Android I2C精析
I2C协议概述
I2C协议概述概述:I2C(Inter-Integrated Circuit)是一种串行通信协议,用于在集成电路(IC)之间进行数据传输。
它由飞利浦半导体(现在的恩智浦半导体)在1982年开发,并于1992年公开发布。
I2C协议被广泛应用于各种电子设备中,如计算机、手机、数字摄像机等。
一、协议特点:1. 硬件要求简单:I2C协议只需要两根线(SDA和SCL)进行数据传输,相对于其他串行通信协议来说,硬件要求较低。
2. 双向通信:I2C协议支持双向通信,主设备(Master)可以发送和接收数据,从设备(Slave)只能接收数据。
3. 多主设备支持:I2C协议允许多个主设备连接到同一条总线上,通过地址选择来确定通信对象。
4. 传输速率可变:I2C协议支持多种传输速率,最高可达到400Kbps。
5. 时钟同步:I2C协议使用时钟同步机制,确保数据传输的准确性。
二、协议格式:I2C协议的数据传输分为两种模式:地址模式和数据模式。
1. 地址模式:在地址模式下,主设备发送一个包含从设备地址和读/写位的字节,以选择通信对象。
地址模式的格式如下:[起始位] + [从设备地址(7位)+ 读/写位(1位)] + [应答位]- 起始位:始终为低电平,表示传输开始。
- 从设备地址:指定从设备的地址,由7位二进制数表示。
- 读/写位:指定主设备是要读取从设备的数据还是写入数据。
读取数据时为高电平,写入数据时为低电平。
- 应答位:由从设备发送,用于确认地址是否被接收。
2. 数据模式:在数据模式下,主设备和从设备之间进行数据传输。
数据模式的格式如下:[数据字节] + [应答位]- 数据字节:主设备发送或接收的数据,由8位二进制数表示。
- 应答位:由接收方发送,用于确认数据是否被接收。
三、协议流程:I2C协议的通信过程包括起始条件、地址传输、数据传输和停止条件。
1. 起始条件:通信开始时,主设备发送一个低电平的起始位,表示传输开始。
i2c读写程序的详细讲解
i2c读写程序的详细讲解i2c是Inter-IntegratedCircuit的缩写,是一种主从机多总线的通信协议,也就是说,它可以允许多个电子设备在同一个信号线上通信。
i2c是分布式共享总线,它支持主机和多个从机之间的双向传输数据,因此本范文将针对i2c读写程序进行详细的讲解。
首先,我们来看一下i2c协议的特性:i2c协议使用两根信号线,分别是SCL(时钟线)和SDA(数据线),以及一个地线。
其中,SCL线用于传输时钟信号,SDA线用于传输数据,而地线用于给一个共同的参考电位。
i2c的数据传输是先信号再数据,即SCL脉冲先于SDA脉冲,且SDA数据根据SCL时钟的上升沿来储存和传输。
i2c协议的常见的特性包括节点重用,三线模式,通用性,简单性等。
接下来,我们来看一下i2c读写程序。
i2c读写程序是基于i2c协议来操作i2c总线上分布式设备的软件。
它包括一系列的控制参数,如速率、时钟频率、地址空间等,以及一系列读写操作。
i2c读操作通常有三种形式,分别为单字节读取、多字节读取和8位快速读取。
其中,单字节读取是i2c读操作中最常见的模式,其工作机制如下:首先,从主机发出一个读控制信号,只有当从机完成该信号指令后,才会将数据发送给主机;随后,主机收到数据后,发出一个确认信号来确认接收到了数据,从机收到信号后,就会发送下一个字节的数据。
多字节读取和单字节读取有很多相似之处,主要的不同在于它支持一次读取多字节的数据,首先,主机发出一个读控制信号,只有当从机完成该信号指令后,才会将数据发送给主机;随后,主机持续接收数据,直到接收到所有的数据为止。
8位快速读取模式是i2c总线上读取操作中最快的模式,它和其他读取模式有很多相同之处,主要是有一个专门的8位快速读指令,使用这个指令可以实现一次读取多字节数据的功能,而不需要反复发出读控制信号。
另外,i2c读写程序还支持写操作,其工作机制大致相同,只是在发出控制信号后,主机会将数据发送给从机,而不是从机将数据发送给主机。
i2c协议详解
i2c协议详解
I2C(Inter-Integrated Circuit)协议是一种双向串行总线,也称作IIC、TWI(Two-Wire Interface)或SMBus(System Management Bus),由Philips公司于1982年开发,用来连接多个微处理器和其它通信芯片。
I2C协议有两根线,分别是SCL(时钟线)和SDA(数据线),使用双线的好处就是只要两根线就可以完成数据传输,而不需要增加额外的线路,能够大大减少系统所需要的线路,减少系统的复杂度和成本。
I2C协议需要一个主控制器来控制整个系统,主控制器通过SCL线来发送时钟,并通过SDA线来发送和接收数据,从控制器则只负责接收数据。
I2C协议有7个基本信号,START、STOP、ACK、NACK、READ、WRITE和REPEAT START,START在传输数据前发出,STOP则在传输结束后发出,ACK和NACK则用来表示接收方是否正确接收到数据,READ和WRITE则用来指示当前传输的数据是读数据还是写数据,REPEAT START则用来重新开始新一轮的传输。
I2C协议的最大优点是简单、易用,而且可以支持多个从控制器,不过它的缺点也是显而易见的,它的传输速度相对较慢,而且它的传输距离也有限,约在50cm左右。
I2C详解——精选推荐
I2C详解1、基本概念主机初始化发送,产⽣时钟信号和终⽌发送的器件从机被主机寻址的器件发送器发送数据到总线的器件接收器从总线接收数据的器件多主机同时有多于⼀个主机尝试控制总线但不破坏报⽂仲裁是⼀个在有多个主机同时尝试控制总线,但只允许其中⼀个控制总线并使报⽂不被破坏的过程同步两个或多个器件同步时钟信号的过程2、硬件结构每⼀个I2C总线器件内部的SDA、SCL引脚电路结构都是⼀样的,引脚的输出驱动与输⼊缓冲连在⼀起。
其中输出为漏极开路的场效应管、输⼊缓冲为⼀只⾼输⼊阻抗的同相器。
这种电路具有两个特点:(1)由于SDA、SCL 为漏极开路结构,借助于外部的上拉电阻实现了信号的“线与”逻辑;(2)引脚在输出信号的同时还将引脚上的电平进⾏检测,检测是否与刚才输出⼀致。
为“时钟同步”和“总线仲裁”提供硬件基础。
