(完整版)建模技术的发展史
1三维建模技术发展史
1三维建模技术发展史
三维建模技术的发展可以追溯到工业革命时期,它的最初用途是由机器代替人工手工在金属材料上进行铣削和切割。
随着科技的发展,计算机被大量应用于制造业,并取代了传统的机器制造技术,更加便捷地实现了金属材料的加工。
自19世纪末以来,随着数字技术的发展,人们发现计算机可以被用来帮助设计、制造和测试三维实物。
随着计算机分析技术的发展,计算机可以用来模拟复杂的运动系统,实现动力学分析,并开发用于制造的新科技,如计算机辅助设计(CAD)、计算机辅助制造(CAM)和动态三维计算(CAM)等。
1970年代,三维建模技术开始广泛应用于诸如机械工程等领域,可以实现快速的设计和创建正确的零件,并在加工过程中重新调整和修改。
1980年代,三维建模技术已经得到了广泛的应用,并被用于建筑和航空航天领域,模拟精确的力学分析等领域。
1990年代,随着虚拟现实技术的发展,三维建模开始被用于视觉,并可以用于模拟实际现实世界的控制、模拟、可视化和计算,从而对人们的生活产生了深远的影响。
2000年以后,三维建模技术迅速发展,带来了全新的应用。
发展3D建模技术
发展3D建模技术近年来,随着科技的不断进步和人们对视觉体验的需求不断增长,3D建模技术在各个领域中扮演着越来越重要的角色。
无论是在游戏、电影、建筑设计还是工业制造等领域,3D建模技术都被广泛应用,为我们带来了更加视觉冲击力强、逼真度高的体验。
本文将探讨3D建模技术的发展历程以及其在不同领域中的应用。
一、3D建模技术的发展历程3D建模技术的起源可以追溯到上世纪70年代。
那个时候,计算机性能有限,人们只能使用简单的点线面等基本元素来表示三维物体。
随着计算机性能的提升,3D建模技术逐渐发展起来,从最初的线框模型到表面模型,再到如今的体素(voxel)和多边形模型,技术的进步使得我们能够更加精细地表达三维物体。
二、游戏行业中的应用在游戏行业中,3D建模技术的应用非常广泛。
通过3D建模技术,游戏开发者可以将虚拟游戏世界中的角色、场景等物体栩栩如生地呈现出来,使得玩家可以身临其境地感受游戏带来的乐趣。
同时,3D建模技术还可以为游戏开发者提供更多的创作可能性,使得游戏画面更为绚丽多彩。
三、电影行业中的应用在电影行业中,3D建模技术的应用已经成为制作高质量视觉效果的重要手段。
通过使用3D建模技术,电影制作公司可以创作出逼真细致的特效场景,为观众带来震撼的视觉冲击。
同时,3D 建模技术还可以帮助电影导演更好地呈现自己的创意和想象力,提高电影故事的表达力。
四、建筑设计中的应用在建筑设计领域,3D建模技术已经成为必备的工具。
通过使用3D建模技术,建筑师可以实现对建筑物的虚拟模拟,更好地预测建筑物的外观和结构,并及时发现潜在的问题。
同时,3D建模技术还可以提供给客户更加直观的观感,帮助他们更好地理解并参与到设计过程中来。
五、工业制造中的应用在工业制造领域,3D建模技术已经成为产品开发和制造的重要环节。
通过使用3D建模技术,制造商可以设计出更加复杂、精细的产品,并且可以通过模拟和预测产品性能,提前发现并解决潜在问题,从而降低产品开发和生产成本。
三维建模技术发展历史和发展趋势
三维建模技术发展历史和发展趋势三维建模技术,乍一听,感觉有点高深,对吧?这东西就像我们身边的魔法一样,慢慢变得越来越普及,越来越“接地气”。
你可能没意识到,它早就悄悄地走进了我们的生活,甚至可能已经在你不经意间改变了很多东西。
无论是电影中的炫酷特效,还是游戏中的栩栩如生的角色,抑或是建筑设计师画图时的精准模拟,三维建模都发挥着它不可替代的作用。
说到它的发展史,还真是个有趣的故事哦。
记得上世纪60年代,那时候的计算机技术刚刚起步,三维建模根本就是天方夜谭。
你要问那时候的电脑能做什么?别说建模了,连个简单的计算都要半天。
你想象一下,那时候的画面就像一堆由点和线组成的迷你拼图,简直是“别提多粗糙”了。
科学家们想要让计算机“看见”世界,靠的就只是那些简单的几何图形——比如说立方体、球体之类的,没什么复杂的东西。
图形的渲染速度慢得可怕,一动起来就好像在看一场“生死时速”的慢镜头。
就这样,三维建模技术一开始的目标其实很简单,主要就是在计算机上展示一些基础的几何形状。
然后,到了80年代,计算机的处理能力有所提升,三维建模技术的应用也慢慢“起飞”了。
这个时候,3D图形的制作渐渐从静态图像变成了动态图像。
我们可以看到,电影、游戏、甚至一些工业设计开始引入更复杂的三维建模。
就比如,80年代的《星际迷航》那种经典的航天场景,它的成功很大程度上依赖于三维建模技术的应用。
这一时期的建模技术,虽然还不够完美,但总算可以让我们在大银幕上看到飞船、外星人和未来世界的影像了。
尽管画面看起来有点“低模”,但也能给观众带来满满的震撼感。
再后来,90年代可以说是三维建模技术的一次飞跃。
那个时候,计算机硬件和软件的进步,简直是给三维建模注入了“强心剂”。
不止电影行业,广告、产品设计、建筑设计,甚至医学研究,三维建模几乎在每个领域都能见到它的身影。
最经典的例子,就是1993年《侏罗纪公园》上映时的特效,特别是那些栩栩如生的恐龙,简直让人目瞪口呆。
