实验一日光灯电路及功率因数的提高分析解析

合集下载

日光灯电路及功率因数的提高实验报告

日光灯电路及功率因数的提高实验报告

日光灯电路及功率因数的提高实验报告1.实验目的:本实验主要是为了了解日光灯的电路原理,以及通过不同方式提高日光灯的功率因数,从而达到节能的目的。

2.实验原理:日光灯是一种比较常见的照明灯具,其原理是通过放电管中的气体放电来产生紫外线,同时紫外线通过荧光粉的激发产生可见光线。

在电路方面,日光灯的电路主要包括电源电路、点火电路和预热电路。

其中,电源电路主要是为了提供足够的工作电压和电流,电路中通常采用交流电源。

点火电路则是为了在启动时提供足够的高压,以便放电管内部形成气体放电和紫外线辐射,最终点亮日光灯。

预热电路则是为了提供足够的预热电流,以便减小放电管的点火电压。

在实验中,我们主要关注提高日光灯的功率因数,其中功率因数是指电路中所消耗的有用功率与视在功率之比。

功率因数越高,电路的能量利用效率也就越高。

在日光灯电路中,功率因数主要受到电容器的影响。

常规日光灯中的电容器通常采用交流电容器,其功率因数较低,只有0.5-0.7左右。

因此,为了提高日光灯的功率因数,我们需要通过改进电路中的电容器来实现。

有几种提高日光灯功率因数的方法,其中较为常见的包括:(1)更换电容器:我们可以通过更换高效的交流电容器或相控交流电容器来提高电路的功率因数。

相控交流电容器比较适合纠正交流电路因为电感而导致功率因数下降的问题。

(2)串联电感:我们可以在电路中增加合适的电感,以降低电路中负载电流的频率,从而提高功率因数。

(3)使用电子镇流器:电子镇流器相对传统的电子镇流器来说,具有更高的效率和功率因数,可以大大减小电路中的损耗和浪费。

3.实验过程:本次实验主要选用更换电容器和串联电感两种方法来提高日光灯的功率因数。

具体步骤如下:(1)连接电路:我们首先按照实验装置要求,连接好日光灯的电路。

(2)记录数据:我们记录下日光灯启动前和启动后的功率因数、功率、电流、电压等数据,作为基准数据。

(3)更换电容器:接下来我们将原来的电容器更换为高效的相控交流电容器,再次记录相关数据。

日光灯电路及功率因数的提高

日光灯电路及功率因数的提高

实验十六 日光灯电路及功率因数的提高一、实验目的1.研究正弦稳态交流电路中电压、电流相量之间的关系。

2.掌握日光灯线路的接线。

3.理解改善电路功率因数的意义并掌握其方法。

二、原理说明1.在单相正弦交流电路中,用交流电流表测得各支路的电流值, 用交流电压表测得回路各元件两端的电压值,它们之间的关系应满足相量形式的基尔霍夫定律,即 Σ.I =0 和 Σ.U =02.如图16-1所示的RC 串联电路,在正弦稳态信号U 的激励下,.U R 与.U C 保持有90°的相位差,即当阻值R 改变时,.U R 的相量轨迹是一个半园,.U ,.U C 与.U R 三者形成一个直角形的电压三角形。

R 值改变时,可改变φ角的大小,从而达到移相的目的。

3.日光灯线路如图16-2所示,图中 A 是日光灯管;L 是镇流器; S 是启辉器;C 是补偿电容器,用以改善电路的功率因数(cos φ值)。

有关日光灯的工作原理请自行翻阅有关资料。

图16-1图16-2三、实验设备序号名称型号与规格数量备注1 交流电压表0-500V 12 交流电流表0-5A 13 功率表 14 自耦调压器 15 镇流器、启辉器与30W灯管配用 1 DGJ-046 电容器1μf,2μf,4.7μf/450V DGJ-057 白炽灯220V,15W 1 DGJ-048 日光灯灯管30W 19 电流插座 3 DGJ-04四、实验内容1.日光灯线路接线按图16-4组成实验线路,经指导教师检查后,接通220V电源,调节自耦调压器的输出,使其输出电压缓慢增大,直到日光灯刚启辉点亮为止。

2.并联电路──电路功率因数的改善按图16-5组成实验线路,经指导教师检查后,接通220V电源,将自耦调压器的输出调至220V,记录功率表,电压表读数,通过一只电流表和三个电门插座分别测量三条支路的电流,改变电容值,进行重复测量。

表16-3 电路功率因数改善实验数据。

实验日光灯电路及功率因数的提高

实验日光灯电路及功率因数的提高

实验日光灯电路及功率因数的提高
日光灯电路是利用线圈产生的磁场去振荡电容,从而产生交流电子供电。

它可以实现
电源节省,减少维护费用,延长寿命,同时提高质量。

首先要提高日光灯电路的功率因数,就要充分利用电容和磁场的峰值。

当磁场的能量
大于电容的电荷时,需要在线圈上加电容,这样可以使电路的功率因数得到提高。

另一部分是采用电容式滤波器来降低共振频率和降低电磁兼容性。

对于逆变器来说,
可以采用拓扑电路,加大线圈抗线圈电容的电容,使逆变器线圈的抗热能力变得越来越高。

此外,还可以使用变频技术,使振荡电路的周期性变化。

由于变频波形的功率因数小,所以可以提高整个系统的稳定性,减少热散离的发生,同时满足灯具的质量要求。

最后要考虑的是,应该采用适宜的驱动电压,选择外部组件,如电容器、开关设备、
控制电路和散热器等,以提高电路发挥的能力。

调节电压和电流,使日光灯具的电流得到
控制,减少日光灯电路中电池的功耗,进一步提升日光灯电路的功率因数。

总之,想要提高日光灯电路的功率因数,就要通过利用线圈滤波器、变频技术以及外
部组件的优势来加强对磁场和电容的利用,使整个系统的能力不断提升,从而达到提高功
率因数的有效目的。