3、时钟同步如果从机希望主机降低传送速度可以通过将SCL主动拉低延长其低电平时间的⽅法来通知主机,当主机在准备下⼀次传送发现SCL的电平被拉低时就进⾏等待,直⾄从机完成操作并释放SCL线的控制控制权。
这样以来,主机实际上受到从机的时钟同步控制。
可见SCL 线上的低电平是由时钟低电平最长的器件决定;⾼电平的时间由⾼电平时间最短的器件决定。
这就是时钟同步,它解决了I2C总线的速度同步问题。
4、主机发送数据流程(1)主机在检测到总线为“空闲状态”(即SDA、SCL 线均为⾼电平)时,发送⼀个启动信号“S”,开始⼀次通信的开始(2)主机接着发送⼀个命令字节。
该字节由7 位的外围器件地址和1 位读写控制位R/W 组成(此时R/W=0)(3)相对应的从机收到命令字节后向主机回馈应答信号ACK(ACK=0)(4)主机收到从机的应答信号后开始发送第⼀个字节的数据(5)从机收到数据后返回⼀个应答信号ACK(6)主机收到应答信号后再发送下⼀个数据字节(7)当主机发送最后⼀个数据字节并收到从机的ACK 后,通过向从机发送⼀个停⽌信号P结束本次通信并释放总线。
i2c的基本工作原理
I2C(Inter-Integrated Circuit)是一种串行通信协议,用于在芯片之间进行数据传输。
它由飞利浦半导体(现在的恩智浦半导体)于1982年开发,并广泛应用于各种电子设备中。
I2C具有简单、高效和可靠的特点,成为众多芯片和模块之间常用的通信接口之一。
本文将详细介绍I2C的基本工作原理。
一、总线架构I2C采用了主从结构的总线架构,其中主设备(Master)负责发起数据传输请求,而从设备(Slave)则在接收到请求后进行响应。
一个I2C总线上可以连接多个从设备,每个从设备都有一个唯一的地址。
主设备通过发送起始信号(Start)来启动通信,然后选择要与之通信的从设备地址,最后发送停止信号(Stop)结束通信。
二、物理层I2C使用双线制进行数据传输,包括数据线(SDA)和时钟线(SCL)。
数据线上的信号是双向的,用于传输数据。
时钟线则由主设备控制,用于同步数据传输。
三、起始和停止信号I2C通信以起始信号(Start)和停止信号(Stop)来标识通信的开始和结束。
起始信号由主设备产生,它表示将要发起一次新的通信。
停止信号同样由主设备产生,表示一次通信的结束。
四、数据传输格式I2C采用了基于字节的数据传输格式。
每个字节都由8位二进制数据组成,包括7位数据位和1位数据方向位。
数据方向位为0表示发送数据,为1表示接收数据。
在每个字节的传输过程中,都会先发送数据方向位,然后再发送数据位。
五、时钟同步I2C使用时钟同步机制来确保通信的准确性。
时钟线由主设备产生,并控制整个数据传输过程的时序。
在每个时钟周期中,数据线上的数据必须稳定,并且只有在时钟线为低电平时才能改变。
六、地址传输在I2C通信中,每个从设备都有一个唯一的7位地址。
主设备通过发送地址来选择要与之通信的从设备。
地址由8个位组成,最高位是固定的0或1,用于表示读(1)或写(0)操作。
其余的7位用于指定从设备的地址。
七、数据传输流程I2C通信的数据传输流程如下:1. 主设备发送起始信号(Start)。
I2C通信原理及程序详细讲解
I2C通信原理及程序详细讲解I2C(Inter-Integrated Circuit)是一种串行通信协议,常用于连接微控制器、传感器和其他外部设备。
I2C通信协议由荷兰飞利浦公司于1982年开发,它使用两根信号线(SDA和SCL)进行数据传输。
I2C通信协议采用主从结构,一个主设备(如微控制器)可以连接多个从设备(如传感器)。
主从设备之间通过SDA和SCL线进行数据传输。
SDA线是双向数据线,用于传输数据,SCL线是时钟线,用于同步数据传输。
I2C通信协议中,设备的地址是一个重要概念。
每个设备都有一个唯一的地址,通过该地址可以选择和通信特定的设备。
地址由7个位组成,其中最高位是固定的,并取决于设备是主设备还是从设备。
如果最高位为0,则表示该设备是主设备;如果最高位为1,则表示该设备是从设备。
通过以下步骤,让我们详细了解如何在I2C总线上进行通信。
1.初始化I2C总线:在程序开始时,需要初始化I2C总线。
这通常包括初始化SDA和SCL引脚,设置时钟频率等。
具体的初始化步骤取决于使用的硬件和软件环境。
2.发送开始信号:开始信号表示I2C数据传输的开始。
它由主设备发送,并且SDA线从高电平转为低电平时发出。
发送开始信号后,SDA线上的数据将被解释为地址数据。
3.发送设备地址:主设备发送一个包含设备地址和读/写位(R/W)的数据字节。
设备地址是唯一的,并且由主设备选择。
读/写位指示从设备是要读取数据还是写入数据。
4.等待从设备响应:主设备发送设备地址后,会等待从设备的响应。
从设备将响应一个应答位(ACK)来确认地址接收成功。
如果收到ACK位,则继续进行下一步,否则可能是设备未连接或通信错误。
5.发送数据:主设备发送数据给从设备。
数据可以是命令、配置或实际数据,具体取决于应用场景。
发送数据的方式是将每个数据字节传输到SDA线上,并在每个数据字节后发送一个ACK位。
6.接收数据:从设备将数据发送给主设备。
数据可以是传感器读数、存储器数据等。
i2c通信的详细讲解
i2c通信的详细讲解I2C(Inter-IntegratedCircuit,又名“两线制”)是一种开源的连接性协议,只需要两根线,一条用于连接数据(SDA),另一条用于传输时钟信号(SCL),另外无须任何外部设备,就能构建一个灵活的和可扩展的系统。
I2C的主要特性在于,他可以让多个芯片之间运行在同一总线上,开销较少、高效,是用来连接主机和外围设备,特别是嵌入式系统的一个常用的接口技术。
I2C的原理是什么?I2C工作的原理是,它仅有两个线,一条传输时钟信号(SCL),一条传输数据(SDA),当设备要发出数据时,它发出一个信号,信号告诉另外一个设备,双方之间有了一个连接,此时设备可以给另一设备传输信息,如果不需要进行跨流程的传输,可以省略时钟信号和失能信号,两设备之间的数据传输是相互独立的,每当一设备发送完成后,还需要发出一个复位信号,来进行重新启动。
I2C协议规定,有7种信号类型:START和STOP,ACK和NACK,SDA和SCL,失能信号(DISABLE),每种信号都有自己的特定用途。