三维建模发展史范文
三维建模发展史范文三维建模是将真实世界或虚拟世界的物体或场景通过计算机生成三维模型的过程。
它在许多领域里都有广泛的应用,如电影、游戏、建筑、工程等。
三维建模的发展史可以追溯到20世纪60年代末,当时计算机图形学刚刚起步。
下面将分为四个阶段来介绍三维建模的发展历程。
第一阶段:线框模型阶段(1968-1984)第二阶段:表面细节阶段(1985-1999)在这个阶段,三维建模技术得到了进一步的发展,能够更好地呈现物体的表面细节。
在建模技术方面,NURBS(非均匀有理B样条)成为表面建模的主要工具,它能够创建复杂的曲线和表面。
1991年,Alias公司发布了一个名为PowerAnimator的软件,它成为电影和游戏行业的标准工具,用于建模、动画和渲染。
1995年,Pixar公司推出了第一个能够渲染真实表面细节的渲染器,RenderMan Studio。
此外,1996年,Maya软件的第一个版本发布,它以其先进的建模、动画和渲染功能而受到广泛关注。
第三阶段:真实感阶段(2000-2024)在这个阶段,三维建模技术开始注重模拟真实世界物体和场景的真实感。
2000年,Pixar发布了一款名为Subdivision Surfaces的建模工具,这种新的建模技术基于网格和曲面细分,使得模型能够更好地呈现光滑的曲面。
此外,2003年,Pixar推出了名为PRMAN(Photo Realistic RenderMan)的渲染器,它能够实时渲染高质量的图像。
同时,2001年,ZBrush软件发布,该软件使用了一种名为“多边形绘图”(PolyPainting)的新技术,允许用户直接在三维模型上绘制纹理和细节。
第四阶段:物理模拟阶段(2024年至今)综上所述,三维建模技术经过了线框模型阶段、表面细节阶段、真实感阶段和物理模拟阶段的发展,从最早的简单几何形状到能够呈现真实世界物体和场景的细节和行为。
随着计算机技术的不断进步,三维建模在未来还将继续发展,并逐渐应用于更多的领域。
工程建模发展历程
工程建模发展历程
1. 近代工程建模的起源
工程建模最早可以追溯到近代,随着工业革命的到来。
在18世纪末和19世纪初,先进的工程技术和机械工程迅速发展,为了更好地设计和预测机械设备的性能,工程师开始尝试使用纸质草图和手绘图进行建模。
2. 数值计算与数字建模的兴起
20世纪初,随着计算机科学和数值计算方法的发展,工程建模开始使用数字化方法进行。
通过数值计算,工程师可以更准确地预测和分析机械设备的性能,并提升工程设计的可靠性。
数字建模技术的应用也推动了航空、汽车和土木工程等领域的快速发展。
3. 三维建模的普及与应用
20世纪80年代,随着计算机图形学的进一步发展,三维建模技术开始普及,并被广泛应用于工程设计中。
通过三维建模,工程师可以更直观地对产品进行设计和可视化展示,从而更好地满足客户需求并优化设计。
此外,三维建模还带来了模拟和仿真的功能,使工程师能够更全面地分析设计方案。
4. 云计算与协同建模的新趋势
21世纪的今天,随着云计算、物联网和大数据技术的不断进步,协同建模成为工程建模领域的新趋势。
工程师可以通过云平台进行在线协作和数据共享,提升设计效率和质量。
同时,大数据分析和智能算法的应用也为工程建模带来了更广阔的发展空间,可以更好地支持工程决策和优化。
5. 工程建模的未来发展
工程建模作为工程设计和预测的核心工具,将继续不断发展。
未来,我们可以期待更智能化、自动化的建模技术的出现,以满足快速变化的工程需求。
同时,虚拟现实和增强现实技术的应用还将提供更多沉浸式的设计和展示方式,进一步改进工程建模的效果。
CAD建模技术的发展及现状
CAD建模技术的发展及现状1.CAD建模技术发展的历史CAD技术起步于50年代后期,进入60年代,CAD技术发展迅速,其技术的出发点是以传统的三视图来表达零件。
汽车及飞机等制造业在70年代的时候进入了一个蓬勃发展的时期,但产品在制造中遇到了大量无法解决的自由曲面问题。
这时法国的雷洛公司的BEZIER提出了一种控制多边形的方法,即贝塞尔算法使人们用计算机解决曲面问题成为了可能。
进入 80 年代,CAD/CAM技术走向成熟。
80年代以后,个人计算机和工作站开始出现,如美国苹果公司的Macintosh、IBM公司的PC机以及Apollo、SUN 工作站等。
与大型机、中型机和小型机相比,PC机级工作站体积小、价格便宜、功能更加完善,极大的降低了CAD/CAM技术的硬件门槛,促进了CAD/CA技术的迅速普及,主要表现在:由军事工业向民用工业扩展,由大型企业向中小企业推广,有高技术领域向家电、其工业等普通产品中普及,由发达国家扩展到发展中国家。
CAD已超越了传统的计算机绘图范畴,有关复杂曲线、曲面描述的新的算法理论不断出现并迅速商品化。
80年代初提出并逐步发展、完善了实体建模技术(Solid Modeling)技术,目前实体建模技术以成为CAD中的主流建模方法。
实体建模技术能提供单一的、确定性的集合形体描述方法,并成为CAD/CAM软件系统的核心功能模块。
各种危机CAD 系统、工作站CAD系统不断涌现,CAD技术在航空、航天、船舶、核工程、模具等领域的得到广泛应用。