电路实验五、日光灯电路及功率因数提高

电路实验五、日光灯电路及功率因数提高
并联电容 (μ F) 测量值 V,UR= V,UL= 计算值
U=
I (mA)
IC (mA)
IL (mA)
V P (W)
Cosφ
C =0 C =
C C C C
= = = =
5. 预习要求
5.1 了解荧光灯电路实验装置的结构及工作
原理。
5.2 画出荧光灯电路的实验线路图(画出功 率表、电压表、电流表的连接方法)。 5.3 绘出测量数据的表格。 5.4 了解功率表的使用方法。
P UI
RL
I
cos L
P UI cos
IC U XC U C
I RL
L

UC
P U cos L
sin L
P U cos
sin
UC
P U cos L
sin L
P U cos
sin
C
P
U
2
2
( tg L tg )
i
R
如果已知并联的电容
tg tg L U C P
uR
uL
可得到: cos
u
C
L
3. 实验器材与设备
序号
1 2 3
名称
交流电压 交流电流表 功率表及功 率因数表 日光灯镇流器
型号与规格 数量
1 1 1 40W 1
备注
D38-1 D37-1 D34-2 DG09
4
电容
DG09
4. 实验内容与要求
测量电压使用交流电表;测量电流时把交流电流 表联上测电流插头,分别插入对应的测电流插座, 以保证方便和安全;测量功率时把功率表电流线圈 串联到总路测电流I插座后,电压线圈并联到电源两 端。

日光灯电路及功率因数的提高实验报告

日光灯电路及功率因数的提高实验报告

日光灯电路及功率因数的提高实验报告一、引言引言部分主要介绍日光灯电路及功率因数的背景信息,并阐述实验的目的和意义。

二、实验原理本部分详细介绍日光灯电路的基本原理和功率因数的概念,包括电路结构、工作原理和功率因数的定义与计算方法。

2.1 日光灯电路概述日光灯电路由电源、镇流器、日光灯管和启动装置等组成,其工作原理是通过电流和电压的相互作用,将电能转化为光能。

2.2 功率因数的定义与计算方法功率因数是衡量电路效率的重要指标,其定义为有功功率和视在功率之比。

常见的提高功率因数的方法有补偿电路的设计和无功功率的补偿等。

三、实验步骤本部分详细说明实验的具体步骤和操作流程,并列出实验所需材料和仪器设备清单。

3.1 实验材料与设备•日光灯管•电阻器•电容器•电源•电压表•电流表3.2 实验操作流程1.连接电源和电流表,并调节合适的电流值。

2.依次连接电阻器和电容器,并记录电压和电流的数值。

3.根据记录的数据,计算功率因数。

4.反复进行多组实验,以验证实验结果的准确性。

四、实验结果与分析本部分详细介绍实验所得结果,并进行数据分析和讨论。

4.1 实验数据记录使用表格形式列出各组实验数据,并对数据进行标注。

4.2 数据分析与讨论根据实验数据,计算得到各组实验的功率因数,并进行结果分析和讨论。

五、实验结论本部分总结实验的目的、步骤和结果,给出实验结论,并对实验中遇到的问题和改进方法进行讨论。

六、实验心得本部分讨论实验过程中遇到的困难和挑战,总结实验经验和心得,并提出对今后实验改进的建议。

七、参考文献列出参考的相关文献、教材和网站等。

八、附录提供实验中的原始数据记录表和实验装置的照片等附加信息。

日光灯电路及其功率因数的提高,实验报告

日光灯电路及其功率因数的提高,实验报告

日光灯电路及其功率因数的提高,实验报告日光灯电路及其功率因数的提高,实验报告日光灯电路与功率因数的提高实验4.7 日光灯电路与功率因数的提高4.7.1实验目的1(熟悉日光灯的接线方法。

2(掌握在感性负载上并联电容器以提高电路功率因数的原理。

4.7.2实验任务4.7.2.1基本实验1(完成因无补偿电容和不同的补偿电容时电路中相关支路的电压、电流以及电路的功率、功率因数的测量和电路的总功率因数曲线cosθ′=f(C)的测量。

并测出将电路的总功率因数提高到最大值时所需补偿电容器的电容值。

(日光灯灯管额定电压为220V,额定功率30W。

)2(完成图4-7-1所示点亮日光灯时所需电压U点亮和日光灯熄灭时电压U熄灭的测量。

3(定量画出电路的相量图。

完成镇图4-7-1流器的等效参数RL、L的计算。

4.7.2.2扩展实验保持U=220V不变,当电路并联最佳电容器后使得总功率因数达到最大时,在电容器组两端并入20W灯泡,通过并入灯泡的个数,使得总电流I与无并联电容时的I值大致相同,记录此时I、IC、IL、P以及流入灯泡的电流值。