当一个设备要发出或接收数据时,一定先发出一个START信号,当发送完成后要发出一个STOP信号,ACK和NACK用于检测接受成功与否,SDA和SCL分别用来传输数据和传输时钟信号,失能信号用于切断设备之间的通信。
I2C协议规定,主设备可以接收从设备的信息,而从设备则只能给主设备发送信息,在通信的过程中,主设备可以控制传输的方向,并且在发送完一条信息后,要检查是否收到另一个设备的回复,当另一个设备收到主设备发送的信息时,必须迅速进行回复,或者发出一个ACK或者NACK,来接受或拒绝信息。
总的来说,I2C通信协议非常简单而有效,只需要两根线,就可以在多个设备之间进行高速通信,并且可以进行大范围的扩展,使用I2C可以实现两个设备之间的双向通信,从而实现两个设备的同步通信。
此外,由于I2C协议数据传输的灵活性和可靠性,也是嵌入式系统开发的主要技术之一。
I2C通信原理及程序详细讲解
I2C 通信:起始条件:SCL为高电平,SDA电平从高变低,这一变化即完成了通信的起始条件。
起始条件和数据通信间,通常会有延时要求具体的指标见设备说明。
数据传输阶段:一字节需要9个时钟周期;且每一位需要一个时钟周期;如上图所示,ADDRESS为目标设备的地址,R/ w为通信的的方向位;"1"时表示读,即后续的数据由目标设备发出,主机进行接收;"0"时表示写,即后续的数据由主机发出目标设备进行接收。
当ACK信号为"0"时,说明接收成功;为"1"时,说明接收失败。
每个字节的传输都是由高位(MSB)到低位(LSB)依次进行传输。
在数据通信过程中,总是由数据接收方发出ACK信号。
终止阶段:当主机完成数据通信,并终止本次传输时会发出终止信号。
当SCL 是高电平时,SDA电平由低变高,这个变化意味着传输终止。
注:每个时钟周期的高电平期间,SDA的数据状态达到稳定。
下面给出了模拟I2C总线进行读写的伪代码,用以说明如何使用GPIO 实现I2C通信:int i2c_start() /* I2C起始条件*/{//初始化GPIO口set_gpio_direction(SDA, OUTP); //设置SDA方向为输出set_gpio_direction (SCL, OUTP); //设置SCL方向为输出set_gpio_value(SDA, 1); //设置SDA为高电平set_gpio_value(SCL, 1); //设置SCL为高电平delay(); //延时//起始条件set_gpio_value(SDA, 0); //SCL为高电平时,SDA由高变低delay(); //适当延时}void i2c_stop() /* I2C终止条件*/{set_gpio_value(SCL, 1);set_gpio_direction(SDA, OUTP);set_gpio_value(SDA, 0);delay();set_gpio_value(SDA, 1); //SCL高电平时,SDA由低变高}/* I2C读取ACK信号(写数据时使用)返回值:0表示ACK信号有效;非0表示ACK信号无效*/unsigned char i2c_read_ack(){unsigned char r;set_gpio_direction(SDA, INP); //设置SDA方向为输入set_gpio_value(SCL,0); // SCL变低r = get_gpio_value(SDA); //读取ACK信号delay();set_gpio_value(SCL,1); // SCL变高delay();return r;}/* I2C发出ACK信号(读数据时使用) */int i2c_send_ack(){set_gpio_direction(SDA, OUTP); //设置SDA方向为输出set_gpio_value(SCL,0); // SCL变低set_gpio_value(SDA, 0); //发出ACK信号delay();set_gpio_value(SCL,1); // SCL变高delay();}void i2c_write_byte(unsigned char b) /* I2C字节写*/{int i;set_gpio_direction(SDA, OUTP); //设置SDA方向为输出for (i=7; i>=0; i--){set_gpio_value(SCL, 0); // SCL变低delay();set_gpio_value(SDA, b & (1<<i)); //从高位到低位依次发送数据set_gpio_value(SCL, 1); // SCL变高delay();}i2c_read_ack(); //检查目标设备的ACK信号}/* I2C字节读*/unsigned char i2c_read_byte(){int i;unsigned char r = 0;set_gpio_direction(SDA, INP); //设置SDA方向为输入for (i=7; i>=0; i--){set_gpio_value(SCL, 0); // SCL变低delay();r = (r <<1) | get_gpio_value(SDA); //高位到低位依次数据读取set_gpio_value(SCL, 1); // SCL变高delay();}i2c_send_ack(); //向目标设备发送ACK信号return r;}/* I2C读操作addr:目标设备地址buf:读缓冲区len:读入字节的长度*/void i2c_read(unsigned char addr, unsigned char* buf, int len){int i;unsigned char t;i2c_start(); //起始条件,开始数据通信//发送地址和数据读写方向t = (addr << 1) | 1; //低位为1,表示读数据i2c_write_byte(t);//读入数据for (i=0; i<len; i++)buf[i] = i2c_read_byte();i2c_stop(); //终止条件,结束数据通信}/* I2C写操作addr:目标设备地址buf:写缓冲区len:写入字节的长度*/void i2c_write (unsigned char addr, unsigned char* buf, int len){int i;unsigned char t;i2c_start(); //起始条件,开始数据通信//发送地址和数据读写方向t = (addr << 1) | 0; //低位为0,表示写数据i2c_write_byte(t);//写入数据for (i=0; i<len; i++)i2c_write_byte(buf[i]);i2c_stop(); //终止条件,结束数据通信}。