在90 年代时期CAD建模技术进入了微机化、标准化、集成化、智能化发展时期。
90年代后,随着计算机软硬件及网络技术的发展,PC机+Windows操作系统、工作站+Unix操作系统以及以太网(Ethernet)为主的网络黄静构成了CAX 系统的主流平台,CAX系统功能日益增强、接口趋于标准化。
参数化技术的成功应用,使得它在90年前后几乎成为CAD业界的标准,许多软件厂商纷纷起步追赶。
数学建模概念的发展研究
数学建模概念的发展研究一、数学建模的历史数学建模的历史可以追溯到古希腊时期,当时的数学家开始用几何图形来描述天体运动和地球形状。
随着数学的发展,人们开始将数学方法应用于实际问题的解决,比如天文学、物理学、经济学等领域的问题。
直到20世纪初,数学建模才成为一个独立的学科。
随着计算机技术的发展,数学建模得到了迅速的发展,成为一种独立的学科,并逐渐应用于更广泛的领域。
二、数学建模的应用领域数学建模的应用领域非常广泛,涉及自然科学、工程技术、社会经济等各个领域。
在自然科学方面,数学建模被广泛应用于力学、流体力学、材料科学等领域,用于描述和预测物质的力学性质、流体的流动规律等;在工程技术领域,数学建模被用于设计和优化各种系统和设备,包括航天器、汽车、电子设备等;在社会经济领域,数学建模被用于分析和预测经济走势、人口增长、资源分配等问题。
数学建模已经成为现代科学技术和社会经济发展的重要工具。
三、数学建模的发展趋势随着实际问题的复杂性和多样性不断增加,数学建模也面临着新的挑战和发展机遇。
一方面,数学建模需要不断更新和完善自身的理论和方法,以应对日益复杂的问题;数学建模还需要与其他学科进行交叉融合,结合现代信息技术、大数据分析等手段,才能更好地应用于实际问题的解决。
数学建模的发展趋势可以概括为:理论创新、方法完善、跨学科融合。
在未来,数学建模有望成为更加重要和有效的工具,为人类的科学探索和社会经济发展提供更有力的支持。
随着人工智能、大数据分析等技术的发展,数学建模将更加注重数据的挖掘和分析,以及模型的精确描述和预测能力。
数字化技术也将使数学建模更加普及和便捷,让更多的科研人员和工程技术人员能够轻松进行数学建模工作。
数学建模有望在未来发挥更加重要的作用,为人类的发展进步做出更大的贡献。
1三维建模技术发展史
1三维建模技术发展史
三维建模技术是一种非常普及的计算机辅助设计(CAD)技术,用于创
建3D图像和图形的数字表示。
它旨在捕捉物体的特征,并将其呈现出来,从而使设计者能够更好地进行设计,缩短设计时间,提高设计效率。
三维建模技术的演变与计算机技术的发展密不可分。
其发展史可以大
致分为四个阶段:
第一阶段是从1970年代初期开始的,出现了第一个采用基于三角形
的三维建模技术。
当时的建模技术主要通过键盘输入三角形的三维坐标,
建立物体的三维模型。
虽然节省了很多时间,但由于键盘输入的效率太低,因此应用比较有限。
第二阶段是从上世纪八十年代后期开始的,出现了以曲线和曲面为基
础的造型技术,它可以通过对几何元素,如点、线、圆、椭圆、圆锥等进
行精确控制,快速建立模型。
同时,计算机技术及存储媒介的发展,使得
曲线、曲面等几何元素的建模更加灵活、高效、精确。
第三阶段是从1990年代后期开始的,出现了多模态建模技术,它基
于几何模型和尺寸模型,更加灵活地表示物体的几何和尺寸。
因此,设计
者可以在表示物体的多个方面进行灵活的控制,从而更好地完成整个设计
过程。
(完整版)建模技术的发展史
建模技术的发展史三维建模技术是研究在计算机上进行空间形体的表示、存贮和处理的技术。
实现这项技术的软件称为三维建模工具。
本课程主要培养运用Pro/Engineer软件表示和设计空间形体的能力。
三维建模技术是利用计算机系统描述物体形状的技术。
如何利用一组数据表示形体,如何控制与处理这些数据,是几何造型中的关键技术。
三维建模技术的研究和发展在CAD技术发展初期,CAD仅限于计算机辅助绘图,随着三维建模技术的发展,CAD技术才从二维平面绘图发展到三维产品建模,随之产生了三维线框模型、曲面模型和实体造型技术。
而如今参数化及变量化设计思想和特征模型则代表了当今CAD技术的发展方向。
三维建模技术是伴随CAD技术的发展而发展的!三维建模技术的发展史1 线框模型(Wire Frame Model) : 20世纪60年代末开始研究用线框和多边形构造三维实体,这样地模型被称为线框模型。
三维物体是由它的全部顶点及边的集合来描述,线框由此得名,线框模型就像人类的骨骼。
优点:有了物体的三维数据,可以产生任意视图,视图间能保持正确的投影关系,这为生产工程图带来了方便。
此外还能生成透视图和轴侧图,这在二维系统中是做不到的;构造模型的数据结构简单,节约计算机资源;学习简单,是人工绘图的自然延伸。
缺点:因为所以棱线全部显示,物体的真实感可出现二义解释;缺少曲线棱廓,若要表现圆柱、球体等曲面比较困难;由于数据结构中缺少边与面、面与面之间的关系的信息,因此不能构成实体,无法识别面与体,不能区别体内与体外,不能进行剖切,不能进行两个面求交,不能自动划分有限元网络等等。