4.7.3实验设备1(三相自耦调压器一套 2. 灯管一套 3(镇流器一只 4. 起辉器一只 5.单相智能型数字功率表一只 6. 电容器组/500V 一套 7. 电流插座三付 8. 粗导线电流插头一付 9. 交流电压表(0~500V) 或数字万用表一只 10(交流电流表(0~5A) 一只 11(粗导线若干4.7.4 实验原理1(日光灯电路组成日光灯电路主要有灯管、启辉器和镇流器U,组成。

联接关系如图4-7-2所示。

2(日光灯工作原理接通电源后,启辉器内固定电极、可动电极间的氖气发生辉光放电,使可动电极的双金图4-7-2 日光灯电路图属片因受热膨胀而与固定电极接触,内壁涂有荧光粉的真空灯管里的灯丝预热并发射电子。

启辉器接通后辉光放电停止,双金属片冷缩与固定电极断开,此时镇流器将感应出瞬时高电压加于灯管两端,使灯管内的惰性气体电离而引起弧光放电,产生大量紫外线,灯管内壁的荧光粉吸收紫外线后,辐射出可见光,发光后日光灯两端电压急剧下降,下降到一定值,如40W 日光灯下降到110V左右开始稳定工作。

(完整word版)日光灯实验报告答案

(完整word版)日光灯实验报告答案

日光灯实验报告答案篇一:日光灯实验报告单相电路参数测量及功率因数的提高实验目的1.掌握单相功率表的使用.2.了解日光灯电路的组成、工作原理和线路的连接。

3.研究日光灯电路中电压、电流相量之间的关系。

4.理解改善电路功率因数的意义并掌握其应用方法。

实验原理1.日光灯电路的组成日光灯电路是一个rl 串联电路,由灯管、镇流器、起辉器组成,如图所示.由于有感抗元件,功率因数较低,提高电路功率因数实验可以用日光灯电路来验证. 图日光灯的组成电路灯管:内壁涂上一层荧光粉,灯管两端各有一个灯丝(由钨丝组成),用以发射电子,管内抽真空后充有一定的氩气与少量水银,当管内产生辉光放电时,发出可见光。

镇流器:是绕在硅钢片铁心上的电感线圈。

它有两个作用,一是在起动过程中,起辉器突然断开时,其两端感应出一个足以击穿管中气体的高电压,使灯管中气体电离而放电。

二是正常工作时,它相当于电感器,与日光灯管相串联产生一定的电压降,用以限制、稳定灯管的电流,故称为镇流器。

实验时,可以认为镇流器是由一个等效电阻rl和一个电感l串联组成。

起辉器:是一个充有氖气的玻璃泡,内有一对触片,一个是固定的静触片,一个是用双金属片制成的u形动触片。

动触片由两种热膨胀系数不同的金属制成,受热后,双金属片伸张与静触片接触,冷却时又分开。

所以起辉器的作用是使电路接通和自动断开,起一个自动开关作用。

2.日光灯点亮过程电源刚接通时,灯管内尚未产生辉光放电,起辉器的触片处在断开位置,此时电源电压通过镇流器和灯管两端的灯丝全部加在起辉器的二个触片上,起辉器的两触片之间的气隙被击穿,发生辉光放电,使动触片受热伸张而与静触片构成通路,于是电流流过镇流器和灯管两端的灯丝,使灯丝通电预热而发射热电子。

与此同时,由于起辉器中动、静触片接触后放电熄灭,双金属片因冷却复原而与静触片分离。

在断开瞬间镇流器感应出很高的自感电动势,它和电源电压串联加到灯管的两端,使灯管内水银蒸气电离产生弧光放电, 并发射紫外线到灯管内壁,激发荧光粉发光,日光灯就点亮了。