i2c通信的详细讲解
i2c通信的详细讲解I2C(全称Inter-IntegratedCircuit)是一种基于两线式总线系统,可以利用它让一台机器和另一台机器或者一个器件与另一个器件之间建立通信连接。
它由一个多晶片系统(Multi-Chip System)所创造出来,可以减少实现多晶片系统的内部连接的数量,从而减少印制电路板的体积。
它允许多达127个从设备以最低物理开销(Low Physical Overhead)与一个主设备连接,具有低成本和高可靠性,现已成为很多类型的微控制器(Microcontroller)和处理器(Processors)的标准总线,应用非常广泛。
1. I2C概述I2C从最初的Philips经过20多年的发展,已经成为一种横跨多个行业的解决方案。
它可以在不同的系统上提供高性能片上系统(System-on-a-Chip,SoC)间的通信和协调,支持多达127的电子设备连接。
主要由两条信号线,称为SDA(Data Line)和SCL(Clock Line)构成,它们分别连接电子设备的数据和时钟,每个设备还有一个物理上的地址,用于标识彼此来进行通信。
I2C总线具有速度快、低功耗、简单易用等优点,现在已经被应用在系统和高速处理器、传感器、可编程逻辑器件(PLD)、多媒体设备、电源管理、液晶/LED等多个行业中。
2. I2C通信原理I2C通信可以说是一种异步通信方式,它是一种时钟控制的异步通信方式,发送一个字节,都要经过下面几个步骤:(1)发送起始条件:S(Start):该条件由SDA和SCL电平组合构成,SDA在SCL电平为高时从高电平变低电平。
(2)发送设备地址:在I2C总线上,设备都会有自己的地址,每个设备可以收发多个字节,这样就可以确定设备的身份。
(3)发送控制位:也称命令位,它用于确定主设备发送的是某种命令,比如写入数据,读取数据,还是其它的控制信息。
(4)发送数据:数据由SDA高低电平传输,而SDA电平的变化必须在SCL的上升沿才能有效。
I2C的原理与应用
I2C的原理与应用I2C(Inter-Integrated Circuit)是一种串行通信协议,由飞利浦公司于1980年代开发,用于在数字电子系统中连接各个芯片。
它主要使用两根线进行通信,即SDA(Serial Data Line,串行数据线)和SCL (Serial Clock Line,串行时钟线),同时支持多主机和多从机的通信方式。
I2C协议被广泛应用于各种数字设备的互连,包括传感器、存储器、协处理器等。
I2C的通信原理如下:1.总线结构:I2C总线包含一个主机和多个从机。
主机负责控制总线,并发起数据传输请求;从机等待主机发送命令,并根据命令执行相应操作。
2.时序:I2C总线上的通信需要依靠时钟信号进行同步。
主机通过时钟信号SCL驱动数据传输。
数据线SDA上的数据在时钟信号的上升沿或下降沿进行采样和发送。
3.起始和停止位置:数据传输始于主机发送一个起始信号,结束于主机发送一个停止信号。
起始信号通知所有从机总线上的数据传输即将开始;停止信号表示数据传输已经结束。
4.地址与数据传输:在起始信号之后,主机发送一个地址帧给从机。
地址帧的最高位表示读写操作,从机通过地址帧判断自身是否为数据传输的对象,并相应地进行操作。
主机可以在同一个传输过程中多次发送数据,并且可以从一个从机读取多个字节的数据。
I2C的应用广泛,以下是一些常见的应用领域:1.传感器:I2C通信协议在许多传感器和芯片中得到应用,例如加速度计、陀螺仪、温度传感器和压力传感器等。
这些传感器通过I2C协议与主处理器进行通信,并将采集到的数据传输到主处理器进行处理。
2. 存储器:I2C接口也广泛应用于存储器设备,如EEPROM (Electrically Erasable Programmable Read-Only Memory)和FRAM (Ferroelectric Random Access Memory)。
这些存储器设备可以通过I2C总线进行读写操作,从而存储和检索数据。
i2c通信的详细讲解
i2c通信的详细讲解I2C(Inter-IntegratedCircuit)通信协议是一种用于连接两个不同芯片的系统总线技术,也称为两级串行总线协议或者双总线协议。
I2C协议是由 Philips Semiconductors公司发明的,并被广泛应用于许多不同类型的处理器,特别是嵌入式系统中。
在本文中,我们将讨论I2C协议的原理,它的优点及其在实际应用中的使用方法。
I2C协议使用两根线,一根叫作“时钟”(SCL),另一根叫作“数据”(SDA)。
它们可以用来传输数据,也可以用来控制时钟(SCL)和数据(SDA)的发送和接收。
I2C协议的发明是为了实现多设备的联动,使多个设备之间的信息传输更加高效,性能也更加稳定。
I2C协议的优点:1.省电池电量:I2C协议会在不发送数据时减少时钟信号电平,这样可以有效降低电池电量的消耗;2.单:I2C协议只需要两根电线,可以满足大多数多芯片联动的应用需求;3.能稳定:I2C协议传输稳定,在多设备环境中信号传输时间间隔距离短;4.讯范围宽:I2C协议可以实现多芯片间的远近程度,并通过扩展的协议可以扩大通讯的范围;5.持动态分配:I2C协议允许动态的分配芯片通信地址,以及通过地址捕获技术加快芯片通讯的效率。
I2C协议在实际应用中主要用于在不同芯片之间进行信息传输,比如CPU和外设(例如继电器或者显示器)之间的通讯。
运行I2C协议的系统必须具备以下特性:1. 主从模式:I2C要求两个通讯芯片必须有一个主芯片(Master)来控制所有的通讯,而其他芯片则作为从芯片(Slave)来响应主芯片的指令;2.特率:I2C的数据传输不仅要考虑传输的速度,还需要考虑传输的波特率,这个波特率会影响传输的效率;3.址捕获:I2C需要使用地址捕获技术来增加通信的效率,借此可以最大限度的减少不必要的数据通讯量。
