生物的营养物质需求与环境
生长因子的种类和浓度对微生物的生长和代谢有重要影响,不同的微生 物对生长因子的需求不同。
生长因子的主要功能包括参与酶的辅基组成、促进细胞分裂以及调控细 胞代谢等。
微生物对营养物质的吸收方式
04
单纯扩散
01
扩散方式
物质顺浓度梯度由高浓度向低浓度转运,不消耗能量。
02
转运机制
细胞膜上存在通透性较高的蛋白质或通道,物质通过这 些蛋白质或通道从高浓度一侧向低浓度一侧转运。
微生物四种营养类型的特点
微生物四种营养类型的特点微生物是一类非常微小的生物体,可以分为四种不同的营养类型:光合营养、化学合成营养、混合营养和异养营养。
这四种营养类型各有特点。
光合营养是一种通过光能合成有机物的营养方式。
光合微生物包括叶绿素、细菌和叶绿素的分泌生物等。
这些微生物利用阳光作为能源,将二氧化碳和水转化为有机物和氧气。
光合微生物在水或湿润环境中生长,并依赖于太阳能的辐射。
化学合成营养是一种通过无机物合成有机物的营养方式。
化学合成微生物包括硫酸盐还原菌和硝酸盐氧化菌等。
这些微生物获取能量的方式是通过化学反应将无机物转化为有机物。
硫酸盐还原菌将硫酸盐还原为硫化物,而硝酸盐氧化菌将硝酸盐氧化为亚硝酸盐。
这些微生物生活在土壤和水体中,起到了重要的生态作用。
混合营养是一种通过同时利用光合和化学合成两种方式合成有机物的营养方式。
这种营养方式的微生物包括一些蓝藻和细菌等。
这些微生物可以同时利用光能和化学反应的能量合成有机物。
这种混合营养的特点是适应能力强,可以在不同环境中生长。
异养营养是一种通过摄取有机物质为能源合成有机物的营养方式。
异养微生物包括一些真菌和细菌等。
这些微生物无法自己合成有机物,只能从外界获取有机物。
它们可以从其他生物体或有机废料中摄取有机物质,通过分解和吸收来获取能量。
异养微生物具有较强的分解能力,能够分解和吸收多种有机物质。
这些微生物在自然界中起着分解和循环有机物的重要作用。
总的来说,微生物的四种营养类型各具特点,适应不同的环境和生态角色。
光合营养和化学合成营养是微生物通过不同方式合成有机物的能力,混合营养则是兼具两种方式的能力,异养营养则是微生物通过摄取有机物质为能源合成有机物的能力。
这些不同的营养方式使得微生物能够在不同的环境中生长和生存,发挥着重要的生态作用。
微生物的营养教案
(3)功能:①主要用于合成微生物的细胞物质和一些代谢产物。
②有些碳源同时还是异养型微生物的主要能源物质。
说明:不同种类的微生物对碳源的需求差别很大,可从微生物的代谢角度来考虑。
见下表:代谢类型代表能源碳源光能自养型蓝细菌,藻类光CO2光能异养型红螺菌光CO2和简单有机物化能自养型硝化细菌,铁细菌,硫细菌无机物(氧化)CO2化能异养型全部真菌和绝大多数细菌有机物(氧化)有机物注:甲烷氧化菌只能用甲烷和甲醇作碳源,而洋葱假单胞菌却能利用90多种含碳化合物。
2.氮源(1)概念:凡是能为微生物提供所需氮元素的营养物质。
(2)种类:(3)功能:主要用于合成蛋白质,核酸以与含氮的代谢产物。
说明:①对于异养微生物来说,含C,H,O,N的化合物既是碳源,也是氮源,还是能源。
②大多数的微生物主要利用无机氮化合物作为氮源,也可利用有机氮化合物作为氮源。
作为氮源,如:根瘤菌,固氮菌,③只有少数固氮微生物可以利用N2蓝藻。
④对于硝化细菌而言,铵盐和硝酸盐既是氮源又是能源。
3.生长因子(1)概念:微生物生长不可缺少的微量有机物。
(2)种类:维生素,氨基酸,碱基等。
(3)功能:一般是酶和核酸的组成成分。
4.无机盐(1)无机盐对微生物正常生命活动的意义:①构成细胞的各种重要的化学成分。
②参与构成微生物的各种细胞结构。
③一些无机盐是构成酶的重要成分,起到调节微生物代谢的作用。
④调节微生物细胞的渗透压和酸碱度。
+,Fe2+,S可分别作为硝化细菌,铁细菌和硫细菌的能源,也可作(2)NH4为硝化细菌的氮源。