2曲面模型(Surface Model)曲面模型是在线框模型的数据结构基础上,增加可形成立体面的各相关数据后构成的。
曲面模型的特点与线框模型相比,曲面模型多了一个面表,记录了边与面之间的拓扑关系。
曲面模型就像贴付在骨骼上的肌肉。
优点:能实现面与面相交、着色、表面积计算、消隐等功能,此外还擅长于构造复杂的曲面物体,如模具、汽车、飞机等表面。
三维建模发展史范文
三维建模发展史范文
三维建模发展史可追溯到古代。
早在公元前五世纪,古希腊建筑师尼索斯(Necos)就曾利用石头和砖头建造出佛罗里达大学(University of Florida)现存的最大的古建筑,德尔波利斯运河(Delphos Canal)。
由于当时仅有简单的建筑技术,空间几何结构被混淆,建筑物表面几乎未受到影响。
17世纪,法国几何学家笛卡尔提出了空间几何学的概念,并被称为“几何结构”,这一理念成为后人在建筑设计和建筑制造领域中开发三维建模技术的基础。
19世纪,美国科学家爱德华·威尔斯(Edward W. Williams)发明
了圆规,可用来绘制三维几何形状,并将其引入建筑和制造行业。
然而,这种技术有限,因为该技术只能用于构造和分析建筑结构,无法用于具体的应用。
20世纪上半叶,受到电脑技术的发展,人们开始构想将三维建模技
术与电脑结合起来,以便更好地制造出一些复杂的物体,以及进行各种计算和分析。
1969年,美国它奇空军研究实验室(ARL)的工程师查尔斯·海斯利(Charles H. Heath)发明了“六边形网格”(Hexagonal Grid),它将三维建模技术与电脑技术相结合,开创了三维建模的新时代。
bim技术发展历程及现状 -回复
bim技术发展历程及现状-回复BIM(建筑信息模型)技术是建筑行业数字化转型的重要组成部分,它通过集成各种建筑数据和信息,实现对建筑项目全生命周期的管理与优化。
本文将带您一步一步回顾BIM技术的发展历程,并介绍当前的现状。
一、BIM技术的起源与初步发展1. 起源:BIM技术的起源可以追溯到20世纪70年代的美国,当时的Disney工程师们开始使用计算机辅助设计(CAD)系统来建立虚拟模型,以优化建筑设计和施工流程。
2. 初步发展:20世纪80年代和90年代是BIM技术的初步发展阶段。
与传统的2D CAD相比,3D建模技术的引入大大提高了设计效率和准确性。
同时,BIM软件开始涵盖更多的功能,如数量计算、能源分析等。
二、BIM技术的主要发展阶段1. 集成设计阶段:进入21世纪,BIM技术逐渐向更高级的阶段发展。
集成设计阶段强调设计团队的协作和信息共享,通过BIM平台将各种专业的信息整合在一起,以提升设计质量和效率。
2. 施工阶段的协调:在施工阶段,BIM技术的主要任务是协调各个施工方之间的工作。
通过将施工模型与进度、成本等信息相结合,BIM可以帮助识别并解决施工中的冲突和问题,提高协同施工的效率。
3. 运营与维护阶段:BIM技术在建筑项目的运营与维护阶段也发挥着重要作用。
通过建立智能运营模型,BIM可以帮助建筑业主和管理团队实现设备管理、预防性维护、能源管理等任务,提高建筑的可持续性和使用效益。
三、BIM技术的现状1. 国际发展状况:BIM技术已在全球范围内普及和推广。
许多国家和地区都采取了相关政策和标准来推动BIM技术的应用,同时建立了相应的培训和认证体系,以提高从业人员的专业水平。
2. 中国发展状况:中国在近年来积极推动BIM技术的发展。
2015年,国家发改委发布了《关于推进建筑信息模型应用的通知》,鼓励各地在政府投资项目中使用BIM技术。
目前,BIM已经成为了国内大型建筑项目的标配。
3. 技术创新与应用拓展:BIM技术面临的挑战主要来自于多学科协同和信息共享的问题。
1三维建模技术发展史
1三维建模技术发展史
三维建模技术是从20世纪70年代以后发展起来的一项新技术,它通
过使用计算机软件和硬件设备,生成、表达、操纵和显示三维数字风格的
物体,也就是三维设计的过程中运用的一种表示技术。
下面简单介绍一下
三维建模技术的发展史。
20世纪70年代,随着计算机技术的发展,出现了第一款计算机辅助
设计软件(CAD)。
它的初步功能仅仅是用来帮助用户绘制2维图像。
1980年,出现了Geometric Modeling System (GMS),它是第一款支持三
维模型绘制的CAD系统,将3维物体的模型以曲线、曲面、曲线网格等几
何图形的形式表达出来。
20世纪90年代,随着计算机的技术快速发展,涌现出大量具备三维
建模功能的软件。
比如Autodesk的AutoCAD,它是一款三维可视化软件,可以自由绘制,变通和操纵三维图形。
20世纪90年代之后,通过不断创新和持续发展,三维图形设计技术
得到了进一步发展,出现了更多的特殊细节模型,如数字图像、地形模型、表面模型、影像处理模型等。
进入21世纪之后,三维建模技术又得到了极大的发展和变革,出现
了大量的新型计算机软件和硬件设备,为三维设计和表示技术带来了更多
的可能。
建筑业bim发展历程
建筑业bim发展历程建筑信息模型(Building Information Modeling,简称BIM)是一种集成数字化信息的建筑设计、建造和运营的方法。