I2C协议的应用非常广泛,它可用于控制多种不同的设备,从简单的温度传感器到复杂的PLC控制器,从内存管理到模拟/数字信号处理,几乎都可以用到I2C协议。
I2C协议概述
I2C协议概述协议名称:I2C协议1. 引言I2C(Inter-Integrated Circuit)是一种串行通信协议,用于连接集成电路(IC)之间的通信。
它由飞利浦半导体(现在的恩智浦半导体)在1982年开发,被广泛应用于各种电子设备和系统中。
本文将详细介绍I2C协议的概述、特点、工作原理以及应用场景。
2. 概述I2C协议是一种双线制串行通信协议,由两条线路组成:串行数据线(SDA)和串行时钟线(SCL)。
这两条线路连接了多个I2C设备,实现了在同一总线上进行通信的能力。
I2C协议支持多主设备和多从设备的连接,可以实现点对点或多对多的通信。
3. 特点3.1 简单:I2C协议使用双线制,只需要两条线路就可以实现通信,相比其他通信协议来说,I2C协议的硬件设计和实现更为简单。
3.2 高效:I2C协议使用了主从式通信模式,主设备控制通信的发起和结束,从设备负责响应和数据传输。
这种通信方式可以提高通信效率。
3.3 可靠:I2C协议通过校验和机制来确保数据的完整性和准确性。
主设备在发送数据时会生成校验和,并在接收数据时进行校验,以保证数据的可靠性。
4. 工作原理4.1 起始条件和停止条件:I2C通信的起始条件是SDA线从高电平跳变到低电平,而SCL线保持高电平。
停止条件是SDA线从低电平跳变到高电平,而SCL线保持高电平。
4.2 时钟信号:SCL线上的时钟信号用于同步数据传输。
数据的传输必须在时钟信号的边沿进行。
4.3 数据传输:数据传输分为地址传输和数据传输两个阶段。
在地址传输阶段,主设备发送目标设备的地址和读/写位。
在数据传输阶段,主设备和从设备之间交换数据。
4.4 硬件地址:每个I2C设备都有一个唯一的硬件地址,用于在总线上进行寻址和识别。
5. 应用场景5.1 存储器:I2C协议常用于连接存储器芯片,如EEPROM和SRAM。
存储器芯片可以通过I2C总线与其他设备进行数据交换。
5.2 传感器:I2C协议广泛应用于各种传感器,如温度传感器、湿度传感器和加速度传感器。
Android平台Camera及I2C总线驱动学习小结
Android平台Camera及I2C总线驱动学习⼩结Android平台Camera及I2C总线驱动学习⼩结——基于MSM8x60平台硬件开发⼆部BSP科党潇⼯号:101131511.MSM8x60平台简介High-performance high-level operating system(HLOS) platform(45nm)多核处理器(Modem+Dual Apps in a single chip),⽀持Android TMDual 1.2GHz Scorpion TM +512kB shared L2 cache,eMMC LPDDR2内存专属ARM7 ⽤于功率资源控制及传感器外设操作1080pHD 编解码,Adreno TM 220图形处理器,4-lane MIPI摄像头,最⾼⽀持12M像素WCDMA,GSM,HSDPA,1x advanced,1xEV-DO Rev A/BgpsOne,BT3.0,FM Rx/Tx,WIFI WCN1314AAC,AMR-NB,EVRC,QCELP,etc2.MSM8x60平台Camera及Graphics特性Camera特性:VFE 3.1,MIPI接⼝(4-lane)优异的3A算法(AF,AE,AWB),⾃动帧率AFR(Auto Frame Rate)最⾼⽀持12MegaPixel,12bit/pixel,⽀持BAYER和YUV模式1080p预览@30fps闪光灯⽀持,触摸屏⾃动对焦⽀持业界领先的图像特效集:Hand Jitter Reduction(HJR),Motion ISO,Best-Shot mode,Anti-banding,EV control,JPEG encode & decodeGraphics特性:Adreno 220(MSM v2.0)图形处理器,88M triangles/sOpenGL ES 1.1/ OpenGL ES 1.1/ OpenVG 1.1/SVG tiny 1.2LCD显⽰最⾼⽀持到WSXGA(1440×900),60Hz刷新率。
i2c参数
i2c参数I2C(Inter-Integrated Circuit)是一种串行通信协议,用于连接微控制器和外部设备。
它是一种双线制通信协议,包括一个数据线(SDA)和一个时钟线(SCL),可以同时连接多个设备。
1. I2C的基本原理和工作方式:I2C协议由两根线组成:数据线(SDA)和时钟线(SCL)。
数据通过SDA线传输,时钟信号在SCL线上传输。
通信始终由主设备(通常是微控制器)控制,它生成时钟信号并发送或接收数据。
从设备被动地响应主设备的命令。
2. I2C的物理层和电气特性:I2C使用开漏输出(open-drain)架构,这意味着总线上的设备可以将线拉低(逻辑0),但无法将其拉高(逻辑1)。
线上有一个上拉电阻来提供默认的逻辑高电平。
因此,在总线空闲状态时,线上均为逻辑高电平。
3. I2C的地址格式和设备选择:I2C设备有7位或10位地址,其中7位地址是最常见的。
每个设备必须有唯一的地址。
主设备通过发送设备地址来选择特定的从设备进行通信。
4. I2C的数据传输模式:I2C支持两种数据传输模式:字节传输模式和块传输模式。
字节传输模式下,每次传输只发送一个字节的数据。
块传输模式下,可以发送多个字节的数据,最多达到32字节。
5. I2C的起始和停止条件:通信开始时,主设备发送起始条件(start condition),即在SCL为高电平时,SDA从高电平下跳到低电平。
通信结束时,主设备发送停止条件(stop condition),即在SCL为高电平时,SDA从低电平上跳到高电平。
起始和停止条件用于标识通信的开始和结束。
6. I2C的速度选择:I2C支持不同的速度选择,可根据实际需求进行配置。
常用的速度包括标准模式(100 kbps)、快速模式(400 kbps)和高速模式(3.4 Mbps)。