日光灯电路与功率因数的提高实验报告

日光灯电路与功率因数的提高实验报告

日光灯电路与功率因数的提高实验报告日光灯电路与功率因数的提高实验报告引言:在现代社会中,电能的消耗已成为一个重要的问题。

为了提高能源利用率和减少能源浪费,我们需要关注电路的功率因数。

本实验旨在研究日光灯电路中功率因数的提高方法,以期能为实际应用提供一定的参考。

一、实验目的本实验的主要目的是探究日光灯电路中功率因数的提高方法,并通过实验验证相关理论。

二、实验原理1. 功率因数的定义功率因数是指电路中有用功与视在功之比,用来衡量电路的有效使用程度。

功率因数的理论范围在0到1之间,数值越接近1,说明电路的有用功越高,能源利用效率越好。

2. 日光灯电路日光灯电路是一种常见的照明电路,由电源、镇流器和灯管组成。

在传统的日光灯电路中,功率因数通常较低,这会导致电能的浪费。

三、实验步骤1. 搭建传统日光灯电路按照传统的日光灯电路连接方式,搭建一个基础电路,包括电源、镇流器和灯管。

2. 测量功率因数使用功率因数测试仪,测量传统日光灯电路的功率因数,并记录测量结果。

3. 安装功率因数改善装置在电路中加入功率因数改善装置,该装置可以通过电容器或电感器来提高电路的功率因数。

根据实验要求选择合适的装置并进行安装。

4. 测量改进后的功率因数使用功率因数测试仪,再次测量改进后的日光灯电路的功率因数,并记录测量结果。

四、实验结果与分析通过实验测量,我们得到了传统日光灯电路和改进后电路的功率因数。

根据测量结果,我们可以得出以下结论:1. 传统日光灯电路的功率因数较低,通常在0.5左右。

这是由于电路中存在电感元件,导致电流与电压之间存在相位差,使得功率因数降低。

2. 安装功率因数改善装置后,电路的功率因数得到了明显提高。

改进后的电路功率因数通常能达到0.9以上,有些甚至可以接近1。

这是因为功率因数改善装置通过补偿电路中的电感元件,使得电流与电压之间的相位差减小,从而提高了功率因数。

3. 通过对比传统电路和改进后电路的功率因数,我们可以明显看出功率因数改善装置的有效性。

日光灯电路与功率因数的提高实验报告

日光灯电路与功率因数的提高实验报告

日光灯电路与功率因数的提高实验报告实验目的本次实验的目的是通过使用电容矫正技术,改善日光灯电路的功率因数,提高电路的效率,降低能源消耗。

实验原理日光灯电路中,对于电感型补偿器,其所产生的反向电路能量,会导致电路中出现较大的无功功率,从而使得整个电路的功率因数降低。

这会导致电网负荷增加,影响电网稳定性。

因此,日光灯电路采用电容矫正技术,将无功功率转化为有功功率,提高功率因数。

电容矫正技术的原理是,在电路中添加一定电容,使得电路中所产生的无功功率,可以通过电容的储能作用,转化为有功功率。

这样,整个电路的功率因数得以提高。

实验步骤1. 将实验所需的设备接好,包括信号发生器、示波器、电阻、电容等。

2. 将日光灯电路连接到电阻和电容上,使其能够产生大量的无功功率。

3. 记录电路的电压、电流、功率等参数,并且利用示波器来观测电路的波形。

4. 随后,将电容矫正电路添加到日光灯电路中,并再次记录电路的电压、电流、功率等参数。

5. 通过对两次实验数据的对比,分析电容矫正技术对于日光灯电路功率因数的提高能够产生的影响。

实验结果经过对实验数据的收集和分析,我们得到了如下结果:没有电容矫正电路时,电路中的无功功率约占总功率的35%。

而添加电容矫正电路之后,这一比例下降到了约10%。

同时,整个电路经过电容矫正之后,功率因数明显提高了。

经过分析,我们得到的结构是,电容矫正技术能够使得日光灯电路的功率因数得以提高,从而降低能耗。

另一方面,电容矫正技术也能够改善电路中的无功功率问题,促进电路的稳定性。

实验结论通过本次实验,我们得到了如下结论:- 电容矫正技术能够提升日光灯电路的功率因数,降低能耗,提高电路的效率。

- 电容矫正技术能够改善电路中的无功功率问题,促进电路的稳定性。

- 通过实验,我们进一步了解了日光灯电路中的相关知识,对电路的运行原理和变化有了更深入的了解。

总之,本次实验结果表明,电容矫正技术对于日光灯电路的提升有着显著的效果,它能够改善电路的功率因数和稳定性,从而降低能源消耗,更好地满足了能源节约的需求。

日光灯功率因数的提高实验报告

日光灯功率因数的提高实验报告

日光灯功率因数的提高实验报告日光灯功率因数的提高实验报告引言:日光灯是我们日常生活中常见的照明设备,但是它的功率因数却是一个重要的问题。

功率因数是指电路中有功功率与视在功率之比,它反映了电路中有功功率的利用程度。

功率因数越高,电路的效率越高,能量的损耗越小。

本次实验的目的是通过改变日光灯电路中的电容大小,提高日光灯的功率因数,从而提高电路的效率。

实验原理:日光灯是一种交流电灯,它的工作原理是利用电场和磁场相互作用的方式发光。

在日光灯电路中,电流和电压的波形不同,电流的波形是正弦波,而电压的波形是由电流波形经过电感和电容的作用后形成的。

电容是一种存储电荷的元件,它具有储存电能的能力。

当电流通过电容时,电容会吸收电流的能量,然后在电流方向改变时释放出来。

通过改变电容的大小,可以改变电流和电压之间的相位差,从而提高功率因数。

实验步骤:1. 准备实验材料:日光灯、电容器、电源、电压表、电流表等。