BIM的发展历程经历了多个阶段,从最初的2D CAD到如今的4D、5D BIM,涵盖了更多的维度和数据。
以下是建筑业BIM发展的主要阶段和里程碑:一、2D CAD时代(20世纪70年代-80年代)1.1 起源BIM的发展可以追溯到计算机辅助设计(CAD)的早期阶段。
在20世纪70年代,建筑行业开始使用2D CAD软件,取代了传统的手绘图纸。
这一时期的CAD系统主要用于绘制建筑平面图和立面图,提高了图纸的制作效率,但并未涉及建筑数据的全面集成。
1.2 2D CAD的局限性2D CAD存在的问题主要集中在信息的不一致性和不完整性。
因为它只提供了平面的表示,不同专业的图纸之间的信息难以协同,容易导致误解和冲突。
二、3D BIM时代的兴起(90年代初-2000年代初)2.1 3D BIM的引入在90年代初期,建筑行业开始尝试使用三维建模软件,这标志着BIM的雏形。
3D BIM允许建筑师、结构工程师和机械电气工程师等各专业通过共享3D模型来更好地协同工作。
然而,这一阶段的BIM仍然主要关注几何形状,缺乏对建筑元素的深入信息。
2.2 数据集成的改进随着技术的发展,3D BIM逐渐引入了更多的数据元素,例如建筑材料、构造类型和构件属性。
这一时期的BIM系统更强调多专业的集成,但在建筑生命周期的全面支持方面仍有局限。
三、4D BIM和5D BIM时代的到来(2000年代中期-至今)3.1 4D BIM的时间维度在2000年代中期,BIM的发展进入了4D BIM时代,引入了时间维度。
4D BIM通过将时间因素与建筑模型相结合,实现了对建筑项目进度和施工阶段的可视化管理。
这为建筑项目的时间规划和进度控制提供了新的工具。
3.2 5D BIM的成本维度随着建筑项目管理对成本的重视,5D BIM引入了成本维度。
建模技术的发展史
安徽科技学院机电与车辆工程学院现代设计技术课程作业作业名称:简论建模技术的发展学生姓名:张佳佳学号: 1611100332班级:机械电子工程103班指导教师:张华作业时间: 2012年10月18日现代设计技术课程组制简论建模技术的发展信息时代的今天,计算机已经成为人们日常工作学习中不可或缺的工具,其中利用计算机进行前期产品设计更是发展的一枝独秀。
它不仅节省设计周期,而且能更清楚的表达设计者的设计理念!几何建模又是计算机辅助设计中最基础,最核心的关键技术之一。
目前的几何建模技术已经发展的比较成熟了,相信随着以后对于计算机设计的依赖,建模技术也会有更加辉煌的前景!计算机辅助设计,也就是使用计算机和信息技术来辅助工程是进行产品或工程的设计。
CAD是一项综合性、迅速发展和广泛应用的高新技术。
但是,在CAD软件发展的初期,CAD的含义仅仅是图板的替代品,被称为计算机辅助出图。
计算机辅助设计在其近50年的演变历史中,经历了巨大发展,其技术发展经历了:画板二维,三维现框,三维表面建模,基于历史记录的实体建模等。
CAD技术起步于20世纪50年代后期。
此时CAD技术的出发点是用传统的三视图方法来表达零件,以图纸为媒介进行技术交流,这就是典型的二维计算机绘图。
20世纪60年代出现的三维CAD系统只是极为简单的线框式系统,只能表达基本的几何信息,不能有效表达几何数据间的拓扑关系。
由于缺乏形体表面信息,计算机辅助制造及计算机辅助工程均无法实现。
这是,法国人提出了贝塞尔算法,是的人们在使用计算机处理曲线及曲面问题时变为可能,同时也使得法国的达索飞机制造公司的开发者能在二维绘图系统的基础上,开发出以表面模型为特点的自由曲面建模模法,推出了三维曲面造型技术。
它的出现,标志着计算机辅助设计技术从单纯模仿工程图纸的三视图模式中解放出来,首次实现以计算机完整描述产品零件的主要信息,同时也是的CAM技术的开发有了实现的基础。
20世纪80年代初,CAD系统价格依然令一般企业望而却步,这使得CAD技术无法拥有更广阔的市场。
1.2.11.2三维模型的发展历程
(二)三维模型的分类
1.线框建模 线框建模是三维模型的简单表
现形式,都是处于线框建模。它所 表现的物体都是通过顶点和与之相 连的棱边而产生的。和二维系统一 样,三维系统也为使用者提供了基 本元素:点、直线、圆和圆弧以及 自由曲线等。
(二)三维模型的分类
2.表面建模 是描述实体的面。面向表面的系
THANKS!
(三)三维建模的未来期望
1.游戏行业 随着近几年国家把电子竞
技纳入奥运会,吸引了大批热 爱电子竞技的玩家,可以说现 在是游戏产业最好的时代,游 戏行业正处于蓬勃发展的阶段, 游戏产业对游戏3D建模师的需 求非常大。
(三)三维建模的未来期望
2.影视行业 近年来影视产业的而发展
速度大家应该有目共睹。影视 模型是影视后期制作的一个环 节,近年来,越来越多的视觉 效果电影,需要影视模型师为 虚拟的和未实现的物体建立三 维模型,并最终与拍摄的图像 融合。
(三)三维建模的未来期望
3.室内设计 房地产的兴起,导致现在
年轻人买房的越来越多,而房 屋的设计和装修,必然离不开 设计 ,所以如今越来越多的3D 建模是进入了舍内设计这个行 业,通常室内设计对建模能力 的要求比较低,对个人设计能 力比较高,往往一份好的室内 设计能够得到很丰富的薪酬。