7. I2C的应用:I2C广泛用于连接各种外部设备,如传感器、显示屏、存储器、扩展模块等。
它也被用于构建复杂的系统,如工业自动化系统、嵌入式系统和消费电子产品等。
i2c读写程序的详细讲解
i2c读写程序的详细讲解I2C即Inter-IntegratedCircuit(内部集成电路),是一种同步串行总线技术,它可以用来连接多个芯片,并使用它们之间的2条双向数据总线进行通信。
I2C总线可以通过5根线实现,其中2条用于数据传输,另外3条用于控制传输过程:SCL(时间同步线)、SDA(数据线)、VCC(电源线)。
I2C在光学芯片、DSP和ARM芯片等领域都得到了广泛应用,能够实现在一个系统或介质中共享数据,有助于节省系统开发成本和实现系统节能。
第二部分:I2C读写程序I2C读写程序是通过I2C总线实现数据读写的特定程序,主要由以下步骤构成:1、设置I2C总线:通过一系列硬件设置完成I2C总线的初始化,以满足对应数据读写的要求;2、发送I2C开始信号:在进行数据读写前,需要发送一个开始信号,以通知主从端可以进行通信;3、发送I2C地址:根据读写操作,发送I2C地址;4、发送I2C数据:根据读写操作,发送相关数据;5、接收I2C数据:根据读写操作,接收相关数据;6、发送I2C停止信号:发送I2C停止信号,结束数据读写过程。
第三部分:I2C读写程序实例下面以C语言为例,介绍在I2C通讯操作中读写程序的编写流程: 1、I2C总线的初始化:可以使用如下函数来设置I2C总线的参数,完成I2C总线的初始化:#include <linux/i2c.h>#include <linux/i2c-dev.h>int i2c_init (int busno);其中busno表示I2C总线号;2、发送I2C开始信号:可以使用如下函数来发送I2C开始信号:int i2c_smbus_write_start(int busno, int addr);其中busno表示I2C总线号,addr表示要发送的I2C地址;3、发送I2C地址:可以使用如下函数来发送I2C地址:int i2c_smbus_write_byte(int busno, int addr);其中busno表示I2C总线号,addr表示要发送的I2C地址;4、发送I2C数据:可以使用如下函数发送I2C数据:int i2c_smbus_write_byte_data(int busno, int addr, int data);其中busno表示I2C总线号,addr表示要发送的I2C地址,data 表示要发送的数据;5、接收I2C数据:可以使用如下函数接收I2C数据:int i2c_smbus_read_byte_data(int busno, int addr);其中busno表示I2C总线号,addr表示要读取的I2C地址;6、发送I2C停止信号:可以使用如下函数发送I2C停止信号:int i2c_smbus_write_stop(int busno);其中busno表示I2C总线号;第四部分:结论以上就是I2C读写程序的详细讲解,可以看出,I2C读写程序的实现步骤非常简单,只需要对每个步骤做出正确的设置,就可以实现I2C数据读写操作。
Android平台Camera及I2C总线驱动学习小结
Android平台Camera及I2C总线驱动学习小结——基于MSM8x60平台硬件开发二部BSP科党潇工号:101131511.MSM8x60平台简介ØHigh-performance high-level operating system(HLOS) platform(45nm)Ø多核处理器(Modem+Dual Apps in a single chip),支持Android TMØDual 1.2GHz Scorpion TM +512kB shared L2 cache,eMMC LPDDR2内存Ø专属ARM7 用于功率资源控制及传感器外设操作Ø1080pHD 编解码,Adreno TM 220图形处理器,4-lane MIPI摄像头,最高支持12M像素ØWCDMA,GSM,HSDPA,1x advanced,1xEV-DO Rev A/BØgpsOne,BT3.0,FM Rx/Tx,WIFI WCN1314ØAAC,AMR-NB,EVRC,QCELP,etc2.MSM8x60平台Camera及Graphics特性Camera特性:ØVFE 3.1,MIPI接口(4-lane)Ø优异的3A算法(AF,AE,AWB),自动帧率AFR(Auto Frame Rate)Ø最高支持12MegaPixel,12bit/pixel,支持BAYER和YUV模式Ø1080p预览@30fpsØ闪光灯支持,触摸屏自动对焦支持Ø业界领先的图像特效集:Hand Jitter Reduction(HJR),Motion ISO,Best-Shot mode,Anti-banding,EV control,JPEG encode & decodeGraphics特性:ØAdreno 220(MSM v2.0)图形处理器,88M triangles/sØOpenGL ES 1.1/ OpenGL ES 1.1/ OpenVG 1.1/SVG tiny 1.2ØLCD显示最高支持到WSXGA(1440×900),60Hz刷新率。
i2c的原理及应用
i2c的原理及应用1. 什么是i2ci2c(Inter-Integrated Circuit)是一种通信协议,用于在集成电路之间进行数据传输。
它是一种串行通信协议,通常用于连接多个集成电路芯片,如传感器、显示屏等。
2. i2c的工作原理i2c协议使用两根信号线进行通信:主机发送数据的SDA线和控制信号的SCL 线。
通信是通过主机发起传输并选择从机设备进行通信。
下面是i2c传输的步骤:1.主机发送起始位:主机将SDA线从高电平拉低,然后拉低SCL线。
2.主机发送设备地址和读写位:主机将设备地址和读写位发送到SDA线上,并拉高SCL线。
3.主机等待从机响应:主机等待从机设备响应,响应由SDA线上的电平状态决定。
4.传输数据:主机和从机设备之间可以传输数据,每次传输都由主机提供时钟信号。
5.主机发送停止位:主机将SDA线从低电平拉高,然后拉高SCL线,表示传输结束。