2. 搭建实验电路:将电容器连接到日光灯电路中,注意正确连接正负极。

3. 测量电流和电压:用电流表测量电路中的电流,用电压表测量电路中的电压。

4. 记录数据:记录不同电容大小下的电流和电压值。

5. 分析数据:根据测量数据计算功率因数,并比较不同电容大小下的功率因数差异。

6. 总结实验结果:总结实验结果,得出结论。

实验结果:通过实验测量和数据分析,我们得到了以下结果:1. 在没有电容器的情况下,日光灯的功率因数较低,约为0.6。

2. 随着电容器容量的增加,日光灯的功率因数逐渐提高。

3. 当电容器容量达到一定数值后,日光灯的功率因数基本稳定在0.9左右。

实验讨论:通过实验结果的分析,我们可以得出以下结论和讨论:1. 电容器的引入可以有效提高日光灯的功率因数,从而提高电路的效率。

2. 电容器的容量越大,功率因数的提高效果越好,但是容量过大也会增加电路的成本和体积。

3. 在实际应用中,需要根据实际情况选择适当的电容器容量,以平衡功率因数的提高和成本的考虑。

实验3 日光灯电路与功率因数的提高研究

实验3  日光灯电路与功率因数的提高研究

实验1.4 日光灯电路与功率因数的提高研究实验1.4 日光灯电路与功率因数的提高研究一、实验目的(1)了解日光灯的工作原理, 学会安装日光灯电路。

(2)学习提高功率因数的方法, 理解提高功率因数的实际意义。

(3)掌握交流电压表、电流表和功率表的使用方法。

二、实验设备及材料通用电学实验台, 单相交流调压器, 交流电压表、交流电流表, 功率表、日光灯套件(光管、镇流器、启辉器)、电容器若干和导线一批。

三、实验原理1.日光灯工作原理日光灯电路主要由灯管、镇流器、启辉器等三部分组成。

灯管是一根两端各装有灯丝和电极的密封园形玻璃管, 内壁涂有一层均匀的荧光粉(卤磷酸钙)。

管内抽成真空之后, 注入少量惰性气体(如氩、氖气等)和少量水银, 涂在灯丝上的金属氧化物(如氧化钡、氧化锶等)形成电极。

当灯管预热后再在两极间加上一定电压, 灯管就会点燃。

镇流器实质上就是一个铁心线圈, 用以限制通过灯管的电流, 以及启动时与启辉器配合产生足够的瞬时高压(自感电动势), 使灯管点燃。

启辉器又称启动器, 是一个小型辉光放电氖泡, 内部装有的两个电极触片, 一个是固定的静触片, 一个是倒“U”形的可动触片, 可动触片由两种膨胀系数相差较大的双金属片粘合一起制成。

两触片之间并联有一小电容器, 以避免启辉器两触头断开时产生火花烧坏触头, 同时可防止灯管内部气体放电时产生的电磁波对无线电设备的干扰。

日光灯接线电路如图1.4.1所示。

当接通电源时, 灯管未被点亮而不导电, 电源电压(220V)全部加在启辉器两端, 此电压高于起辉电压(135V左右), 启辉器的双金属片与静触片之间发生辉光放电。

辉光放电产生的热量使双金属片伸展, 动触片与静触片相碰, 使触点闭合, 接通由镇流器和灯管的两组灯丝构成的电路, 灯丝预热并发射电子, 发射出的电子促使灯管内的氩气分子游离, 灯丝预热产生的热量使管子里的水银蒸发变成水银蒸气。

启辉器双金属片与静触片相碰使触点闭合的同时, 氖泡内两电极间电压下降为零, 辉光放电停止, 双金属片开始冷却, 渐向原位收缩, 触点断开。

日光灯的安装与功率因数的提高

日光灯的安装与功率因数的提高

日光灯电路的安装与功率因数的提高1.实验目的(1)了解荧光灯的工作原理,学习荧光灯的安装方法。

(2)掌握提高功率因数的方法,理解提高功率因数的意义。

(3)熟悉交流仪表的使用方法。

2.实验原理(1)日光灯电路的组成电路由日光灯管、镇流器、启辉器组成,原理电路图如图1所示。

图1:日光灯电路图图2 启辉器结构1)荧光灯管荧光灯管是一支细长的玻璃管,其内壁涂有一层荧光粉薄膜,在荧光灯管的两端装有钨丝,钨丝上涂有受热后易发射电子的氧化物。

荧光灯管内抽成真空后,充有一定量的惰性气体和少量的汞气(水银蒸汽)。

惰性气体有利于荧光灯的启动,并延长灯管的使用寿命;水银蒸汽作为主要的导电材料,在放电时产生紫外线激发荧光灯管内壁的荧光粉转换为可见光。

2)启辉器启辉器主要由辉光放电管和电容器组成,其内部结构如图9.18所示。

其中辉光放电管内部的倒U形双金属片(动触片)是由两种热膨胀系数不同的金属片组成;通常情况下,动触片和静触片是分开的;小容量的电容器,可以防止启辉器动、静触片断开时产生的火花烧坏触片。

3)镇流器镇流器是一个带有铁心的电感线圈。

它与启辉器配合产生瞬间高电压使荧光灯管导通,激发荧光粉发光,还可以限制和稳定电路的工作电流。

(2)荧光灯的工作原理如图1和2所示,在荧光灯电路接通电源后,电源电压全部加在启辉器两端,从而使辉光放电管内部的动触片与静触片之间产生辉光放电,辉光放电产生的热量使动触片受热膨胀趋向伸直,与静触片接通。

于是,荧光灯管两端的灯丝、辉光放电管内部的触片、镇流器构成一个回路。

灯丝因通过电流而发热,从而使灯丝上的氧化物发射电子。

与此同时,辉光放电管内部的动触片与静触片接通时,触片间电压为零,辉光放电立即停止,动触片冷却收缩而脱离静触片,导致镇流器中的电流突然减小为零。

于是,镇流器产生的自感电动势与电源电压串联叠加于灯管两端,迫使灯管内惰性气体分子电离而产生弧光放电,荧光灯管内温度逐渐升高,水银蒸汽游离,并猛烈地撞击惰性气体分子而放电,同时辐射出不可见的紫外线激发灯管内壁的荧光粉而发出近似荧光的可见光。