本节重点:三维建模的发展历程 本节难点:三维模型的分类
组合而成的一种模型。它允 许一个项目能沿着最有效的 路径发展。也可定义为由固 定效应和随机效应(随机误 差除外)两部分组成的统计 分析模型。
(一)三维的概念与特点
5.第五阶段 特征建模是一种综合概念,
它作为"产品开发过程中各种 信息的载体"除了包含零件的 几何拓扑信息外,还包含了设 计制造等过程所需要的一些 非几何信息。
三维建模发展史范文
三维建模发展史范文
维护三维建模发展史,首先我们要追溯到几乎可以追溯到古希腊,他
们将几何建模形象化为艺术形式,并且可以被应用在建筑艺术中。
17世纪,笛卡尔开始应用笛卡尔几何原理,通过欧几里得几何的概念,解决几
何学上的重要问题,从而推动了三维建模的发展。
20世纪中叶,随着计算机的发展,三维建模技术得到了极大的发展。
在这一时期,准确的三维计算机图形学(几何表示)和三维技术模拟(CAD/CAM)被开发出来,为计算机图形学及其应用提供了更加准确、更
加便捷的方法。
还建立了多边形模型的结构表达,并且可以用于三维建模
和渲染场景的模拟制作。
而具有视觉立体效果的三维技术则开始火热,成
为游戏开发领域的主要应用技术。
随着电子技术的发展,三维建模技术得到了更多的发展,增强现实(AR)、虚拟现实(VR)等新兴技术也受到广大用户的关注,从而成为计
算机图形学及其应用的重要技术。
在今天,三维建模技术已经深入到娱乐,建筑,艺术,机械,医学等许多不同领域,这些技术也逐渐改变着人们的
生活方式。
近几年,随着互联网技术的发展,许多基于云计算的维建模服务也开
始提供。
(完整版)数学建模的起源
一、数学建模的起源数学建模是在20世纪60和70年代进入一些西方国家大学的,我国的几所大学也在80年代初将数学建模引入课堂。
经过20多年的发展现在绝大多数本科院校和许多专科学校都开设了各种形式的数学建模课程和讲座,为培养学生利用数学方法分析、解决实际问题的能力开辟了一条有效的途径。
大学生数学建模竞赛最早是1985年在美国出现的,1989年在几位从事数学建模教育的教师的组织和推动下,我国几所大学的学生开始参加美国的竞赛,而且积极性越来越高,近几年参赛校数、队数占到相当大的比例。
可以说,数学建模竞赛是在美国诞生、在中国开花、结果的。
1992年由中国工业与应用数学学会组织举办了我国10城市的大学生数学模型联赛,74所院校的314队参加。
教育部领导及时发现、并扶植、培育了这一新生事物,决定从1994年起由教育部高教司和中国工业与应用数学学会共同主办全国大学生数学建模竞赛,每年一届。
十几年来这项竞赛的规模以平均年增长25%以上的速度发展。
全国大学生数学建模竞赛是全国高校规模最大的课外科技活动之一。
本竞赛每年9月(一般在中旬某个周末的星期五至下周星期一共3天,72小时)举行,竞赛面向全国大专院校的学生,不分专业(但竞赛分本科、专科两组,本科组竞赛所有大学生均可参加,专科组竞赛只有专科生(包括高职、高专生)可以参加)。
2008 年全国有31个省/市/自治区(包括香港)1023所院校、12846个队(其中甲组10384队、乙组2462队)、3万8千多名来自各个专业的大学生参加竞赛,是历年来参赛人数最多二、数学建模的定义简单地说:数学模型就是对实际问题的一种数学表述。
具体一点说:数学模型是关于部分现实世界为某种目的的一个抽象的简化的数学结构。
更确切地说:数学模型就是对于一个特定的对象为了一个特定目标,根据特有的内在规律,做出一些必要的简化假设,运用适当的数学工具,得到的一个数学结构。
数学结构可以是数学公式,算法、表格、图示等。
工程建模发展历程
工程建模发展历程工程建模是指利用数学和计算机技术,采用科学方法或技术手段对于工程问题进行建模和分析的过程。
它在工程领域的发展历程可以追溯到20世纪初。
20世纪初,随着科学技术的进步,工程领域的需求也逐渐增加。
人们开始意识到通过建立数学模型来解决工程问题是一种高效和可行的方法。
然而,在当时,由于计算机技术的限制,工程建模的发展相对缓慢。
到了20世纪60年代,随着计算机技术的推进,工程建模开始迎来快速发展的时期。
计算机能够更好地处理和分析复杂的数学模型,使得工程建模的实用性和可行性得到了进一步提高。
在70年代和80年代,工程建模的范围和领域逐渐扩大。
不仅仅局限于结构、力学和热工等方面,工程建模还涉及到了流体力学、电磁场、材料科学等领域。
此外,随着有限元分析和计算流体力学等技术的发展,工程建模的精度和准确性也得到了大幅提高。
到了90年代,随着计算机技术的快速发展,工程建模进一步向前迈进。
人们开始使用更加高效的软件和工具进行建模和分析,例如3D建模软件、工程模拟软件等。
这些软件和工具的使用大大简化了工程建模的过程,提高了效率和准确性。
在21世纪以后,工程建模的发展更加迅速。
随着云计算、大数据和人工智能等技术的应用,工程建模的规模和复杂度进一步提升。
人们开始使用虚拟现实和增强现实等技术来进行建模和分析,使得工程建模更加直观和逼真。
此外,工程建模的应用范围也不断扩大。
不仅仅用于解决传统工程问题,工程建模还开始应用于城市规划、环境保护、能源管理等方面。