放线菌的最适PH:7.5~8.5酵母菌的最适PH:3.8~6.0(三)培养基的种类1.根据物理性质划分:固体培养基:一般加2%的琼脂,主要用于微生物的分离,计数等。
半固体培养基:一般加0.2~0.5%的琼脂,主要用于观察微生物的运动,鉴定菌种等。
液体培养基:常用于工业生产。
2.根据化学成分划分:(1)合成培养基:化学成分已知,常用于分类,鉴定等。
微生物营养名词解释
微生物营养名词解释
微生物营养是指微生物在生长和代谢过程中所需的营养物质。
微生物营养涉及到多种营养物质,包括碳源、氮源、磷源、微量元素等。
以下是对这些微生物营养名词的解释。
1. 碳源:微生物所需的碳元素来源,能够提供能量和碳骨架。
2. 氮源:微生物所需的氮元素来源,是组成蛋白质和核酸的必要元素。
3. 磷源:微生物所需的磷元素来源,是组成核酸、磷脂等生物分子的必要元素。
4. 微量元素:微生物需要的铁、锰、锌等微量元素,虽然数量很少,但对微生物的生长和代谢至关重要。
5. 生长因子:微生物在生长过程中需要的特定化合物,例如维生素和氨基酸等。
6. 氧气:氧气是许多微生物生长和代谢过程所必需的气体,但有些微生物却可以在没有氧气的情况下生长和代谢。
7. pH:微生物所需的最适生长环境的酸碱度。
8. 温度:微生物所需的最适生长环境的温度范围。
了解微生物营养对于微生物生长和代谢的控制与调节非常重要,同时也为微生物应用研究提供了基础。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
微生物的营养
1.微生物的营养要求
微生物生长繁殖所需的营养物质主要有水、碳源、氮源、无机盐和生长因子等。
水:水是各种生物细胞必需的。
水是良好的溶剂,微生物的新陈代谢过程中的一切生化反应都离不开水的作用。
碳源:碳源是合成菌体成分的原料,也是微生物获取能量的主要来源。
整体上看来,微生物可以利用的碳源范围极广,从大类上说,可以分为有机碳源和无机碳源两大类,凡必须利用有机碳源的微生物就是异养微生物,凡能利用无机碳源的微生物就是自养微生物。
糖类是最广泛利用的碳源。
氮源:氮源主要是供给合成菌体结构的原料,很少作为能源利用。
与碳源相似,微生物作为一个整体来说,能利用的碳源种类十分广泛。
某些微生物(如固氮菌)能利用空气中分子态的氮或利用无机氮化物如铵盐、硝酸盐合成有机氮化物。
多数致病菌则必须供给蛋白胨、氨基酸等有机氮化物才能生长。
无机盐类:无机盐主要可为微生物提供除碳、氮以外的各种重要元素。
微生物需要的无机盐类很多,主要有P、S、K、Na、Ca、Mg、Fe等,其主要功能为构成菌体成分;调节渗透压;作为某些酶的成分,并能激活酶的活性等。
生长因子:有些微生物虽然供给它适合的碳源氮源和无机盐类,仍不能生长,还要供给一定量的所谓“生长因子”。
其种类很多,主要是B族维生素的化合物等。
生长因子可以从酵母浸出液、血液或血清中获得。
2.微生物的营养类型
根据微生物对碳源的要求不同,可将其分为自养菌和异养菌两大营养类型。
凡能利用无机碳合成菌体内有机碳化物的,叫自养菌;不能利用无机碳而需要有机碳才能合成菌体内有机碳化物的,为异养菌。
根据其生命活动所需能量的来源不同,可分为光能营养菌和化能营养菌。
前者是从光线中获得能量,后者则从化学物质氧化中取得能量。
因此,根据微生物所需的碳源和能源不同,可将微生物分为光能自养菌、光能异养菌、化能自养菌、化能异养菌等四类。
如表所示:
微生物的营养类型
3.营养物质的运输:
外界环境的营养物质只有被微生物吸收到细胞内,才能被微生物分解与利用,微生物生长过程中产生的一些代谢产物也必须分泌到细胞外,在这两个过程中,细胞膜起着重要作用。
目前一般认为,营养物质主要以扩散、促进扩散、主动运输和基团转位四种方式通过微生物细胞膜。