日光灯电路及功率因素的提高

日光灯电路及功率因素的提高

日光灯电路及功率因素的提高实验报告班级: _______________姓名: _______________学号: _______________指导老师: _______________组长: ______________武汉交通职业学院机电工程系2009年10月实验三日光灯电路及功率因素的提高一、实验目的1、掌握日光灯线路的接线。

2、理解改善电路功率因数的意义并掌握其方法。

二、原理说明日光灯线路如图3-1所示,图中A是日光灯管,L是镇流器,C是补偿电容器,用以改善电路的功率因数(COSΦ)。

有关日光灯的工作原理见附说明。

三、实验设备四、实验内容1、日光灯线路接线与测量。

按图3-2接线。

经指导教师检查后接通实验台电源,日光灯应立即发光,记下三表的指示值。

测量功率P,电流I,电压U,UL ,UA等值,验证电压、电流相量关系。

2、并联电路———电路功率因数的改善。

按图(3-3)组成实验线路。

经指导教师检查后,接通实验台电源,记录功率表、电压表读数。

通过一只电流表和三个电流插座分别测得三条支路的电流,改变电容值,进行三次重复测量。

数据记入下页表中。

五、实验注意事项1、本实验用交流市电220V,务必注意用电和人身安全。

2、功率表要正确接入电路。

3、线路接线正确,日光灯不能启辉时,应检查启辉器及其接触是否良好。

六、预习思考题1、在日常生活中,当日光灯上缺少启辉器时,人们常用一根导线将启辉器的两端短接一下,然后迅速断开,使日光灯点亮或用一只启辉器去点亮多只同类型的日光灯,这是为什么?2、为了改善电路的功率因数,常在感性负载上并联电路器,此时增加了一条电流支路,试问电路的总电流是增大还是减小,此时感性元件上的电流和功率是否改变?3、提高线路功率因数为什么只采用并联电容法,而不用串联法?所并的电容器是否越大越好?七、实验报告1、完成数据表格中的计算,进行必要的误差分析。

2、根据实验数据,分别绘出电压、电流相量图,验证相量形式基尔霍夫定律。

日光灯电路及功率因数的提高实验报告

日光灯电路及功率因数的提高实验报告

日光灯电路及功率因数的提高实验报告一、实验目的本次实验旨在掌握日光灯电路的基本原理,研究不同电路对功率因数的影响,并探究提高功率因数的方法。

二、实验原理1. 日光灯电路日光灯电路主要由镇流器、启动器和灯管组成。

镇流器是将交流电转换为直流电,并限制通电时的电流大小。

启动器则是在通电时提供高压,使灯管放出气体,点亮灯管。

灯管则是利用气体放电来产生紫外线,从而激发荧光粉发出可见光。

2. 功率因数功率因数是指有功功率与视在功率之比,其值在0到1之间。

当负载为纯阻性负载时,功率因数为1;当负载为纯感性负载时,功率因数为0;当负载为混合负载时,功率因数介于0和1之间。

3. 提高功率因数的方法提高功率因数可以采用补偿电容法或补偿线圈法。

补偿电容法是通过并联一个适当大小的电容器来抵消感性元件带来的无功功率;补偿线圈法则是通过串联一个适当大小的线圈来抵消电容元件带来的无功功三、实验器材1. 镇流器2. 启动器3. 灯管4. 电容器5. 电阻箱6. 万用表四、实验步骤及数据处理1. 将电路连接如图1所示,记录灯管亮度和功率因数。

2. 分别改变电容器的大小,记录灯管亮度和功率因数。

3. 将电路连接如图2所示,记录灯管亮度和功率因数。

4. 分别改变电阻箱的大小,记录灯管亮度和功率因数。

5. 根据实验数据绘制出不同电路下的功率因数曲线图,并分析不同电路对功率因数的影响以及提高功率因数的方法。

五、实验结果与分析1. 不同电容器对功率因数的影响根据实验数据绘制出不同电容器下的功率因数曲线图(见图3),可以发现随着电容器大小增加,功率因数也随之增加。

这是由于补偿电容法能够抵消感性元件带来的无功功率,从而提高了整个系统的功率因2. 不同电阻箱对功率因数的影响根据实验数据绘制出不同电阻箱下的功率因数曲线图(见图4),可以发现随着电阻箱大小增加,功率因数也随之增加。

这是由于在串联补偿线圈法中,电阻箱能够抵消电容元件带来的无功功率,从而提高了整个系统的功率因数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

. . .. . .电工学&电工学及电气设备实验指导书农业大学电工电子实验中心实验的基本要求电工学基础实验课的目的在于培养学生掌握基本的实验方法与操作技能。

培养学生学会根据实验目的,实验容及实验设备拟定实验线路,选择所需仪表,确定实验步骤,测取所需数据,进行分析研究,得出必要结论,从而完成实验报告。

在整个实验过程中,必须集中精力,及时认真做好实验。

现按实验过程提出下列基本要求。

一、实验前的准备实验前应复习教科书有关章节,认真研读实验指导书,了解实验目的、项目、方法与步骤,明确实验过程中应注意的问题(有些容可到实验室对照实验预习,如熟悉组件的编号,使用及其规定值等),并按照实验项目准备记录抄表等。

实验前应写好预习报告,经指导教师检查认为确实作好了实验前的准备,方可开始作实验。

认真作好实验前的准备工作,对于培养同学独立工作能力,提高实验质量和保护实验设备都是很重要的。

二、实验的进行1、建立小组,合理分工每次实验都以小组为单位进行,每组由2~3人组成,实验进行中的接线、调节负载、保持电压或电流、记录数据等工作每人应有明确的分工,以保证实验操作协调,记录数据准确可靠。