3. i2c的应用领域i2c通信协议在许多电子设备中被广泛应用,以下是一些常见的应用领域:3.1 传感器i2c协议非常适合连接各种类型的传感器,包括温度传感器、湿度传感器、压力传感器等。
它能够提供高速、可靠的数据传输,方便将传感器模块集成到各种电子设备中。
3.2 显示屏i2c协议也可以用于连接显示屏,如液晶显示屏和OLED显示屏等。
通过i2c总线,可以通过发送指令和数据,控制显示屏的亮度、对比度、内容等。
3.3 存储设备i2c协议还可以用于连接存储设备,如EEPROM、Flash存储器等。
通过i2c总线,可以读取和写入存储设备中的数据,方便进行配置和数据存储。
3.4 工业自动化i2c通信协议在工业自动化领域也有广泛的应用。
它可以用于传输传感器数据、控制器之间的通信、参数配置等。
3.5 嵌入式系统i2c协议在嵌入式系统中也被广泛使用。
它可以用于连接各种外设,如键盘、鼠标、音频设备等,实现嵌入式系统的功能扩展。
4. i2c的优点i2c通信协议具有以下几个优点:•多设备连接i2c支持多个设备通过同一条总线进行通信,简化了设备之间的连接,降低了硬件成本。
I2C通信协议详细讲解
I2C通信协议详细讲解I2C(Inter-Integrated Circuit)是一种串行通信协议,由Philips公司于1980年代初开发,旨在实现多个集成电路之间的简单、高效通信。
I2C协议适用于芯片之间的通信,如存储器、A/D转换器、传感器等。
它具有两根线,一根是时钟线(SCL),用于同步数据传输,另一根是数据线(SDA),用于传输数据。
以下是I2C协议的详细讲解。
1.总线拓扑I2C总线是基于主从架构,其中一个设备充当主设备(Master),其他设备作为从设备(Slave)。
总线上最多可以连接112个从设备,每个从设备通过唯一的地址进行识别。
2.通信格式I2C通信由一系列的起始位、地址位、数据位和停止位组成。
在通信开始之前,主设备负责发出起始位(Start Bit),表示通信开始。
接着主设备发送从设备的7位地址(最低位用于指示读写操作),从设备在总线上进行匹配。
如果从设备地址匹配成功,主设备发送数据或命令给从设备;若从设备地址匹配失败,主设备发送停止位(Stop Bit)结束通信。
3.传输速率I2C协议定义了几种标准的传输速率,如标准模式(Standard Mode)的速率为100 kHz,快速模式(Fast Mode)的速率为400 kHz,高速模式(High-Speed Mode)的速率为3.4 MHz。
除此之外,还有更高速的模式如超高速模式(Ultra Fast Mode)和超快速模式(Ultra Fast Mode),速率分别为5 MHz和25 MHz。
4.时钟同步5.主设备模式主设备可以发送起始位、地址位、数据位和停止位。
它与从设备之间可以进行单向或双向通信。
主设备可以向从设备发送读请求或写请求,并且可以按照需要在传输过程中发出重启位(Repeated Start Bit)来处理多个数据传输操作。
6.从设备模式从设备通过地址识别来接受或发送数据。
从设备可以处于可寻址模式(Addressable Mode)或普通模式(General Call Mode)。
I2C详细介绍及编程
I2C详细介绍及编程I2C(Inter-Integrated Circuit)是一种串行通信协议,常用于连接微控制器、传感器、存储器等设备,以实现数据通信。
本文将详细介绍I2C的原理、特点以及编程。
一、I2C的原理和特点I2C协议由飞利浦(Philips)公司于1982年开发,旨在简化数字电路上周边设备的通信。
I2C使用两条线(SCL和SDA)进行数据传输,其中SCL是时钟线,SDA是数据线。
这种双线式的通信使得I2C可以同时进行数据传输和电源供给,极大地简化了设备之间的连接。
在I2C通信中,主设备(通常是微控制器)发起通信,而从设备被动应答。
主设备通过在SCL线上产生时钟信号来控制通信节奏,并通过SDA 线实现数据传输。
数据的传输可以是单向的(主设备向从设备发送数据)或双向的(主设备与从设备之间的双向数据传输)。
I2C协议中的从设备通过一个唯一的地址来识别和寻址。
主设备可以选择与一个或多个从设备进行通信,只需发送相应的地址即可。
在开始通信前,主设备会发送一个开始信号,然后跟着从设备地址和读写位,然后才是数据或命令。
从设备在收到自己地址后会发出应答信号,主设备接收到应答信号后才会继续发送数据。
通信结束后,主设备会发送停止信号。
I2C的特点包括:1.双向通信:主设备和从设备之间可以进行双向的数据传输,减少通信线的需求和复杂度。
2.主-从结构:I2C通信中有一个主设备控制通信的发起和终止,而从设备被动应答。
3.多从结构:主设备可以与多个从设备进行通信,只需要发送不同的地址。
4.低速传输:I2C通信的时钟频率相对较低,一般在100kHz或400kHz。
二、I2C的编程实现在进行I2C编程之前,需要确保硬件上有I2C接口。
常见的I2C接口引脚包括SCL(时钟线)和SDA(数据线),同时需要进行相应的电源连接。
I2C编程的具体实现会有所差异,根据不同的硬件平台和编程语言而有所不同。
以下是一个基于Arduino平台的简单示例:```cpp#include <Wire.h>#define DEVICE_ADDRESS 0x50void setuWire.begin(;Serial.begin(9600);void loo//发送命令Wire.beginTransmission(DEVICE_ADDRESS);Wire.write(0x00); // 使用写入地址0x00Wire.write(0x01); // 写入数据0x01Wire.endTransmission(;delay(100);//读取数据Wire.requestFrom(DEVICE_ADDRESS, 1);if (Wire.available()int data = Wire.read(;Serial.print("Received: ");Serial.println(data);}delay(1000);```上述示例代码中,我们使用Wire库来实现I2C通信。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Android I2C精析