通过建立模型来研究和分析这些复杂的工程问题,可以为决策者提供更多的参考依据。
总的来说,工程建模在过去的几十年间取得了显著的发展。
从最初的简单模型到现在的复杂建模,工程建模的发展为工程领域的研究和实践提供了强大的支持。
随着科技的不断进步,工程建模还将继续发展并发挥更大的作用。
计算机形学三维建模渲染和动
计算机形学三维建模渲染和动画技术的发展及应用随着计算机技术的飞速发展,计算机形学三维建模渲染和动画技术也逐渐成为了计算机图形学研究的热点。
这些技术在电影、游戏、虚拟现实等领域的应用越来越广泛,给人们带来了身临其境的视觉体验。
本文将介绍计算机形学三维建模渲染和动画技术的发展历程以及其在不同领域的应用。
一、计算机形学三维建模技术的发展计算机形学三维建模技术最早出现在20世纪70年代末期,当时的硬件和软件条件还十分有限。
随着计算机性能的提升和算法的不断改进,三维建模技术得以迅速发展。
最早的三维建模方法是通过基本的几何图形进行绘制,如点、线、面。
随后,出现了基于多边形网格的建模方法,使得模型的表面更加真实可信。
到了21世纪初,计算机形学三维建模技术进一步取得了突破性进展。
基于曲线和曲面的建模方法得到了广泛应用,如贝塞尔曲线和NURBS曲面等。
此外,还出现了基于体素的体绘制方法,通过对空间进行离散化表示,使得建模过程更加自由和灵活。
二、计算机形学渲染技术的发展计算机形学渲染技术的发展主要包括光照模型、材质模型和渲染算法等方面的进展。
光照模型是指对场景中光照的仿真和模拟,其中最经典的模型是冯氏光照模型。
该模型通过对光源、材质和观察者之间相互作用的描述,实现了逼真的光照效果。
材质模型是指对物体表面的材质特性进行描述和模拟的方法。
最早的材质模型是基于表面属性的Phong模型,后来出现了基于物理的BRDF模型,更加准确地描述了光线在物体表面的反射和折射。
渲染算法是指将建模数据转化为图像的算法。
早期的渲染算法主要侧重于光线追踪方法,如光线追踪、路径追踪等。
随着硬件性能的提升,基于图像的渲染算法也得到了广泛应用,如基于层次的深度着色法、基于光栅化的渲染等。
三、计算机形学动画技术的发展计算机形学动画技术的发展主要包括建模、动画控制和动画渲染等方面的进展。
在建模方面,传统的三维建模方法逐渐无法满足对复杂场景和角色的需求。
建模技术的发展历史
建模技术的发展历史1001500217 鞠生林在CAD软件发展初期,CAD的含义仅仅是图板的替代品,即:意指Computer Aided Drawing(or Drafting)而非现在我们经常讨论的CAD(Computer Aided Design)所包含的全部内容。
CAD技术以二维绘图为主要目标的算法一直持续到70年代末期,以后作为CAD 技术的一个分支而相对单独、平稳地发展。
早期应用较为广泛的是CADAM软件,近十年来占据绘图市场主导地位的是Autodesk公司的AutoCAD软件。
在今天中国的CAD用户特别是初期CAD用户中,二维绘图仍然占有相当大的比重。
1.第一次CAD技术革命──贵族化的曲面造型系统60年代出现的三维CAD系统只是极为简单的线框式系统。
这种初期的线框造型系统只能表达基本的几何信息,不能有效表达几何数据间的拓扑关系。
由于缺乏形体的表面信息,CAM及CAE均无法实现。
进入70年代,正值飞机和汽车工业的蓬勃发展时期。
此间飞机及汽车制造中遇到了大量的自由曲面问题,当时只能采用多截面视图、特征纬线的方式来近似表达所设计的自由曲面。
由于三视图方法表达的不完整性,经常发生设计完成后,制作出来的样品与设计者所想象的有很大差异甚至完全不同的情况。
设计者对自己设计的曲面形状能否满足要求也无法保证,所以还经常按比例制作油泥模型,作为设计评审或方案比较的依据。
既慢且繁的制作过程大大拖延产了产品的研发时间,要求更新设计手段的呼声越来越高。
此时法国人提出了贝赛尔算法,使得人们在用计算机处理曲线及曲面问题时变得可以操作,同时也使得法国的达索飞机制造公司的开发者们,能在二维绘图系统CADAM的基础上,开发出以表面模型为特点的自由曲面建模方法,推出了三维曲面造型系统CATIA。
它的出现,标志着计算机辅助设计技术从单纯模仿工程图纸的三视图模式中解放出来,首次实现以计算机完整描述产品零件的主要信息,同时也使得CAM技术的开发有了现实的基础。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
建模技术的发展史
三维建模技术是研究在计算机上进行空间形体的表示、存贮和处理的技术。
实现这项技术的软件称为三维建模工具。
本课程主要培养运用Pro/Engineer软件表示和设计空间形体的能力。
三维建模技术是利用计算机系统描述物体形状的技术。
如何利用一组数据表示形体,如何控制与处理这些数据,是几何造型中的关键技术。
三维建模技术的研究和发展
在CAD技术发展初期,CAD仅限于计算机辅助绘图,随着三维建模技术的发展,CAD技术
才从二维平面绘图发展到三维产品建模,随之产生了三维线框模型、曲面模型和实体造型技术。
而如今参数化及变量化设计思想和特征模型则代表了当今CAD技术的发展方向。
三维建模技术是伴随CAD技术的发展而发展的!