2、选择组件和仪表实验前先熟悉该次实验所用的组件,选择仪表量程,然后依次排列组件和仪表便于测取数据。

3、按图接线根据实验线路图及所选组件、仪表、按图接线,线路力求简单明了,按接线原则是先接串联主回路,再接并联支路。

为查找线路方便,每路可用相同颜色的导线或插头。

4、接通电源,观察仪表接线完毕,首先自我检查,然后请指导教师查验无误后,方可通电。

在正式实验开始之前,先熟悉仪表刻度,并记下倍率,然后开始实验,观察所有仪表是否正常(如指针正、反向是否超满量程等)。

如果出现异常,应立即切断电源,并排除故障;如果一切正常,即可正式开始实验。

5、测取数据预习时对电工实验的基本试验方法及所测数据的大小作到心中有数。

正式实验时,根据实验步骤逐次测取数据。

6、认真负责,实验有始有终实验完毕,须将数据交指导教师审阅。

经指导教师认可后,才允许拆线并把实验所用的组件、导线及仪器等物品整理好。

实验过程中一定要注意用电安全,按程序规操作,以避免人身触电事故的发生!三、实验报告实验报告是根据实测数据和在实验中观察和发现的问题,经过自己分析研究或分析讨论后写出的心得体会。

实验报告要简明扼要、字迹清楚、图表整洁、结论明确。

实验报告包括以下容:1) 实验名称、专业班级、学号、、实验日期。

2) 列出实验中所用组件的名称及编号等。

3) 数据的整理和计算4) 根据数据进行计算和分析,说明实验结果与理论是否符合,可对某些问题提出一些自己的见解并最后写出结论。

实验报告应写在一定规格的报告纸上,保持整洁 5) 每次实验每人独立完成一份报告,按时送交指导教师批阅。

实验一 日光灯电路及功率因数的提高一、实验目的1. 了解日光灯的工作原理;2. 了解提高功率因数的意义;3. 掌握提高感性负载功率因数的方法。

二、实验原理说明1、日光灯各元件的联接及其工作过程日光灯结构如图1-1所示,K 闭合时,日光灯管不导电,全部电压加在启辉器两触片之间,使启辉器中氖气击穿,产生气体放电,此放电产生的一定热量使双金属片受热膨胀与固定片接通,于是有电流通过日光灯管的灯丝和镇流器。

短时间后双金属片冷却收缩与固定片断开,电路中的图1-1 日光灯电路三、实验设备表1-1 实验仪器和设备序号 名 称 型号与规格数量 备注1交流电压表1UI Z=|Z|四、实验线路与实验容实验接线如图所示。