基于linux内核开发的arm系统,会用到很多components。
要让这些components正常的工作,我们必须了解它们的接口,懂得如何去注册总线,初始化芯片,进而让芯片正常的工作。
下面我会介绍在arm开发过程中使用最频繁的一些接口和总线的原理,以及如何在开发的过程中去使用它们。
1 I2C总线与接口
I2C总线具有结构简单,使用方便的特点。
下面我会描述linux下I2C驱动的结构,幷给出I2C设备驱动和应用的实现。
1.1 I2C总线概述
I2C(Inter-Integrated Circuit)总线是由PHILIPS公司开发的两线式串行总线,用于连接微控制器及外围设备。
是微电子通信控制领域广泛采用的一种总线标准。
它是同步通信的一种特殊形式,具有接口线少,控制方式简单,器件封装形式小,通信速率较高等优点。
I2C总线是由数据线SDA和时钟SCL构成的串行总线,可发送和接收数据,每个器件都有一个惟一的地址识别。
I2C 规程运用主/从双向通讯。
器件发送数据到总线上,则定义为发送器,器件接收数据则定义为接收器。
主器件和从器件都可以工作于接收和发送状态。
总线必须由主器件(通常为微控制器)控制,主器件产生串行时钟(SCL)控制总线的传输方向,并产生起始和停止条件。
SDA 线上的数据状态仅在SCL为低电平的期间才能改变,SCL为高电平的期间,SDA 状态的改变被用来表示起始和停止条件。
从理论上说一根I2C总线上可以挂载128个I2C设备,但是通常情况下,由于有些设备在传输数据时占用的I2C总线带宽频繁,所以我们在一根I2C总线上挂载的设备是越少越好。
下面给出I2C总线的连线图:
1.2 I2C总线工作原理
1.2.1 I2C通信专业术语
发送器:发送数据到总线的器件;
接收器:从总线接收数据的器件;
主机:初始化发送产生时钟信号和终止发送的器件;
从机:被主机寻址的器件;
多主机:同时有多于一个主机尝试控制总线但不破坏传输;
仲裁:是一个在有多个主机同时尝试控制总线但只允许其中一个控制总线并使传输不被破坏的过程;
同步:两个或多个器件同步时钟信号的过程。
1.2.2 I2C接口电路结构
前面我们说过I2C总线是由数据线SDA和时钟SCL构成的串行总线,在现实的产品开发过程当中,各种被控制器件均并联在这条总线上,每个器件都有一个唯一的地址识别,可以作为总线上的一个发送器件或接收器件(具体由器件的功能决定)。
I2C总线的接口电路结构如图所示:
1.2.3 I2C总线信号状态
I2C总线有下面几种信号状态:
1.空闲状态:SDA和SCL都为高电平。
2.开始条件(S):SCL为高电平时,SDA由高电平向低电平跳变,开始传输数据。
3.结束条件(P):SCL为高电平时,SDA由低电平向高电平切换,表示传输结束。
4.数据有效:在SCL的高电平期间,SDA保持稳定,数据有效。
5.ACK信号: 数据传输的过程中,接收器件每接收一个字节数据要产生一个ACK 信号,向发送器件发出特定的低电平脉冲,表示已经收到数据。
1.2.4 I2C总线基本操作
I2C总线必须由主器件(通常为微控制器)控制,主器件产生串行时钟(SCL),同时控制总线的传输方向,并产生开始和停止条件。
数据传输中,首先主器件产生开始条件,随后是器件的控制字节(前七位是从器件的地址,最后一位为读写位)。
接下来是读写操作的数据,以及 ACK响应信号。
数据传输结束时,主器件产生停止条件。
具体的过程如下图所示:
1.3 Linux内核的I2C驱动架构
1.3.1 I2C驱动架构
Linux系统对I2C设备具有很好的支持,linux系统下的I2C驱动程序从逻辑上可以分成3个部分:
1.I2C总线的驱动 I2C core :实现对I2C总线、I2C adapter及I2C driver 的管理。
2.I2C控制器的驱动 I2C adapter :针对不同类型的I2C控制器,实现对I2C 总线访问的具体方法。
3.I2C设备的驱动 I2C driver :针对特定的I2C设备,实现具体的功能,包括read, write以及ioctl等对用户层操作的接口。
这三个部分的层次关系下图所示:
1.3.2 I2C 总线驱动 I2C core
I2C core是Linux内核用来维护和管理的I2C的核心部分,其中维护了两个静态的List,分别记录系统中的I2C driver结构和I2C adapter结构。
I2C core 提供接口函数,允许一个I2C adatper,I2C driver和I2C client初始化时在I2C core中进行注册,以及退出时进行注销。
同时还提供了I2C总线读写访问的一般接口(具体的实现在与I2C控制器相关的I2C adapter中实现),主要应用在I2C设备驱动中。
1.3.3 I2C控制器的驱动 I2C adapter
I2C adapter是针对不同类型I2C控制器硬件,实现比较底层的对I2C总线访问的具体方法。
I2C adapter 构造一个对I2C core层接口的数据结构,并通过接口函数向I2C core注册一个控制器。
1.3.4 I2C设备的驱动 I2C driver
I2C driver中提供了一个通用的I2C设备的驱动程序,实现了字符类型设备的访问接口,对设备的具体访问是通过I2C adapter来实现的。
I2C driver 构造一个对I2C core层接口的数据结构,通过接口函数向 I2C Core注册一个I2C设备驱动。
同时I2C driver 构造一个对用户层接口的数据结构,并通过接口函数向内核注册一个字符类型设备。
I2C driver实现用户层对I2C设备的访问,包括open,read,write,ioctl,release等常规文件操作,我们可以通过open函数打开 I2C的设备文件,通过ioctl函数设定要访问从设备的地址,然后就可以通过 read和write函数完成对I2C设备的读写操作。
通过I2C driver提供的通用方法可以访问任何一个I2C的设备,但是其中实现的read,write及ioctl等功能完全是基于一般设备的实现,所有的操作数据都是基于字节流,没有明确的格式和意义。
为了更方便和有效地使用I2C设备,我们可以为一个具体的I2C设备开发特定的I2C设备驱动程序,在驱动中完成对特定的数据格式的解释以及实现一些专用的功能。