三维建模技术的发展史
1 线框模型(Wire Frame Model) : 20世纪60年代末开始研究用线框和多边形构造三维实体,这样地模型被称为线框模型。
三维物体是由它的全部顶点及边的集合来描述,线框由此得名,线框模型就像人类的骨骼。
优点:
有了物体的三维数据,可以产生任意视图,视图间能保持正确的投影关系,这为生产工程图带来了方便。
此外还能生成透视图和轴侧
图,这在二维系统中是做不到的;构造模型的数据结构简单,节约计算机资源;学习简单,是人工绘图的自然延伸。
缺点:因为所以棱线全部显示,物体的真实感可出现二义解释;缺少曲线棱廓,若要表现圆柱、球体等曲面比较困难;由于数据结构中缺少边与面、面与面之间的关系的信息,因此不能构成实体,无法识别面与体,不能区别体内与体外,不能进行剖切,不能进行两个面求交,不能自动划分有限元网络等等。
2曲面模型(Surface Model)
曲面模型是在线框模型的数据结构基础上,增加可形成立体面的各相关数据后构成的。
曲面模型的特点
与线框模型相比,曲面模型多了一个面表,记录了边与面之间的拓扑关系。
曲面模型就像贴付在骨骼上的肌肉。
优点:能实现面与面相交、着色、表面积计算、消隐等功能,此外还擅长于构造复杂的曲面物体,如模具、汽车、飞机等表面。
缺点:
只能表示物体的表面及边界,不能进行剖切,不能对模型进行质量、质心、惯性矩等物性计算
第二次技术革命——实体造型系统
进入20世纪80年代,CAD价格依然令一般企业望而却步,这使得CAD技术无法拥有更广阔的市场。
由于表面模型技术只能表达形体的表面信息,难以准确表达零件的其它特性,如质量、重心、惯性矩等,对CAE十分不利。
基于对
CAD/CAE一体化技术发展的探索,SDRC公司在美国国家航空及宇航局(NASA)支持下于1979年发布了世界上第一个完全基于实体造型技术的大型CAD/CAE软件——I-DEAS。
由于实体模型能精确表达零件的全部属性,在理论上统一CAD/CAE/CAM——带来了CAD发展史上第二次技术革命。
实体模型(Solid Model):实体模型在表面看来往往类似于经过消除隐藏线的线框模型在线框模型或经过消除隐藏面的曲面模型;但实体模型上如果挖一个孔,就会自动生产一个新的表面,同时自动识别内部和外部;实体模型可以使物体的实体特性在计算机中得到定义。
它有如下特性:它是一个全封闭(实体)的三维形体的计算机表示;具有完整性和无二义性;保证只对实际上可实现的零件进行造型;零件不会缺少边,面,也不会有一条边穿入零件实体,因此,能避免差错和不可实现的设计。
提供高级的整体外形定义方法。
可以通过布尔运算从旧模型得到新模型。
实体模型:骨骼+肌肉+内脏的完整人体
第三次技术革命——特征参数化技术
20世纪80年代中晚期,计算机技术迅猛发展,硬件成本大幅度降低,CAD技术的硬件平台成本从二十几万美元降到只需几万美元。
很多中小型企业也开始有能力使用CAD技术。
1988年,参数技术公司(Parametric Technology Corporation,PTC)采用面向对象的统一数据库和全参数化造型技术开发了Pro/Engineer软件,为三维实体造型提供了一个优良的平台。
参数化(Parametric)造型的
主体思想是用几何约束、工程方程与关系来说明产品模型的形状特征,从而达到设计一系列在形状或功能上具有相似性的设计方案。
目前能处理的几何约束类型基本上是组成产品形体的几何实体公称尺寸关系和尺寸之间的工程关系,因此参数化造型技术又称尺寸驱动几何技术。
带来了CAD发展史上第三次技术革命。
参数化设计是CAD技术在实际应用中提出的课题,它不仅可使CAD系统具有交互式绘图功能,还具有自动绘图的功能。
目前参数化技术大致可分为如下三种方法:(1)基于几何约束的数学方法;
(2)基于几何原理的人工智能方法;
(3)基于特征模型的造型方法(特征工具库,包括标准件库均可采用该项技术)。
其中数学方法又分为初等方法(Primary Approach)和代数方法(Algebraic Approach)。
初等方法利用预先设定的算法,求解一些特定的几何约束。
这种方法简单、易于实现,但仅适用于只有水平和垂直方向约束的场合;代数法则将几何约束转换成代数方程,形成一个非线性方程组。
该方程组求解较困难,因此实际应用受到限制;人工智能方法是利用专家系统,对图形中的几何关系和约束进行理解,运用几何原理推导出新的约束,这种方法的速度较慢,交互性不好。
参数化系统的指导思想是:你只要按照系统规定的方式去操作,系统保证你生成的设计的正确性及效率性,否则拒绝操作。
这种思路的副作用是:1)使用者必须遵循软件内在使用机制,如决不允许欠尺寸
约束、不可以逆序求解等;2)当零件截面形状比较复杂时,将所有尺寸表达出来让设计者为难;3)只有尺寸驱动这一种修改手段,那么究竟改变哪一个(或哪几个)尺寸会导致形状朝着自己满意方向改变呢?这并非容易判断;4)尺寸驱动的范围亦是有限制的。
如果给出了不合理的尺寸参数,使某特征与其它特征相干涉,则引起拓扑关系的改变。
5)从应用来说,参数化系统特别适用于那些技术已相当稳定成熟的零配件行业。
这样的行业,零件的形状改变很少,经常只需采用类比设计,即形状基本固定,只需改变一些关键尺寸就可以得到新的系列化设计结果。
第四次技术革命——变量化技术
参数化技术要求全尺寸约束,即设计者在设计初期及全过程中,必须将形状和尺寸联合起来考虑,并且通过尺寸约束来控制形状,通过尺寸改变来驱动形状改变,一切以尺寸(即参数)为出发点,干扰和制约者设计者创造力的及想象力的发挥。
一定要求全尺寸约束吗?欠约束能否将设计正确进行下去?沿着这个思路,SDRC公司的开发人员以参数化技术为蓝本,提出了一种比参数化技术更为先进的变量化技术,1993年推出全新体系结构的I-DEAS Msater Series软件——带来了CAD发展史上第四次技术革命。
变量化技术:我们在进行机械设计和工艺设计时,总是希望零部件能够让我们随心所欲地
构建,可以随意拆卸,能够让我们在平面的显示器上,构造出三维立体的设计作品,而且希望保留每一个中间结果,以备反复设计和优化设计时使用。
VGX(Variational Geometry Extended――超变量化几何,SDRC公司推出)实现的就是这样一种思想。
变量化系统的指导思想是:1)设计者可以采用先形状后尺寸的设计方式,允许采用不完全尺寸约束,只给出必要的设计条件,这种情况下仍能保证设计的正确性及效率性。
2)造型过程是一个类似工程师在脑海里思考设计方案的过程,满足设计要求的几何形状是第一位的,尺寸细节是后来逐步完善的。
3)设计过程相对自由宽松,设计者更多去考虑设计方案,无须过多关心软件的内在机制和设计规则限制,所以变量化系统的应用领域也更广阔一些。
4)除了一般的系列化零件设计,变量化系统在做概念设计时特别得心应手,比较适用于新产品开发、老产品改形设计这类创新式设计。