测量交流参数及提高功率因数按表1-2并联电容C,令U=220V不变,将测试结果填入表1-2 中。

表1-2 测试结果实验接线图五、注意事项1、测电压、电流时,一定要注意表的档位选择,测量类型、量程都要对应。

2、功率表电流线圈的电流、电压线圈的电压都不可超过所选的额定值。

3、自耦调压器输入输出端不可接反。

4、各支路电流要接入电流插座。

5、注意安全,线路接好后,须经指导教师检查无误后,再接通电源。

六、报告要求1、若直接测量镇流器功率,功率表应如何接线,作图说明。

2、说明功率因数提高的原因和意义。

3、收获体会及其他。

实验二 三相负载星形连接一、实验目的1. 熟悉三相负载作星形连接的方法。

2. 学习和验证三相负载对称与不对称电路中,相电压﹐线电压之间的关系。

3. 了解三相四线制中中线的作用。

二、实验原理:三相负载作星形连接时,如图2—1所示。

AO CBOACB图2—1当三相负载对称或不对称的星形连接有中线时,线电压与相电压均对称,且相线U U 3=。

而且线U 超前与相U ︒30。

当三相负载不对称又无中线连接时,此时将出现三相电压不平衡﹑不对称的现象,导致三相不能正常工作,为此必须有中线连接,才能保证三相负载正常工作。

从上述理论中,考虑到三相负载对称与不对称连接又无中线时某相电压升高,影响负载的使用时间,同时考虑到实验的安全,故将三相电压降低到220V的相电压作实验。

三﹑实验仪器设备:1、三相负载箱一个2、电流T15-MA一只3、万用表500型一只4、连接导线若干四、实验容及步骤:实验板布置图如图所示。

将实验台供电箱的三相电源A、B、C、O对应接到负载箱上。

再接成星形连接,即X、Y、Z、O连接。

1、上供电箱上三相开关,用电流表插头及电压表进行下列情况的测量。

并将数据记入表。

2、负载对称有中线,将三相负载箱上的开关全部打到接通位置。

3、负载对称无中线,即断开中线。

4、负载不对称有中线,将A相的KAI开关断开。

5、负载不对称无中线。

上述数据作完,请老师检查数据后,方可整理好实验台。

五、填写实验报告:1、分析负载不对称又无中线连接时的数据。

2、中线有何作用?六、注意事项:1、电压电流表测量时,一定要注意表的量程。

2、每测一次,改变负载连接方式都要断开电源开关。

3、如何接线才能利用电流测量插孔测得中性线电流?实验三 三相负载三角形连接一、实验目的:1.熟悉三相负载作三角形连接的方法。

2.验证负载作三角形连接时,对称与不对称的线电流与相电流之间的关系。

二、实验原理:三相负载三角形连接时如下图所示。

1、 当三相负载对称连接时,其线电流、相电流之间的关系为相线I I 3=,且相电流超前线电流︒30。

2、当三相负载不对称作三角形连接时,将导致两相的线电流、一相的相电流发生变化。

此时,I 线与I 相无3的关系。

3、当三角形连接时,一相负载断路时,如下图3-2所示。

此时只影响故障相不能正常工作,其余两相仍能正常工作。

4、当三角形连接时,一条火线断线时如下图3-2所示。

此时故障两相负载电压小于正常电压,而BC 相仍能够正常工作。

三、实验仪表设备:图3-21、三相负载箱一台2、电流表T—MA一只3、电压表一只15四、预习要点:1、实验板上一相负载,电流插孔只有一个,如何通过适当接线使其可测线电流,又如何接线使其可测相电流?测相电流时,电流插孔又是对应那一相的电流?五、实验步骤及容:实验板布置图见实验二。

接线参照图3-3。

1、参照下图将负载箱接成三角形的负载。

2、合上供电箱的开关,进行下列负载接法的测量并将数据记入表。

数据记入表(1)对称负载的测量,所有开关全部接通。

(2)不对称负载的测量,短开KA1 开关。

(3)一相负载短路,短开KAI.KA2开关。

(4)一相火线断线,开关全部接通,取掉A相火线。

上述容作完后,数据经老师检查后方可整理实验台,离开实验室。

五、填写实验报告:1、负载作三角形连接时,从实验的数据作相I与线I之间关系的计算。

二者之间的关系是什么?2、对各种情况负载下用实验的数据进行分析。

说明了什么?实验四变压器空载、短路实验一、实验目的:1、通过空载和短路实验判断变压器的性能。

2、学习各种仪表的使用。

二、实验容:1、变压器的空载实验。

2、变压器的短路实验。

三、预习要点:1、在变压器空载和短路实验中,各种仪表怎样连接才能使测量误差最小?2、变压器的空载实验,测空载损耗为什么必须用低功率因数表?3、变压器空载及短路实验时应注意哪些问题?一般电源接在低压边还是高压边比较合适?四、实验器材:图3-3单相变压器、电流表、电压表、功率表、调压器、兆欧表。

五、实验步骤和方法:1、测定绝缘电阻用兆欧表分别检查变压器高、低压绕组之间和各绕组对地之间冷态绝缘电阻值。

将数据填下表4-1中。

测量容高、低压绕组之间高压绕组对地低压绕组对地测量值(MΩ)接线图如图2-1所示。

闭合电源开关Q,将调压器的输出电压从低压绕组额定电压的50%左右开始调至U N围,对应不同的输入电压,测量低压绕组电压和高压绕组电压共3组数据,记录于4-2表中,分别计算电压比,取其平均值。

序号低压线圈电压U 2/V 高压线圈电压U 1/V为了安全,空载实验应在低压边进行,空载实验的接线图如图2-2所示。

由于空载时变压器的功率因数甚低,应选用低功率因数表测量功率,以减少测量误差。

又因为变压器空载阻抗很大,故电压表应接在电流表的外侧,以免由于电压表分流引起误差。

为了保护仪表,调压器将电压从零开始升至U N,测量空载电流I0及空载损耗功率P0 ,副边电压U AX。

共测取数据3组。

记录于表4-1中。

4、短路实验短路实验接线图如图2-3所示。

由于短路阻抗很小,故电流表应接在电压表的外侧,以免由于电流表的阻压降引起误差。

短路时的功率因数较高,故不必采用低功率因数功率表。

通电前,必须将调压器调至输出电压为零的起始位置。

然后合上开关Q,调节输出电压,使短路电流升至I N ,测量U k、P k。

共测取数据3组。

记录于表4-1中。

六、实验报告:1、由测定的绝缘电阻值判定变压器的绝缘性能。

2、计算变压器电压变比的平均值作为受试变压器的变比。

3、将空载实验数据和标准值比较,判断性能。

4、将短路实验数据和标准值比较,判断性能。

数据记入表表3-1空载实验数据计算数据序号U0(V)I0(A)P0(W)U AX(V)cosφ0 123短路实验数据U K(V)I K(A)P K(W) cosφK123实验五三相异步电动机的起动和调速一、实验目的:1、通过实验熟悉异步电动机的起动设备和起动方法。

2、熟悉异步电动机的调速原理和调速方法。

二、实验容:1、笼型异步电动机的起动。

2、绕线转子异步电动机的起动。

3、异步电动机的调速。

三、预习要点:1、为什么笼型异步电动机降压起动不适用于重载起动?2、绕线转子异步电动机所串电阻的大小对起动转矩有什么影响?3、异步电动机的调速原理。

四、实验器材:五、实验步骤和方法:1、直接起动按图5-1接线。

先将开关Q2向上闭合,然后闭合电源开关Q,读取瞬时起动电流数值,记录于表5-1中。

仍按上图5-1接线。

先将开关Q2向下闭合,定子绕组为星形联结,然后电源开关Q1,读取起动电流数值,记录于表5-1中。

相关文档
最新文档